CE205 Data Structures Week-3

CE205 Data Structures

Week-3

Stacks, Queue Structures, and Related Algorithms and Problems.

Download DOC, SLIDE, PPTX

#esth| RTEU CE205 Week-3

file:///C:/Users/ugur.coruh/Desktop/ce205-data-structures/docs/week-3-stack/ce205-week-3-stack.md_doc.pdf
file:///C:/Users/ugur.coruh/Desktop/ce205-data-structures/docs/week-3-stack/ce205-week-3-stack.md_slide.pdf
file:///C:/Users/ugur.coruh/Desktop/ce205-data-structures/docs/week-3-stack/ce205-week-3-stack.md_slide.pptx

CE205 Data Structures Week-3

Outline-1
e Stack ADT
o Stack Using Array
o Stack Using Linked List

e Expressions
o Infix

o Postfix
o Prefix
o |nfix to Postfix Conversion

o Postfix Expression Evaluation

% RTEU CE205 Week-3

CE205 Data Structures Week-3

Outline-2
e Queue ADT

o First Come First Serve, FCFS, FIFO
o Queue Data structure Using Array
o Queue Using Linked List
o Circular Queue Data structure
o Double Ended Queue Data structure
o Multilevel Queue (MLQ)

e Hanoil Tower

% RTEU CE205 Week-3

CE205 Data Structures Week-3

Stack ADT

e BTech Smart Class
o http://www.btechsmartclass.com/data_structures/stack-adt.html

iesthi| RTEU CE205 Week-3

http://www.btechsmartclass.com/data_structures/stack-adt.html

CE205 Data Structures Week-3

Stack Data Structure

In this tutorial, you will learn about the stack data structure and its implementation in
Python, Java and C/C++.

A stack is a linear data structure that follows the principle of Last In First Out (LIFO).
This means the last element inserted inside the stack is removed first.

You can think of the stack data structure as the pile of plates on top of another.

iesthi| RTEU CE205 Week-3

CE205 Data Structures Week-3

Stack Data Structure

e Stack representation similar to a pile of plate

* Here, you can:
o Put a new plate on top

o Remove the top plate
e And, if you want the plate at the bottom,
e You must first remove all the plates on top.

e This is exactly how the stack data structure works.

% RTEU CE205 Week-3

CE205 Data Structures Week-3

LIFO Principle of Stack
e |n programming terms, putting an item on top of the stack is called push and

removing an item is called pop.

empty push push push pop
stack

* |n the above image, although item 3 was kept last, it was removed first. This is
exactly how the LIFO (Last In First Out) Principle works.

e We can implement a stack in any programming language like C, C++, Java, Python
= or C#, but the specification is pretty much the same.

{| RTEU CE205 Week-3

CE205 Data Structures Week-3

Basic Operations of Stack

e Some basic operations allow us to perform different actions on a stack.
o Push: Add an element to the top of a stack

o Pop: Remove an element from the top of a stack
o IsEmpty: Check if the stack is empty
o IsFull: Check if the stack is full

o Peek: Get the value of the top element without removing it

{| RTEU CE205 Week-3

CE205 Data Structures Week-3

Working of Stack Data Structure

The operations work as follows:

1. A pointer called TOP is used to keep track of the top element in the stack.

2. When initializing the stack, we set its value to -1 so that we can check if the stack is
empty by comparing TOP == -1.

3. On pushing an element, we increase the value of TOP and place the new element in

the position pointed to by TOP.

4. On popping an element, we return the element pointed to by TOP and reduce its
value.

5. Before pushing, we check if the stack is already full

6. Before popping, we check if the stack is already empty

{| RTEU CE205 Week-3

CE205 Data Structures Week-3

Working of Stack Data Structure

TOP = -1 TOP=0 TOP=1 TOP=2 TOP=1
stack[0] =1 stack[1]=2 stack[2] =3 return stack|[2]
1
empty push push push pop
stack

et RTEU CE205 Week-3 10

CE205 Data Structures Week-3

What is a Stack?

e Stack is a linear data structure in which the insertion and deletion operations are
performed at only one end.

e |n a stack, adding and removing of elements are performed at a single position
which is known as "top".

e That means, a new element is added at top of the stack and an element is removed
from the top of the stack.

e |n stack, the insertion and deletion operations are performed based on LIFO (Last

In First Out) principle.

{| RTEU CE205 Week-3

CE205 Data Structures Week-3

What is a Stack?

In a stack, the insertion operation is
performed using a function

called "push" and deletion operation
Is performed using a function

called "pop".

| RTEU CE205 Week-3

12

CE205 Data Structures Week-3

What is a Stack?

e |n the figure, PUSH and POP operations are performed at a top position in the
stack.

o That means, both the insertion and deletion operations are performed at one
end (i.e., at Top)

e A stack data structure can be defined as follows

e Stack is a linear data structure in which the operations are performed based on

LIFO principle.
e Stack can also be defined as

o "A Collection of similar data items in which both insertion and deletion
operations are performed based on LIFO principle".

RTEU CE205 Week-3 13

CE205 Data Structures Week-3

Stack Example
e |f we want to create a stack by inserting 10,45,12,16,35 and 50.

e Then 10 becomes the bottom-most element and 50 is the topmost element.

e The last inserted element 50 is at Top of the stack as shown in the image below.

% RTEU CE205 Week-3

14

CE205 Data Structures Week-3

Stack Example

iesthi| RTEU CE205 Week-3

15

CE205 Data Structures Week-3

Operations on a Stack

e The following operations are performed on the stack
o Push (To insert an element on to the stack)

o Pop (To delete an element from the stack)

o Display (To display elements of the stack)

% RTEU CE205 Week-3

16

CE205 Data Structures Week-3

Implementation of a Stack

e Stack data structure can be implemented in two ways.
o Using Array
o Using Linked List

e When a stack is implemented using an array, that stack can organize an only
limited number of elements.

e When a stack is implemented using a linked list, that stack can organize an
unlimited number of elements.

{| RTEU CE205 Week-3

17

CE205 Data Structures Week-3

Stack Using Array

e BTech Smart Class
o http://www.btechsmartclass.com/data_structures/stack-using-array.html

iesthi| RTEU CE205 Week-3

18

http://www.btechsmartclass.com/data_structures/stack-using-array.html

CE205 Data Structures Week-3

Stack Using Array

A stack data structure can be implemented using a one-dimensional array.

But stack implemented using array stores only a fixed number of data values. This
implementation is very simple.

Just define a one dimensional array of specific size and insert or delete the values
into that array by using LIFO principle with the help of a variable called 'top'.

Initially, the top is set to -1.

Whenever we want to insert a value into the stack, increment the top value by one
and then insert.

Whenever we want to delete a value from the stack, then delete the top value and
decrement the top value by one.

{| RTEU CE205 Week-3

19

CE205 Data Structures Week-3

Stack Operations using Array

e A stack can be implemented using array as follows
o Before implementing actual operations, first follow the below steps to create
an empty stack.

% RTEU CE205 Week-3

20

CE205 Data Structures Week-3

Stack Operations using Array

Step 1 - Include all the header files which are used in the program and define a
constant 'SIZE' with specific value.

Step 2 - Declare all the functions used in stack implementation.
Step 3 - Create a one dimensional array with fixed size (int stack[SIZE])
Step 4 - Define a integer variable 'top' and initialize with '-1'. (int top = -1)

Step 5 - In main method, display menu with list of operations and make suitable
function calls to perform operation selected by the user on the stack.

{| RTEU CE205 Week-3

21

CE205 Data Structures Week-3

Stack Operations using Array

push(value) - Inserting value into the stack

e |n a stack, push() is a function used to insert an element into the stack.
e |n a stack, the new element is always inserted at top position.

e Push function takes one integer value as parameter and inserts that value into the
stack. We can use the following steps to push an element on to the stack

{| RTEU CE205 Week-3

22

CE205 Data Structures Week-3

Stack Operations using Array

e Step 1 - Check whether stack is FULL. (top == SIZE-1)

e Step 2 - If it is FULL, then display "Stack is FULL!!! Insertion is not possible!!!" and
terminate the function.

e Step 3 - If it is NOT FULL, then increment top value by one (top++) and set
stack[top] to value (stack[top] = value).

{| RTEU CE205 Week-3

23

CE205 Data Structures Week-3

Stack Operations using Array

pop() - Delete a value from the Stack

e |n a stack, pop() is a function used to delete an element from the stack.
e |n a stack, the element is always deleted from top position.
e Pop function does not take any value as parameter.

e We can use the following steps to pop an element from the stack

{| RTEU CE205 Week-3

24

CE205 Data Structures Week-3

Stack Operations using Array

e Step 1 - Check whether stack is EMPTY. (top == -1)

e Step 2 - If it is EMPTY, then display "Stack is EMPTY!!! Deletion is not
possible!!!" and terminate the function.

e Step 3 - If it is NOT EMPTY, then delete stack[top] and decrement top value by
one (top--).

{| RTEU CE205 Week-3

25

CE205 Data Structures Week-3

Stack Operations using Array
display() - Displays the elements of a Stack

e We can use the following steps to display the elements of a stack
o Step 1 - Check whether stack is EMPTY. (top == -1)

o Step 2 - If it is EMPTY, then display "Stack is EMPTY!!!" and terminate the
function.

o Step 3 - If it is NOT EMPTY, then define a variable 'i' and initialize with top.
Display stack[i] value and decrement i value by one (i--).

o Step 3 - Repeat above step until i value becomes '0'.

{| RTEU CE205 Week-3

26

CE205 Data Structures Week-3

Stack Array Implementation in C

#include<stdio.h>
#include<conio.h>

#define SIZE 10
void push(int);

void pop();
void display();

| RTEU CE205 Week-3

27

CE205 Data Structures Week-3

Stack Array Implementation in C

int stack[SIZE], top = -1;

A

| RTEU CE205 Week-3

28

CE205 Data Structures Week-3

A

Stack Array Implementation in C

void main()
{
int value, choice;
clrscr();
while(1){
printf (" \n\n***** MENU *****\n"),
printf("1. Push\n2. Pop\n3. Display\n4. Exit");
printf("\nEnter your choice: ");
scanf("%d",&choice);
switch(choice){
case 1: printf("Enter the value to be insert: ");
scanf("%d",&value);
push(value);
break;
case 2: pop();
break;
case 3: display();
break;
case 4: exit(9);
default: printf("\nWrong selection!!! Try again!!!");

}

| RTEU CE205 Week-3

29

CE205 Data Structures Week-3

Stack Array Implementation in C

void push(int value){
if(top == SIZE-1)

printf("\nStack is Full!!! Insertion is not possible!!!");
else{

top++;

stack[top] = value;

printf("\nInsertion success!!!");

}

| RTEU CE205 Week-3

30

CE205 Data Structures Week-3

Stack Array Implementation in C

void pop(){

if(top == -1)

printf("\nStack is Empty!!! Deletion is not possible!!!l");
else{

printf("\nDeleted : %d", stack[top]);

top--;
}

| RTEU CE205 Week-3

31

CE205 Data Structures Week-3

Stack Array Implementation in C

void display(){

if(top == -1)

printf("\nStack is Empty!!!");
else{

int i;

printf("\nStack elements are:\n");
for(i=top; i»>=0; i--)
printf("%d\n",stack[i]);

}

A

| RTEU CE205 Week-3

32

Output

e Jurba C++ IDE

3. Dizplay

d. Exit

Enter your choice: 1

Enter the value to be insert:

Inzertion successtt?

e MEMI e

Push

Enter your choice: 3

Stack elements are:

28

33

CE205 Data Structures Week-3

Stack Array Implementation in Java

// Stack implementation in Java

class Stack {
private int arr[];
private int top;
private int capacity;

