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Outline

e Graph Representation Tools

e Tree Structures and Binary Tree and Traversals (In-Order, Pre-Order, Post-Order)
e Heaps (Max, Min, Binary , Binomial, Fibonacci, Leftist, K-ary) and Priority Queue
e Heap Sort

e Huffman Coding
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Graph Representation Tools
e Microsoft Automatic Graph Layout
o https://www.microsoft.com/en-us/download/details.aspx?id=52034
o https://github.com/microsoft/automatic-graph-layout
e Graphviz
o https://graphviz.org/resources/

e Plantuml
o https://ucoruh.github.io/ce204-object-oriented-programming/week-5/ce204-
week-5/#calling-plantuml-from-java_1
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ceosGraph:Representation Tools

Microsoft Automatic Graph Layout

using System;
using System.Collections.Generic;
using System.Windows.Forms;
class ViewerSample {
public static void Main() {
//create a form
System.Windows.Forms.Form form = new System.Windows.Forms.Form();
//create a viewer object
Microsoft.Msagl.GraphViewerGdi.GViewer viewer = new Microsoft.Msagl.GraphViewerGdi.GViewer();
//create a graph object
Microsoft.Msagl.Drawing.Graph graph = new Microsoft.Msagl.Drawing.Graph("graph");
//create the graph content
graph.AddEdge("A", "B");
graph.AddEdge("B", "C");
graph.AddEdge("A", "C").Attr.Color = Microsoft.Msagl.Drawing.Color.Green;
graph.FindNode("A").Attr.FillColor = Microsoft.Msagl.Drawing.Color.Magenta;
graph.FindNode("B").Attr.FillColor = Microsoft.Msagl.Drawing.Color.MistyRose;
Microsoft.Msagl.Drawing.Node c = graph.FindNode("C");
c.Attr.FillColor = Microsoft.Msagl.Drawing.Color.PaleGreen;
c.Attr.Shape = Microsoft.Msagl.Drawing.Shape.Diamond;
//bind the graph to the viewer
viewer.Graph = graph;
//associate the viewer with the form
form.SuspendLayout();
viewer.Dock = System.Windows.Forms.DockStyle.Fill;
form.Controls.Add(viewer);
form.ResumeLayout();
//show the form

— form.ShowDialog();

X )
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Graph Representation Tools

Microsoft Automatic Graph Layout

“microsoft_graph.png
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MSAGL Modules

The Core Layout engine (AutomaticGraphLayout.dll) - NuGet package This .NET
asssembly contains the core layout functionality. Use this library if you just want MSAGL
to perform the layout only and afterwards you will use a separate tool to perform the

rendering and visalization.

% RTEU CE205 Week-4



https://www.nuget.org/packages/AutomaticGraphLayout/

CE205 Data Structures Week-4

MSAGL Modules

The Drawing module (AutomaticGraphLayout.Drawing.dll) - NuGet package The
Definitions of different drawing attributes like colors, line styles, etc. It also contains
definitions of a node class, an edge class, and a graph class. By using these classes a
user can create a graph object and use it later for layout, and rendering.
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MSAGL Modules

A WPF control (Microsoft.Msagl.WpfGraphControl.dll) - NuGet package The viewer
control lets you visualize graphs and has and some other rendering functionality. Key
features: (1) Pan and Zoom (2) Navigate Forward and Backward (3) tooltips and

highlighting on graph entities (4) Search for and focus on graph entities.
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MSAGL Modules

A Windows Forms Viewer control (Microsoft.Msagl.GraphViewerGdi.dll) - NuGet
package The viewer control lets you visualize graphs and has and some other rendering
functionality. Key features: (1) Pan and Zoom (2) Navigate Forward and Backward (3)
tooltips and highlighting on graph entities (4) Search for and focus on graph entities.
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Custom MSAGL Demo Project

e Clone and test your self

o GitHub - ucoruh/microsoft-graph-layout-cs-demo: Example Usage of
https://github.com/microsoft/automatic-graph-layout

e Also you can find another example in this homework

o GitHub - ucoruh/ce205-hw3-template: CE205-HW3-Template

| RTEU CE205 Week-4
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ce20sGUstom.MSAGL Demo Project

o® CE205 HW3 2021-2022
File

Algorithm
® MST O DFS O BFS O SCC O Topological Order

[] Clear Edges

Random Graph
Generation

Reset Graph

Solve

NOTE: Select two algorithm and implement in this homework Good Luck. (Step-by-Step Operation is Optional)
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o® CE205 HW3 2021-2022 ' o ) - 4 - _ >
File

Algorithm

® MST O DFS O BFS O SCC O Topological Order [] Clear Edges

Random Graph

Generation Reset Graph <2 < <Previous Step MNext Step> >

NOTE: Select two algorithm and implement in this homework Good Luck. (Step-by-Step Operation is Optional)
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Tree Structures and Binary Tree and Traversals (In-Order, Pre-Order, Post-
Order)

#ie8%| RTEU CE205 Week-4
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Tree - Terminology

e Btech Smart Class
o http://www.btechsmartclass.com/data_structures/tree-terminology.html

Hedth| RTEU CE205 Week-4
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CE205 Data Sﬁructlures Week-4

e |n linear data structure data is organized in sequential order and in non-linear data

structure data is organized in random order.

e A tree is a very popular non-linear data structure used in a wide range of
applications. A tree data structure can be defined as follows.

e Tree is a non-linear data structure which organizes data in hierarchical structure
and this is a recursive definition.

e A tree data structure can also be defined as follows

o Tree data structure is a collection of data (Node) which is organized in
hierarchical structure recursively

o |n tree data structure, every individual element is called as Node.

o Node in a tree data structure stores the actual data of that particular element
and link to next element in hierarchical structure.

| rTEU cE2050veln @ tree data structure, if we have N number of nodes then we can have a

Y _ - '] ” § e
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Tree Example

TREE with 11 nodes and 10 edges

- In any tree with ‘N’ nodes there
will be maximum of ‘N-1’ edges

- In a tree every individual
element is called as ‘NODE’

Hedth| RTEU CE205 Week-4
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Tree Terminology

e |n a tree data structure, we use the following terminology

1. Root

e |n a tree data structure, the first node is called as Root Node.

e Every tree must have a root node.

e We can say that the root node is the origin of the tree data structure.
* |n any tree, there must be only one root node.

e \We never have multiple root nodes in a tree.

% RTEU CE205 Week-4

17



CE205 Data Structures Week-4

Hedth| RTEU CE205 Week-4

Here ‘A’ is the ‘root’ node

- In any tree the first node is
called as ROOT node
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2. Edge

e |n a tree data structure, the connecting link between any two nodes is called
as EDGE. In a tree with 'N' number of nodes there will be a maximum of 'N-1
number of edges.

% RTEU CE205 Week-4
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- In any tree, ‘Edge’ is a connecting
link between two nodes.

20
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3. Parent
* |n a tree data structure, the node which is a predecessor of any node is called

as PARENT NODE.

e |n simple words, the node which has a branch from it to any other node is called a
parent node.

e Parent node can also be defined as "The node which has child / children".

% RTEU CE205 Week-4
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Here A, B, C, E & G are Parent nodes

- In any tree the node which has
child / children is called ‘Parent’

- A node which is predecessor of
any other node is called ‘Parent’

#ie8%| RTEU CE205 Week-4




CE205 Data Structures Week-4

4. Child

* |n a tree data structure, the node which is descendant of any node is called
as CHILD Node. In simple words, the node which has a link from its parent node is
called as child node.

e |n a tree, any parent node can have any number of child nodes. In a tree, all the
nodes except root are child nodes.

% RTEU CE205 Week-4
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Here B & C are Children of A
Here G & H are Children of C

Here K is Child of G

- descendant of any node is called
as CHILD Node

Hedth| RTEU CE205 Week-4
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5. Siblings

* |n a tree data structure, nodes which belong to same Parent are called as SIBLINGS

e |n simple words, the nodes with the same parent are called Sibling nodes.

% RTEU CE205 Week-4
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Here are Siblings
Here D E & F are Siblings
Here are Siblings

Here | & | are Siblings

- In any tree the nodes which has
same Parent are called ‘Siblings’

- The children of a Parent are
called ‘Siblings’
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6. Leaf

e |n a tree data structure, the node which does not have a child is called as LEAF
Node.

e |n simple words, a leaf is a node with no child.

® |n a tree data structure, the leaf nodes are also called as External Nodes. External
node is also a node with no child.

e |n a tree, leaf node is also called as 'Terminal’ node.

% RTEU CE205 Week-4

27



CE205 Data Structures Week-4

® 6
ONO,
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®

Here D, |, J, F, K & H are Leaf nodes

- In any tree the node which does
not have children is called ‘Leaf’

® - A node without successors is
called a ‘leaf’ node
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7. Internal Nodes

e |n a tree data structure, the node which has atleast one child is called as INTERNAL
Node. In simple words, an internal node is a node with atleast one child.

e |n a tree data structure, nodes other than leaf nodes are called as Internal
Nodes. The root nhode is also said to be Internal Node

e if the tree has more than one node. Internal nodes are also called as ‘Non-

Terminal' nodes.

RTEU CE205 Week-4
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Here A, B, C, E & G are Internal nodes

- In any tree the node which has atleast
one child is called ‘Internal’ node

Every non-leaf node is called
as ‘Internal’ node
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8. Degree

e |n a tree data structure, the total number of children of a node is called
as DEGREE of that Node. In simple words, the Degree of a node is total number of

children it has.

e The highest degree of a node among all the nodes in a tree is called as 'Degree of

Tree'

% RTEU CE205 Week-4
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Here Degree of B is 3

Here Degree of Ais 2
Here Degree of Fis 0

- In any tree, ‘Degree’ of a node is total
number of children it has.
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9. Level

e |n a tree data structure, the root node is said to be at Level 0 and the children of
root node are at Level 1 and the children of the nodes which are at Level 1 will be
at Level 2 and so on

e |n simple words, in a tree each step from top to bottom is called as a Level and the
Level count starts with ‘0" and incremented by one at each level (Step).

% RTEU CE205 Week-4
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Level O

Level 1

Level 2

Level 3
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10. Height

e |n a tree data structure, the total number of edges from leaf node to a particular
node in the longest path is called as HEIGHT of that Node.

e |n a tree,_height of the root node is said to be height of the tree.

* |n a tree, height of all leaf nodes is '0".

% RTEU CE205 Week-4
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Here Height of tree is 3

- In any tree, ‘Height of Node’ is
total number of Edges from leaf
to that node in longest path.

- In any tree, ‘Height of Tree' is

Height is 0 the height of the root node.
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e |n a tree data structure, the total number of egdes from root node to a particular
node is called as DEPTH of that Node.

* |n a tree, the total number of edges from root node to a leaf node in the longest

path is said to be Depth of the tree.

e |n simple words, the highest depth of any leaf node in a tree is said to be depth of
that tree.

* |n a tree, depth of the root node is '0'.

% RTEU CE205 Week-4
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Here Depth of tree is 3

- In any tree, ‘Depth of Node’ is
total number of Edges from root
to that node.

- In any tree, ‘Depth of Tree’ is
total number of edges from root
to leaf in the longest path.
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12. Path

* |n a tree data structure, the sequence of Nodes and Edges from one node to
another node is called as PATH between that two Nodes.

e Length of a Path is total number of nodes in that path. In below example the path
A - B - E - J has length 4.

% RTEU CE205 Week-4

39



CE205 Data Structures Week-4

Hedth| RTEU CE205 Week-4

- In any tree, ‘Path’ is a sequence
of nodes and edges between two
nodes.

Here, ‘Path’ between A & J is
A-B-E-J

Here, ‘Path’ between C & K is
C-G-K

40
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13. Sub Tree

e |n a tree data structure, each child from a node forms a subtree recursively.

e Every child node will form a subtree on its parent node.

% RTEU CE205 Week-4

41



CE205 Data Structures Week-4

Subtree
Subtree

#ie8%| RTEU CE205 Week-4
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Tree Representations

e Btech Smart Class
o http://www.btechsmartclass.com/data_structures/tree-representations.html

Hedth| RTEU CE205 Week-4
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Tree Representations

A tree data structure can be represented in two methods. Those methods are as follows.

