
SQL
LECTURE 7

What is SQL?
Structured Query Language (SQL)

It is a language designed to perform complex queries on databases.

◦ SQL is case insensitive. But it is a recommended practice to use keywords (like
SELECT, UPDATE, CREATE, etc) in capital letters and use user defined things (liked
table name, column name, etc) in small letters.

◦ SQL is the programming language for relational databases (explained below) like
MySQL, Oracle, Sybase, SQL Server, Postgre, etc. Other non-relational databases
(also called NoSQL) databases like MongoDB, DynamoDB, etc do not use SQL

◦ Although there is an ISO standard for SQL, most of the implementations slightly
vary in syntax. So we may encounter queries that work in SQL Server but do not
work in MySQL.

What is SQL?
With SQL, operations can only be performed on the database.

with SQL;

records can be added to the database,

records can be changed.

can be deleted and

Lists can be created from these records.

Databases Using SQL
Language
MySQL

Mssql

PostgreSQL

Microsoft SQL Server

Oracle

Firebird

http://tr.wikipedia.org/wiki/MySQL
http://tr.wikipedia.org/wiki/Mssql
http://tr.wikipedia.org/wiki/PostgreSQL
http://tr.wikipedia.org/wiki/Microsoft_SQL_Server
http://tr.wikipedia.org/wiki/Oracle_%C4%B0li%C5%9Fkisel_Veritaban%C4%B1_Y%C3%B6netim_Sistemi
http://tr.wikipedia.org/wiki/Firebird

SQL Commands
Structured Query Language (SQL-Structured Query Language)

Data Manipulation Language (DML)

Data Definition Language (DDL)

Data Control Language (DCL-Data Control Language)

SQL Commands
Data Manipulation Language (DML)

1. It performs query, insertion, update and deletion operations on the
data in a table.

◦ select

◦ insert

◦ Update

◦ delete

SQL Komutları
2. Data Definition Language (DDL)

It performs table creation, modification, table creation, index creation
and deletion from scratch.

◦ Create Table

◦ Drop Table

◦ Alter Table

◦ Create Index

◦ Drop Index

◦ Alter View

SQL Komutları
3. Data Control Language (DCL-Data Control Language)

It contains SQL commands that allow users to perform operations such
as granting or withdrawing some rights on the database.

◦ Create User

◦ Drop User

◦ Alter User

◦ Grant

◦ revoke

Select command
Data Query Language: It is used to extract the data from the relations.
e.g.; SELECT

So first we will consider the Data Query Language. A generic query to
retrieve from a relational database is:

SELECT [DISTINCT] Attribute_List FROM R1,R2….RM

[WHERE condition]

[GROUP BY (Attributes)[HAVING condition]]

[ORDER BY(Attributes)[DESC]];

Select command
SELECT [DISTINCT] Attribute_List FROM R1,R2….RM

[WHERE condition]

[GROUP BY (Attributes)[HAVING condition]]

[ORDER BY(Attributes)[DESC]];

Part of the query represented by statement 1 is compulsory if you want
to retrieve from a relational database. The statements written inside []
are optional. We will look at the possible query combination on relation
shown in Table 1.

Select command
Case 1: If we want to retrieve attributes ROLL_NO and NAME of all
students, the query will be:

SELECT ROLL_NO, NAME FROM STUDENT;

ROLL_NO NAME

1 RAM

2 RAMESH

3 SUJIT

4 SURESH

Select command
Case 2: If we want to retrieve ROLL_NO and NAME of the students
whose ROLL_NO is greater than 2, the query will be:

SELECT ROLL_NO, NAME FROM STUDENT
WHERE ROLL_NO > 2;

ROLL_NO NAME

3 SUJIT

4 SURESH

Select command
CASE 3: If we want to retrieve all attributes of students, we can write *
in place of writing all attributes as:

SELECT * FROM STUDENT
WHERE ROLL_NO>2;

ROLL_NO NAME ADDRESS PHONE AGE

3 SUJIT ROHTAK 9156253131 20

4 SURESH DELHI 9156768971 18

Select command
CASE 4: If we want to represent the relation in ascending order by AGE,
we can use ORDER BY clause as:

SELECT * FROM STUDENT ORDER BY AGE;

ROLL_NO NAME ADDRESS PHONE AGE

1 RAM DELHI 9455123451 18

2 RAMESH GURGAON 9652431543 18

4 SURESH DELHI 9156768971 18

3 SUJIT ROHTAK 9156253131 20

Select command
Note: ORDER BY AGE is equivalent to ORDER BY AGE ASC. If we want to
retrieve the results in descending order of AGE, we can use ORDER
BY AGE DESC.