A

RTEU CE205 Week-3

34

CE205 Data Structures Week-3

Stack Array Implementation in Java

// Creating a stack
Stack(int size) {
arr = new int[size];
capacity = size;
top = -1;
}

A

| RTEU CE205 Week-3

35

CE205 Data Structures Week-3

Stack Array Implementation in Java

// Add elements into stack
public void push(int x) {
if (isFull()) {
System.out.println("OverFlow\nProgram Terminated\n");
System.exit(1);
}

System.out.println("Inserting
arr[++top] = x;

+ X);

}

| RTEU CE205 Week-3

36

CE205 Data Structures Week-3

Stack Array Implementation in Java

// Remove element from stack
public int pop() {
if (isEmpty()) {
System.out.println("STACK EMPTY");
System.exit(1);
}

return arr[top--];

}

A

| RTEU CE205 Week-3

37

CE205 Data Structures Week-3

Stack Array Implementation in Java

// Utility function to return the size of the stack
public int size() {
return top + 1;

}

iesthi| RTEU CE205 Week-3

38

CE205 Data Structures Week-3

Stack Array Implementation in Java

// Check if the stack is empty
public Boolean isEmpty() {
return top == -1;

}

| RTEU CE205 Week-3

39

CE205 Data Structures Week-3

Stack Array Implementation in Java

// Check if the stack is full
public Boolean isFull() {
return top == capacity - 1;

}

| RTEU CE205 Week-3

40

CE205 Data Structures Week-3

Stack Array Implementation in Java

public void printStack() {
for (int i = 0; i <= top; i++) {
System.out.println(arr[i]);
}
}

A

| RTEU CE205 Week-3

41

CE205 Data Structures Week-3

Stack Array Implementation in Java

public static void main(String[] args) {
Stack stack = new Stack(5);

stack.push(1);
stack.push(2);
stack.push(3);
stack.push(4);

stack.pop();
System.out.println("\nAfter popping out");

stack.printStack();

| RTEU CE205 Week-3 e

CE205 Data Structures Week-3

Stack Array Implementation in C

// Stack implementation in C

#include <stdio.h>
#include <stdlib.h>

#define MAX 10
int count = 0;

// Creating a stack
struct stack {
int items[MAX];
int top;
}s
typedef struct stack st;

iesthi| RTEU CE205 Week-3

43

CE205 Data Structures Week-3

Stack Array Implementation in C

// Stack implementation in C

void createEmptyStack(st *s) {
s->top = -1;

¥

iesthi| RTEU CE205 Week-3

44

CE205 Data Structures Week-3

Stack Array Implementation in C

// Check if the stack is full
int isfull(st *s) {
if (s->top == MAX - 1)
return 1;
else
return 9;

| RTEU CE205 Week-3

45

CE205 Data Structures Week-3

Stack Array Implementation in C

// Check if the stack is empty
int isempty(st *s) {
if (s->top == -1)
return 1;
else
return 9;

| RTEU CE205 Week-3

46

CE205 Data Structures Week-3

Stack Array Implementation in C

// Add elements into stack
void push(st *s, int newitem) {
if (isfull(s)) {
printf("STACK FULL");
} else {
s->top++;
s->items[s->top] = newitem;
}

count++;

¥

RTEU CE205 Week-3

47

CE205 Data Structures Week-3

Stack Array Implementation in C

// Remove element from stack
void pop(st *s) {
if (isempty(s)) {
printf("\n STACK EMPTY \n");

} else {
printf("Item popped= %d", s->items[s->top]);
s->top--;

}

count--;

printf("\n");

A

| RTEU CE205 Week-3

48

CE205 Data Structures Week-3

Stack Array Implementation in C

// Print elements of stack
void printStack(st *s) {
printf("Stack: ");
for (int 1 = @; i < count; i++) {
printf("%d ", s->items[i]);
}
printf("\n");

| RTEU CE205 Week-3

49

CE205 Data Structures Week-3

Stack Array Implementation in C

// Driver code
int main() {
int ch;
st *s = (st *)malloc(sizeof(st));

createEmptyStack(s);

push(s, 1);
push(s, 2);
push(s, 3);
push(s, 4);

printStack(s);
pop(s);
printf("\nAfter popping out\n");

printStack(s);
}

| RTEU CE205 Week-3

50

CE205 Data Structures Week-3

Stack Array Implementation in CPP

// Stack implementation in C++

#include <stdlib.h>
#include <iostream>

using namespace std;

#define MAX 10
int size = 0;

// Creating a stack
struct stack {
int items[MAX];
int top;
}s
typedef struct stack st;

iesthi| RTEU CE205 Week-3

CE205 Data Structures Week-3

Stack Array Implementation in CPP

void createEmptyStack(st *s) {
s->top = -1;

¥

| RTEU CE205 Week-3

52

CE205 Data Structures Week-3

Stack Array Implementation in CPP

// Check if the stack is full
int isfull(st *s) {
if (s->top == MAX - 1)
return 1;
else
return 9;

| RTEU CE205 Week-3

53

CE205 Data Structures Week-3

Stack Array Implementation in CPP

// Check if the stack is empty
int isempty(st *s) {
if (s->top == -1)
return 1;
else
return 9;

| RTEU CE205 Week-3

54

CE205 Data Structures Week-3

Stack Array Implementation in CPP

// Add elements into stack
void push(st *s, int newitem) {
if (isfull(s)) {
cout << "STACK FULL";
1} else {
s->top++;
s->items[s->top] = newitem;
}.
Size++;

¥

A

| RTEU CE205 Week-3

55

CE205 Data Structures Week-3

Stack Array Implementation in CPP

// Remove element from stack
void pop(st *s) {
if (isempty(s)) {
cout << "\n STACK EMPTY \n";
} else {
cout << "Item popped=
s->top--;
}.
size--;
cout << endl;

<< s->items[s->top];

20

| RTEU CE205 Week-3

56

CE205 Data Structures Week-3

Stack Array Implementation in CPP

// Print elements of stack

void printStack(st *s) {
printf("Stack: ");
for (int 1 = 0; 1 < size; i++) {

cout << s->items[i] << 5

}

cout << endl;

¥

| RTEU CE205 Week-3

57

CE205 Data Structures Week-3

Stack Array Implementation in CPP

// Driver code
int main() {
int ch;
st *s = (st *)malloc(sizeof(st));

createEmptyStack(s);

push(s, 1);
push(s, 2);
push(s, 3);
push(s, 4);

printStack(s);

pop(s);

cout << "\nAfter popping out\n";
printStack(s);
¥

| RTEU CE205 Week-3 58

CE205 Data Structures Week-3

Stack Time Complexity

For the array-based implementation of a stack, the push and pop operations take
constant time, i.e. 0(1) .

% RTEU CE205 Week-3

59

CE205 Data Structures Week-3

Applications of Stack Data Structure

e Although stack is a simple data structure to implement, it is very powerful. The
most common uses of a stack are:
o To reverse a word - Put all the letters in a stack and pop them out. Because of
the LIFO order of stack, you will get the letters in reverse order.

o In compilers - Compilers use the stack to calculate the value of expressions

like 2 + 4 / 5 * (7 - 9) by converting the expression to prefix or postfix
form.

o In browsers - The back button in a browser saves all the URLs you have visited
previously in a stack. Each time you visit a new page, it is added on top of the

stack. When you press the back button, the current URL is removed from the
stack, and the previous URL is accessed.

{| RTEU CE205 Week-3

60

CE205 Data Structures Week-3

Stack Using Linked List

e BTech Smart Class
o http://www.btechsmartclass.com/data_structures/stack-using-linked-list.html

| RTEU CE205 Week-3

61

http://www.btechsmartclass.com/data_structures/stack-using-linked-list.html

CE205 Data Structures Week-3

Stack Using Linked List

The major problem with the stack implemented using an array is, it works only for a
fixed number of data values.

That means the amount of data must be specified at the beginning of the
implementation itself.

Stack implemented using an array is not suitable, when we don't know the size of
data which we are going to use.

A stack data structure can be implemented by using a linked list data structure. The
stack implemented using linked list can work for an unlimited number of values.

That means, stack implemented using linked list works for the variable size of data.
So, there is no need to fix the size at the beginning of the implementation. The
Stack implemented using linked list can organize as many data values as we want.

{| RTEU CE205 Week-3

62

CE205 Data Structures Week-3

Stack Using Linked List

In linked list implementation of a stack, every new element is inserted as 'top' element.
That means every newly inserted element is pointed by 'top'. Whenever we want to
remove an element from the stack, simply remove the node which is pointed by 'top' by
moving 'top' to its previous node in the list. The next field of the first element must be
always NULL.

Y RTEU CE205 Week-3 63

CE205 Data Structures Week-3

Stack Using Linked List Example

top wemp 99
32]
N

e |n the above example, the last inserted node is 99 and the first inserted node is 25.
The order of elements inserted is 25, 32,50 and 99.

% RTEU CE205 Week-3

64

CE205 Data Structures Week-3

Stack Operations using Linked List

e To implement a stack using a linked list, we need to set the following things before
Implementing actual operations.
o Step 1 - Include all the header files which are used in the program. And
declare all the user defined functions.

o Step 2 - Define a 'Node' structure with two members data and next.
o Step 3 - Define a Node pointer 'top' and set it to NULL.

o Step 4 - Implement the main method by displaying Menu with list of
operations and make suitable function calls in the main method.

{| RTEU CE205 Week-3

65

CE205 Data Structures Week-3

Stack Operations using Linked List

e push(value) - Inserting an element into the Stack

e We can use the following steps to insert a new node into the stack...

o Step 1 - Create a newNode with given value.

o Step 2 - Check whether stack is Empty (top == NULL)

o Step 3 - If it is Empty, then set newNode — next = NULL.

o Step 4 - If it is Not Empty, then set newNode — next = top.
o Step 5 - Finally, set top = newNode.

{| RTEU CE205 Week-3

66

CE205 Data Structures Week-3

Stack Operations using Linked List

e pop() - Deleting an Element from a Stack

e We can use the following steps to delete a node from the stack...
o Step 1 - Check whether stack is Empty (top == NULL).

o Step 2 - If it is Empty, then display "Stack is Empty!!! Deletion is not
possible!!!" and terminate the function

o Step 3 - If it is Not Empty, then define a Node pointer 'temp' and set it to
‘top'.

o Step 4 - Then set 'top = top — next'.

o Step 5 - Finally, delete 'temp'. (free(temp)).

{| RTEU CE205 Week-3

6/

CE205 Data Structures Week-3

Stack Operations using Linked List
e display() - Displaying stack of elements

e \We can use the following steps to display the elements (nodes) of a stack...
o Step 1 - Check whether stack is Empty (top == NULL).

o Step 2 - If it is Empty, then display 'Stack is Empty!!!" and terminate the
function.

o Step 3 - If it is Not Empty, then define a Node pointer 'temp' and initialize
with top.

o Step 4 - Display 'temp — data --->' and move it to the next node. Repeat the

same until temp reaches to the first node in the stack. (temp — next != NULL).

o Step 5 - Finally! Display 'temp — data ---> NULL".