1. List Representation
2. Left Child - Right Sibling Representation

% RTEU CE205 Week-4
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[[[[[[[

Consider the following tree.

| RTEU CE205 Week-4

TREE with 11 nodes and 10 edges

- In any tree with ‘N’ nodes there
will be maximum of ‘N-1’ edges

- In a tree every individual
element is called as ‘NODE’
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1. List Representation

* |n this representation, we use two types of nodes one for representing the node
with data called 'data node' and another for representing only references called

'reference node'.
e \We start with a 'data node' from the root node in the tree.

e Then it is linked to an internal node through a 'reference node' which is further
linked to any other node directly.

e This process repeats for all the nodes in the tree.

% RTEU CE205 Week-4
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The above example tree can be represented using List representation as follows...
HEgESn [T }-[xTo]

Y

% RTEU CE205 Week-4
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2. Left Child - Right Sibling Representation

* |n this representation, we use a list with one type of node which consists of three
fields namely Data field, Left child reference field and Right sibling reference field.

e Data field stores the actual value of a node, left reference field stores the address of
the left child and right reference field stores the address of the right sibling node.

% RTEU CE205 Week-4
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e Graphical representation of that node is as follows.

Left | Right
il

e |n this representation, every node's data field stores the actual value of that node. If

that node has left a child, then left reference field stores the address of that left
child node otherwise stores NULL.

e |f that node has the right sibling, then right reference field stores the address of
right sibling node otherwise stores NULL.

% RTEU CE205 Week-4
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e The above example tree can be represented using Left Child - Right Sibling
representation as follows.

% RTEU CE205 Week-4
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Binary Tree Datastructure

1. Construction and Conversion
2. Checking and Printing
3. Summation
4. Longest Common Ancestor
Lowest Common Ancestor in a Binary Tree - GeeksforGeeks

e Btech Smart Class
o http://www.btechsmartclass.com/data_structures/binary-tree.html

e William Fiset

o https://www.youtube.com/watch?v=sD1loalFomA&ab_channel=WilliamFiset

| RTEU CE205 Week-4
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Longet Common Ancestor

Definition

The Lowest Common Ancestor (LCA) of two nodes “a° and

"b® in a rooted tree is the deepest node "¢’ that has

both "a” and "b" as descendants (where a node can be a
descendant of itself)

The LCA problem has several applications
in Computer Science, notably:

* Finding the distance between two nodes
= Inheritance hierarchies in 00P
- As a subroutine in several advanced
algorithms and data structures
* etc.
LCA(5, 4) = 2




Longet Common Ancestor

Understanding LCA
LCA(13, 14) = 2

/Q\
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Lowest Common Ancestor in a Binary Tree

The lowest common ancestor is the lowest node in the tree that has both n1 and n2
as descendants, where n1 and n2 are the nodes for which we wish to find the LCA.
Hence, the LCA of a binary tree with nodes n1 and n2 is the shared ancestor of n1 and
n2 that is located farthest from the root.

% RTEU CE205 Week-4
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Application of Lowest Common Ancestor(LCA)

To determine the distance between pairs of nodes in a tree: the distance from n1 to n2
can be computed as the distance from the root to n1, plus the distance from the root to
n2, minus twice the distance from the root to their lowest common ancestor.

LCA(4,5) =2

---------

‘‘‘‘‘

.
--------------------

R | Lowest Common Ancestor in Binary Tree
feesttl RTEU CE205 Week-4
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lllustration:

Find the LCA of 5 and 6

Path from rootto5={1,2,5}
Path from rootto 6 = {1, 3, 6}

e We start checking from 0 index. As both of the value matches( pathA[0] =
pathB[0] ), we move to the next index.

e pathA[1] not equals to pathB[1], there's a mismatch so we consider the
previous value.

o Th%efore the LCA of (5,6) = 1

iieetds| RTEU CE205 Wee
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LCAin C++

// C++ Program for Lowest Common Ancestor in a Binary Tree
// A 0(n) solution to find LCA of two given values nl and n2
#include <iostream>

#include <vector>

using namespace std;

// A Binary Tree node
struct Node
{
int key;
struct Node *left, *right;
b
// Utility function creates a new binary tree node with given key
Node * newNode(int k)
{

Node *temp = new Node;
temp->key = k;
temp->left = temp->right = NULL;
return temp;

}

/ Finds the path from root node to given root of the tree, Stores the
// path in a vector path[], returns true if path exists otherwise false
bool findPath(Node *root, vector<int> &path, int k)

// base case
if (root == NULL) return false

// Store this node in path vector. The node will be removed if
// not in path from root to k

path.push_back(root->key);

// see if the k is same as root's key
if (root->key == k)
return true;

// Check if k is found in left or right sub-tree

if ( (root->left & findPath(root->left, path, k)) |
(root->right & findPath(root->right, path, k)) )
return true;

// Tf not present in subtree rooted with root, remove root from

// path[] and return false

path.pop_back();
return false;

}
// Returns LCA if node nl, n2 are present in the given binary tree
// otherwise return -1
int findLCA(Node *root, int ni1, int n2)
// to store paths to nl and n2 from the root
vector<int> pathl, path2;

// Find paths from root to nl and root to n2. If either nl or n2

// is not present, return -1
if ( IfindPath(root, pathl, n1) || !findPath(root, path2, n2))
return -1;

/* Compare the paths to get the first different value */
int i
for (i = @; i < pathl.size() 8 i < path2.size() ; i++
if (pathl[i] != path2[i])
break;
return pathi[i-1];

}

// Driver program to test above functions
int main()

// Let us create the Binary Tree shown in above diagram
Node * root = newNode(1);

root->left = newNode(2);

root->right = newNode(3);

root->left->left = newNode(4);

root->left->right = newNode(5);
root->right->left = newNode(6);
root->right->right = newNode(7);

cout << "LCA(4, 5) = " << findLCA(root, 4, 5)
cout << "\nLCA(4, 6) << findLCA(root, 4, 6);
cout << "\nLCA(3, 4) << findLCA(root, 3, 4);
cout << "\nLCA(2, 4) = " << findLCA(root, 2, 4);
return @;

et RTEU CE205 Week-4
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LCA in Java

/1 Java Program for Lowest Common Ancestor in a Binary Tree
/1 A 0(n) solution to find LCA of two given values nl and n2
import java.util.Arraylist;

import java.util.List;

// A Binary Tree node
class Node {
int data;
Node left, right;
Node(int value) {
data = value;
left = right = null;
¥
public class BT_NoParentPtr_Solutionl
Node root;

private List<Integers path
private List<Integers path

1 = new Arraylist<s();
2 = new Arraylist<>();
/1 Finds the path from root node to given root of the tree.
int findLCA(int n, int n2) {

pathl.clear();

path2.clear();

return findLCAInternal(root, nl, n2);

}
private int findLCAInternal(Node root, int n1, int n2) {

if (1findpath(root, n1, pathl) || !findPath(root, n2, path2)) {
tem.out.println((pathl.size() > ) ? "nl is present”
System.out.println((path2.size() > @) ? "n2 is present"

return -1;

“nl is missing
“n2 is missing");

}

int
For (i = 0; 1 < pathl.size() 8& i < path2.size(); i++) {

/1 System.out.println(pathi.get(i) + path2.get(i));
if (lpathl.get(i).equals(path2.get(i)))
ak;

}

return pathl.get(i-1);

¥

/1 Finds the path from root node to given root of the tree, Stores the
/7 path in a vector path[], returns true if path exists otherwise false
private boolean findPath(Node root, int n, List<Integer> path)

// base case
if (root

¥

// store this node . The node will be removed if
7/ not in path from root to n.
path.add(root .data) ;

if (root.data == n)
return true;
}

if (root.left 1= null & findPath(root.left, n, path)) {
return true;
}

if (root.right I= null 8& findPath(root.right, n, path)) {
return true;
}

/I Tf not present in subtree rooted with root, remove root from
/1 path[] and return false
path. remove(path.size()-1);

null)
return false;

return false;

}

/1 river code
public static void main(String[] args)

BT_NoParentPtr_Solutionl tree = new BT_NoParentPtr_Solution1();
tree.root = new Node(1);

tree.root.left = new Node(2);

tree.root.right = new Node(3);

tree.root.left.left = new Node(d);

tree.root.left.right = new Node(5);

tree.root.right.left = new Node(6);

tree.root.right.right = new Node(7);

System.out.println("LCA(4, 5): " + tree.findLCA(4,5)
System.out.println("LCA(4, 6): " + tree.findLCA(4,6)
System.out.println("LCA(3, 4): " + tree.findLCA(3,4)
System.out.println("LCA(2, 4): " + tree.findLCA(2,4)

%
%
%
e

¥

Y
7/ This code is contributed by Sreenivasulu Rayanki.
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LCA in C#

1/ G# Progran for Lovest Cosmon
77 Ancestor in a sinary Tree

/1 A Binary Tree node
Class Node

public int data;
public Node Left, right;

public Node(int value)
i

value;
right = il

public class BT_Noparentptr Solutionl
«

Node roat;
private ArrayList pathi =

new ArrayList();
private Arrayist path2 =

new ArrayList();

/7 Finds the path from root
77 node to given raot of the

int FindLCaint n1,

int n2)
«
patha.Clear();
patha_Clear();
Feturn FindLCATnternal (root,
)
i

private 4nt FindLcATncernal (Node root,
int i, int n2)

«
i (1fingpath(root, n1, path) ||
1Findpath(root, n2, path2)) {
Console.Write( (path1.Count > @) ?
"0 1 present”
"l s missing");
Consolle urite((path2.Count > ) ?
“n2 i present”
“n2 s missing");
return 13

)

int 1
for (i = 8; 1 < path.cout 88
1< pathz.Count; ire)
€
/1 Systen.out println(pathi. get(i)
712 patha. get(1));
iF ((ineypathai] 1
(ntypathali))
break;

)
return (int)pathi(1 - 11;
i

1/ Finds the path fron root node

int
Arraylist patn)

i (root

i)

return fase;

)

/1 Store this node . The node
/] Wil be resoved if not in
path.Add(root..data);

i£ (root.data
«

return true;

)
£ (root. Left 1+ null 88
Findpath(root. left,
. path))
«
)
56 (root.rignt 1= null 8
Findrath (root . right,,
n, path))
«
return troe;
)

17 3¢ not present in subtree
ronted with

/1 from path(] and return false
path.Renoveat (path.Count - 1);

return false;
)
public static void Hain(Stringl] args)

B7_Noparentptr.Solutiont tree =
new BT NoParentPtr. Salutiont();

ree. root = new Node(1);
tree. roat Left = new Node(2);
ree. oot right = new hode(3);

tree. oot right rIght = new Node(7);
ConsoleHrite("LCA, $): " +

tree. FindLca(d, 5));
Console.Mrite("\nLcA(4, )

tree. FindLca(d, 6));
Console.Hrite("\nLCA(3, 4): " +

tree. FNLCAG, 9);
Console.Mrite("\nlcA(2, 4): "+

)
)

tree. FindlCA2, 4));

N
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Output

LCA(4, 5)
LCA(4, 6)
LCA(3, 4)
LCA(2, 4)

NEFRP RN

e Time Complexity: O(n). The tree is traversed twice, and then path arrays are
compared.

e Auxiliary Space: O(n). Extra Space for path1 and path2.
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Binary Tree Datastructure

e |n a normal tree, every node can have any number of children.

e A binary tree is a special type of tree data structure in which every node can have
a maximum of 2 children.

e One is known as a left child and the other is known as right child.

e A tree in which every node can have a maximum of two children is called Binary
Tree.

e |n a binary tree, every node can have either O children or 1 child or 2 children but
not more than 2 children.

% RTEU CE205 Week-4
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Example
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There are different types of binary trees and they are

1. Strictly Binary Tree (Full Binary Tree / Proper Binary Tree or 2-Tree)

* |n a binary tree, every node can have a maximum of two children.

e But in strictly binary tree, every node should have exactly two children or none.
That means every internal node must have exactly two children.

e A strictly Binary Tree can be defined as follows.

e A binary tree in which every node has either two or zero number of children is
called Strictly Binary Tree

e Strictly binary tree is also called as Full Binary Tree or Proper Binary Tree or 2-Tree

% RTEU CE205 Week-4
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Example

e Strictly binary tree data structure is used to represent mathematical expressions.

