
CEN429 Secure Programming

Week-4

Code Hardening Techniques

Secure Programming and Code Hardening Techniques

 RTEU CEN429 Week-4



Download

PDF

DOC
SLIDE

PPTX

Secure Programming and Code Hardening Techniques

 RTEU CEN429 Week-4

file:///C:/Users/ugur.coruh/Desktop/DERSLER/GIT/cen429-secure-programming/docs/week-4/docs/pandoc_cen429-week-4.pdf
file:///C:/Users/ugur.coruh/Desktop/DERSLER/GIT/cen429-secure-programming/docs/week-4/docs/pandoc_cen429-week-4.docx
file:///C:/Users/ugur.coruh/Desktop/DERSLER/GIT/cen429-secure-programming/docs/week-4/docs/cen429-week-4.pdf
file:///C:/Users/ugur.coruh/Desktop/DERSLER/GIT/cen429-secure-programming/docs/week-4/docs/cen429-week-4.pptx


Secure Programming and Code Hardening Techniques

 RTEU CEN429 Week-4



Outline

Code Hardening Techniques

Code Hardening for Native C/C++

Code Hardening for Java and Interpreted Languages

Secure Programming and Code Hardening Techniques

 RTEU CEN429 Week-4



Week-4: Code Hardening Techniques

Secure Programming and Code Hardening Techniques

 RTEU CEN429 Week-4



1. Code Hardening Techniques for Native C/C++

In low-level languages like C and C++, various techniques are used to write secure code
and make it resistant to attacks. These techniques aim to make code analysis and
reverse engineering more difficult.

Secure Programming and Code Hardening Techniques

 RTEU CEN429 Week-4



a) Opaque Loops

Theoretical Explanation: Opaque loops are loops that, when viewed externally, have no
clear purpose. These loops make code analysis more difficult. Attackers struggle to
understand the function of the loop, making the code harder to reverse-engineer.

Example Applications:

1. Adding loops created with random conditions to complicate code analysis.
2. Introducing loops that do not affect program functionality but confuse the analysis.

3. Using opaque loops to increase program runtime, misleading attackers.

Secure Programming and Code Hardening Techniques

 RTEU CEN429 Week-4



b) Hiding Shared Object Symbols

Theoretical Explanation: Hiding symbols used in shared objects makes external access
to these objects difficult. This process is used to prevent analysis and reverse
engineering.

Example Applications:

1. Restricting symbol visibility with compiler options.
2. Only exposing necessary symbols and hiding others to improve security.

3. Concealing critical functions in shared libraries to enhance protection.

Secure Programming and Code Hardening Techniques

 RTEU CEN429 Week-4



c) Obfuscation of Arithmetic Instructions

Theoretical Explanation: Arithmetic operations are fundamental to a program. Making
these operations more complex makes the code harder to analyze and understand.

Example Applications:

1. Replacing simple addition operations with more complex mathematical
expressions.

2. Adding unnecessary steps to arithmetic operations to maintain functionality while
complicating code analysis.

3. Using bit manipulation on arithmetic operations to make them more complex.

Secure Programming and Code Hardening Techniques

 RTEU CEN429 Week-4



d) Obfuscation of Function Names

Theoretical Explanation: Changing function names to random character strings makes
the code harder to understand. This technique is especially useful for preventing
reverse engineering.

Example Applications:

1. Changing function names to meaningless strings of characters.

2. Generating different function names for each compilation to confuse static analysis
tools.

3. Randomizing critical function names to make them difficult for attackers to
identify.

Secure Programming and Code Hardening Techniques

 RTEU CEN429 Week-4



e) Obfuscation of Source File Names

Theoretical Explanation: Obfuscating source file names makes it difficult to understand
which function or class the file belongs to.

Example Applications:

1. Changing source file names to random characters.

2. Hiding relationships between source files to obscure code structure.
3. Obfuscating file names without affecting the source code by modifying structures.

Secure Programming and Code Hardening Techniques

 RTEU CEN429 Week-4



f) Obfuscation of Static Strings

Theoretical Explanation: Static strings are important information sources for attackers.
Encrypting and hiding these strings increases code security.

Example Applications:

1. Encrypting static strings and decrypting them at runtime.

2. Applying random string masks to obscure the meaning of the strings.
3. Reducing static string usage by eliminating string constants.

Secure Programming and Code Hardening Techniques

 RTEU CEN429 Week-4



g) Other Code Hardening Techniques

1. Opaque Boolean Variables: Making conditional statements more complex.

2. Function Boolean Return Codes: Making function return values more complex.

3. Obfuscation of Function Parameters: Hiding function parameters.

4. Bogus Function Parameters & Operations: Adding meaningless parameters and
operations to complicate analysis.

5. Control Flow Flattening: Flattening control flow to make it unpredictable.

6. Randomized Exit Points: Randomizing exit points to reduce code predictability.
7. Logging Disabled on Release: Disabling logging in the final release version.

Secure Programming and Code Hardening Techniques

 RTEU CEN429 Week-4



2. Code Hardening Techniques for Java and Interpreted Languages

In Java and other interpreted languages, code hardening techniques are used to reduce
security vulnerabilities and complicate reverse engineering efforts.

Secure Programming and Code Hardening Techniques

 RTEU CEN429 Week-4



a) Code Obfuscation and Shrink Protection with Proguard

Theoretical Explanation: Proguard shrinks, optimizes, and obfuscates Java code,
making it harder to analyze.

Example Applications:

1. Using a Proguard configuration file to shrink and optimize the code.

2. Testing obfuscated code and resolving errors.
3. Analyzing Proguard reports to identify which elements have been obfuscated.

Secure Programming and Code Hardening Techniques

 RTEU CEN429 Week-4



b) Separated Fingerprint Storage for Device Binding

Theoretical Explanation: This technique uses a device's unique properties to ensure
that the application only runs on specific devices.

Example Applications:

1. Encrypting the device fingerprint and storing it securely.

2. Using fingerprint verification to ensure the application runs on the designated
device.

3. Protecting fingerprint data from attacks.

Secure Programming and Code Hardening Techniques

 RTEU CEN429 Week-4



c) Native Library JNI API Obfuscation

Theoretical Explanation: Obfuscating native libraries called through the Java Native
Interface (JNI) makes reverse engineering more difficult.

Example Applications:

1. Randomizing JNI function names.

2. Hiding JNI parameters to complicate understanding.
3. Using error management in JNI to prevent attackers from analyzing errors.

Secure Programming and Code Hardening Techniques

 RTEU CEN429 Week-4



d) Obfuscation of Static Strings

Theoretical Explanation: Static strings contain important information that attackers can
use during reverse engineering. Obfuscating these strings increases security.

Example Applications:

1. Encrypting static strings and decrypting them at runtime.

2. Obfuscating strings to obscure their meaning.
3. Using random string generation and manipulation techniques to enhance security.

Secure Programming and Code Hardening Techniques

 RTEU CEN429 Week-4



Summary of the Week and Next Week

This Week:

Code Hardening Techniques (C/C++ and Java)

Obfuscation Techniques and Applications

Next Week:

Attack Trees and Security Models

Attack Methods and Secure Communication

Secure Programming and Code Hardening Techniques

 RTEU CEN429 Week-4



End−Of −Week − 4

Secure Programming and Code Hardening Techniques

 RTEU CEN429 Week-4