ROLL_NO NAME ADDRESS PHONE AGE

1 RAM DELHI 9455123451 18

2 RAMESH GURGAON 9652431543 18

4 SURESH DELHI 9156768971 18

3 SUJIT ROHTAK 9156253131 20

Select command
CASE 5: If we want to retrieve distinct values of an attribute or group of
attribute, DISTINCT is used as in:

SELECT DISTINCT ADDRESS FROM STUDENT;

ADDRESS

DELHI

GURGAON

ROHTAK

If DISTINCT is not used, DELHI will be repeated twice in result set. Before understanding GROUP BY and HAVING, we need to

understand aggregations functions in SQL.

AGGRATION FUNCTIONS
Aggregation functions are used to perform mathematical operations on
data values of a relation. Some of the common aggregation functions
used in SQL are:

COUNT: Count function is used to count the number of rows in a
relation. e.g;

SELECT COUNT (PHONE) FROM STUDENT;

COUNT(PHONE)

4

AGGRATION FUNCTIONS
SUM: SUM function is used to add the values of an attribute in a
relation. e.g;

SELECT SUM (AGE) FROM STUDENT;

SUM(AGE)

74

AGGRATION FUNCTIONS
In the same way, MIN, MAX and AVG can be used. As we have seen
above, all aggregation functions return only 1 row.

AVERAGE: It gives the average values of the tupples. It is also defined as
sum divided by count values.
Syntax:AVG(attributename)
OR
Syntax:SUM(attributename)/COUNT(attributename)
The above mentioned syntax also retrieves the average value of tupples.

MAXIMUM: It extracts the maximum value among the set of tupples.
Syntax:MAX(attributename)

MINIMUM: It extracts the minimum value amongst the set of all the
tupples.
Syntax:MIN(attributename)

AGGRATION FUNCTIONS
GROUP BY: Group by is used to group the tuples of a relation based on
an attribute or group of attribute. It is always combined with
aggregation function which is computed on group. e.g.;

SELECT ADDRESS, SUM(AGE) FROM STUDENT
GROUP BY (ADDRESS);

AGGRATION FUNCTIONS

In this query, SUM(AGE) will be computed but not for entire table but for
each address. i.e.; sum of AGE for address DELHI(18+18=36) and similarly
for other address as well. The output is:

SELECT ADDRESS, SUM(AGE) FROM STUDENT
GROUP BY (ADDRESS);

ADDRESS SUM(AGE)

DELHI 36

GURGAON 18

ROHTAK 20

AGGRATION FUNCTIONS
If we try to execute the query given below, it will result in error because although we have
computed SUM(AGE) for each address, there are more than 1 ROLL_NO for each address
we have grouped. So it can’t be displayed in result set. We need to use aggregate
functions on columns after SELECT statement to make sense of the resulting set whenever
we are using GROUP BY.

NOTE: An attribute which is not a part of GROUP BY clause can’t be used for selection. Any attribute which is part of
GROUP BY CLAUSE can be used for selection but it is not mandatory. But we could use attributes which are not a part of
the GROUP BY clause in an aggregrate function.

SELECT ROLL_NO, ADDRESS, SUM(AGE) FROM STUDENT GROUP BY (ADDRESS);

SQL Data Types
1. Binary Datatypes : There are four subtypes of this datatype which are
given below :

SQL Data Types
2. Exact Numeric Datatype : There are nine subtypes which are given below in
the table. The table contains the range of data in a particular type.

SQL Data Types
3. Approximate Numeric Datatype :
The subtypes of this datatype are given in the table with the range.