{| RTEU CE205 Week-3

68

CE205 Data Structures Week-3

Stack using Linked List in C

#include<stdio.h>
#include<conio.h>

struct Node

{

int data;
struct Node *next;
}*top = NULL;

RTEU CE205 Week-3

69

CE205 Data Structures Week-3

Stack using Linked List in C

void push(int);
void pop();
void display();

| RTEU CE205 Week-3

70

CE205 Data Structures Week-3

Stack using Linked List in C

void main()

{
int choice, value;
clrscr();
printf("\n:: Stack using Linked List ::\n");
while(1){
printf("\n*¥*¥x* MENU **¥***\n");
printf("1. Push\n2. Pop\n3. Display\n4. Exit\n");
printf("Enter your choice: ");
scanf("%d",&choice);
switch(choice){
case 1: printf("Enter the value to be insert: ");
scanf("%d", &value);
push(value);
break;
case 2: pop(); break;
case 3: display(); break;
case 4: exit(0);
default: printf("\nWrong selection!!! Please try again!!!\n");
}
}
}

A

| RTEU CE205 Week-3

71

CE205 Data Structures Week-3

Stack using Linked List in C

void push(int value)
{
struct Node *newNode;
newNode = (struct Node*)malloc(sizeof(struct Node));
newNode->data = value;
if(top == NULL)
newNode->next
else
newNode->next
top = newNode;
printf("\nInsertion is Success!!!\n");

NULL;

top;

A

| RTEU CE205 Week-3

72

CE205 Data Structures Week-3

Stack using Linked List in C

void pop()

{
if(top == NULL)
printf("\nStack is Empty!!!\n");
else{
struct Node *temp = top;
printf("\nDeleted element: %d", temp->data);
top = temp->next;
free(temp);
}
}
®
| RTEU CE205 Week-3

/3

CE205 Data Structures Week-3

Stack using Linked List in C

void display()

{
if(top == NULL)
printf("\nStack is Empty!!!\n");
else{
struct Node *temp = top;
while(temp->next != NULL){
printf("%d--->",temp->data);
temp = temp -> next;
}
printf("%d--->NULL",temp->data);
}
}
®
] RTEU CE205 Week-3

74

Output

e C:AWINDOWSA\system32\emd.exe - ic

Enter your choice: 1
Enter the value to be insert: 18

Insertion is Successtt?

e wwid MEMI eeeeaw

1. Puszsh

2. Pop

3. Display

4. Exit

Enter your choice:- 1

Enter the value to bhe insert: ZH_

75

Output

e C:AWINDOWSA\system32\emd.exe - ic

[]

[]

[]

BEE

76

CE205 Data Structures Week-3

Expressions

e BTech Smart Class
o http://www.btechsmartclass.com/data_structures/expressions.html
= |nfix

m Postfix

= Prefix

| RTEU CE205 Week-3

77

http://www.btechsmartclass.com/data_structures/expressions.html

CE205 Data Structures Week-3

What is an Expression?
e |n any programming language, if we want to perform any calculation or to frame a

condition etc.,
e we use a set of symbols to perform the task.

e These set of symbols makes an expression.

% RTEU CE205 Week-3

/8

CE205 Data Structures Week-3

What is an Expression?
e An expression is a collection of operators and operands that represents a specific
value.

e |n above definition, operator is a symbol which performs a particular task like
arithmetic operation or logical operation or conditional operation etc.,

e Operands are the values on which the operators can perform the task. Here
operand can be a direct value or variable or address of memory location.

RTEU CE205 Week-3

79

CE205 Data Structures Week-3

Expression Types

e Based on the operator position, expressions are divided into THREE types. They are
as follows...
o Infix Expression

o Postfix Expression

o Prefix Expression

% RTEU CE205 Week-3

80

CE205 Data Structures Week-3

Infix Expression

* |n infix expression, operator is used in between the operands.

e The general structure of an Infix expression is as follows.

Operandl Operator Operand2

% RTEU CE205 Week-3

81

CE205 Data Structures Week-3

Infix Expression Example

Operand Operator Operand?2

N
a+b

| RTEU CE205 Week-3

82

CE205 Data Structures Week-3

Postfix Expression

e |n postfix expression, operator is used after operands.
e We can say that "Operator follows the Operands".

e The general structure of Postfix expression is as follows.

Operandl Operand2 Operator

% RTEU CE205 Week-3

83

CE205 Data Structures Week-3

Postfix Expression Example

Operand1 X Opgrand2 Operator

y & &
% |0kn

ettt RTEU CE205 Week-3

CE205 Data Structures Week-3

Prefix Expression

e |n prefix expression, operator is used before operands.
e We can say that "Operands follows the Operator".

e The general structure of Prefix expression is as follows.

Operator Operandl Operand2

% RTEU CE205 Week-3

85

CE205 Data Structures Week-3

Prefix Expression Example

Operator Ogerand1 OperandZ

ab

e Every expression can be represented using all the above three different types of

expressions.

| RTEU CE205 Week-3

86

CE205 Data Structures Week-3

Expression Conversions

e And we can convert an expression from one form to another form like
o Infix to Postfix,

o Infix to Prefix,

o Prefix to Postfix and vice versa.

% RTEU CE205 Week-3

87

CE205 Data Structures Week-3

Infix to Postfix Conversion

e BTech Smart Class
o http://www.btechsmartclass.com/data_structures/infix-to-postfix.ntml

| RTEU CE205 Week-3

88

http://www.btechsmartclass.com/data_structures/infix-to-postfix.html

CE205 Data Structures Week-3

Infix to Postfix Conversion

e Any expression can be represented using three types of expressions (Infix, Postfix,
and Prefix).

e We can also convert one type of expression to another type of expression like
o Infix to Postfix,

o Infix to Prefix,

o Postfix to Prefix and vice versa.

% RTEU CE205 Week-3

89

CE205 Data Structures Week-3

Infix to Postfix Conversion

e To convert any Infix expression into Postfix or Prefix expression we can use the
following procedure.
o a. Find all the operators in the given Infix Expression.

o b. Find the order of operators evaluated according to their Operator
precedence.

o ¢. Convert each operator into required type of expression (Postfix or Prefix)
in the same order.

% RTEU CE205 Week-3

90

CE205 Data Structures Week-3

Infix to Postfix Example

e Consider the following Infix Expression to be converted into Postfix Expression.
® D=A+B *C
o Step 1 - The Operators in the given Infix Expression: = , + , *

o Step 2 - The Order of Operators according to their preference: * , + , =
o Step 3 - Now, convert the first operator * -> D = A + B C *
o Step 4 - Convert the next operator + -> D = A BC* +

o Step 5 - Convert the next operator = -> D ABC*+ =
Finally, given Infix Expression is converted into Postfix Expression as follows...
DABC* + =

{| RTEU CE205 Week-3

91

ceosinfixto-Postfix Conversion using Stack Data Structure

e To convert Infix Expression into Postfix Expression using a stack data structure, We
can use the following steps
o a.Read all the symbols one by one from left to right in the given Infix
Expression.

o b. If the reading symbol is operand, then directly print it to the result
(Output).
o ¢ If the reading symbol is left parenthesis '(', then Push it on to the Stack.

o d. If the reading symbol is right parenthesis '), then Pop all the contents of
stack until respective left parenthesis is poped and print each poped
symbol to the result.

o e. If the reading symbol is operator (+, -, *, / etc.,,), then Push it on to the
Stack. However, first pop the operators which are already on the stack that

— have higher or equal precedence than current operator and print them to
1| RTEU CE205 Week-3 the result. 92

CE205 Data Structures Week-3

Infix to Postfix Conversion Example
Consider the following Infix Expression...

e (A+B)* (C-D)

e The given infix expression can be converted into postfix expression using Stack
data Structure as follows.

% RTEU CE205 Week-3

93

CE205 Data Structures Week-3

Infix to Postfix Conversion Example

Postfix
Expression

L B N I A N N

Reading
Character

L L O B O O N

STACK

L N B N O B A N N B N N O N N N N N N N NN N NN N

Stack is EMPTY

Initially EMPTY

 EEE NN ENENNNNENENEND-SNNB-NHNHMN®MNSISNS-NSENERNMNHMNH-NH;NN]
'.i...'l......i.ii'.i..‘.ll..’l

| RTEU CE205 Week-3 -

CE205 Data Structures Week-3

Infix to Postfix Conversion Example

Push *(’

i |
[N B BN BN BN BN BN O BN B BN BN BN BN BN B N B B BN BN BN

% RTEU CE205 Week-3

[BN BN BN BN BN BN BN BN BN BN O B B B B BN BN BN BN BN BN

EMPTY

95

CE205 Data Structures Week-3

Infix to Postfix Conversion Example

No operation
Since ‘A’ iIs OPERAND

L O BN B B BE B BN B BN BE BN BN B BN BN BN BN BN BN B BN

| RTEU CE205 Week-3

O
O

| B B BN B BN BN BN BN BN N BN B BN BN BN BN BN B N BN N

96

CE205 Data Structures Week-3

Infix to Postfix Conversion Example

+ '+ has low priority -
+ : than ‘(' so,
: PUSH I.+I
feettt| RTEU CE205 Week-3

L B BN BN N DR BN BN BN BN BN N B BN BN BN B BN N B N I

97

CE205 Data Structures Week-3

Infix to Postfix Conversion Example

NoO operation
Since ‘B’ is OPERAND

v

| RTEU CE205 Week-3

B BN BN BN BN BN BN BN BN BN BN Bn N BN BN B BN BN BN B B

A B

98

CE205 Data Structures Week-3

Infix to Postfix Conversion Example

POP all elements fill
we reach ‘[’

POP '+
POP ('

et
. BN B B BN BN BN BN BN B AR BN BN BN BN BN BN BN N O B N

| RTEU CE205 Week-3

top

L B BN BN B BN BN BN BN B BN BN BN BN BN N N Bn N B B BN BN |

99

CE205 Data Structures Week-3

Infix to Postfix Conversion Example

Stack is EMPTY
&

*"1s Operator
PUSH **

AB+

[BN BN BN B BN O B BN B BN BN BN BN O N B BN BN BN N N
B B B N B BN BN B BN BN B BN N N BN N BN N N N

5 RTEU CE205 Week-3 100

CE205 Data Structures Week-3

Infix to Postfix Conversion Example

PUSH ("

>
oo
+

—
. BN BN BN B BN BN BN BN BN B B B BN BN B B BN BN BN BN BN B |

il RTEU CE205 Week-3 101

CE205 Data Structures Week-3

Infix to Postfix Conversion Example

NoO operation
Since 'C’ is OPERAND

AB+C

L O N BN OB BN BN O N N BN N N O I O I O N O N N
[B B B N O N N N O NN N NN NN NN NN N

i RTEU CE205 Week-3 102

CE205 Data Structures Week-3

Infix to Postfix Conversion Example

‘' has low priority -
than ‘(' so,
PUSH ‘-

AB+C

L B BN BN B O B BN BN N B BN BN BN B B BN B BN BN BN BN O
L B BN Bn B BN BN BN BN N Bn BN O BN BN B B B BN N B BN B

Y RTEU CE205 Week-3 103

CE205 Data Structures Week-3

Infix to Postfix Conversion Example

No operation

Since ‘D’ is OPERAND

AB+CD

B BN BN BN B BN BN O O B O B BN BN BN BN BN O B BN N N

. BN OB OB OB BN B B N B BN B B OB B O B O N N I N NN

i RTEU CE205 Week-3 104

CE205 Data Structures Week-3

Infix to Postfix Conversion Example

POP all elements fill
we reach '(’
POP I._I A B + C D -

POP ‘("

—
LB B N O O N N N N NN NNNNMSBNMNDMNBMNIMNH~N.:
. B B BN BN N O N N N N N Ol N N I O A N N N

5 RTEU CE205 Week-3 105

uctures Week-3

Infix to Postfix Conversion Example

0P ol glements 1
W00k Decomes Empy

—lE =3

eS| RTEU CE205 Week-3 106

CE205 Data Structures Week-3

The final Postfix Expression is as follows...

® AB+CD - *

i RTEU CE205 Week-3 107

CE205 Data Structures Week-3

Postfix Expression Evaluation

e BTech Smart Class
o http://www.btechsmartclass.com/data_structures/postfix-evaluation.html

5 RTEU CE205 Week-3 108

http://www.btechsmartclass.com/data_structures/postfix-evaluation.html

CE205 Data Structures Week-3

Postfix Expression Evaluation

e A postfix expression is a collection of operators and operands in which the
operator is placed after the operands.

e That means, in a postfix expression the operator follows the operands.