A

| RTEU CE205 Week-4
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Full Binary Tree Theorems

Let, i = the number of internal nodes
n = be the total number of nodes
1 = number of leaves
A = number of levels

RTEU CE205 Week-4
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Full Binary Tree Theorems

1. The number of leavesis i + 1.

2. The total number of nodes is 2i + 1.

3. The number of internal nodesis (n - 1) / 2.
4. The number of leavesis (n + 1) / 2.

5. The total number of nodes is 21 - 1.

6. The number of internal nodesis 1 - 1.

7. The number of leaves is at most 2A - 1.
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Full Binary Tree in C

// Checking if a binary tree is a full binary tree in C

#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>

struct Node {

int item;

struct Node *left, *right;
5

// Creation of new Node
struct Node *createNewNode(char k) {
struct Node *node = (struct Node *)malloc(sizeof(struct Node));
node->item = k;
node->right = node->left = NULL;
return node;

}

bool isFullBinaryTree(struct Node *root) {
// Checking tree emptiness
if (root == NULL)
return true;

// Checking the presence of children
if (root->left == NULL &% root->right == NULL)
return true;

if ((root->left) && (root->right))
return (isFullBinaryTree(root->left) && isFullBinaryTree(root->right));

return false;

¥

int main() {
struct Node *root = NULL;
root = createNewNode(1);
root->left = createNewNode(2);
root->right = createNewNode(3);

root->left->left = createNewNode(4);
root->left->right = createNewNode(5);
root->left->right->left = createNewNode(6);
root->left->right->right = createNewNode(7);

if (isFullBinaryTree(root))

printf("The tree is a full binary tree\n");
else

printf("The tree is not a full binary tree\n");
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Full Binary Tree in C++

// Checking if a binary tree is a full binary tree in C++

#include <iostream>
using namespace std;

struct Node {

int key;

struct Node *left, *right;
s

// New node creation
struct Node *newNode(char k) {
struct Node *node = (struct Node *)malloc(sizeof(struct Node));
node->key = k;
node->right = node->left = NULL;
return node;

}

bool isFullBinaryTree(struct Node *root) {

// Checking for emptiness
if (root == NULL)
return true;

// Checking for the presence of children
if (root->left == NULL && root->right == NULL)
return true;

if ((root->left) && (root->right))
return (isFullBinaryTree(root->left) && isFullBinaryTree(root->right));

return false;

}

int main() {
struct Node *root = NULL;
root = newNode(1);
root->left = newNode(2);
root->right = newNode(3);
root->left->left = newNode(4);
root->left->right = newNode(5);
root->left->right->left = newNode(6);
root->left->right->right = newNode(7);

if (isFullBinaryTree(root))

cout << "The tree is a full binary tree\n";
else

cout << "The tree is not a full binary tree\n";

ettt RTEU CE205 Week-4

69



CE205 Data Structures Week-4

Full Binary in Java

// Checking if a binary tree is a full binary tree in Java

class Node {
int data;
Node leftChild, rightChild;

Node(int item) {
data = item;
leftChild = rightChild = null;

}
}

class BinaryTree {
Node root;

// Check for Full Binary Tree
boolean isFullBinaryTree(Node node) {

// Checking tree emptiness
if (node == null)
return true;

// Checking the children
if (node.leftChild == null && node.rightChild == null)
return true;

if ((node.leftChild != null) && (node.rightChild != null))
return (isFullBinaryTree(node.leftChild) && isFullBinaryTree(node.rightChild));

return false;

}

public static void main(String args[]) {
BinaryTree tree = new BinaryTree();
tree.root = new Node(1);
tree.root.leftChild = new Node(2);
tree.root.rightChild = new Node(3);
tree.root.leftChild.leftChild = new Node(4);
tree.root.leftChild.rightChild = new Node(5);
tree.root.rightChild.leftChild = new Node(6);
tree.root.rightChild.rightChild = new Node(7);

if (tree.isFullBinaryTree(tree.root))
System.out.print("The tree is a full binary tree");
else
System.out.print("The tree is not a full binary tree");
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2. Complete Binary Tree (Perfect Binary Tree)

e |n a binary tree, every node can have a maximum of two children.

e But in strictly binary tree, every node should have exactly two children or none and
In complete binary tree all the nodes must have exactly two children and at every
level of complete binary tree there must be 2level number of nodes.

e For example at level 2 there must be 22 = 4 nodes and at level 3 there must be
23 = 8 nodes.

e A binary tree in which every internal node has exactly two children and all leaf
nodes are at same level is called Complete Binary Tree.

e Complete binary tree is also called as Perfect Binary Tree

% RTEU CE205 Week-4
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Perfect Binary Tree Theorems

1. A perfect binary tree of height h has 2h + 1 - 1 node.
2. A perfect binary tree with n nodes has height log(n + 1) - 1 = 0(1n(n)) .
3. A perfect binary tree of height h has 2h leaf nodes.

4. The average depth of a node in a perfect binary tree is e(1n(n)) .
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Perfect Binary Tree in C

// Checking if a binary tree is a perfect binary tree in C

#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>

struct node {
int data;
struct node *left;
struct node *right;

b

// Creating a new node
struct node *newnode(int data) {
struct node *node = (struct node *)malloc(sizeof(struct node));
node->data = data;
node->left = NULL;
node->right = NULL;

return (node);

// Calculate the depth
int depth(struct node *node) {

int d = 0;
while (node != NULL) {
d++;

node = node->left;

return d;

// Check if the tree is perfect
bool is_perfect(struct node *root, int d, int level) {
// Check if the tree is empty
if (root == NULL)
return true;

// Check the presence of children
if (root->left == NULL && root->right == NULL)
return (d == level + 1);

if (root->left
return false;

== NULL || root->right == NULL)

return is_perfect(root->left, d, level + 1) &&
is_perfect(root->right, d, level + 1);

}

// Wrapper function

bool is_Perfect(struct node *root) {
int d = depth(root);
return is_perfect(root, d, 0);

int main() {

struct node *root = NULL;

root = newnode(1);

root->left = newnode(2);
root->right = newnode(3);
root->left->left = newnode(4);
root->left->right = newnode(5);
root->right->left = newnode(6);

if (is_Perfect(root))

printf("The tree is a perfect binary tree\n");
else

printf("The tree is not a perfect binary tree\n");
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Perfect Binary Tree in C++

// Checking if a binary tree is a perfect binary tree in C++

#include <iostream>
using namespace std;

struct Node {

int key;
struct Node *left, *right;
};
int depth(Node *node) {
int d = 9;
while (node != NULL) {
d++;

node = node->left;

return d;

}

bool isPerfectR(struct Node *root, int d, int level = @) {
if (root == NULL)
return true;

if (root->left == NULL && root->right == NULL)
return (d == level + 1);

if (root->left == NULL || root->right == NULL)
return false;

return isPerfectR(root->left, d, level + 1) &%
isPerfectR(root->right, d, level + 1);
¥

bool isPerfect(Node *root) {
int d = depth(root);
return isPerfectR(root, d);

¥

struct Node *newNode(int k) {
struct Node *node = new Node;
node->key = k;
node->right = node->left = NULL;
return node;

}

int main() {

struct Node *root = NULL;

root = newNode(1);

root->left = newNode(2);
root->right = newNode(3);
root->left->left = newNode(4);
root->left->right = newNode(5);
root->right->left = newNode(6);

if (isPerfect(root))

cout << "The tree is a perfect binary tree\n";
else

cout << "The tree is not a perfect binary tree\n";
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Perfect Binary Tree in Java

// Checking if a binary tree is a perfect binary tree in Java
class PerfectBinaryTree {

static class Node {
int key;
Node left, right;
¥

// Calculate the depth
static int depth(Node node) {

int d = 0;
while (node != null) {
d++;

node = node.left;

return d;

// Check if the tree is perfect binary tree
static boolean is_perfect(Node root, int d, int level) {

// Check if the tree is empty
if (root == null)
return true;

// If for children
if (root.left == null && root.right == null)
return (d == level + 1);

if (root.left == null || root.right == null)
return false;

return is_perfect(root.left, d, level + 1) && is_perfect(root.right, d, level + 1);
¥

// Wrapper function

static boolean is_Perfect(Node root) {
int d = depth(root);
return is_perfect(root, d, 0);

¥

// Create a new node

static Node newNode(int k) {
Node node = new Node();
node.key = k;
node.right = null;
node.left = null;
return node;

¥

public static void main(String args[]) {
Node root = null;
root = newNode(1);
root.left = newNode(2);
root.right = newNode(3);
root.left.left = newNode(4);
root.left.right = newNode(5);

if (is_Perfect(root) == true)

System.out.println("The tree is a perfect binary tree");
else

System.out.println("The tree is not a perfect binary tree");
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3. Extended Binary Tree

e A binary tree can be converted into Full Binary tree by adding dummy nodes to
existing nodes wherever required.

e The full binary tree obtained by adding dummy nodes to a binary tree is called as
Extended Binary Tree.
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e |n above figure, a normal binary tree is converted into full binary tree by adding

dummy nodes (In pink colour).
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Complete Binary Tree

e A complete binary tree is a binary tree in which all the levels are completely filled
except possibly the lowest one, which is filled from the left.

e A complete binary tree is just like a full binary tree, but with two major differences
o All the leaf elements must lean towards the left.

o The last leaf element might not have a right sibling i.e. a complete binary tree
doesn't have to be a full binary tree.
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Complete Binary Tree
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Comparison between full binary tree and complete binary tree

X Full Binary Tree
X Complete Binary Tree
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Comparison between full binary tree and complete binary tree

« Full Binary Tree
X Complete Binary Tree
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Comparison between full binary tree and complete binary tree

X Full Binary Tree
« Complete Binary Tree
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Comparison between full binary tree and complete binary tree

« Full Binary Tree
« Complete Binary Tree
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How a Complete Binary Tree is Created?

1. Select the first element of the list to be the root node. (no. of elements on level-I: 1)

11129 5 610

Select the first element as root
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1. Put the second element as a left child of the root node and the third element as
the right child. (no. of elements on level-Il: 2)

oo, DEOEOT

12 as a left child and 9 as a right child
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1. Put the next two elements as children of the left node of the second level. Again,
put the next two elements as children of the right node of the second level (no. of
elements on level-lll: 4) elements).
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1. Keep repeating until you reach the last element.