SQL Data Types
4. Character String Datatype :
The subtypes are given in below table –

SQL Data Types
5. Unicode Character String Datatype :
The details are given in below table –

SQL Data Types
6. Date and Time Datatype :
The details are given in below table.

SQL Data Types
4. Character String Datatype :
The subtypes are given in below table –

SQL | Constraints
Constraints are the rules that we can apply on the type of data in a
table. That is, we can specify the limit on the type of data that can be
stored in a particular column in a table using constraints.

SQL | Constraints
The available constraints in SQL are:

NOT NULL: This constraint tells that we cannot store a null value in a column. That is, if a
column is specified as NOT NULL then we will not be able to store null in this particular
column any more.

UNIQUE: This constraint when specified with a column, tells that all the values in the
column must be unique. That is, the values in any row of a column must not be repeated.

PRIMARY KEY: A primary key is a field which can uniquely identify each row in a table. And
this constraint is used to specify a field in a table as primary key.

FOREIGN KEY: A Foreign key is a field which can uniquely identify each row in a another
table. And this constraint is used to specify a field as Foreign key.

CHECK: This constraint helps to validate the values of a column to meet a particular
condition. That is, it helps to ensure that the value stored in a column meets a specific
condition.

DEFAULT: This constraint specifies a default value for the column when no value is
specified by the user.

SQL | Constraints
How to specify constraints?
We can specify constraints at the time of creating the table using
CREATE TABLE statement. We can also specify the constraints after
creating a table using ALTER TABLE statement.

SQL | Constraints
Syntax:
Below is the syntax to create constraints using CREATE TABLE statement
at the time of creating the table.

CREATE TABLE sample_table
(
column1 data_type(size) constraint_name,
column2 data_type(size) constraint_name,
column3 data_type(size) constraint_name,
);
sample_table: Name of the table to be created.
data_type: Type of data that can be stored in the field.
constraint_name: Name of the constraint. for example- NOT NULL, UNIQUE, PRIMARY KEY etc.

SQL | Constraints
1. NOT NULL –
If we specify a field in a table to be NOT NULL. Then the field will never accept
null value. That is, you will be not allowed to insert a new row in the table
without specifying any value to this field.
For example, the below query creates a table Student with the fields ID and
NAME as NOT NULL. That is, we are bound to specify values for these two fields
every time we wish to insert a new row.

CREATE TABLE Student
(
ID int(6) NOT NULL,
NAME varchar(10) NOT NULL,
ADDRESS varchar(20)
);

SQL | Constraints
2. UNIQUE –
This constraint helps to uniquely identify each row in the table. i.e. for a
particular column, all the rows should have unique values. We can have more
than one UNIQUE columns in a table.
For example, the below query creates a table Student where the field ID is
specified as UNIQUE. i.e, no two students can have the same ID.

CREATE TABLE Student
(
ID int(6) NOT NULL UNIQUE,
NAME varchar(10),
ADDRESS varchar(20)
);

SQL | Constraints
3. PRIMARY KEY –
Primary Key is a field which uniquely identifies each row in the table. If a field in
a table as primary key, then the field will not be able to contain NULL values as
well as all the rows should have unique values for this field. So, in other words
we can say that this is combination of NOT NULL and UNIQUE constraints.
A table can have only one field as primary key. Below query will create a table
named Student and specifies the field ID as primary key.

CREATE TABLE Student
(
ID int(6) NOT NULL UNIQUE,
NAME varchar(10),
ADDRESS varchar(20),
PRIMARY KEY(ID)
);

SQL | Constraints
4. FOREIGN KEY –
Foreign Key is a field in a table which uniquely identifies each row of a another
table. That is, this field points to primary key of another table. This usually
creates a kind of link between the tables.
Consider the two tables as shown below:

O_ID ORDER_NO C_ID

1 2253 3

2 3325 3

3 4521 2

4 8532 1

Orders

SQL | Constraints
As we can see clearly that the field C_ID in Orders table is the primary
key in Customers table, i.e. it uniquely identifies each row in the
Customers table. Therefore, it is a Foreign Key in Orders table.