Postfix Expression has following general structure

Operandl Operand2 Operator

Y RTEU CE205 Week-3 109

CE205 Data Structures Week-3

Postfix Expression Evaluation Example

Operand1 \ Opgrand2 Operator

y & &
% |0kn

i RTEU CE205 Week-3 110

CE205 Data Structures Week-3

Postfix Expression Evaluation using Stack Data Structure

e A postfix expression can be evaluated using the Stack data structure.

e To evaluate a postfix expression using Stack data structure we can use the following
steps
o a.Read all the symbols one by one from left to right in the given Postfix
Expression

o b. If the reading symbol is operand, then push it on to the Stack.

o ¢ If the reading symbol is operator (+, -, *, / etc.,), then perform TWO pop
operations and store the two popped oparands in two different variables
(operand1 and operand?2). Then perform reading symbol operation using
operand1 and operand?2 and push result back on to the Stack.

o d. Finally! perform a pop operation and display the popped value as final

— result.

{| RTEU CE205 Week-3

111

CE205 Data Structures Week-3

Postfix Expression Evaluation Example

e Consider the following Expression.

Infix Expression (5 +3) * (8- 2)
Postfix Expression 53 + 82 - *

Above Postfix Expression can be evaluated by using Stack Data Structure as follows...

il RTEU CE205 Week-3 112

CE205 Data Structures Week-3

Postfix Expression Evaluation Example

Reading : Stack . Evaluated

il RTEU CE205 Week-3 113

CE205 Data Structures Week-3

Postfix Expression Evaluation Example

push(5) Nothing

[N N N N N R RN NN NENNENNE®:RSEHNSE:SHSEJ:EH:SH:EJ;RIHE.

il RTEU CE205 Week-3 114

CE205 Data Structures Week-3

Postfix Expression Evaluation Example

3 push(3) Nothing

il RTEU CE205 Week-3 115

CE205 Data Structures Week-3

A

Postfix Expression Evaluation Example

—

| RTEU CE205 Week-3

valuel = pop()
. value2 = pop() .

+ result = value2 + valuel

push(result) n

valuel = pop(); // 3
value2 = pop(); // 5

result =5+ 3;//8
Push(8)

(5 + 3)

116

CE205 Data Structures Week-3

Postfix Expression Evaluation Example

push(8) (5 +3)

oo

il RTEU CE205 Week-3 117

CE205 Data Structures Week-3

Postfix Expression Evaluation Example

2 push(2) E - (5+3)

il RTEU CE205 Week-3 118

CE205 Data Structures Week-3

Postfix Expression Evaluation Example

valuel = pop(); // 2

valuel = pOpO value2 = pop(); // 8
Evalue2 = pOpO . : result=8-2;//6

: result = value2 - valuel

push(result) E (8 - 2)

(5+3),(8-2)

Push(6)

i RTEU CE205 Week-3 119

CE205 Data Structures Week-3

A

Postfix Expression Evaluation Example

| RTEU CE205 Week-3

 valuel = pop()
- value2 = pop()

result = value2 * valuel

push(result)

valuel = pop(); // 6
value2 = pop(); // 8

result =8 *6; // 48
Push(48)

(6 8)

E(5+?.) (8 - 2)

120

CE205 Data Structures Week-3

Postfix Expression Evaluation Example

Display (result)

48

As final result

$ | result = pop()

End of Expression

i RTEU CE205 Week-3 121

CE205 Data Structures Week-3

Postfix Expression Evaluation Example

Infix Expression (5 + 3) * (8 -2) = 48
Postfix Expression5 3 + 8 2 - * value is 48

il RTEU CE205 Week-3 122

CE205 Data Structures Week-3

Queue ADT

e BTech Smart Class
o http://www.btechsmartclass.com/data_structures/queue-adt.html

ettt RTEU CE205 Week-3 e

http://www.btechsmartclass.com/data_structures/queue-adt.html

CE205 Data Structures Week-3

Queue Data Structure

e |n this tutorial, you will learn what a queue is. Also, you will find implementation of
queue in C, C++, Java and Python.

e A queue is a useful data structure in programming. It is similar to the ticket queue
outside a cinema hall, where the first person entering the queue is the first person
who gets the ticket.

e Queue follows the First In First Out (FIFO) rule - the item that goes in first is the
item that comes out first.

w
1% RTEU CE205 Week-3 e

CE205 Data Structures Week-3

Queue Data Structure

e FIFO Representation of Queue

B g2/t 0B

empty queue enqueue enqueue dequeue

* |n the above image, since 1 was kept in the queue before 2,
e itis the first to be removed from the queue as well.

e |t follows the FIFO rule.

1 RTEU CE205 Week-3 125

CE205 Data Structures Week-3

Queue Data Structure
e |n programming terms, putting items in the queue is called enqueue, and
removing items from the queue is called dequeue.

e We can implement the queue in any programming language like C, C++, Java,
Python or C#, but the specification is pretty much the same.

il RTEU CE205 Week-3 126

CE205 Data Structures Week-3

Basic Operations of Queue

e A queue is an object (an abstract data structure - ADT) that allows the following
operations:
o Enqueue: Add an element to the end of the queue

o Dequeue: Remove an element from the front of the queue
o Iskmpty: Check if the queue is empty
o IsFull: Check if the queue is full

o Peek: Get the value of the front of the queue without removing it

il RTEU CE205 Week-3 127

CE205 Data Structures Week-3

Working of Queue

e Queue operations work as follows:
o two pointers FRONT and REAR

o FRONT track the first element of the queue
o REAR track the last element of the queue

o initially, set value of FRONT and REAR to -1

RTEU CE205 Week-3

128

CE205 Data Structures Week-3

Enqueue Operation

e check if the queue is full

e for the first element, set the value of FRONT to O

e increase the REAR index by 1

e add the new element in the position pointed to by REAR

il RTEU CE205 Week-3 129

CE205 Data Structures Week-3

Dequeue Operation

e check if the queue is empty

e return the value pointed by FRONT

e increase the FRONT index by 1

e for the last element, reset the values of FRONT and REAR to -1

Y RTEU CE205 Week-3 130

CE205 Data Structures Week-3

Dequeue Operation

LrrONT [

l REAR -1 0 1 2 3 4

empty queue

ettt RTEU CE205 Week-3 o

CE205 Data Structures Week-3

Dequeue Operation

enqueue the first element

m| RTEU CE205 Week-3 132

CE205 Data Structures Week-3

Dequeue Operation

enqueue

3

H RTEU CE205 Week-3 133

CE205 Data Structures Week-3

Dequeue Operation

enqueue

H RTEU CE205 Week-3 134

CE205 Data Structures Week-3

Dequeue Operation

v !
0 1 2 3 4
2]3/4]5

dequeue

v

H RTEU CE205 Week-3 135

CE205 Data Structures Week-3

Dequeue Operation

dequeue the last element

1 RTEU CE205 Week-3 136

CE205 Data Structures Week-3

Dequeue Operation

empty queue

5598 RTEU CE205 Week-3 137

CE205 Data Structures Week-3

Enqueue and Dequeue Operations in C

A

5 RTEU CE205 Week-3 138

CE205 Data Structures Week-3

// Queue implementation in C

#include <stdio.h>
#tdefine SIZE 5

void enQueue(int);
void deQueue();
void display();

5598 RTEU CE205 Week-3 139

CE205 Data Structures Week-3

Enqueue and Dequeue Operations in C

A

i RTEU CE205 Week-3 140

CE205 Data Structures Week-3

int items[SIZE], front = -1, rear = -1;

559 RTEU CE205 Week-3 141

CE205 Data Structures Week-3

Enqueue and Dequeue Operations in C

A

i RTEU CE205 Week-3 142

CE205 Data Structures Week-3

int main() {
//deQueue is not possible on empty queue
deQueue();

//enQueue 5 elements
enQueue(1);
enQueue(2);
enQueue(3);
enQueue(4);
enQueue(5);

// 6th element can't be added to because the queue is full
enQueue(6);

display();

//deQueue removes element entered first i.e. 1
deQueue();

//Now we have just 4 elements
display();

return 0;

ettt RTEU CE205 Week-3 143

CE205 Data Structures Week-3

Enqueue and Dequeue Operations in C

A

i RTEU CE205 Week-3 144

CE205 Data Structures Week-3

void enQueue(int value) {

if (rear == SIZE - 1)
printf("\nQueue is Full!!");

else {
if (front

front

rear++;
items[rear] = value;
printf("\nInserted -> %d", value);

}

== —1)
9;

¥

| RTEU CE205 Week-3

145

CE205 Data Structures Week-3

Enqueue and Dequeue Operations in C

A

i RTEU CE205 Week-3 146

CE205 Data Structures Week-3

Qéid deQueue() {

if (front == -1)
printf("\nQueue is Empty!!");
else {
printf("\nDeleted : %d", items[front]);
front++;
if (front > rear)
front = rear = -1;
}

i RTEU CE205 Week-3 147

CE205 Data Structures Week-3

Enqueue and Dequeue Operations in C

A

i RTEU CE205 Week-3 148

CE205 Data Structures Week-3

// Function to print the queue
void display() {

if (rear == -1)

printf("\nQueue is Empty!!!");
else {

int i;

printf("\nQueue elements are:\n");
for (i = front; i <= rear; i++)
printf("%d ", items[i]);
}

printf("\n");
}

i RTEU CE205 Week-3 149

CE205 Data Structures Week-3

Enqueue and Dequeue Operations in C++

A

5 RTEU CE205 Week-3 150

CE205 Data Structures Week-3

// Queue implementation in C++

##tinclude <iostream>
#tdefine SIZE 5

using namespace std;
class Queue {

private:
int items[SIZE], front, rear;

public:
Queue() {

front = -1;

rear = -1;
}

559 RTEU CE205 Week-3 151

CE205 Data Structures Week-3

Enqueue and Dequeue Operations in C++

A

i RTEU CE205 Week-3 152

CE205 Data Structures Week-3

bool isFull() {
if (front == 0 && rear == SIZE - 1) {
return true;
}

return false;

}

5598 RTEU CE205 Week-3 153

CE205 Data Structures Week-3

Enqueue and Dequeue Operations in C++

A

i RTEU CE205 Week-3 154

CE205 Data Structures Week-3

bool isEmpty() {
if (front == -1)
return true;
else
return false;

5598 RTEU CE205 Week-3 155

CE205 Data Structures Week-3

Enqueue and Dequeue Operations in C++

A

5 RTEU CE205 Week-3 156

CE205 Data Structures Week-3

void enQueue(int element) {
if (isFull()) {

cout << "Queue is full";

} else {
if (front == -1) front
rear++;
items[rear] = element;
cout << endl

<< "Inserted " << element <<

RTEU CE205 Week-3

endl;

157

CE205 Data Structures Week-3

Enqueue and Dequeue Operations in C++

A

5 RTEU CE205 Week-3 158

CE205 Data Structures Week-3

int deQueue() {
int element;
if (isEmpty()) {
cout << "Queue is empty" << endl;
return (-1);
} else {
element = items[front];
if (front >= rear) {
front = -1;
rear = -1;
} /* Q has only one element, so we reset the queue after deleting it. */
else {
front++;
}
cout << endl
<< "Deleted -> " << element << endl;
return (element);

5598 RTEU CE205 Week-3 159

CE205 Data Structures Week-3

Enqueue and Dequeue Operations in C++

A

5 RTEU CE205 Week-3 160

CE205 Data Structures Week-3

void display() {
/* Function to display elements of Queue */
int i;
if (isEmpty()) {
cout << endl
<< "Empty Queue" << endl;
} else {
cout << endl
<< "Front index->
cout << endl
<< "Items -> ";
for (i = front; i <= rear; i++)
cout << items[i] << " ";
cout << endl
<< "Rear index->