5 as a left child and 6 as a right child
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Relationship between array indexes and tree element
e A complete binary tree has an interesting property that we can use to find the
children and parents of any node.

e |f the index of any element in the array is i, the element in the index 2i+1 will
become the left child and element in 2i+2 index will become the right child.

e Also, the parent of any element at index i is given by the lower bound of (i-1)/2.
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Complete Binary Tree in C

// Checking if a binary tree is a complete binary tree in C

#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>

struct Node {

int key;

struct Node *left, *right;
s

// Node creation
struct Node *newNode(char k) {
struct Node *node = (struct Node *)malloc(sizeof(struct Node));
node->key = k;
node->right = node->left = NULL;
return node;

¥

// Count the number of nodes
int countNumNodes(struct Node *root) {
if (root == NULL)
return (0);
return (1 + countNumNodes(root->left) + countNumNodes(root->right));

¥

// Check if the tree is a complete binary tree
bool checkComplete(struct Node *root, int index, int numberNodes) {
// Check if the tree is complete
if (root == NULL)
return true;

if (index >= numberNodes)
return false;

return (checkComplete(root->left, 2 * index + 1, numberNodes) && checkComplete(root->right, 2 * index + 2, numberNodes));

¥

int main() {

struct Node *root = NULL;

root = newNode(1);

root->left = newNode(2);
root->right = newNode(3);
root->left->left = newNode(4);
root->left->right = newNode(5);
root->right->left = newNode(6);

int node_count = countNumNodes(root);
int index = 0;

if (checkComplete(root, index, node_count))
printf("The tree is a complete binary tree\n");
else
printf("The tree is not a complete binary tree\n");
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Complete Binary Tree in C++

// Checking if a binary tree is a complete binary tree in C++
#include <iostream>
using namespace std;

struct Node {
int key;
struct Node *left, *right;

>

// Create node
struct Node *newNode(char k) {
struct Node *node = (struct Node *)malloc(sizeof(struct Node));
node->key = k;
node->right = node->left = NULL;
return node;

}

// Count the number of nodes
int countNumNodes(struct Node *root) {
if (root == NULL)
return (0);
return (1 + countNumNodes(root->left) + countNumNodes(root->right));

// Check if the tree is a complete binary tree
bool checkComplete(struct Node *root, int index, int numberNodes) {

// Check if the tree is empty
if (root == NULL)
return true;

if (index >= numberNodes)
return false;

return (checkComplete(root->left, 2 * index + 1, numberNodes) && checkComplete(root->right, 2 * index + 2, numberNodes));

¥

int main() {

struct Node *root = NULL;

root = newNode(1);

root->left = newNode(2);
root->right = newNode(3);
root->left->left = newNode(4);
root->left->right = newNode(5);
root->right->left = newNode(6);

int node_count = countNumNodes(root);
int index = @;

if (checkComplete(root, index, node_count))

cout << "The tree is a complete binary tree\n";
else

cout << "The tree is not a complete binary tree\n";
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Complete Binary Tree in Java

// Checking if a binary tree is a complete binary tree in Java

// Node creation
class Node {

int data;

Node left, right;

Node(int item) {
data = item;
left = right = null;
}
}

class BinaryTree {
Node root;

// Count the number of nodes
int countNumNodes(Node root) {
if (root == null)
return (0);
return (1 + countNumNodes(root.left) + countNumNodes(root.right));

}

// Check for complete binary tree
boolean checkComplete(Node root, int index, int numberNodes) {

// Check if the tree is empty
if (root == null)
return true;

if (index >= numberNodes)
return false;

return (checkComplete(root.left, 2 * index + 1, numberNodes)
&& checkComplete(root.right, 2 * index + 2, numberNodes));
}

public static void main(String args[]) {
BinaryTree tree = new BinaryTree();

tree.root = new Node(1l);
tree.root.left = new Node(2);
tree.root.right = new Node(3);
tree.root.left.right = new Node(5);
tree.root.left.left = new Node(4);
tree.root.right.left = new Node(6);

int node_count = tree.countNumNodes(tree.root);
int index = 0;

if (tree.checkComplete(tree.root, index, node_count))
System.out.println("The tree is a complete binary tree");
else

System.out.println("The tree is not a complete binary tree");

ettt RTEU CE205 Week-4

92



CE205 Data Structures Week-4

Binary Tree Representations

e Btech Smart Class
o http://www.btechsmartclass.com/data_structures/binary-tree-
representations.html
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Binary Tree Representations

e A binary tree data structure is represented using two methods. Those methods are
as follows.

o Array Representation

o Linked List Representation
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e Consider the following binary tree
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1. Array Representation of Binary Tree

e |n array representation of a binary tree, we use one-dimensional array (1-D Array)
to represent a binary tree.

e Consider the above example of a binary tree and it is represented as follows.

A|IB|CIDIF|GIH|TI|J|-]-[-JK]-f-]-|-]-]-]"-]-

e To represent a binary tree of depth 'n' using array representation, we need one
dimensional array with a maximum size of 2n + 1.
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2. Linked List Representation of Binary Tree

e We use a double linked list to represent a binary tree.
e |n a double linked list, every node consists of three fields.

e First field for storing left child address, second for storing actual data and third for
storing right child address.

e |n this linked list representation, a node has the following structure.

Left Child Right Child
Address Data ddress
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rootNode

N

NULL NULL
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Binary Tree Traversals

e Btech Smart Class
o http://www.btechsmartclass.com/data_structures/binary-tree-traversals.html
= |n-Order

= Pre-Order
= Post-Order
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Binary Tree Traversals

e When we wanted to display a binary tree,

e we need to follow some order in which all the nodes of that binary tree must be
displayed.

e |n any binary tree, displaying order of nodes depends on the traversal method.

e Displaying (or) visiting order of nodes in a binary tree is called as Binary Tree
Traversal.
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e There are three types of binary tree traversals.
o In - Order Traversal
o Pre - Order Traversal

o Post - Order Traversal
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Notations We Will Use For Orders
NLR : Node Left Right
LRN : Left Right Node
LNR : Left Node Right
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Pre-order, NLR

1. Visit the current node (in the figure: position red).
2. Recursively traverse the current node's left subtree.
3. Recursively traverse the current node's right subtree.

The pre-order traversal is a topologically sorted one, because a parent node is
processed before any of its child nodes is done.
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Post-order, LRN

1. Recursively traverse the current node's left subtree.
2. Recursively traverse the current node's right subtree.

3. Visit the current node (in the figure: position blue).

Post-order traversal can be useful to get postfix expression of a binary expression tree.
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In-order, LNR

1. Recursively traverse the current node's left subtree.
2. Visit the current node (in the figure: position green).

3. Recursively traverse the current node's right subtree.
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e |n a binary search tree ordered such that in each node the key is greater than all
keys in its left subtree and less than all keys in its right subtree,

e in-order traversal retrieves the keys in ascending sorted order.[7]
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Reverse pre-order, NRL

1. Visit the current node.
2. Recursively traverse the current node's right subtree.

3. Recursively traverse the current node's left subtree.

5 RTEU CE205 Week-4 108




CE205 Data Structures Week-4

Reverse post-order, RLN

1. Recursively traverse the current node's right subtree.
2. Recursively traverse the current node's left subtree.

3. Visit the current node.

Reverse in-order, RNL

1. Recursively traverse the current node's right subtree.
2. Visit the current node.

3. Recursively traverse the current node's left subtree.
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e |n a binary search tree ordered such that in each node the key is greater than all
keys in its left subtree and less than all keys in its right subtree,

e reverse in-order traversal retrieves the keys in descending sorted order.
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Applications for Pre-Order

e Pre-order traversal can be used to make a prefix expression (Polish notation)
from expression trees: traverse the expression tree pre-orderly.

e For example, traversing the depicted arithmetic expression in pre-order yields "+
*A-BC+ DE"

e |n prefix notation, no need any parentheses as long as each operator has a fixed
number of operands.

e Preorder traversal is also used to create a copy of the tree.
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e Post-order traversal can generate a postfix representation (Reverse Polish notation)
of a binary tree.

e Traversing the depicted arithmetic expression in post-order yields "ABC - *D E +
+"; the latter can easily be transformed into machine code to evaluate the
expression by a stack machine.

e Postorder traversal is also used to delete the tree.

e Each node is freed after freeing its children.
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Pre-order implementation Recursive

procedure preorder(node)
if node = null
return
visit(node)
preorder(node.left)
preorder(node.right)

A
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Pre-order implementation Iterative

procedure iterativePreorder(node)
if node = null
return
stack « empty stack
stack.push(node)
while not stack.isEmpty()
node « stack.pop()
visit(node)
// right child is pushed first so that left is processed first
if node.right # null
stack.push(node.right)
if node.left # null
stack.push(node.left)
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Post-order implementation Recursive

procedure postorder(node)
if node = null
return
postorder(node. left)
postorder(node.right)
visit(node)

A
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Post-order implementation Iterative

procedure iterativePostorder(node)
stack « empty stack
lastNodeVisited « null
while not stack.isEmpty() or node # null
if node # null
stack.push(node)
node « node.left
else
peekNode « stack.peek()
// if right child exists and traversing node
// from left child, then move right
if peekNode.right # null and lastNodeVisited # peekNode.right
node <« peekNode.right
else
visit(peekNode)
lastNodeVisited « stack.pop()

il RTEU CE205 Week-4 117




CE205 Data Structures Week-4

In-order implementation Recursive

procedure inorder(node)
if node = null
return
inorder(node.left)
visit(node)
inorder(node.right)

A
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In-order implementation Iterative

procedure iterativeInorder(node)
stack « empty stack
while not stack.isEmpty() or node # null
if node # null
stack.push(node)
node « node.left
else
node <« stack.pop()
visit(node)
node « node.right

A
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Binary Tree Traversa

// Tree traversal in C

#include <stdio.h>
#include <stdlib.h>

struct node {
int item;
struct node* left;
struct node* right;

35

// Inorder traversal

void inorderTraversal(struct node* root) {
if (root == NULL) return;
inorderTraversal(root->left);
printf("%d ->", root->item);
inorderTraversal(root->right);

// preorderTraversal traversal

void preorderTraversal(struct node* root) {
if (root == NULL) return;
printf("%d ->", root->item);
preorderTraversal(root->left);
preorderTraversal(root->right);

// postorderTraversal traversal

void postorderTraversal(struct node* root) {
if (root == NULL) return;
postorderTraversal(root->left);
postorderTraversal(root->right);
printf("%d ->", root->item);

// Create a new Node
struct node* createNode(value) {
struct node* newNode = malloc(sizeof(struct node));
newNode->item = value;
newNode->left = NULL;
newNode->right = NULL;

return newNode;

}

// Insert on the left of the node

struct node* insertLeft(struct node* root, int value) {
root->left = createNode(value);
return root->left;

// Insert on the right of the node
struct node* insertRight(struct node* root, int value) {
root->right = createNode(value);
return root->right;

int main() {
struct node* root = createNode(1);
insertLeft(root, 12);
insertRight(root, 9);

insertLeft(root->left, 5);
insertRight(root->left, 6);

printf("Inorder traversal \n");
inorderTraversal(root);

printf("\nPreorder traversal \n");
preorderTraversal(root);

printf("\nPostorder traversal \n");
postorderTraversal(root);
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Binary Tree Traversal in C++

// Tree traversal in C++

#include <iostream>
using namespace std;

struct Node {
int data;
struct Node *left, *right;
Node(int data) {
this->data = data;
left = right = NULL;
}
¥

// Preorder traversal
void preorderTraversal(struct Node* node) {
if (node == NULL)
return;
cout << node->data << "->";
preorderTraversal(node->left);
preorderTraversal(node->right);

// Postorder traversal
void postorderTraversal(struct Node* node) {
if (node == NULL)
return;

postorderTraversal(node->left);
postorderTraversal(node->right);
cout << node->data << "->";

}

// Inorder traversal
void inorderTraversal(struct Node* node) {
if (node == NULL)
return;

inorderTraversal(node->left);
cout << node->data << "->";
inorderTraversal(node->right);

¥

int main() {
struct Node* root = new Node(1);
root->left = new Node(12);
root->right = new Node(9);
root->left->left = new Node(5);
root->left->right = new Node(6);

cout << "Inorder traversal ";
inorderTraversal(root);

cout << "\nPreorder traversal ";
preorderTraversal(root);

cout << "\nPostorder traversal ";

e~ postorderTraversal(root);

R
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Binary Tree Traversal in Java

// Tree traversal in Java
class Node {

int item;

Node left, right;

public Node(int key) {

item = key;
left = right = null;
}

}

class BinaryTree {
// Root of Binary Tree
Node root;

BinaryTree() {
root = null;

}
void postorder(Node node) {
if (node == null)

return;

// Traverse left
postorder(node.left);

// Traverse right
postorder(node.right);

// Traverse root
System.out.print(node.item + "->");

void inorder(Node node) {
if (node == null)
return;

// Traverse left
inorder(node.left);

// Traverse root
System.out.print(node.item + "->");
// Traverse right
inorder(node.right);

void preorder(Node node) {
if (node == null)
return;

// Traverse root
System.out.print(node.item + "->");
// Traverse left

preorder(node. left);

// Traverse right

preorder(node. right) ;

public static void main(String[] args) {
BinaryTree tree = new BinaryTree();
tree.root = new Node(1);

tree.root.left = new Node(12);
tree.root.right = new Node(9);
tree.root.left.left = new Node(5);
tree.root.left.right = new Node(6);

System.out.println("Inorder traversal");
tree.inorder(tree.root);

System.out.println("\nPreorder traversal ");
tree.preorder(tree.root);

System.out.println("\nPostorder traversal");
tree.postorder(tree.root);
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Review
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Consider the following binary tree.
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1. In - Order Traversal ( leftChild - root - rightChild )

e |n In-Order traversal,

e the root node is visited between the left child and right child.
e |n this traversal,

e the left child node is visited first,

e then the root node is visited and

e |ater we go for visiting the right child node.

e This in-order traversal is applicable for every root node of all subtrees in the tree.
This is performed recursively for all nodes in the tree.

w
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e |n the above example of a binary tree,

e first we try to visit left child of root node 'A’,

e but A's left child 'B' is a root node for left subtree.
e so we try to visit its (B's) left child 'D' and

e again D is a root for subtree with nodes D, | and J.

e So we try to visit its left child 'I' and it is the leftmost child.
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e So first we visit 'I' then go for its root node 'D' and later we visit D's right child 'J".
e With this we have completed the left part of node B.

e Then visit 'B' and next B's right child 'F' is visited.

e With this we have completed left part of node A.

e Then visit root node 'A'. With this we have completed left and root parts of node A.
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e Then we go for the right part of the node A. In right of A again there is a subtree
with root C. So go for left child of C and again it is a subtree with root G.

e But G does not have left part so we visit 'G' and then visit G's right child K.
e With this we have completed the left part of node C.

e Then visit root node 'C' and next visit C's right child 'H' which is the rightmost child
in the tree. So we stop the process.
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e That means here we have visited in the orderof | -D-J-B-F-A-G-K-C-
H using In-Order Traversal.