O_ID ORDER_NO C_ID

1 2253 3

2 3325 3

3 4521 2

4 8532 1

Orders

C_ID NAME ADDRESS

1 RAMESH DELHI

2 SURESH NOIDA

3 DHARMESH GURGAON

Customers

SQL | Constraints

C_ID NAME ADDRESS

1 RAMESH DELHI

2 SURESH NOIDA

3 DHARMESH GURGAON

Customers

CREATE TABLE Orders
(
O_ID int NOT NULL,
ORDER_NO int NOT NULL,
C_ID int,
PRIMARY KEY (O_ID),
FOREIGN KEY (C_ID)
REFERENCES Customers(C_ID)
)

Syntax:

SQL Commands
(i) CHECK –
Using the CHECK constraint we can specify a condition for a field, which should be
satisfied at the time of entering values for this field.
For example, the below query creates a table Student and specifies the condition for the
field AGE as (AGE >= 18). That is, the user will not be allowed to enter any record in the
table with AGE < 18.

CREATE TABLE Student
(

ID int(6) NOT NULL,
NAME varchar(10) NOT NULL,
AGE int NOT NULL CHECK (AGE >= 18)

);

SQL Commands
(ii) DEFAULT –
This constraint is used to provide a default value for the fields. That is, if at the time of
entering new records in the table if the user does not specify any value for these fields
then the default value will be assigned to them.
For example, the below query will create a table named Student and specify the default
value for the field AGE as 18.

CREATE TABLE Student
(

ID int(6) NOT NULL,
NAME varchar(10) NOT NULL,
AGE int DEFAULT 18

);

SQL | Creating Roles
A role is created to ease setup and maintenance of the security model.
It is a named group of related privileges that can be granted to the user.
When there are many users in a database it becomes difficult to grant
or revoke privileges to users. Therefore, if you define roles:

You can grant or revoke privileges to users, thereby automatically
granting or revoking privileges.

You can either create Roles or use the system roles pre-defined.

SQL | Creating Roles
A role is created to ease setup and maintenance of the security model.
It is a named group of related privileges that can be granted to the user.
When there are many users in a database it becomes difficult to grant
or revoke privileges to users. Therefore, if you define roles:

You can grant or revoke privileges to users, thereby automatically
granting or revoking privileges.

You can either create Roles or use the system roles pre-defined.

SQL | Creating Roles

System Roles Privileges granted to the Role

Connect
Create table, Create view, Create synonym, Create
sequence, Create session etc.

Resource

Create Procedure, Create Sequence, Create Table,
Create Trigger etc. The primary usage of the
Resource role is to restrict access to database
objects.

DBA All system privileges

Some of the privileges granted to the system roles are as given below:

SQL | Creating Roles
Creating and Assigning a Role –
First, the (Database Administrator)DBA must create the role. Then the DBA can assign privileges to the role and

users to the role.

Syntax –
CREATE ROLE manager;

Role created.

In the syntax:

‘manager’ is the name of the role to be created.

•Now that the role is created, the DBA can use the GRANT statement to assign users to the role

as well as assign privileges to the role.

•It’s easier to GRANT or REVOKE privileges to the users through a role rather than assigning a

privilege directly to every user.

•If a role is identified by a password, then GRANT or REVOKE privileges have to be identified by

the password.

SQL | Creating Roles

Grant privileges to a role –

GRANT create table, create view TO manager; Grant succeeded.
Grant a role to users

GRANT manager TO SAM, STARK; Grant succeeded.
Revoke privilege from a Role :

REVOKE create table FROM manager;
Drop a Role :

DROP ROLE manager;

Explanation –

Firstly it creates a manager role and then allows managers to create tables and

views. It then grants Sam and Stark the role of managers. Now Sam and Stark can

create tables and views. If users have multiple roles granted to them, they receive

all of the privileges associated with all of the roles. Then create table privilege is

removed from role ‘manager’ using Revoke.The role is dropped from the database

using drop.