<< front;

<< rear << endl;

s

| RTEU CE205 Week-3

161

CE205 Data Structures Week-3

Enqueue and Dequeue Operations in C++

A

i RTEU CE205 Week-3 162

CE205 Data Structures Week-3

int main() {
Queue q;

//deQueue is not possible on empty queue
g.deQueue();

//enQueue 5 elements
.enQueue(l);
.enQueue(2);
.enQueue(3);
.enQueue(4);
.enQueue(5);

O 0 a0 a9 Q9

// 6th element can't be added to because the queue is full
g.enQueue(6);

q.display();

//deQueue removes element entered first i.e. 1
g.deQueue();

//Now we have just 4 elements
g.display();

return 0;

Al

3

5598 RTEU CE205 Week-3 163

CE205 Data Structures Week-3

Enqueue and Dequeue Operations in Java

// Queue implementation in Java

public class Queue {
int SIZE = 5;
int items[] = new int[SIZE];
int front, rear;

Queue() {
front = -1;
rear = -1;

}

RTEU CE205 Week-3 164

CE205 Data Structures Week-3

Enqueue and Dequeue Operations in Java

boolean isFull() {
if (front == 0 && rear == SIZE - 1) {
return true;

}

return false;

}

A

5 RTEU CE205 Week-3 165

CE205 Data Structures Week-3

Enqueue and Dequeue Operations in Java

boolean isEmpty() {
if (front == -1)
return true;
else
return false;

5 RTEU CE205 Week-3 166

CE205 Data Structures Week-3

Enqueue and Dequeue Operations in Java

void enQueue(int element) {
if (isFull()) {

}

System.out.println("Queue is full");

else {

if (front
front

rear++;

items[rear] = element;

System.out.println("Inserted " + element);

== —1)
9;

| RTEU CE205 Week-3

167

CE205 Data Structures Week-3

Enqueue and Dequeue Operations in Java

int deQueue() {
int element;
if (isEmpty()) {
System.out.println("Queue is empty");
return (-1);
} else {
element = items[front];
if (front >= rear) {
front = -1;
rear = -1;
} /* Q has only one element, so we reset the queue after deleting it. */
else {
front++;
}
System.out.println("Deleted ->
return (element);

+ element);

}
}
—_—
Y
] RTEU CE205 Week-3 108

CE205 Data Structures Week-3

Enqueue and Dequeue Operations in Java

void display() {
/* Function to display elements of Queue */
int 1i;
if (isEmpty()) {
System.out.println("Empty Queue");
} else {

System.out.println("\nFront index-> " + front);
System.out.println("Items -> ");

for (i = front; i <= rear; i++)

System.out.print(items[i] + " ");
System.out.println("\nRear index-> " + rear);
}
}
?\- RTEU CE205 Week-3 163

CE205 Data Structures Week-3

Enqueue and Dequeue Operations in Java

public static void main(String[] args) {
Queue g = new Queue();

// deQueue is not possible on empty queue
g.deQueue();

// enQueue 5 elements
g.enQueue(l);
.enQueue(2);
.enQueue(3);
.enQueue(4);
.enQueue(5);

O 90 a9 Q9

// 6th element can't be added to because the queue is full
g.enQueue(6);

g.display();

// deQueue removes element entered first i.e. 1
g.deQueue();

// Now we have just 4 elements
g.display();

}
}

Al

iesthi| RTEU CE205 Week-3 170

CE205 Data Structures Week-3

Limitations of Queue

e As you can see in the image below, after a bit of enqueuing and dequeuing, the
size of the queue has been reduced.

dequeue

A

i RTEU CE205 Week-3 171

CE205 Data Structures Week-3

Limitations of Queue

e And we can only add indexes 0 and 1 only when the queue is reset (when all the
elements have been dequeued).

o After REAR reaches the last index,
o if we can store extra elements in the empty spaces (0 and 1),

o we can make use of the empty spaces. This is implemented by a modified
gueue called the circular queue.

il RTEU CE205 Week-3 172

https://www.programiz.com/data-structures/circular-queue

CE205 Data Structures Week-3

Complexity Analysis
e The complexity of enqueue and dequeue operations in a queue using an array
IS 0(1) . If you use pop(N) in python code,

e then the complexity might be o(n) depending on the position of the item to be
popped.

RTEU CE205 Week-3 173

CE205 Data Structures Week-3

Applications of Queue

e CPU scheduling, Disk Scheduling

e When data is transferred asynchronously between two processes.The queue is used
for synchronization. For example: 10 Buffers, pipes, file IO, etc

e Handling of interrupts in real-time systems.

e Call Center phone systems use Queues to hold people calling them in order.

il RTEU CE205 Week-3 174

CE205 Data Structures Week-3

What is a Queue?

e Queue is a linear data structure in which the insertion and deletion operations are
performed at two different ends.

* |n a queue data structure, adding and removing elements are performed at two
different positions.

e The insertion is performed at one end and deletion is performed at another end. -
In @ queue data structure, the insertion operation is performed at a position which
Is known as ‘rear' and the deletion operation is performed at a position which is
known as 'front'.

e |n queue data structure, the insertion and deletion operations are performed based
on FIFO (First In First Out) principle.

RTEU CE205 Week-3 175

CE205 Data Structures Week-3

What is a Queue?

e |n a queue data structure,
o the insertion operation is performed using a function called "enQueue()" and

o deletion operation is performed using a function called "deQueue()".

rear

¢ ITTTTTI1T #

front

i RTEU CE205 Week-3 176

CE205 Data Structures Week-3

What is a Queue?

e Queue data structure can be defined as follows.

e Queue data structure is a linear data structure in which the operations are
performed based on FIFO principle.

e A gqueue data structure can also be defined as

e "Queue data structure is a collection of similar data items in which insertion and
deletion operations are performed based on FIFO principle".

w
1% RTEU CE205 Week-3 1

CE205 Data Structures Week-3

What is a Queue?

Queue after inserting 25, 30, 51, 60 and 85.

After Inserting five elements...
mlllll

front reqr

i RTEU CE205 Week-3 178

CE205 Data Structures Week-3

Operations on a Queue

e The following operations are performed on a queue data structure
o a.enQueue(value) - (To insert an element into the queue)

o b. deQueueg() - (To delete an element from the queue)

o c.display() - (To display the elements of the queue)

il RTEU CE205 Week-3 179

CE205 Data Structures Week-3

Queue Implementation

e Queue data structure can be implemented in two ways. They are as follows...
o a.Using Array

o b. Using Linked List

e When a queue is implemented using an array, that queue can organize an only
limited number of elements.

e When a queue is implemented using a linked list, that queue can organize an
unlimited number of elements.

{| RTEU CE205 Week-3

180

CE205 Data Structures Week-3

First Come First Serve, FCFS, FIFO

e BTech Smart Class
o http://www.btechsmartclass.com/downloads/lab-manuals/Operating-System-
Lab-Manual-R18-JNTUH.pdf

i RTEU CE205 Week-3 181

http://www.btechsmartclass.com/downloads/lab-manuals/Operating-System-Lab-Manual-R18-JNTUH.pdf

CE205 Data Structures Week-3

Queue Data structure Using Array

e BTech Smart Class
o http://www.btechsmartclass.com/data_structures/queue-using-array.html

i RTEU CE205 Week-3 182

http://www.btechsmartclass.com/data_structures/queue-using-array.html

CE205 Data Structures Week-3

Queue Datastructure Using Array

e A queue data structure can be implemented using one dimensional array.
e The queue implemented using array stores only fixed number of data values.
e The implementation of queue data structure using array is very simple.

e Just define a one dimensional array of specific size and insert or delete the values
into that array by using FIFO (First In First Out) principle with the help of
variables 'front' and 'rear".

Y RTEU CE205 Week-3 183

CE205 Data Structures Week-3

Queue Datastructure Using Array

e Initially both 'front' and 'rear' are set to -1. Whenever, we want to insert a new
value into the queue, increment 'rear’ value by one and then insert at that position.

e Whenever we want to delete a value from the queue, then delete the element
which is at 'front' position and increment 'front' value by one.

w
1% RTEU CE205 Week-3 1

ceosQueue.@perations using Array

e Queue data structure using array can be implemented as follows.

e Before we implement actual operations, first follow the below steps to create an
empty queue.
o Step 1 - Include all the header files which are used in the program and define
a constant 'SIZE' with specific value.

o Step 2 - Declare all the user defined functions which are used in queue
Implementation.

o Step 3 - Create a one dimensional array with above defined SIZE (int
queue[SIZE])

o Step 4 - Define two integer variables 'front' and 'rear' and initialize both
with '-1'. (int front = -1, rear = -1)

o Step 5 - Then implement main method by displaying menu of operations list

= and make suitable function calls to perform operation selected by the user on
Y RTEU CE205 Wegftfeue. 185

CE205 Data Structures Week-3
Queue Operations using Array

enQueue(value) - Inserting value into the queue

* |n a queue data structure, enQueue() is a function used to insert a new element

into the queue.

* |n a queue, the new element is always inserted at rear position.

e The enQueue() function takes one integer value as a parameter and inserts that
value into the queue. We can use the following steps to insert an element into the

queue
o Step 1 - Check whether queue is FULL. (rear == SIZE-1)

o Step 2 - If it is FULL, then display "Queue is FULL!!! Insertion is not
possible!!!" and terminate the function.

o Step 3 - If it is NOT FULL, then increment rear value by one (rear++) and

= set queuelrear] = value.
Y RTEU CE205 Week-3

186

P Qtielie"Opérations using Array

deQueue() - Deleting a value from the Queue

e |n a queue data structure, deQueue() is a function used to delete an element from
the queue.

e |n a queue, the element is always deleted from front position.
e The deQueue() function does not take any value as parameter.

e We can use the following steps to delete an element from the queue.
o Step 1 - Check whether queue is EMPTY. (front == rear)

o Step 2 - If it is EMPTY, then display "Queue is EMPTY!!! Deletion is not
possible!!!" and terminate the function.

o Step 3 - If it is NOT EMPTY, then increment the front value by one (front ++).
Then display queuel[front] as deleted element. Then check whether

both front and rear are equal (front == rear), if it TRUE, then set

R krew ces0s wdoth front and rear to *-1' (front = rear = -1). 187

CE205 Data Structures Week-3

Queue Operations using Array
display() - Displays the elements of a Queue
-We can use the following steps to display the elements of a queue...

e Step 1 - Check whether queue is EMPTY. (front == rear)

e Step 2 - If it is EMPTY, then display "Queue is EMPTY!!!" and terminate the
function.

e Step 3 - If itis NOT EMPTY, then define an integer variable 'i' and set 'i = front+1'.

e Step 4 - Display 'queuel[i]’ value and increment 'i' value by one (i++). Repeat the
same until 'i' value reaches to rear (i <= rear)

{| RTEU CE205 Week-3

188

CE205 Data Structures Week-3

Queue Datastructure using Array in C

#include<stdio.h>
#include<conio.h>
#define SIZE 10

void enQueue(int);
void deQueue();
void display();

5 RTEU CE205 Week-3 189

CE205 Data Structures Week-3

Queue Datastructure using Array in C

int queue[SIZE], front = -1, rear = -1;

A

5 RTEU CE205 Week-3 190

CE205 Data Structures Week-3

Queue Datastructure using Array in C

void main()
{
int value, choice;
clrscr();
while(1){
printf("\n\n***** MENU *****\n"):
printf("1. Insertion\n2. Deletion\n3. Display\n4. Exit");
printf("\nEnter your choice: ");
scanf("%d",&choice);
switch(choice){
case 1: printf("Enter the value to be insert: ");
scanf("%d",&value);
enQueue(value);
break;
case 2: deQueue();
break;
case 3: display();
break;
case 4: exit(0);
default: printf("\nWrong selection!!! Try again!!!");