In-Order Traversal for above example of binary tree is

|-D-J-B-F-A-G-K-C-H
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2. Pre - Order Traversal ( root - leftChild - rightChild )

* |n Pre-Order traversal,

e the root node is visited before the left child and right child nodes.
* |n this traversal,

e the root node is visited first,

e then its left child and

e |ater its right child.

e This pre-order traversal is applicable for every root node of all subtrees in the tree.

w
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e |n the above example of binary tree,

e first we visit root node 'A' then visit its left child 'B' which is a root for D and F.
e So we visit B's left child ‘D' and again D is a root for | and J.

e So we visit D's left child 'I' which is the leftmost child.

e So next we go for visiting D's right child 'J'.

e With this we have completed root,
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e |eft and right parts of node D and root,

e |eft parts of node B.

e Next visit B's right child 'F'.

e With this we have completed root and left parts of node A.

e So we go for A's right child 'C" which is a root node for G and H.
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e After visiting C, we go for its left child 'G' which is a root for node K.

e So next we visit left of G, but it does not have left child so we go for G's right
child 'K'. With this, we have completed node C's root and left parts.

e Next visit C's right child 'H" which is the rightmost child in the tree. So we stop the
process.
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That means here we have visited in the order of A-B-D-I-J-F-C-G-K-H using Pre-
Order Traversal.

e Pre-Order Traversal for above example binary tree is

e A-B-D-1-J-F-C-G-K-H
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3. Post - Order Traversal ( leftChild - rightChild - root )

* |n Post-Order traversal,

e the root node is visited after left child and right child.
* |n this traversal,

e |eft child node is visited first,

e then its right child and

e then its root node.

e This is recursively performed until the right most node is visited.

w
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e Here we have visited in the orderof I -J-D-F-B-K-G-H - C- A using Post-
Order Traversal.

e Post-Order Traversal for above example binary tree is

¢|-J-D-F-B-K-G-H-C-A
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Igrogram to Create Binary Tree and display using In-Order Traversal - C

Programming

#include<stdio.h>
#include<conio.h>

struct Node{
int data;
struct Node *left;
struct Node *right;
I

struct Node *root = NULL;
int count = @;

struct Node* insert(struct Node*, int);
void display(struct Node*);

void main(){
int choice, value;
clrscr();
printf("\n----- Binary Tree ----- \n");
while(1){
printf("\n*#kkk MENY *kkkk\n®)
printf("1. Insert\n2. Display\n3. Exit");
printf("\nEnter your choice: ");
scanf("%d",&choice);
switch(choice){
case 1: printf("\nEnter the value to be insert: ");
scanf("%d", &value);
root = insert(root,value);
break;
case 2: display(root); break;
case 3: exit(e);
default: printf("\nPlease select correct operations!!!\n");

¥

struct Node* insert(struct Node *root,int value){
struct Node *newNode;
newNode = (struct Node*)malloc(sizeof(struct Node));
newNode->data = value;
if(root == NULL){
newNode->left = newNode->right = NULL;
root = newNode;
count++;

else{
if(count%2 != @)
root->left = insert(root->left,value);
else
root->right = insert(root->right,value);

return root;

// display is performed by using Inorder Traversal
void display(struct Node *root)

if(root != NULL){
display(root->left);
printf("%d\t",root->data);
display(root->right);

Al
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Threaded Binary Trees

e Btech Smart Class
o http://www.btechsmartclass.com/data_structures/threaded-binary-trees.html
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Threaded Binary Trees

e A binary tree can be represented using array representation or linked list
representation.

e When a binary tree is represented using linked list representation, the reference
part of the node which doesn't have a child is filled with a NULL pointer.

e In any binary tree linked list representation, there is a number of NULL pointers
than actual pointers.

e Generally, in any binary tree linked list representation, if there are 2N number of
reference fields, then N+1 number of reference fields are filled with NULL ( N+1 are
NULL out of 2N ).

e This NULL pointer does not play any role except indicating that there is no link (no

— child).
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e A J. Perlis and C. Thornton have proposed new binary tree called "Threaded Binary
Tree", which makes use of NULL pointers to improve its traversal process.

e |n a threaded binary tree, NULL pointers are replaced by references of other nodes
in the tree. These extra references are called as threads.

e Threaded Binary Tree is also a binary tree in which all left child pointers that are
NULL (in Linked list representation) points to its in-order predecessor, and all right
child pointers that are NULL (in Linked list representation) points to its in-order

SUCCEeSSOL.
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e |f there is no in-order predecessor or in-order successor, then it points to the root
node.
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Consider the following binary tree.
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e To convert the above example binary tree into a threaded binary tree, first find the
in-order traversal of that tree...

In-order traversal of above binary tree...

H-D-1-B-E-A-F-J-C-G
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e When we represent the above binary tree using linked list representation, nodes H,
|, E, F, J and G left child pointers are NULL.

e This NULL is replaced by address of its in-order predecessor respectively (I to D, E
to B, Fto A, Jto F and G to O), but here the node H does not have its in-order
predecessor, so it points to the root node A.

e And nodes H, |, E, J and G right child pointers are NULL.

e These NULL pointers are replaced by address of its in-order successor respectively

(Hto D, | to B, E to A, and J to ), but here the node G does not have its in-order
successor, so it points to the root node A.
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e Above example binary tree is converted into threaded binary tree as follows.

e |n the above figure, threads are indicated with dotted links.
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Heaps (Max, Min, Binary , Binomial, Fibonacci, Leftist, K-ary) and Priority
Queue
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Heap Data Structure

e https://ucoruh.github.io/ce100-algorithms-and-programming-Il/week-4/ce100-
week-4-heap/

e Programiz

o https://www.programiz.com/dsa/heap-data-structure
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Max-Heap

e Data Structures Tutorials - Max Heap with an exaple

e CE100 Algorithms and Programming Il - RTEU CE100 Algorithms and
Programming-Il Course Notes
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Max Priority Queue

e Course Notes

o CE100 Algorithms and Programming Il - RTEU CE100 Algorithms and
Programming-Il Course Notes

e Btech Smart Class
o http://www.btechsmartclass.com/data_structures/max-priority-queue.html
e William Fiset

o https://www.youtube.com/watch?
v=wptevkObshY&t=0s&ab_channel=WilliamFiset

o https://github.com/williamfiset/Algorithms/tree/master/src/main/java/com/will

lamfiset/algorithms/datastructures/priorityqueue
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Max Priority Queue with Heap

e Please follow the link below for Heap and Max-Priority

o CE100 Algorithms and Programming Il - RTEU CE100 Algorithms and
Programming-1l Course Notes
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Max Priority Queue in C

// Priority Queue implementation in C

#include <stdio.h>

int size = 6;

void swap(int *a, int *b) {
. by

// Function to heapify the tree
void heapify(int array[], int size, int i) {
if (size
printf("single element in the heap");
} else
// Find the largest among root, left child and right child
int largest = i;
int1=2*4i+1;
int r=2%i+2;
if (1 < size & array[1] > array[largest])
largest = 1;
if (r < size & array[r] > array[largest])
largest =

// Swap and continue heapifying if root is not largest
if (largest I= i) {
swap(&array[i], 8array[largest]);
heapify(array, size, largest);

}
}

// Function to insert an element into the tree
void insert(int array[], int newNum) {

if (size == 0) {
array[0] = newNum;
size += 1;

} else
array[size] = newNum;
size += 1;

for (int i = size /2 - 1; i >= 0;
heapify(array, size, i);

}
}

// Function to delete an element from the tree
void deleteRoot(int array[], int num) {

int i;
for (i =0; 1 < size; i++) {
if (num array[i])
break;

swap(&array[i], &array[size - 1]);
size 5

for (int i = size /2 - 1; i >= @;
heapify(array, size, i);

}

// Print the array
void printArray(int array[], int size) {
for (int i = 6; i < size; ++i)
printf("%d ", array[il);
printf("\n");

// Driver code
int main() {
int array[10];

insert(array, 3);
insert(array, 4);
insert(array, 9);
insert(array, 5);
insert(array, 2);

printf("Max-Heap array
printArray(array, size);

deleteRoot (array, 4);
printf("After deleting an element: ");

printArray(array, size);
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Max Priority Queue in C++

// Priority Queue implementation in Ci+

#include <iostream>
#include <vector>
using namespace std;

// Function to swap position of two elements
void swap(int *a, int *b) {

int temp = *b;

*b .

aj
*a = temp;

}

// Function to heapify the tree
void heapify(vector<int> &hT, int i) {
int size = hT.size();

// Find the

int largest = i;

intl=2%1i+1;

int r = i+2;

if (1 < size 8& hT[1] > hT[largest])
largest = 1;

if (r < size 8& hT[r] > hT[largest])
largest = r;

// Swap and continue heapifying if root is not largest

if (largest I= i) {
swap(&hT[1], &hT[largest]);
heapify(hT, largest);
¥
Y

// Function to insert an element into the tree
void insert(vector<int> &hT, int newNum) {
int size = hT.size();
if (size == 0) {
hT. push_back (newNum) ;
} else {
hT.push_back (newNum) ;
for (int i = size /2 - 1; 1 >= @; i--) {
heapify(hT, 1);

}
}

}

// Function to delete an element from the tree
void deleteNode(vector<int> &T, int num) {
int size = hT.size();

int i;
for (i =0; i< size; i++) {
if (num == hT[i])
break;

i
swap(8hT[1], &hT[size - 1]);

hT.pop_back();

for (int i = size / 2
heapify(hT, i);

}

¥

// Print the tree
void printArray(vector<int> &hT) {
for (int i = @; i < hT.size(); ++i)
cout << hT[i] << " ";
cout << "\n";

// Driver code
int main()
vector<int> heapTree;

insert(heapTree, 3);
insert(heapTree, 4);
insert(heapTree, 9);
insert(heapTree, 5);
insert(heapTree, 2);

cout << "Max-Heap array: "

printArray(heapTree);

deleteNode(heapTree, 4);
cout << "After deleting an element: ";

printArray(heapTree);

RTEU CE205 Week-4

largest among root, left child and right child

154



CE205 Data Structures Week-4

Max Priority Queue in Java

// Priority Queue implementation in Java
import java.util.Arraylist;

class Heap {

// Function to heapify the tree

void heapify(ArrayList<Integer> hT, int i) {
int size = hT.size();
// Find the largest among root, left child and right child
int largest = i;
int1=2%1i+1;
intr=2%i+2;
if (1 < size 8& hT.get(1) > hT.get(largest))

largest = 1;

if (r < size 8& hT.get(r) > hT.get(largest))
largest = r;

// Swap and continue heapifying if root is not largest
if (largest I= i) {

int temp = hT.get(largest);

hT.set(largest, hT.get(i));

hT.set(i, temp);

heapify(hT, largest);
}
Y

// Function to insert an element into the tree
void insert(ArraylList<Integer> hT, int newNum) {
int size = hT.size();
if (size == 0) {
hT.add(newNum) ;
} else

hT. add(newNum) ;

for (int i = size /2-1;1>=0
heapify(hT, 1);

i

3
}

// Function to delete an element from the tree
void deleteNode(ArrayList<Integer> hT, int num) {
int size = hT.size();

int i;

for (i i< size; iw4) {
i hT.get(i))

i

int temp = hT.get(i)

hT.set(i, hT.get(size - 1));
hT.set(size - 1, temp);

hT.remove(size - 1);
for (int j = size / 2 - 1; j >= 0; 3--) {
heapify(hT, j);
Y
}

// Print the tree
void printArray(ArrayList<Integer> array, int size) {
for (Integer i : array) {
System.out.print(i + " ");

System.out.println();

// priver code
public static void main(String args[]) {

ArrayListcInteger> array = new Arraylist<Integer>();
int size = array.size();

eap h = new Heap();
.insert(array, 3);
.insert(array, 4);
.insert(array, 9);
insert(array, 5);
insert(array, 2);

s>z

System.out.println("Max-Heap array
h.printArray(array, size);

h.deleteNode(array, 4);

System.out.println("After deleting an element:
h.printArray(array, size);

=
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Max Priority Queue with Array

e |n the normal queue data structure,

e insertion is performed at the end of the queue and deletion is performed based on
the FIFO principle.

e This queue implementation may not be suitable for all applications.

e Consider a networking application where the server has to respond for requests
from multiple clients using queue data structure.

w
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e Assume four requests arrived at the queue in the order of R1, R2, R3 & R4 where
R1 requires 20 units of time, R2 requires 2 units of time, R3 requires 10 units of
time and R4 requires 5 units of time. A queue is as follows.