SQL indexes
An index is a schema object. It is used by the server to speed up the
retrieval of rows by using a pointer. It can reduce disk I/O(input/output)
by using a rapid path access method to locate data quickly. An index
helps to speed up select queries and where clauses, but it slows down
data input, with the update and the insert statements. Indexes can be
created or dropped with no effect on the data. In this article, we will see
how to create, delete, and uses the INDEX in the database.

SQL indexes

For example, if you want to reference all pages in a book that discusses
a certain topic, you first refer to the index, which lists all the topics
alphabetically and is then referred to one or more specific page
numbers.

SQL indexes
Creating an Index:

Syntax:

CREATE INDEX index
ON TABLE column;

where the index is the name given to that index and TABLE is the name of the table

on which that index is created and column is the name of that column for which it is

applied.

SQL indexes

For multiple columns:

Syntax:

CREATE INDEX index
ON TABLE (column1, column2,.....);

SQL indexes

Unique Indexes:

Unique indexes are used for the maintenance of the integrity of the data

present in the table as well as for the fast performance, it does not allow

multiple values to enter into the table.

Syntax:

CREATE UNIQUE INDEX index
ON TABLE column;

SQL indexes
When should indexes be created:

◦ A column contains a wide range of values.

◦ A column does not contain a large number of null values.

◦ One or more columns are frequently used together in a where clause
or a join condition.

SQL indexes
When should indexes be avoided:

◦ The table is small

◦ The columns are not often used as a condition in the query

◦ The column is updated frequently

SQL indexes

Removing an Index:

To remove an index from the data dictionary by using the DROP

INDEX command.

Syntax:

DROP INDEX index;

To drop an index, you must be the owner of the index or have the DROP ANY

INDEX privilege.

SQL indexes

Altering an Index:

To modify an existing table’s index by rebuilding, or reorganizing the index.

ALTER INDEX IndexName
ON TableName REBUILD;

SQL indexes

Confirming Indexes :

You can check the different indexes present in a particular table given by the user or the

server itself and their uniqueness.

Syntax:

select * from USER_INDEXES;

It will show you all the indexes present in the server, in which you can locate your own

tables too.

SQL indexes
Renaming an index :

You can use the system stored procedure sp_rename to rename any

index in the database.

Syntax:

EXEC sp_rename index_name, new_index_name, N'INDEX';

SQL | SEQUENCES
Sequence is a set of integers 1, 2, 3, … that are generated and
supported by some database systems to produce unique values on
demand.

A sequence is a user defined schema bound object that generates a
sequence of numeric values.

Sequences are frequently used in many databases because many
applications require each row in a table to contain a unique value and
sequences provides an easy way to generate them.

The sequence of numeric values is generated in an ascending or
descending order at defined intervals and can be configured to restart
when exceeds max_value.

SQL | SEQUENCES
Syntax:

CREATE SEQUENCE sequence_name
START WITH initial_value
INCREMENT BY increment_value
MINVALUE minimum value
MAXVALUE maximum value
CYCLE|NOCYCLE ;
sequence_name: Name of the sequence.
initial_value: starting value from where the sequence starts.
Initial_value should be greater than or equal to minimum value and less
than equal to maximum value.
increment_value: Value by which sequence will increment itself.
Increment_value can be positive or negative.
minimum_value: Minimum value of the sequence.
maximum_value: Maximum value of the sequence.
cycle: When sequence reaches its set_limit it starts from beginning.
nocycle: An exception will be thrown if sequence exceeds its max_value.

SQL | SEQUENCES
Example

Following is the sequence query creating sequence in ascending order.

•Example 1:

CREATE SEQUENCE sequence_1

start with 1
increment by 1
minvalue 0
maxvalue 100
cycle;

Above query will create a sequence named sequence_1.Sequence will start

from 1 and will be incremented by 1 having maximum value 100. Sequence will

repeat itself from start value after exceeding 100.

SQL | SEQUENCES

•Example 2:

Following is the sequence query creating sequence in descending order.

CREATE SEQUENCE sequence_2
start with 100
increment by -1
minvalue 1
maxvalue 100
cycle;

Above query will create a sequence named sequence_2.Sequence will start

from 100 and should be less than or equal to maximum value and will be

incremented by -1 having minimum value 1.