}

A

i RTEU CE205 Week-3 191

CE205 Data Structures Week-3

Queue Datastructure using Array in C

void enQueue(int value){
if(rear == SIZE-1)

printf("\nQueue is Full!!! Insertion is not possible!!!");
else{
if(front == -1)
front = 0;
rear++;
queue[rear] = value;
printf("\nInsertion success!!!");

i RTEU CE205 Week-3 192

CE205 Data Structures Week-3

Queue Datastructure using Array in C

void deQueue(){

if(front == rear)
printf("\nQueue is Empty!!! Deletion is not possible!!!");
else{
printf("\nDeleted : %d", queue[front]);
front++;
if(front == rear)
front = rear = -1;
}

5 RTEU CE205 Week-3 193

CE205 Data Structures Week-3

Queue Datastructure using Array in C

void display(){

if(rear == -1)

printf("\nQueue is Empty!!!");
else{

int i;

printf("\nQueue elements are:\n");
for(i=front; i<=rear; i++)
printf("%d\t",queue[i]);

}
}
]
R
%] RTEU CE205 Week-3

194

CE205 Data Structures Week-3

Output
center h:400px

5598 RTEU CE205 Week-3 195

file:///C:/Users/ugur.coruh/Desktop/ce205-data-structures/docs/week-3-stack/assets/Queue_Output.png

CE205 Data Structures Week-3

Queue Using Linked List

e BTech Smart Class
o http://www.btechsmartclass.com/data_structures/queue-using-linked-list.html

5 RTEU CE205 Week-3 196

http://www.btechsmartclass.com/data_structures/queue-using-linked-list.html

c0:Queue Using. Linked List

The major problem with the queue implemented using an array is,
It will work for an only fixed number of data values.
That means, the amount of data must be specified at the beginning itself.

Queue using an array is not suitable when we don't know the size of data which we
are going to use.

A queue data structure can be implemented using a linked list data structure. The
queue which is implemented using a linked list can work for an unlimited number
of values.

That means, queue using linked list can work for the variable size of data (No need
to fix the size at the beginning of the implementation).

The Queue implemented using linked list can organize as many data values as we
want.

In linked list implementation of a queue, the last inserted node is always pointed

TRy ‘Féar' and the first node is always pointed by ‘front'.

197

CE205 Data Structures Week-3

Queue Using Linked List Example

*front *reat

1001 1004 1008 1012
R o e B

e |n above example, the last inserted node is 50 and it is pointed by 'rear' and the

first inserted node is 10 and it is pointed by 'front'. The order of elements inserted
is 10, 15, 22 and 50.

Y RTEU CE205 Week-3 198

CE205 Data Structures Week-3

Operations

e To implement queue using linked list, we need to set the following things before
implementing actual operations.
o Step 1 - Include all the header files which are used in the program. And
declare all the user defined functions.

o Step 2 - Define a 'Node' structure with two members data and next.
o Step 3 - Define two Node pointers 'front' and 'rear' and set both to NULL.

o Step 4 - Implement the main method by displaying Menu of list of operations
and make suitable function calls in the main method to perform user selected
operation.

Y RTEU CE205 Week-3 199

CE205 Data Structures Week-3

enQueue(value) - Inserting an element into the Queue

e We can use the following steps to insert a new node into the queue...
o Step 1 - Create a newNode with given value and set 'newNode — next'
to NULL.

o Step 2 - Check whether queue is Empty (rear == NULL)
o Step 3 - If it is Empty then, set front = newNode and rear = newNode.

o Step 4 - If it is Not Empty then, set rear —
next = newNode and rear = newNode.

Y RTEU CE205 Week-3 200

CE205 Data Structures Week-3

deQueue() - Deleting an Element from Queue
e We can use the following steps to delete a node from the queue...
o Step 1 - Check whether queue is Empty (front == NULL).
o Step 2 - If it is Empty, then display "Queue is Empty!!! Deletion is not
possible!!!" and terminate from the function

o Step 3 - If it is Not Empty then, define a Node pointer 'temp' and set it to
'front'.

o Step 4 - Then set 'front = front — next' and delete 'temp’' (free(temp)).

il RTEU CE205 Week-3 201

CE205 Data Structures Week-3

display() - Displaying the elements of Queue
e We can use the following steps to display the elements (nodes) of a queue...
o Step 1 - Check whether queue is Empty (front == NULL).

o Step 2 - If it is Empty then, display 'Queue is Empty!!!' and terminate the
function.

o Step 3 - If it is Not Empty then, define a Node pointer 'temp' and initialize
with front.

o Step 4 - Display 'temp — data --->' and move it to the next node. Repeat the
same until 'temp' reaches to 'rear' (temp — next != NULL).

o Step 5 - Finally! Display 'temp — data ---> NULL".

il RTEU CE205 Week-3 202

CE205 Data Structures Week-3

Queue using Linked List in C

#include<stdio.h>
#include<conio.h>

struct Node
{

int data;

struct Node *next;
}*front = NULL,*rear = NULL;

5 RTEU CE205 Week-3 203

CE205 Data Structures Week-3

Queue using Linked List in C

void insert(int);
void delete();
void display();

i RTEU CE205 Week-3 204

CE205 Data Structures Week-3

Queue using Linked List in C

void main()
{
int choice, value;
clrscr();
printf("\n:: Queue Implementation using Linked List ::\n");
while(1){
printf (" \n****** MENU ******\n");
printf("1. Insert\n2. Delete\n3. Display\n4. Exit\n");
printf("Enter your choice: ");
scanf("%d",&choice);
switch(choice){
case 1: printf("Enter the value to be insert: ");
scanf("%d", &value);
insert(value);
break;
case 2: delete(); break;
case 3: display(); break;
case 4: exit(9);
default: printf("\nWrong selection!!! Please try again!!!\n");

¥

A

5 RTEU CE205 Week-3 205

CE205 Data Structures Week-3

Queue using Linked List in C

void insert(int value)

newNode = (struct Node*)malloc(sizeof(struct Node));

printf("\nInsertion is Success!!!\n");

{
struct Node *newNode;
newNode->data = value;
newNode -> next =
if(front == NULL)
front = rear =
else{
rear -> next =
rear = newNode;
}
}

20

| RTEU CE205 Week-3

newNode;

newNode;

206

CE205 Data Structures Week-3

Queue using Linked List in C

void delete()

{
if(front == NULL)
printf("\nQueue is Empty!!!\n");
else{
struct Node *temp = front;
front = front -> next;
printf("\nDeleted element: %d\n", temp->data);
free(temp);
}
}

i RTEU CE205 Week-3 207

CE205 Data Structures Week-3

Queue using Linked List in C

void display()

{
if(front == NULL)
printf("\nQueue is Empty!!!\n");
else{
struct Node *temp = front;
while(temp->next != NULL){
printf("%d--->",temp->data);
temp = temp -> next;
}
printf("%d--->NULL\n",temp->data);
}
}
?(RTEU CE205 Week-3 208

—

RECEP TAYYIP
ERDOGAN

Output

AWINDOWSsystem32\cmd.exe - tc

i Queuwe Implementation using Linked List

e w e MEML e
Inzert

Enter your choice: 1
Enter the value to be insert: 18

Insertion iz Successttt

e MEMI s
Insert

Enter your choice: 1
Enter the value to be insevrt: 20_

209

—

RECEP TAYYIP
ERDOGAN

Output

AWINDOWSsystem32\cmd.exe - tc

1 B———>28—->NULL

e wi e MEMI 2w
1. Insert
Delete
3. Display
4. Exit
Enter your choice: 2

Deleted element: 18

e wi e MEMI e

1. Insert

2. Delete

3. Display

4. Exit

Enter your choice: 3
MULL

. Display
4. Exit
nter vour choice:

210

CE205 Data Structures Week-3

Circular Queue Data structure

e BTech Smart Class
o http://www.btechsmartclass.com/data_structures/circular-queue.html

i RTEU CE205 Week-3 211

http://www.btechsmartclass.com/data_structures/circular-queue.html

CE205 Data Structures Week-3

Circular Queue Datastructure
* |n a normal Queue Data Structure, we can insert elements until queue becomes full.

e But once the queue becomes full, we can not insert the next element until all the
elements are deleted from the queue.
e For example, consider the queue below.

e The queue after inserting all the elements into it is as follows...

w
1% RTEU CE205 Week-3 ol

CE205 Data Structures Week-3

Circular Queue Datastructure

Quevue is Full
5 0)
* *

front reqr

 Now consider the following situation after deleting three elements from the queue.

i RTEU CE205 Week-3 213

CE205 Data Structures Week-3

Circular Queue Datastructure

Quevue is Full {Even three elements are deleted)

IIIWIE

fanT regr

i RTEU CE205 Week-3 214

CE205 Data Structures Week-3

Circular Queue Datastructure

e This situation also says that Queue is Full and we cannot insert the new element
because 'rear' is still at last position.

e |n the above situation, even though we have empty positions in the queue we can
not make use of them to insert the new element.

e This is the major problem in a normal queue data structure.

e To overcome this problem we use a circular queue data structure.

il RTEU CE205 Week-3 215

CE205 Data Structures Week-3

What is Circular Queue?

e A Circular Queue can be defined as follows.

e A circular queue is a linear data structure in which the operations are performed
based on FIFO (First In First Out) principle and the last position is connected back
to the first position to make a circle.

e Graphical representation of a circular queue is as follows.

I[center h:300px](assets/Circular Q.png)

RTEU CE205 Week-3 216

CE205 Data Structures Week-3

Implementation of Circular Queue

To implement a circular queue data structure using an array, we first perform the
following steps before we implement actual operations.

e Step 1 - Include all the header files which are used in the program and define a
constant 'SIZE' with specific value.

e Step 2 - Declare all user defined functions used in circular queue implementation.

e Step 3 - Create a one dimensional array with above defined SIZE (int cQueue[SIZE])

e Step 4 - Define two integer variables 'front' and 'rear' and initialize both with *-1".
(int front = -1, rear = -1)

e Step 5 - Implement main method by displaying menu of operations list and make
suitable function calls to perform operation selected by the user on circular queue.

il RTEU CE205 Week-3 217

CE205 Data Structures Week-3

enQueue(value) - Inserting value into the Circular Queue

In a circular queue, enQueue() is a function which is used to insert an element into the
circular queue. In a circular queue, the new element is always inserted at rear position.
The enQueue() function takes one integer value as parameter and inserts that value into
the circular queue. We can use the following steps to insert an element into the circular
queue...

il RTEU CE205 Week-3 218

CE205 Data Structures Week-3

enQueue(value) - Inserting value into the Circular Queue

e Step 1 - Check whether queue is FULL. ((rear == SIZE-1 && front == 0) || (front
== rear+1))
e Step 2 - Ifitis FULL, then display "Queue is FULL!!! Insertion is not

possible!!!" and terminate the function.

e Step 3 - If it is NOT FULL, then check rear == SIZE - 1 && front != 0 if it is TRUE,
then set rear = -1.

e Step 4 - Increment rear value by one (rear++), set queue[rear] = value and check
'front == -1'if it is TRUE, then set front = 0.

il RTEU CE205 Week-3 219

CE205 Data Structures Week-3

deQueue() - Deleting a value from the Circular Queue

In a circular queue, deQueue() is a function used to delete an element from the circular
queue. In a circular queue, the element is always deleted from front position. The
deQueue() function doesn't take any value as a parameter. We can use the following
steps to delete an element from the circular queue.