R1:20‘ R2:2 ‘R3:10‘ R4:5 ‘ ‘

AN

AN

Now, check to wait time of each request that to be completed.

R 157

4 RTEU CE205 Week-4




CE205 Data Structures Week-4

1. R1: 20 units of time

2. R2 : 22 units of time (R2 must wait until R1T completes 20 units and R2 itself
requires 2 units. Total 22 units)

3. R3: 32 units of time (R3 must wait until R2 completes 22 units and R3 itself

requires 10 units. Total 32 units)

4. R4 : 37 units of time (R4 must wait until R3 completes 35 units and R4 itself
requires 5 units. Total 37 units)

**Here, the average waiting time for all requests (R1, R2, R3 and R4) is
(20+22+32+37)/4 = 27 units of time.
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e That means, if we use a normal queue data structure to serve these requests the
average waiting time for each request is 27 units of time.

e Now, consider another way of serving these requests.

e |f we serve according to their required amount of time, first we serve R2 which has
minimum time (2 units) requirement.

e Then serve R4 which has second minimum time (5 units) requirement and then
serve R3 which has third minimum time (10 units) requirement and finally R1 is
served which has maximum time (20 units) requirement.
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Now, check to wait time of each request that to be completed.

1. R2 : 2 units of time

2. R4 : 7 units of time (R4 must wait until R2 completes 2 units and R4 itself requires 5
units. Total 7 units)

3. R3: 17 units of time (R3 must wait until R4 completes 7 units and R3 itself requires
10 units. Total 17 units)

4.R1: 37 units of time (R1 must wait until R3 completes 17 units and R1 itself

requires 20 units. Total 37 units)

**Here, the average waiting time for all requests (R1, R2, R3 and R4) is (2+7+17+37)/4
~ 15 units of time.
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e From the above two situations, it is very clear that the second method server can
complete all four requests with very less time compared to the first method.

e This is what exactly done by the priority queue.

e Priority queue is a variant of a queue data structure in which insertion is performed
in the order of arrival and deletion is performed based on the priority.
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e There are two types of priority queues they are as follows.
o Max Priority Queue

o Min Priority Queue
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1. Max Priority Queue

e |n a max priority queue, elements are inserted in the order in which they arrive the
queue and the maximum value is always removed first from the queue.

e For example, assume that we insert in the order 8, 3, 2 & 5 and they are removed in
the order 8, 5, 3, 2.

e The following are the operations performed in a Max priority queue...
o isEmpty() - Check whether queue is Empty.
o insert() - Inserts a new value into the queue.
o findMax() - Find maximum value in the queue.

o remove() - Delete maximum value from the queue.

w
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Max Priority Queue Representations

e There are 6 representations of max priority queue.
o Using an Unordered Array (Dynamic Array)

o Using an Unordered Array (Dynamic Array) with the index of the maximum
value

o Using an Array (Dynamic Array) in Decreasing Order
o Using an Array (Dynamic Array) in Increasing Order
o Using Linked List in Increasing Order

o Using Unordered Linked List with reference to node with the maximum value
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1. Using an Unordered Array (Dynamic Array)

* |n this representation, elements are inserted according to their arrival order and the
largest element is deleted first from the max priority queue.

e For example, assume that elements are inserted in the order of 8, 2, 3 and 5. And
they are removed in the order 8, 5, 3 and 2.
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 Now, let us analyze each operation according to this representation.

e isEmpty() - If 'front == -1' queue is Empty. This operation requires O(1) time
complexity which means constant time complexity.

e insert() - New element is added at the end of the queue. This operation
requires O(1) time complexity which means constant time complexity.

e findMax() - To find the maximum element in the queue, we need to compare it
with all the elements in the queue. This operation requires O(n) time complexity.

e remove() - To remove an element from the max priority queue, first we need to
find the largest element using findMax() which requires O(n) time complexity, then
that element is deleted with constant time complexity O(1). The remove() operation
requires O(n) + O(1) = O(n) time complexity.

w
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2. Using an Unordered Array (Dynamic Array) with the index of the maximum
value

e |n this representation, elements are inserted according to their arrival order and the
largest element is deleted first from max priority queue.

e For example, assume that elements are inserted in the order of 8, 2, 3 and 5. And
they are removed in the order 8, 5, 3 and 2.
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"6 "NOw; Iét Us analyze each operation according to this representation.

e isEmpty() - If 'front == -1' queue is Empty. This operation requires O(1) time
complexity which means constant time complexity.

e insert() - New element is added at the end of the queue with O(1) time complexity
and for each insertion we need to update maxindex with O(1) time complexity. This
operation requires O(1) time complexity which means constant time complexity.

e findMax() - Finding the maximum element in the queue is very simple because
index of the maximum element is stored in maxIndex. This operation
requires O(1) time complexity.

e remove() - To remove an element from the queue, first we need to find the largest
element using findMax() which requires O(1) time complexity, then that element is
deleted with constant time complexity O(1) and finally we need to update the next

largest element index value in maxindex which requires O(n) time complexity. The
ﬁ ~reu cekemoye() operation requires O(1)+0O(1)+0(n) = O(n) time complexity. 168
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3. Using an Array (Dynamic Array) in Decreasing Order
* |n this representation, elements are inserted according to their value in decreasing
order and largest element is deleted first from max priority queue.

e For example, assume that elements are inserted in the order of 8, 5, 3 and 2. And

they are removed in the order 8, 5, 3 and 2.

X
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e isEmpty() - If 'front == -1' queue is Empty. This operation requires O(1) time
complexity which means constant time complexity.

e insert() - New element is added at a particular position based on the decreasing
order of elements which requires O(n) time complexity as it needs to shift existing
elements inorder to insert new element in decreasing order. This insert() operation
requires O(n) time complexity.

e findMax() - Finding the maximum element in the queue is very simple because
maximum element is at the beginning of the queue. This findMax() operation
requires O(1) time complexity.

e remove() - To remove an element from the max priority queue, first we need to
find the largest element using findMax() operation which requires O(1) time
complexity, then that element is deleted with constant time complexity O(1) and

finally we need to rearrange the remaining elements in the list which

ﬁ ey cekeguines O(n) time complexity. This remove() operation requires O(1) + O(1) + O(n)

PR o VA9 WiF B [
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4. Using an Array (Dynamic Array) in Increasing Order
* |n this representation, elements are inserted according to their value in increasing
order and maximum element is deleted first from max priority queue.

e For example, assume that elements are inserted in the order of 2, 3, 5 and 8. And

they are removed in the order 8, 5, 3 and 2.

?\‘ 171
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e isEmpty() - If 'front == -1' queue is Empty. This operation requires O(1) time
complexity which means constant time complexity.

e insert() - New element is added at a particular position in the increasing order of
elements into the queue which requires O(n) time complexity as it needs to shift
existing elements to maintain increasing order of elements. This insert() operation
requires O(n) time complexity.

e findMax() - Finding the maximum element in the queue is very simple becuase
maximum element is at the end of the queue. This findMax() operation
requires O(1) time complexity.

e remove() - To remove an element from the queue first we need to find the largest
element using findMax() which requires O(1) time complexity, then that element is
deleted with constant time complexity O(1). Finally, we need to rearrange the

remaining elements to maintain increasing order of elements which

ﬁ ey cekeguines O(n) time complexity. This remove() operation requires O(1) + O(1) + O(n)
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5. Using Linked List in Increasing Order

* |n this representation, we use a single linked list to represent max priority queue. In
this representation, elements are inserted according to their value in increasing
order and a node with the maximum value is deleted first from the max priority

queue.

e For example, assume that elements are inserted in the order of 2, 3, 5 and 8. And
they are removed in the order of 8, 5, 3 and 2.

e A I e B gy 5 S g I (Y

w
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Now, let us analyze each operation according to this representation...

iISEmpty() - If 'head == NULL' queue is Empty. This operation requires O(1) time
complexity which means constant time complexity.

insert() - New element is added at a particular position in the increasing order of
elements which requires O(n) time complexity. This insert() operation
requires O(n) time complexity.

findMax() - Finding the maximum element in the queue is very simple because
maximum element is at the end of the queue. This findMax() operation
requires O(1) time complexity.

remove() - Removing an element from the queue is simple because the largest
element is last node in the queue. This remove() operation requires O(1) time
complexity.

% RTEU CE205 Week-4
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6 Using Unordered Linked List with reference to node with the maximum

value

* |n this representation, we use a single linked list to represent max priority queue.
We always maintain a reference (maxValue) to the node with the maximum value in
the queue. In this representation, elements are inserted according to their arrival
and the node with the maximum value is deleted first from the max priority queue.

e For example, assume that elements are inserted in the order of 2, 8, 3 and 5. And
they are removed in the order of 8, 5, 3 and 2.

SEIEI*EIEI*
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e isEmpty() - If 'head == NULL' queue is Empty. This operation requires O(1) time
complexity which means constant time complexity.

e insert() - New element is added at end of the queue which requires O(1) time
complexity. And we need to update maxValue reference with address of largest
element in the queue which requires O(1) time complexity. This insert() operation
requires O(1) time complexity.

e findMax() - Finding the maximum element in the queue is very simple because the
address of largest element is stored at maxValue. This findMax() operation
requires O(1) time complexity.

e remove() - Removing an element from the queue is deleting the node which is
referenced by maxValue which requires O(1) time complexity. And then we need to
update maxValue reference to new node with maximum value in the queue which

= requires O(n) time complexity. This remove() operation requires O(n) time

s RTEU CE205 Weelr—4 .
complexity.
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2. Min Priority Queue Representations

e Min Priority Queue is similar to max priority queue except for the removal of
maximum element first. We remove minimum element first in the min-priority

queue.

e The following operations are performed in Min Priority Queue...
o isEmpty() - Check whether queue is Empty.
o insert() - Inserts a new value into the queue.
o findMin() - Find minimum value in the queue.

o remove() - Delete minimum value from the queue.

w
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Binary Heap

e Geeks for Geeks
o Binary Heap
= https://www.geeksforgeeks.org/binary-heap/?ref=Ibp

= https://www.geeksforgeeks.org/difference-between-binary-heap-
binomial-heap-and-fibonacci-heap/?ref=rp
1. Structure of Fibonacci Heaps

2. Mergeable-heap operations
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A Binary Heap is a Binary Tree with following properties.