SQL | SEQUENCES
Example to use sequence : create a table named students with columns as id and

name.

CREATE TABLE students
(
ID number(10),
NAME char(20)
);

Now insert values into table

INSERT into students VALUES(sequence_1.nextval,'Ramesh');
INSERT into students VALUES(sequence_1.nextval,'Suresh');

where sequence_1.nextval will insert id’s in id column in a sequence as defined in

sequence_1.

SQL | SEQUENCES
Example to use sequence : create a table named students with columns as id and

name.

CREATE TABLE students
(
ID number(10),
NAME char(20)
);

Now insert values into table

INSERT into students VALUES(sequence_1.nextval,'Ramesh');
INSERT into students VALUES(sequence_1.nextval,'Suresh');

where sequence_1.nextval will insert id’s in id column in a sequence as defined in

sequence_1.

Output:

| ID | NAME |

| 1 | Ramesh |
| 2 | Suresh |

SQL Trigger | Student Database

Trigger: A trigger is a stored procedure in database which automatically invokes

whenever a special event in the database occurs. For example, a trigger can be

invoked when a row is inserted into a specified table or when certain table

columns are being updated.

SQL Trigger | Student Database

Syntax:

create trigger [trigger_name]
[before | after]
{insert | update | delete}
on [table_name]
[for each row]
[trigger_body]

Explanation of syntax:

1.create trigger [trigger_name]: Creates or replaces an existing trigger with the

trigger_name.

2.[before | after]: This specifies when the trigger will be executed.

3.{insert | update | delete}: This specifies the DML operation.

4.on [table_name]: This specifies the name of the table associated with the trigger.

5.[for each row]: This specifies a row-level trigger, i.e., the trigger will be executed for

each row being affected.

6.[trigger_body]: This provides the operation to be performed as trigger is fired

SQL Trigger | Student Database

BEFORE and AFTER of Trigger:

BEFORE triggers run the trigger action before the triggering statement is run.

AFTER triggers run the trigger action after the triggering statement is run.

SQL Trigger | Student Database

Example:

Given Student Report Database, in which student marks assessment is

recorded. In such schema, create a trigger so that the total and average of

specified marks is automatically inserted whenever a record is insert.

Here, as trigger will invoke before record is inserted so, BEFORE Tag can

be used.

SQL Trigger | Student Database
Suppose the database Schema –

SQL Trigger | Student Database
SQL Trigger to problem statement.

create trigger stud_marks

before INSERT
On
Student
for each row

set Student.total = Student.subj1 + Student.subj2 + Student.subj3,
Student.per = Student.total * 60 / 100;

SQL Trigger | Student Database
SQL Trigger to problem statement.

Above SQL statement will create a trigger in the student database in which

whenever subjects marks are entered, before inserting this data into the database,

trigger will compute those two values and insert with the entered values. i.e.,

In this way trigger can be created and executed in the databases.

SQL Trigger | Book Management Database

For example, given Library Book Management database schema with Student

database schema. In these databases, if any student borrows a book from library

then the count of that specified book should be decremented. To do so,

Suppose the schema with some data,

To implement such procedure, in which if

the system inserts the data into the

book_issue database a trigger should

automatically invoke and decrements the

copies attribute by 1 so that a proper track

of book can be maintained.

SQL Trigger | Book Management Database

Trigger for the system –

create trigger book_copies_deducts
after INSERT
on book_issue
for each row
update book_det set copies = copies - 1
where bid = new.bid;

Above trigger, will be activated whenever

an insertion operation performed in a

book_issue database, it will update the

book_det schema setting copies

decrements by 1 of current book id(bid).

SQL Trigger | Book Management Database

Trigger for the system –

create trigger book_copies_deducts
after INSERT
on book_issue
for each row
update book_det set copies = copies - 1
where bid = new.bid;

Above trigger, will be activated whenever an

insertion operation performed in a book_issue

database, it will update the book_det schema

setting copies decrements by 1 of current book

id(bid).

Results –

SQL Trigger | Book Management Database

As above results show that as soon as data is

inserted, copies of the book deducts from the

book schema in the system.

After –

Before –