RTEU CE205 Week-3 220

CE205 Data Structures Week-3

deQueue() - Deleting a value from the Circular Queue

e Step 1 - Check whether queue is EMPTY. (front == -1 && rear == -1)

e Step 2 - If it is EMPTY, then display "Queue is EMPTY!!! Deletion is not
possible!!!" and terminate the function.

e Step 3 - If it is NOT EMPTY, then display queue[front] as deleted element and
increment the front value by one (front ++). Then check whether front == SIZE, if
it is TRUE, then set front = 0. Then check whether both front - 1 and rear are equal
(front -1 == rear), if it TRUE, then set both front and rear to '-1' (front = rear = -1).

{| RTEU CE205 Week-3

221

Eosdisplay(y YDisplays the elements of a Circular Queue

We can use the following steps to display the elements of a circular queue...

Step 1 - Check whether queue is EMPTY. (front == -1)

Step 2 - If it is EMPTY, then display "Queue is EMPTY!!!" and terminate the
function.

Step 3 - If it is NOT EMPTY, then define an integer variable 'i' and set 'i = front'.

Step 4 - Check whether 'front <= rear’, if it is TRUE, then display 'queueli]' value
and increment 'i' value by one (i++). Repeat the same until 'i <= rear'
becomes FALSE.

Step 5 - If 'front <= rear' is FALSE, then display 'queuel[i]' value and increment 'i’
value by one (i++). Repeat the same until'i <= SIZE - 1' becomes FALSE.

Step 6 - Setito 0.

Step 7 - Again display 'cQueueli]' value and increment i value by one (i++). Repeat

| r7eu cethensame until 'i <= rear' becomes FALSE. 222

CE205 Data Structures Week-3

Circular Queue using array in C

#include<stdio.h>
#include<conio.h>
#define SIZE 5

i RTEU CE205 Week-3 223

CE205 Data Structures Week-3

Circular Queue using array in C

void enQueue(int);
void deQueue();
void display();

ettt RTEU CE205 Week-3 eed

CE205 Data Structures Week-3

Circular Queue using array in C

int cQueue[SIZE], front = -1, rear = -1;

A

i RTEU CE205 Week-3 225

CE205 Data Structures Week-3

Circular Queue using array in C

void main()
{
int choice, value;
clrscr();
while(1){
pr\intf("\n****** MENU ******\n");
printf("1. Insert\n2. Delete\n3. Display\n4. Exit\n");
printf("Enter your choice: ");
scanf("%d",&choice);
switch(choice){
case 1: printf("\nEnter the value to be insert: ");
scanf("%d",&value);
enQueue(value);
break;
case 2: deQueue();
break;
case 3: display();
break;
case 4: exit(0);
default: printf("\nPlease select the correct choice!!!\n");

}

A

i RTEU CE205 Week-3 226

CE205 Data Structures Week-3

Circular Queue using array in C

void enQueue(int value)

{
if((front == 0 && rear == SIZE - 1) || (front == rear+l))
printf("\nCircular Queue is Full! Insertion not possible!!!\n");
else{
if(rear == SIZE-1 && front != 0)
rear = -1;
cQueue[++rear] = value;
printf("\nInsertion Success!!!\n");
if(front == -1)
front = 0;
}
}
ﬁ RTEU CE205 Week-3 227

CE205 Data Structures Week-3

Circular Queue using array in C

void deQueue()

{
if(front == -1 && rear == -1)
printf("\nCircular Queue is Empty! Deletion is not possible!!!\n");
else{
printf("\nDeleted element : %d\n",cQueue[front++]);
if(front == SIZE)
front = 0;
if(front-1 == rear)
front = rear = -1;
}
}
ﬁ RTEU CE205 Week-3 228

CE205 Data Structures Week-3

Circular Queue using array in C

void display()
{
if(front == -1)
printf("\nCircular Queue is Empty!!!\n");
else{
int i = front;
printf("\nCircular Queue Elements are : \n");
if(front <= rear){
while(i <= rear)
printf("%d\t", cQueue[i++]);
}
else{
while(i <= SIZE - 1)
printf("%d\t", cQueue[i++]);
i=0;
while(i <= rear)
printf("%d\t", cQueue[i++]);
}
}

¥

{| RTEU CE205 Week-3 229

A

Output

e C:AWINDOWS\system32\cmd.exe - ic

Enter your choice:- 1
Enter the value to bhe insert:

Insertion Successtt?

Enter your choice: 3

Circular Quewue Elements are :
18 28 38

e MEMI] e
Inzert

3a

230

Output

e C:AWINDOWS\system32\cmd.exe - ic

Enter wvour choice: 2
Deleted element = 28

sepepeisis MEMI e
1. Insert

Enter your choice: 3

gércular Queue Elements are :

e MEMI] e
Inzert

231

CE205 Data Structures Week-3

Double Ended Queue Data structure

e BTech Smart Class
o http://www.btechsmartclass.com/data_structures/double-ended-queue.html

i RTEU CE205 Week-3 232

http://www.btechsmartclass.com/data_structures/double-ended-queue.html

CE205 Data Structures Week-3

Double Ended Queue Datastructure

e Double Ended Queue is also a Queue data structure in which the insertion and

deletion operations are performed at
o both the ends (front and rear).

e That means, we can insert at both front and rear positions and can delete from

both front and rear positions.

w
1% RTEU CE205 Week-3 =

CE205 Data Structures Week-3

Double Ended Queue Datastructure

frunt rear

=6 TTT T2
deleter delete

i RTEU CE205 Week-3 234

CE205 Data Structures Week-3

Double Ended Queue Datastructure

e Double Ended Queue can be represented in TWO ways, those are as follows.
o a.lInput Restricted Double Ended Queue

o b. Output Restricted Double Ended Queue

Y RTEU CE205 Week-3 235

CE205 Data Structures Week-3

Input Restricted Double Ended Queue

e |n input restricted double-ended queue, the insertion operation is performed at
only one end and deletion operation is performed at both the ends.

fru nt rear

II:I:I:EE[«,

5 RTEU CE205 Week-3 236

II‘ISEI’t‘

delete

CE205 Data Structures Week-3

Output Restricted Double Ended Queue

In output restricted double ended queue, the deletion operation is performed at only
one end and insertion operation is performed at both the ends.

front rear

A

i RTEU CE205 Week-3 237

CE205 Data Structures Week-3

Double Ended Queue using Array in C

#include<stdio.h>
#include<conio.h>
#define SIZE 100

void enQueue(int);

int deQueueFront();

int deQueueRear();

void enQueueRear(int);
void enQueueFront(int);
void display();

5598 RTEU CE205 Week-3 238

CE205 Data Structures Week-3

Double Ended Queue using Array in C

int queue[SIZE];
int rear = 0, front = 0;

5 RTEU CE205 Week-3 239

CE205 Data Structures Week-3

Double Ended Queue using Array in C

int main()
{
char ch;
int choicel, choice2, value;
printf (" \n******* Type of Double Ended Queue *******\n"):
do
{
printf("\nl.Input-restricted deque \n");
printf("2.output-restricted deque \n");
printf("\nEnter your choice of Queue Type : ");
scanf("%d",&choicel);
switch(choicel)

{

RTEU CE205 Week-3 240

CE205 Data Structures Week-3

Double Ended Queue using Array in C

case 1:
printf("\nSelect the Operation\n");
printf("1.Insert\n2.Delete from Rear\n3.Delete from Front\n4. Display");
do
{
printf("\nEnter your choice for the operation in c deque: ");
scanf("%d",&choice2);

switch(choice2)
{
case 1: enQueueRear(value);
display();
break;

case 2: value = deQueueRear();
printf("\nThe value deleted is %d",value);
display();
break;
case 3: value=deQueueFront();
printf("\nThe value deleted is %d",value);
display();
break;
case 4: display();
break;
default:printf("Wrong choice");

printf("\nDo you want to perform another operation (Y/N): ");
ch=getch();

while(ch=="y'||ch=="Y");

getch();

break;

Al

W RTEU CE205 Week-3 “

CE205 Data Structures Week-3

Double Ended Queue using Array in C

case 2 :
printf("\n---- Select the Operation ----\n");
printf("1. Insert at Rear\n2. Insert at Front\n3. Delete\n4. Display");
do
{

printf("\nEnter your choice for the operation: ");
scanf("%d",&choice2);
switch(choice2)
{
case 1: enQueueRear(value);
display();
break;
case 2: enQueueFront(value);
display();
break;
case 3: value = deQueueFront();
printf("\nThe value deleted is %d",value);

display();

break;
case 4: display();

break;
default:printf("Wrong choice");

}
printf("\nDo you want to perform another operation (Y/N): ");
ch=getch();
} while(ch=="y'||ch=="Y");
getch();
break ;
¥
printf("\nDo you want to continue(y/n):");
ch=getch();
while(ch=="y"'||ch=="Y");

Al

ettt RTEU CE205 Week-3 eae

CE205 Data Structures Week-3

Double Ended Queue using Array in C

void enQueueRear(int value)

{
char ch;
if(front == SIZE/2)
{
printf("\nQueue is full!!! Insertion is not possible!!! ");
return;
}
do
{
printf("\nEnter the value to be inserted:");
scanf("%d",&value);
queue[front] = value;
front++;
printf("Do you want to continue insertion Y/N");
ch=getch();
twhile(ch=="y");
}
—
?(RTEU CE205 Week-3 243

CE205 Data Structures Week-3

Double Ended Queue using Array in C

void enQueueFront(int value)

{
char ch;
if(front==SIZE/2)

{
printf("\nQueue is full!!! Insertion is not possible!!!");
return;

}

do

{
printf("\nEnter the value to be inserted:");
scanf("%d",&value);
rear--;
queue[rear] = value;
printf("Do you want to continue insertion Y/N");
ch = getch();

}

while(ch == 'y');

}
—
?\- RTEU CE205 Week-3 244

CE205 Data Structures Week-3

Double Ended Queue using Array in C

int deQueueRear()
{
int deleted;
if(front == rear)
{
printf("\nQueue is Empty!!! Deletion is not possible!!!");
return 0;
}
front--;
deleted = queue[front+1];
return deleted;

i RTEU CE205 Week-3 245

CE205 Data Structures Week-3

Double Ended Queue using Array in C

int deQueueFront()
{
int deleted;
if(front == rear)
{
printf("\nQueue is Empty!!! Deletion is not possible!!!");
return 0;
}
rear++;
deleted = queue[rear-1];
return deleted;

i RTEU CE205 Week-3 246

CE205 Data Structures Week-3

Double Ended Queue using Array in C

void display()

{
int i;
if(front == rear)
printf("\nQueue is Empty!!! Deletion is not possible!!!");
else{
printf("\nThe Queue elements are:");
for(i=rear; i < front; i++)
{
printf("%d\t ",queuel[i]);
}
}
}
ﬁ RTEU CE205 Week-3 247

 —

RECEP TAYYIP
ERDOGAN

Output

B ' "C\Users\User\Desktop\New folder\DoubleEndedQueue\bin\Debug\DoubleEndedQueue.exe"

*¥FkA*xk Type of Double Ended Queue **¥*x*

1.Input-restricted deque
2.output-restricted deque

Enter your choice of Queue Type

Select the Operation

1.Insert

2.Delete from Rear

3.Delete from Front

4. Display

Enter your choice for the operation in c deque:

Enter the value to be inserted:1

Do you want to continue insertion Y/N

Enter the value to be inserted:20

Do you want to continue insertion Y/N

Enter the value to be inserted:3@

Do you want to continue insertion Y/N

Enter the value to be inserted:4@

Do you want to continue insertion Y/N

The Queue elements are:10 pl] 30

Do you want to perform another operation (Y/N):
Enter your choice for the operation in c¢ deque:

The Queue elements are:10 20 EL]
Do you want to perform another operation (Y/N):

248

CE205 Data Structures Week-3

Multilevel Queue (MLQ)

e Geeks for Geeks
o https://www.geeksforgeeks.org/multilevel-queue-mlg-cpu-scheduling/

High Priority

System processes |~ Queune 1

I Interactive Processes I—“) Quene 2

I Batch Processes I—)’Que“:!-

'

Low Priority

5598 RTEU CE205 Week-3 249

https://www.geeksforgeeks.org/multilevel-queue-mlq-cpu-scheduling/

CE205 Data Structures Week-3

Priority Queue

e A priority queue is a special type of queue in which each element is associated with
a priority and is served according to its priority. If elements with the same priority
occur, they are served according to their order in the queue.