1. It's a complete tree (All levels are completely filled except possibly the last level and
the last level has all keys as left as possible). This property of Binary Heap makes
them suitable to be stored in an array.

2. A Binary Heap is either Min Heap or Max Heap. In a Min Binary Heap, the key at
root must be minimum among all keys present in Binary Heap. The same property
must be recursively true for all nodes in Binary Tree. Max Binary Heap is similar to
MinHeap.
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e root element will be at Arr[0].

e Below table shows indexes of other nodes for the ith node, i.e., Arr[i]:

The traversal method use to achieve Array representation is Level Order
0

Y RTEU

Arr
Arr
Arr

(i-1)/2]

[(2%1)+1]

(2*%1)+2]

Returns the parent node
Returns the left child node

Returns the right child node

CHRO

el4| 5

584

180



CE205 Data Structures Week-4
Applications of Heaps:
1) Heap Sort: Heap Sort uses Binary Heap to sort an array in O(nLogn) time.

2) Priority Queue: Priority queues can be efficiently implemented using Binary Heap
because it supports insert(), delete() and extractmax(), decreaseKey() operations in
O(logn) time. Binomoial Heap and Fibonacci Heap are variations of Binary Heap. These
variations perform union also efficiently.

3) Graph Algorithms: The priority queues are especially used in Graph Algorithms
like Dijkstra’s Shortest Path and Prim’s Minimum Spanning Tree.

4) Many problems can be efficiently solved using Heaps. See following for example.
a) K'th Largest Element in an array.
b) Sort an almost sorted array/

¢) Merge K Sorted Arrays.
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1) getMini(): It returns the root element of Min Heap. Time Complexity of this operation

is O(1).

2) extractMin(): Removes the minimum element from MinHeap. Time Complexity of this
Operation is O(Logn) as this operation needs to maintain the heap property (by calling
heapify()) after removing root.

3) decreaseKey(): Decreases value of key. The time complexity of this operation is
O(Logn). If the decreases key value of a node is greater than the parent of the node,
then we don't need to do anything. Otherwise, we need to traverse up to fix the
violated heap property.

4) insert(): Inserting a new key takes O(Logn) time. We add a new key at the end of the
tree. IF new key is greater than its parent, then we don't need to do anything.
Otherwise, we need to traverse up to fix the violated heap property.

= 5) delete(): Deleting a key also takes O(Logn) time. We replace the key to be deleted

| anithermimeera infinite by calling decreaseKey(). After decreaseKey(), the minus infinite 182
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Basic Heap operations in C++
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Basic Heap operations in C#
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“0°Basic' Héedp operations in Java (Built-in Functions)
PriorityQueue in Java - GeeksforGeeks

// Java program to demonstrate the
// working of PriorityQueue
import java.util.*;

class PriorityQueueDemo {

// Main Method
public static void main(String args[])
{
// Creating empty priority queue
PriorityQueue<Integer> pQueue = new PriorityQueue<Integer>();

// Adding items to the pQueue using add()
pQueue.add(10);
pQueue.add(20);
pQueue.add(15);

// Printing the top element of PriorityQueue
System.out.println(pQueue.peek());

// Printing the top element and removing it
// from the PriorityQueue container
System.out.println(pQueue.poll());

// Printing the top element again
System.out.println(pQueue.peek());

=| 3
&
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Output

10
10
15
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K-Arr Heap

e Geeks for Geeks
o https://www.geeksforgeeks.org/k-ary-heap/?ref=Ibp
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K-Arr Heap

K-ary heaps are a generalization of binary heap(K=2) in which each node have K
children instead of 2. Just like binary heap, it follows two properties:

1. Nearly complete binary tree, with all levels having maximum number of nodes
except the last, which is filled in left to right manner.

2. Like Binary Heap, it can be divided into two categories:
I. Max k-ary heap (key at root is greater than all descendants and same is
recursively true for all nodes).

ii. Min k-ary heap (key at root is lesser than all descendants and same is
recursively true for all nodes)
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K-Arr Heap Example

3-ary max heap - root node is maximum
of all nodes

3-ary min heap -root node is minimum
of all nodes

10
/N
12 11 13
/ |\
14 15 18

= The height of a complete k-ary tree with n-nodes is given by login.
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Applications of K-ary Heap:

K-ary heap when used in the implementation of priority queue allows faster
decrease key operation as compared to binary heap (O(logan)) for binary heap vs
O(loggn) for K-ary heap).

Nevertheless, it causes the complexity of extractMin() operation to increase to
O(klogin) as compared to the complexity of O(logan) when using binary heaps
for priority queue.

This allows K-ary heap to be more efficient in algorithms where decrease priority
operations are more common than extractMin() operation.

Example: Dijkstra’s algorithm for single source shortest path and Prim’s algorithm

for minimum spanning tree

K-ary heap has better memory cache behaviour than a binary heap which allows

them to run more quickly in practice, although it has a larger worst case running

time of both extractMin() and delete() operation (both being O(klogkn) ). 190
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Implementation:

Assuming 0 based indexing of array, an array represents a K-ary heap such that for any
node we consider:
e Parent of the node at index i (except root node) is located at index (¢ — 1) /k

e Children of the node at index i are at indices
(kxi)+1,(kxi)+2....(kxi)+ k

e The last non-leaf node of a heap of size n is located at index (n — 2) /k
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buildHeap() : Builds a heap from an input array.

This function runs a loop starting from the last non-leaf node all the way upto the root
node, calling a function restoreDown(also known as maHeapify) for each index that
restores the passed index at the correct position of the heap by shifting the node down
in the K-ary heap building it in a bottom up manner.

Why do we start the loop from the last non-leaf node ?

Because all the nodes after that are leaf nodes which will trivially satisfy the heap
property as they don't have any children and hence, are already roots of a K-ary max
heap.
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restoreDown() (or maxHeapify) : Used to maintain heap property.

It runs a loop where it finds the maximum of all the node’s children, compares it with its
own value and swaps if the max(value of all children) > (value at node). It repeats this
step until the node is restored into its original position in the heap.

w
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extractMax() : Extracting the root node.

A k-ary max heap stores the largest element in its root. It returns the root node, copies
last node to the first, calls restore down on the first node thus maintaining the heap

property.
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insert() : Inserting a node into the heap

This can be achieved by inserting the node at the last position and calling restoreUp()
on the given index to restore the node at its proper position in the heap. restoreUp()
iteratively compares a given node with its parent, since in a max heap the parent is
always greater than or equal to its children nodes, the node is swapped with its parent
only when its key is greater than the parent.

w
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K-Arr Heap in C++
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Output

Built Heap :
10 96 7845

Heap after insertion of 3:
106 9 6 78 45 3

Extracted max is 10

Heap after extract max:
9867345
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### K-Arr Heap Time Complexity Analysis

e For a k-ary heap, with n nodes the maximum height of the given heap will be
logkn. So restoreUp() run for maximum of logkn times (as at every iteration the
node is shifted one level up is case of restoreUp() or one level down in case of
restoreDown).

e restoreDown() calls itself recursively for k children. So time complexity of this
functions is O(k logkn).

e |nsert and decreaseKey() operations call restoreUp() once. So complexity is
O(logkn).
e Since extractMax() calls restoreDown() once, its complexity O(k logkn)

* Time complexity of build heap is O(n) (Analysis is similar to binary heap)

w
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Leftist Heap

e Geeks for Geeks

o https://www.geeksforgeeks.org/leftist-tree-leftist-heap/

o https://www.geeksforgeeks.org/leftist-tree-leftist-heap/?ref=Ibp
e Toronto

o CSC378: Leftist Trees
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Leftist Tree / Leftist Heap

A leftist tree or leftist heap is a priority queue implemented with a variant of a binary
heap. Every node has an s-value (or rank or distance) which is the distance to the
nearest leaf. In contrast to a binary heap (Which is always a complete binary tree), a
leftist tree may be very unbalanced. Below are time complexities of Leftist Tree / Heap.
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Leftist Tree / Leftist Heap

Function Complexity Comparison

Get Min O(1) same as both Binary and Binomial

Delete

Mi O(Log n) same as both Binary and Binomial
N

O(Log n) in Binary and O(1) in Binomial and O(Log n) for

Insert O(Log n)
worst case

Merge O(Log n) O(Log n) in Binomial
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Leftist Tree / Leftist Heap

A leftist tree is a binary tree with properties:

1. Normal Min Heap Property : key(i) >= key(parent(i))

2. Heavier on left side : dist(right(i)) <= dist(left(i)). Here, dist(i) is the number of
edges on the shortest path from node i to a leaf node in extended binary tree
representation (In this representation, a null child is considered as external or leaf
node). The shortest path to a descendant external node is through the right child.
Every subtree is also a leftist tree and dist(i) = 1 + dist( right(i)).
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e The rightmost node has a rank of 0 as the right subtree of this node is null and

e its parent has a distance of 1 by dist(i) = 1 + dist( right(i)).

e The same is followed for each node and their s-value( or rank) is calculated.

< dist(i)

2

Node:

data

dist

=) From above second property, we can draw two conclusions :

| RTEU CE205 Week-4 . . 203
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Leftist Tree / Leftist Heap Operations

1. The main operation is merge().

2. deleteMin() (or extractMin() can be done by removing root and calling merge() for
left and right subtrees.

3. insert() can be done be create a leftist tree with single key (key to be inserted) and
calling merge() for given tree and tree with single node.
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Leftist Tree / Leftist Heap Operations

Idea behind Merging : Since right subtree is smaller, the idea is to merge right subtree
of a tree with other tree. Below are abstract steps.

1. Put the root with smaller value as the new root.
2. Hang its left subtree on the left.

3. Recursively merge its right subtree and the other tree.

4. Before returning from recursion: — Update dist() of merged root. — Swap left and
right subtrees just below root, if needed, to keep leftist property of merged result

w
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Leftist Tree / Leftist Heap Operations
Detailed Steps for Merge:

1. Compare the roots of two heaps.

2. Push the smaller key into an empty stack, and move to the right child of smaller
key.

3. Recursively compare two keys and go on pushing the smaller key onto the stack
and move to its right child.

4. Repeat until a null node is reached.

5. Take the last node processed and make it the right child of the node at top of the
stack, and convert it to leftist heap if the properties of leftist heap are violated.

6. Recursively go on popping the elements from the stack and making them the right

child of new stack top.
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Leftist Tree / Leftist Heap in C++
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Output

22
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Binomial Heap

e Geeks for Geeks
o https://www.geeksforgeeks.org/binomial-heap-2/
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ce0-Binomial Heap

% RTEU CE205

The main application of Binary Heap is as implement a priority queue. Binomial Heap is
an extension of Binary Heap that provides faster union or merge operation with other
operations provided by Binary Heap.

A Binomial Heap is a collection of Binomial Trees
What is a Binomial Tree?

A Binomial Tree of order 0 has 1 node. A Binomial Tree of order k can be constructed by
taking two binomial trees of order k-1 and making one the leftmost child or the other.

A Binomial Tree of order k the has following properties.

e |t has exactly 2k nodes.
e |t has depth as k.
e There are exactly kaiCi nodes at depthifori=0,1,..., k.

e The root has degree k and children of the root are themselves Binomial Trees with

eek: i 211
or erkk4-1, k-2,.. 0 from left to right.
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k = @ (Single Node)
o

k =1 (2 nodes)
[We take two k = @ order Binomial Trees, and
make one as a child of other]

o}

/
o

k = 2 (4 nodes)
[We take two k = 1 order Binomial Trees, and
make one as a child of other]

k = 3 (8 nodes)
[We take two k = 2 order Binomial Trees, and
make one as a child of other]

(0]
/ 1\
(0] O O
/\ |
(o] (o]0
\
(0]
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Binomial Heap:

A Binomial Heap is a set of Binomial Trees where each Binomial Tree follows the Min
Heap property. And there can be at most one Binomial Tree of any degree.
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O Examplés Binomial Heap:

T2 moon- 1 T =T 20
/ 0\ / |\
15 50 70 50 40
| / | |
30 80 85 65
|
100

A Binomial Heap with 13 nodes. It is a collection of 3

Binomial Trees of orders 0, 2, and 3 from left to right.

