
CEN429 Secure Programming

Week-6

RASP Techniques for Java

Secure Programming and Runtime Application Self-Protection (RASP)

 RTEU CEN429 Week-6



Download

PDF

DOC
SLIDE

PPTX

Secure Programming and Runtime Application Self-Protection (RASP)

 RTEU CEN429 Week-6

file:///C:/users/ugur.coruh/desktop/dersler/git/cen429-secure-programming/docs/week-6/pandoc_cen429-week-6.pdf
file:///C:/users/ugur.coruh/desktop/dersler/git/cen429-secure-programming/docs/week-6/pandoc_cen429-week-6.docx
file:///C:/users/ugur.coruh/desktop/dersler/git/cen429-secure-programming/docs/week-6/cen429-week-6.pdf
file:///C:/users/ugur.coruh/desktop/dersler/git/cen429-secure-programming/docs/week-6/cen429-week-6.pptx


Secure Programming and Runtime Application Self-Protection (RASP)

 RTEU CEN429 Week-6



Outline

What is RASP (Runtime Application Self-Protection)?

RASP Techniques for Java

Emulator, Root, and Debug Mode Detection
Security Libraries and SSL Pinning

Secure Programming and Runtime Application Self-Protection (RASP)

 RTEU CEN429 Week-6



Week-6: RASP (Runtime Application Self-Protection) in Java

Secure Programming and Runtime Application Self-Protection (RASP)

 RTEU CEN429 Week-6



RASP (Runtime Application Self-Protection) for Java applications consists of techniques
that ensure security during runtime. This week, we will explore RASP strategies for Java-
based applications. Applications, especially mobile ones, must be able to protect
themselves from various threats during runtime. The following topics cover techniques
used for RASP in Java.

Secure Programming and Runtime Application Self-Protection (RASP)

 RTEU CEN429 Week-6



1. Emulator Detection

Theoretical Explanation: Emulators are tools that attackers can use to analyze an
application and discover vulnerabilities. Emulator detection allows an application to
determine whether it is running in an emulated environment. Specific detection
mechanisms can be applied for popular emulators like Qemu.

Source and Application:

Example for detecting Qemu ARM Emulator: Anti Emulator for Qemu ARM

Detecting emulator environments and altering application behavior during
runtime.

Secure Programming and Runtime Application Self-Protection (RASP)

 RTEU CEN429 Week-6

https://github.com/strazzere/anti-emulator/blob/master/AntiEmulator/jni/anti.c


2. Debug Mode Detection

Theoretical Explanation: Running an application in debug mode provides an
opportunity for malicious individuals to analyze the application. Detecting whether the
application is in debug mode and preventing it from functioning in this mode enhances
security.

Application Examples:

1. Adding code snippets that check whether the application is in debug mode during
runtime.

2. Terminating or altering the application’s behavior when it is running in debug
mode.

Secure Programming and Runtime Application Self-Protection (RASP)

 RTEU CEN429 Week-6



3. Debugger Attach Detection

Theoretical Explanation: Attaching a debugger to an application allows it to be
monitored and analyzed. Debugger detection checks whether the application has been
attached to a debugger during runtime and reacts accordingly.

Application Examples:

1. Ensuring that the application closes or alters its behavior when a debugger is
detected.

2. Implementing security mechanisms that detect debugger attachment.

Secure Programming and Runtime Application Self-Protection (RASP)

 RTEU CEN429 Week-6



4. RootBeer Implementation

Theoretical Explanation: RootBeer is a library that checks whether Android devices are
rooted. Rooted devices can pose security risks for applications. Using RootBeer, the
detection of rooted devices can be performed.

Application Examples:

1. Detecting whether a device is rooted using RootBeer.

2. Preventing or limiting the application’s functionality on rooted devices.

Secure Programming and Runtime Application Self-Protection (RASP)

 RTEU CEN429 Week-6



5. Root Detection with AndroidSecurityManager

Theoretical Explanation: AndroidSecurityManager is a security manager that provides
information about the security status of Android devices. It ensures that rooted devices
are detected and prevents the application from running on such devices.

Application Examples:

1. Performing root detection using AndroidSecurityManager.

2. Disabling certain features on rooted devices.

Secure Programming and Runtime Application Self-Protection (RASP)

 RTEU CEN429 Week-6



6. SafetyNet Implementation

Theoretical Explanation: Google SafetyNet is an API used to assess the security status
of a device. Applications can check the device's security integrity using SafetyNet and
respond when security breaches are detected.

Application Examples:

1. Using the SafetyNet API to verify the device’s security integrity.

2. Altering or terminating the application's behavior when security violations are
detected.

Secure Programming and Runtime Application Self-Protection (RASP)

 RTEU CEN429 Week-6



7. Checksum Control of Used Native Libraries

Theoretical Explanation: Verifying the checksum values of native libraries used by an
application allows us to determine whether these libraries have been tampered with.
This is an important way to maintain the security of the application.

Application Examples:

1. Checking the checksum values of the libraries used during runtime.

2. Terminating or altering the application’s behavior if a library modification is
detected.

Secure Programming and Runtime Application Self-Protection (RASP)

 RTEU CEN429 Week-6



8. Tamper Device Detection

Theoretical Explanation: Detecting whether the device or application has been
tampered with helps protect the application against security breaches. Tamper
detection identifies any modifications made to the device or application.

Application Examples:

1. Detecting whether the device or application has been tampered with.

2. Halting or limiting the application’s functionality when tampering is detected.

Secure Programming and Runtime Application Self-Protection (RASP)

 RTEU CEN429 Week-6



9. SSL Pinning and WebView SSL Pinning

Theoretical Explanation: SSL Pinning ensures that the application securely connects to
a specific server. Implementing SSL pinning on WebView prevents users from
connecting to fake servers.

Application Examples:

1. Implementing SSL pinning in WebView to verify the server’s identity.

2. Terminating the connection if an incorrect server is detected.

Secure Programming and Runtime Application Self-Protection (RASP)

 RTEU CEN429 Week-6



10. Server Certificate Check

Theoretical Explanation: Checking the validity of the server certificate when the
application connects to a server prevents connections to fake servers. This is crucial for
protecting against man-in-the-middle attacks.

Application Examples:

1. Verifying the server certificate during runtime.

2. Terminating the connection when an invalid certificate is detected.

Secure Programming and Runtime Application Self-Protection (RASP)

 RTEU CEN429 Week-6



11. Device and Version Binding

Theoretical Explanation: Device binding ensures that the application runs on a specific
device and prevents it from running on other devices. Version binding ensures that the
application is running on a specific version.

Application Examples:

1. Implementing device binding to ensure the application only runs on a designated
device.

2. Implementing version binding to ensure the application runs only on specific
versions.

Secure Programming and Runtime Application Self-Protection (RASP)

 RTEU CEN429 Week-6



12. Consumer Verification

Theoretical Explanation: Verifying that the application is being used by a legitimate
user helps prevent fake users and automated processes. This verification process
ensures the identity of the consumer.

Application Examples:

1. Using security tests and algorithms for consumer verification.

2. Applying access restrictions for unverified users.

Secure Programming and Runtime Application Self-Protection (RASP)

 RTEU CEN429 Week-6



End− of −Week − 6

Secure Programming and Runtime Application Self-Protection (RASP)

 RTEU CEN429 Week-6


