
CEN429 Secure Programming Week-7
Code Obfuscation and Diversification Techniques

Author: Dr. UÄŸur CORUH

Contents
1 CEN429 Secure Programming 1

1.1 Week-7 . 1
1.1.1 Outline . 1

1.2 Week-7: Code Obfuscation and Diversification . 1

List of Figures

List of Tables

1 CEN429 Secure Programming
1.1 Week-7
1.1.0.1 Code Obfuscation and Diversification Techniques Download

• PDF1

• DOC2

• SLIDE3

• PPTX4

1.1.1 Outline

• Code Obfuscation and Diversification Techniques
• Static and Dynamic Code Obfuscation
• Virtualization and Encryption

1.2 Week-7: Code Obfuscation and Diversification
Code obfuscation and diversification techniques involve making the source code and functions of a program
more complex to enhance security. This week, we will explore these techniques and their applications. These
methods are crucial for protecting software from reverse engineering and complicating attacks.

1.2.0.1 1. What is Tigress? Theoretical Explanation: Tigress is a tool used to transform, obfus-
cate, and complicate programs. It provides obfuscation techniques that help protect software from reverse
engineering. Tigress offers various methods to make code analysis harder.

1pandoc_cen429-week-7.pdf
2pandoc_cen429-week-7.docx
3cen429-week-7.pdf
4cen429-week-7.pptx

1

pandoc_cen429-week-7.pdf
pandoc_cen429-week-7.docx
cen429-week-7.pdf
cen429-week-7.pptx

1.2.0.2 2. Types of Obfuscation Techniques Theoretical Explanation: Code obfuscation makes
the code difficult to understand for both humans and tools. The following are basic methods of code
obfuscation:

• Abstraction Transformations: Removing module structures, classes, functions, etc.
• Data Transformations: Changing data structures to new representations.
• Control Transformations: Eliminating control structures like if, while, repeat, etc.
• Dynamic Transformations: Modifying the program at runtime.

1.2.0.3 3. Static Obfuscation Theoretical Explanation: Static obfuscation refers to obfuscation
that remains fixed during the programâ€™s runtime. It alters the structure but does not change dynamically.
The following techniques fall under this category:

• Bogus Control Flow: Introduces fake control structures, dead branches, and unnecessary branches
to complicate the control flow.

• Control Flow Flattening: Breaks down control structures, flattening the code.

Application Examples:

1. Adding unnecessary branches and dead code to complicate control flow.
2. Injecting fake operations into functions.

1.2.0.4 4. Opaque Predicates and Breaking Them Theoretical Explanation: Opaque Pred-
icates are condition expressions that always evaluate to a fixed value but appear to change from an out-
siderâ€™s perspective. Creating complex mathematical or logical relations for these conditions makes code
analysis difficult.

Application Examples:

1. Using Opaque Predicates to create fixed conditions.
2. Breaking opaque predicates by using mathematical analysis to resolve these structures.

1.2.0.5 5. Encoding Integer Arithmetic Theoretical Explanation: Using complex mathematical
transformations to hide original operations on numbers. For example, transforming simple addition into
complex mathematical expressions makes reverse engineering more difficult.

Application Examples:

1. Hiding simple arithmetic operations like x + y by replacing them with more complex mathematical
expressions.

2. Working with transformed numerical operations to reverse the original arithmetic structure.

1.2.0.6 6. Linear Transformation and Number-Theoretic Tricks Theoretical Explanation:
Linear transformations hide original data through complex mathematical operations. Although these trans-
formations can be reversed, analyzing them is difficult.

Application Examples:

1. Using large modular arithmetic, like Mod 2^32, to apply linear transformations and hide numerical
operations.

2. Reversing transformations using mathematical methods like Euclidâ€™s Extended Algorithm.

1.2.0.7 7. Virtualization Theoretical Explanation: Virtualization involves executing code not di-
rectly on the CPU but within a virtual machine (interpreter). This method constantly converts the program
at runtime, making reverse engineering much harder.

Application Examples:

1. Running all program commands through an interpreter to hide the original code.
2. Using interpreter-based virtualization to keep the code in a constantly changing state.

2

1.2.0.8 8. Diversity Theoretical Explanation: Diversity involves creating different versions of the
same program so that the code doesnâ€™t remain fixed. This makes it harder for viruses or malicious
software to analyze the code.

Application Examples:

1. Generating different versions of code structures that perform the same function.
2. Making small structural changes in each version of the code to complicate analysis.

1.2.0.9 9. Encoding and Transforming Theoretical Explanation: Certain parts of the code can
be hidden using special encryption algorithms. This is another obfuscation technique that makes analyzing
the code harder. Encoding and transformations can be applied especially to numbers.

Application Examples:

1. Encrypting the numbers used in the code to complicate their analysis.
2. Analyzing the encrypted numbers to reverse them back to their original values.

1.2.0.10 10. Opaque Expressions and Dynamic Obfuscation Theoretical Explanation: Opaque
expressions involve evaluating certain parts of the code under complex conditions. Dynamic obfuscation
includes continuously transforming the code at runtime, keeping it in a constantly changing state.

Application Examples:

1. Applying continuous transformations during execution to make the code harder to analyze.
2. Restructuring the code dynamically during execution to prevent it from remaining fixed.

𝐸𝑛𝑑𝑜𝑓𝑊𝑒𝑒𝑘 − 7

3

	CEN429 Secure Programming
	Week-7
	Outline

	Week-7: Code Obfuscation and Diversification