T e 20
/\ / |\
15 50 70 50 40
| / | |
30 80 85 65

|
100

A Binomial Heap with 12 nodes. It is a collection of 2

| Binemial-Jrees of orders 2 and 3 from left to right.

215



CE205 Data Structures Week-4

Binary Representation of a number and Binomial Heaps
A Binomial Heap with n nodes has the number of Binomial Trees equal to the number

of set bits in the binary representation of n. For example, let n be 13, there are 3 set bits
in the binary representation of n (00001101), hence 3 Binomial Trees. We can also relate
the degree of these Binomial Trees with positions of set bits. With this relation, we can
conclude that there are O(Logn) Binomial Trees in a Binomial Heap with 'n’ nodes.

w
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Union operation in Binomial Heap:
Given two Binomial Heaps H1 and H2, union(H1, H2) creates a single Binomial

Heap.

. The first step is to simply merge the two Heaps in non-decreasing order of

degrees. In the following diagram, figure(b) shows the result after merging.

. After the simple merge, we need to make sure that there is at most one Binomial

Tree of any order. To do this, we need to combine Binomial Trees of the same order.
We traverse the list of merged roots, we keep track of three-pointers, prey, x, and
next-x. There can be the following 4 cases when we traverse the list of roots.
——Case 1: Orders of x and next-x are not the same, we simply move ahead.

In the following 3 cases, orders of x and next-x are the same.

——~Case 2: If the order of next-next-x is also the same, move ahead.

——Case 3: If the key of x is smaller than or equal to the key of next-x, then make
next-x a child of x by linking it with x.
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Time Complexity Analysis:

Operations
Procedure
Making Heap
Inserting a node
Finding Minimum key
Extract-Minimum key
Union or merging
Decreasing a Key

Deleting a node

% RTEU CE205 Week-4

Binary Heap
Worst-case
O(1)
©(log(n))
O(1)
O(log(n))
O(n)
©(log(n))
©(log(n))

Binomial Heap Fibonacci Heap

Worst-case
O(1)
O(log(n))
O(log(n))
©(log(n))
O(log(n))
©(log(n))
©(log(n))

Amortized
O(1)

O(1)

O(1)
O(log(n))
O(1)

O(1)
O(log(n))
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How to represent Binomial Heap?
A Binomial Heap is a set of Binomial Trees. A Binomial Tree must be represented in a

way that allows sequential access to all siblings, starting from the leftmost sibling (We
need this in and extracting() and delete()). The idea is to represent Binomial Trees as the
leftmost child and right-sibling representation, i.e., every node stores two pointers, one
to the leftmost child and the other to the right sibling.

w
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Examples Binomial Heap:

A Binomial Heap with 13 nodes. It is a collection of 3
Binomial Trees of orders 0, 2 and 3 from left to right.

\ / |\

50 70 50 40
/1
80 85 65

100

lZommmmm oo 20
/ 0\ / |\
15 50 70 50 40
| / | |
30 80 85 65

|
100
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1. insert(H, k): Inserts a key 'k’ to Binomial Heap 'H’. This operation first creates a
Binomial Heap with single key 'k’, then calls union on H and the new Binomial heap.

2. getMin(H): A simple way to getMin() is to traverse the list of root of Binomial Trees
and return the minimum key. This implementation requires O(Logn) time. It can be
optimized to O(1) by maintaining a pointer to minimum key root.

3. extractMin(H): This operation also uses union(). We first call getMin() to find the
minimum key Binomial Tree, then we remove the node and create a new Binomial
Heap by connecting all subtrees of the removed minimum node. Finally we call
union() on H and the newly created Binomial Heap. This operation requires O(Logn)
time.
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Binomial Heap in C++
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1. delete(H): Like Binary Heap, delete operation first reduces the key to minus infinite,
then calls extractMin().

2. decreaseKey(H): decreaseKey() is also similar to Binary Heap. We compare the
decreases key with it parent and if parent’s key is more, we swap keys and recur for
parent. We stop when we either reach a node whose parent has smaller key or we
hit the root node. Time complexity of decreaseKey() is O(Logn)
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Binomial Heap in C++
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Output

The heap is:

50 10 30 40 20

After deleting 10, the heap is:
20 30 40 50

A
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Fibonacci Heap

e William Fiset
o Algorithms/src/main/java/com/williamfiset/algorithms/datastructures/fibonacc
iheap at master - williamfiset/Algorithms - GitHub

o Geeks for Geeks
o Fibonacci Heap | Set 1 (Introduction) - GeeksforGeeks
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Fibonacci Heap

e https://www.geeksforgeeks.org/fibonacci-heap-insertion-and-union/?ref=Ilbp

e https://www.geeksforgeeks.org/fibonacci-heap-deletion-extract-min-and-
decrease-key/?ref=lbp

1. Decreasing a key and deleting a node

2. Bounding the maximum degree

https://www.cs.princeton.edu/~wayne/teaching/fibonacci-heap.pdf
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Fibonacci Heap

In terms of Time Complexity, Fibonacci Heap beats both Binary and Binomial Heaps.

Below are amortized time complexities of Fibonacci Heap.
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1) Find Min:

2) Delete Min:
3) Insert:

4) Decrease-Key:
5) Merge:

% RTEU CE205 Week-4

0(1) [Same as both Binary and Binomial]

O(Log n) [0(Log n) in both Binary and Binomial]
0(1) [6(Log n) in Binary and 0(1) in Binomial]
0(1) [@(Log n) in both Binary and Binomial]
0(1) [@(m Log n) or O(m+n) in Binary and

©(Log n) in Binomial]

229



CE205 Data Structures Week-4

Like Binomial Heap, Fibonacci Heap is a collection of trees with min-heap or max-heap
property. In Fibonacci Heap, trees can have any shape even all trees can be single nodes
(This is unlike Binomial Heap where every tree has to be Binomial Tree).
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Fibonacci Heap maintains a pointer to minimum value (which is root of a tree). All tree
roots are connected using circular doubly linked list, so all of them can be accessed

using single ‘min’ pointer.

The main idea is to execute operations in “lazy” way. For example merge operation

simply links two heaps, insert operation simply adds a new tree with single node. The

) RTEU CE20% Week-4 . . . - .
operation extract minimum is the most complicated operation. It does delayed work of

A

231




CE205 Data Structures Week-4

Below are some interesting facts about Fibonacci Heap

1. The reduced time complexity of Decrease-Key has importance in Dijkstra and Prim
algorithms. With Binary Heap, time complexity of these algorithms is O(VLogV +

ELogV). If Fibonacci Heap is used, then time complexity is improved to O(VLogV +
E)

2. Although Fibonacci Heap looks promising time complexity wise, it has been found
slow in practice as hidden constants are high (Source Wiki).

3. Fibonacci heap are mainly called so because Fibonacci numbers are used in the
running time analysis. Also, every node in Fibonacci Heap has degree at most

O(log n) and the size of a subtree rooted in a node of degree k is at least Fk+2,
where Fk is the kth Fibonacci number.

% RTEU CE205 Week-4
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Fibonacci Heap - Insertion and Union

Fibonacci Heap is a collection of trees with min-heap or max-heap property. In
Fibonacci Heap, trees can have any shape even all trees can be single nodes (This is
unlike Binomial Heap where every tree has to be a Binomial Tree). In this article, we will
discuss Insertion and Union operation on Fibonacci Heap.

w
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Insertion: To insert a node in a Fibonacci heap H, the following algorithm is followed:

Create a new node ‘x’.

Check whether heap H is empty or not.

If H is empty then:
Make x as the only node in the root list.
Set H(min) pointer to x.

Else:
Insert x into root list and update H(min).
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After inserting (2), ;
H(min) H(min)
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Union: Union of two Fibonacci heaps H1 and H2 can be accomplished as follows:

Join root lists of Fibonacci heaps H1l and H2 and make a single Fibonacci heap H.
If H1(min) < H2(min) then:

H(min) = H1(min).
Else:

H(min) = H2(min).
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Fibonacci Heap — Insertion and Union in C++

// C++ program to demonstrate building
// and inserting in a Fibonacci heap
#include <cstdlib>

#include <iostream>

#include <malloc.h>

using namespace std;

struct node {
node* parent;
node* child;
node* left;
node* right;
int key;

b

// Creating min pointer as "mini”
struct node* mini = NULL;

// Declare an integer for number of nodes in the heap
int no_of_nodes = ©;

// Function to insert a node in heap

void insertion(int val)

{

struct node* new_node =

(struct node*)malloc(sizeof(struct node));
new_node->key = val;

new_node->parent = NULL;
new_node->child = NULL;
new_node->left = new_node;
new_node->right = new_node;
if (mini 1= NULL) {
(mini->left)->right = new_node;
new_node->right = mini
new_node->left
mini->left = new_node;
if (new_node->key < mini->key)
ini = new_node;

; 5
else {
}

mini = new_node;

i

// Function to display the heap
void display(struct node* mini)
{
node* ptr = mini;
if (ptr == NULL)
cout << "The Heap is Empty" << endl;

else {

cout << "The root nodes of Heap are: "
do {

cout << ptr->key;
ptr = ptr->right;
if (ptr 1= mini) {

cout << "

}
} while (ptr != mini && ptr->right != NULL);
cout << endl

<< "The heap has " << no_of_nodes <<

}
}
// Function to find min node in the heap
void find_min(struct node* mini

cout << "min of heap is: " << mini->key << endl;

// briver code
int main()

no_of_nodes = 7;
insertion(4);
insertion(3);
insertion(7);
insertion(5);
insertion(2);
insertion(1);
insertion(10);

display(mini);
find_min(mini);

return ;

RTEU CE205 Week-4

<< endl;

nodes” << endl;
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Fibonacci Heap — Deletion, Extract min and Decrease key

Extract_min():
We create a function for deleting the minimum node and setting the min pointer to the minimum value in the remaining heap. The following algorithm is followed:

Delete the min node.
Set head to the next min node and add all the trees of the deleted node in the root list.
Create an array of degree pointers of the size of the deleted node.
Set degree pointer to the current node.
Move to the next node.
If degrees are different then set degree pointer to next node.
If degrees are the same then join the Fibonacci trees by union operation.
Repeat steps 4 and 5 until the heap is completed.

 —

z
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Example:

min min

After extracting
min
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Decrease_key():

To decrease the value of any element in the heap, we follow the following algorithm:

Decrease the value of the node ‘x’ to the new chosen value.
CASE 1) If min-heap property is not violated,
Update min pointer if necessary.
CASE 2) If min-heap property is violated and parent of ‘x’ is unmarked,
Cut off the link between ‘x’ and its parent.
Mark the parent of “x’.
Add tree rooted at ‘x’ to the root list and update min pointer if necessary.
CASE 3)If min-heap property is violated and parent of ‘x’ is marked,
Cut off the link between ‘x’ and its parent p[x].
Add ‘x’ to the root list, updating min pointer if necessary.
Cut off link between p[x] and p[p[x]].
Add p[x] to the root list, updating min pointer if necessary.
If p[p[x]] is unmarked, mark it.
Else, cut off p[p[x]] and repeat steps 4.2 to 4.5, taking p[p[x]] as ‘x’.

% RTEU CE205 Week-4
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Example:

min min
Decreasing the

value of 9to 1, it
follows case 1
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Deletion():
To delete any element in a Fibonacci heap, the following algorithm is followed:
Decrease the value of the node to be deleted ‘x’ to a minimum by Decrease key() function.

By using min-heap property, heapify the heap containing ‘x’, bringing ‘x’ to the root list.
Apply Extract min() algorithm to the Fibonacci heap.
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min min

Decrease value
of 6to 0

Delete 6

Apply extract_min()

min
—
w
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Fibonacci Heap — Deletion, Extract min and Decrease key in C++
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Heap Sort

e https://ucoruh.github.io/ce100-algorithms-and-programming-Il/week-4/ce100-
week-4-heap/
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Huffman Coding

e Huffman Coding
o https://ucoruh.github.io/ce100-algorithms-and-programming-Il/week-
9/ce100-week-9-huffman/

o Geeks for Geeks
= https://www.geeksforgeeks.org/difference-between-binary-heap-
binomial-heap-and-fibonacci-heap/?ref=rp
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End —Of —Week — 4
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