Priority

il
2 md md |
| md

e |nsertion occurs based on the arrival of the values and removal occurs based on
= riority.
= P Yy

ettt RTEU CE205 Week-3 220

CE205 Data Structures Week-3

Hanoi Tower

o Geeks for Geeks
o Recursive Version
= Program for Tower of Hanoi - GeeksforGeeks

o |terative Version
m |terative Tower of Hanoi - GeeksforGeeks

i RTEU CE205 Week-3 251

https://www.geeksforgeeks.org/c-program-for-tower-of-hanoi/
https://www.geeksforgeeks.org/iterative-tower-of-hanoi/

CE205 Data Structures Week-3

Hanoi Tower lterative Algorithm:

S = Source
A = Aux
D = Dest

Calculate the total number of moves required i.e.

pow(2,n) — 1 here n is number of disks.

il RTEU CE205 Week-3 252

CE205 Data Structures Week-3

Hanoi Tower lterative Algorithm:

e |f number of disks (i.e. n) is even then interchange destination
pole and auxiliary pole.

e fori = 1 to total number of moves:
o ifi%3 == 1.
= |egal movement of top disk between source pole and destination pole
o if1%3 == 2:
= |egal movement top disk between source pole and auxiliary pole
o ifi1%3 ==0:
= |egal movement top disk between auxiliary pole and destination pole

Y RTEU CE205 Week-3 253

CE205 Data Structures Week-3

Hanoi Tower Iterative Algorithm

e Tower of Hanoi is a mathematical puzzle where we have three rods (A, B, and C)
and N disks.

e Initially, all the disks are stacked in decreasing value of diameter
o e, the smallest disk is placed on the top and they are on rod A.

e The objective of the puzzle is to move the entire stack to another rod (here
considered C), obeying the following simple rules

e Only one disk can be moved at a time.

e Each move consists of taking the upper disk from one of the stacks and placing it

on top of another stack i.e. a disk can only be moved if it is the uppermost disk on
a stack.

e No disk may be placed on top of a smaller disk.

RTEU CE205 Week-3 254

CE205 Data Structures Week-3

Hanoi Tower Iterative Algorithm Examples

ITnput: 2

Qutput: Disk 1 moved from A to B
Disk 2 moved from A to C
Disk 1 moved from B to C

Input: 3
Qutput: Disk 1

Disk
Disk
Disk
Disk
Disk
Disk

2

R NR WR

moved
moved
moved
moved
moved
moved

% RTEU CE205 Week-3

from
from
from
from
from
from

moved from A to C

> WO wWw>NX>

to
to
to
to
to
to

NNXr»nNnww

255

CE205 Data Structures Week-3

Tower of Hanoi using Recursion

e The idea is to use the helper node to reach the destination using recursion. Below
is the pattern for this problem:
o Shift N-1 disks from A to B, using C.

o Shift last disk from A to c.

o Shift N-1 disks from B to C,using A.

Y RTEU CE205 Week-3 256

CE205 Data Structures Week-3

Tower of Hanoi using Recursion

3 Diek 1
) =] o A, 5 C
2 a 4
A B G -“- E] G A 3 o
5 B 7
i B C A B C A B o

Image illustration for 3 disks

i RTEU CE205 Week-3 257

CE205 Data Structures Week-3

e Follow the steps below to solve the problem
o Create a function towerOfHanoi where pass the N (current number of

disk), from_rod, to_rod, aux_rod.
o Make a function call for N — 1 th disk.
o Then print the current the disk along with from_rod and to_rod

o Again make a function call for N — 1 th disk.

w
1% RTEU CE205 Week-3 =f

CE205 Data Structures Week-3
Tower of Hanoi in C++ Recursive

// C++ recursive function to
// solve tower of hanoi puzzle
#include <bits/stdc++.h>

using namespace std;

void towerOfHanoi(int n, char from_rod, char to_rod,
char aux_rod)

{
if (n == @) {
return;
}
towerOfHanoi(n - 1, from rod, aux_rod, to rod);
cout << "Move disk " << n << " from rod " << from_rod
<< " to rod " << to _rod << endl;
towerOfHanoi(n - 1, aux_rod, to rod, from rod);
}
?i RTEU CE205 Week-3 259

CE205 Data Structures Week-3

Tower of Hanoi in C++ Recursive

// Driver code
int main()

{
int N = 3;
// A, B and C are names of rods
towerOfHanoi(N, 'A', 'C', 'B');
return 9;

}

5598 RTEU CE205 Week-3 260

CE205 Data Structures Week-3

Tower of Hanoi in Java Recursive

// JAVA recursive function to
// solve tower of hanoli puzzle
import java.io.*;

import java.math.*;

import java.util.*;

class GFG {

559 RTEU CE205 Week-3 261

CE205 Data Structures Week-3

Tower of Hanoi in Java Recursive

static void towerOfHanoi(int n, char from_rod,
char to rod, char aux_rod)

{
if (n == 0) {
return;
}
towerOfHanoi(n - 1, from _rod, aux_rod, to_rod);
System.out.println("Move disk " + n + " from rod "
+ from_rod + " to rod "
+ to_rod);
towerOfHanoi(n - 1, aux_rod, to rod, from rod);
}
ﬁ RTEU CE205 Week-3 262

CE205 Data Structures Week-3

Tower of Hanoi in Java Recursive

// Driver code
public static void main(String args[])

{
int N = 3;
// A, B and C are names of rods
towerOfHanoi(N, 'A', 'C', 'B');
}

5 RTEU CE205 Week-3 263

CE205 Data Structures Week-3

Tower of Hanoi in C# Recursive

// C# recursive program to solve tower of hanoi puzzle
using System;
class GFG {

static void towerOfHanoi(int n, char from _rod,

{

char to_rod, char aux_rod)

if (n == 0) {
return;
}
towerOfHanoi(n - 1, from rod, aux_rod, to rod);
Console.WriteLine("Move disk " + n + " from rod "
+ from_rod + " to rod " + to_rod);
towerOfHanoi(n - 1, aux_rod, to rod, from rod);

| RTEU CE205 Week-3

264

CE205 Data Structures Week-3

Tower of Hanoi in C# Recursive

// Driver method
public static void Main(String[] args)

{
int N = 3;
// A, B and C are names of rods
towerOfHanoi(N, 'A', 'C', 'B');
}

5 RTEU CE205 Week-3 265

CE205 Data Structures Week-3

Output

Move
Move
Move
Move
Move
Move
Move

disk
disk
disk
disk
disk
disk
disk

% RTEU CE205 Week-3

R NP WERNBR

from
from
from
from
from
from
from

rod
rod
rod
rod
rod
rod
rod

> W wWwr>>nN > >

to
to
to
to

to

rod
rod
rod
rod
rod
rod
rod

NN > NN

266

CE205 Data Structures Week-3

Time complexity
e O(2N)

o There are two possibilities for every disk.
o Therefore, 2 *2*2*...* 2(N times) is 2N

Auxiliary Space
* O(N)

o Function call stack space

il RTEU CE205 Week-3 267

CE205 Data Structures Week-3

Tower of Hanoi in Java Recursive

// Assuming n-th disk is
// bottom disk (count down)
class GFG {

static void tower(int n, char sourcePole,
char destinationPole, char auxiliaryPole)
{

// Base case (termination condition)
if (0 == n)
return;

// Move first n-1 disks from source pole

// to auxiliary pole using destination as

// temporary pole

tower(n - 1, sourcePole, auxiliaryPole,
destinationPole);

// Move the remaining disk from source

// pole to destination pole

System.out.printf("Move the disk %d from %c to %c\n",
n, sourcePole, destinationPole);

// Move the n-1 disks from auxiliary (now source)

// pole to destination pole using source pole as

// temporary (auxiliary) pole

tower(n - 1, auxiliaryPole, destinationPole, sourcePole);

}

| RTEU CE205 Week-3

268

CE205 Data Structures Week-3

Tower of Hanoi in Java Recursive

public static void main(String[] args)

{

}
¥

tower(3, 'S', 'D', 'A');

// This code is contributed by Smitha Dinesh Semwal.

5598 RTEU CE205 Week-3 269

CE205 Data Structures Week-3

Tower of Hanoi in C# Recursive

// Assuming n-th disk is bottom disk
// (count down)
using System;

class GFG {

static void tower(int n, char sourcePole,
char destinationPole,
char auxiliaryPole)

// Base case (termination condition)
if (0 == n)
return;

// Move first n-1 disks from source

// pole to auxiliary pole using

// destination as temporary pole

tower(n - 1, sourcePole, auxiliaryPole,
destinationPole);

// Move the remaining disk from source
// pole to destination pole
Console.WriteLine("Move the disk " + n
+ "from " + sourcePole + "to
+ destinationPole);

// Move the n-1 disks from auxiliary

// (now source) pole to destination

// pole using source pole as temporary

// (auxiliary) pole

tower(n - 1, auxiliaryPole,
destinationPole, sourcePole);

ettt RTEU CE205 Week-3 210

CE205 Data Structures Week-3

Tower of Hanoi in C# Recursive

// Driver code
public static void Main()

{
}

tower(3, 'S', 'D', 'A');

i RTEU CE205 Week-3 271

CE205 Data Structures Week-3

Tower of Hanoi in C Recursive

#include<stdio.h>

// Assuming n-th disk is bottom disk (count down)
void tower(int n, char sourcePole, char destinationPole, char auxiliaryPole)

{
// Base case (termination condition)
if(@ == n)

return;

// Move first n-1 disks from source pole

// to auxiliary pole using destination as

// temporary pole

tower(n-1, sourcePole, auxiliaryPole,
destinationPole);

// Move the remaining disk from source
// pole to destination pole
printf("Move the disk %d from %c to %c\n",
n,sourcePole, destinationPole);

// Move the n-1 disks from auxiliary (now source)

// pole to destination pole using source pole as

// temporary (auxiliary) pole

tower(n-1, auxiliaryPole, destinationPole,
sourcePole);

}

559 RTEU CE205 Week-3 212

CE205 Data Structures Week-3

Tower of Hanoi in C Recursive

int main()

{
tower(3, 'S', 'D', 'A');

return 0;

¥

i RTEU CE205 Week-3 273

CE205 Data Structures Week-3

Tower of Hanoi in C# Recursive

// Assuming n-th disk is bottom disk
// (count down)
using System;

class GFG {

static void tower(int n, char sourcePole,
char destinationPole,
char auxiliaryPole)

// Base case (termination condition)
if (@ == n)
return;

// Move first n-1 disks from source

// pole to auxiliary pole using

// destination as temporary pole

tower(n - 1, sourcePole, auxiliaryPole,
destinationPole);

// Move the remaining disk from source
// pole to destination pole
Console.WriteLine("Move the disk " + n
+ "from " + sourcePole + "to
+ destinationPole);

// Move the n-1 disks from auxiliary

// (now source) pole to destination

// pole using source pole as temporary

// (auxiliary) pole

tower(n - 1, auxiliaryPole,
destinationPole, sourcePole);

ettt RTEU CE205 Week-3 el

CE205 Data Structures Week-3

Tower of Hanoi in C# Recursive

// Driver code
public static void Main()

{
}

tower(3, 'S', 'D', 'A');

| RTEU CE205 Week-3

275

CE205 Data Structures Week-3

End —Of — Week — 3

5598 RTEU CE205 Week-3 276

