

Page 1/15

Recep Tayyip Erdogan University

Faculty of Engineering and Architecture

Computer Engineering

CE205- Data Structures

Syllabus

Fall Semester, 2022-2023

Instructor Asst. Prof. Dr. Uğur CORUH

Contact Information ugur.coruh@erdogan.edu.tr

Office No F-301

Google Classroom Code d5yg4hi

Lecture Hours and Days Tuesday 15:00/15:45 - 16:00-16:45 (2
hours)) (Theory) / Friday (09:00-09:45)
(Theory) 10:00/10:45-11:00/11:45 (Lab)

Lecture Classroom İBBF 402 Level-4

Office hours Meetings will be scheduled over Google Meet
with your university account and email and
performed via demand emails. Please send
emails with the subject starts with [CE205]
tag for the fast response and write formal,
clear, and short emails.

Lecture and Communication Language English

Theory/Laboratory Course Hour Per Week 3/2 hours

Credit 4

Prerequisite CE103- Algorithms and Programming I

CE100- Algorithms and Programming II

Corequisite TBD

Requirement TBD

*TBD: To Be Defined.

mailto:ugur.coruh@erdogan.edu.tr

Page 2/15

A. Course Description

This course covers the fundamentals of data structure and file organization. The course scope
explains how to use digital data mapping in programming to use data in application run-time
memory or long-term file storage. The course discusses various implementations of these data
objects, as well as programming styles and run-time representations. The course also looks at
sorting, searching, and graph algorithms. The goal of this course is to provide digital data
structures for real-world problems, as well as how data is shaped and mapped to memory or
storage solutions. The class will be based on sharing expertise and guiding students in the
discovery of learning methods and practice for data structure topics. By making programming
applications and projects in the courses, the learning process will be strengthened by practicing
rather than theory.

B. Course Learning Outcomes

After completing this course satisfactorily, a student will be able to:

● Describe how common linear and non-linear data structures such as arrays, matrices,

linked structures, queues, stacks, trees and graphs are represented in run-time and

storage memory and used by algorithms.

● Compare and contrast the benefits of dynamic and static data structures implementations.

● Understand basic industrial data structure definitions such as ASN.1 / BER TLV / PER

TLV.

● Describe how run-time application data stored in a file and organized.

● Interpret a problem and define data structures for solution by using a C/C++, Java or C#

application solve that problem in data structure manner.

● Compare alternative implementations of data structures with respect to performance and

analysis space and time complexity.

● Understand data structure based sorting and searching algorithms.

● Describe hashing and indexing methods for file organization and processing.

● Discuss the computational efficiency of the principal algorithms for sorting, searching, and

hashing in memory and file storage.

● Combine programming skills with data structures know-how and generate efficient

solutions for real-life problems.

C. Course Topics

● Data-in-use, Data-in-transit and Data-at-rest concepts.
● Data Structures Space and Time Complexity Analysis
● Data and Variable Mappings
● ASN.1 / BER TLV / PER TLV
● Linked Lists (Single, Circular, Double, XOR)
● Skip List
● Strand Sort
● Arrays (Rotations, Arrangement, Rearrangement, Searching and Sorting)
● Matrices and Spare Matrices
● Stacks (Array and Linked List) and FILO (First in Last Out)
● Expressions (Infix, Postfix and Prefix) and Infix to Postfix Conversions and Postfix

Evaluation

Page 3/15

● Queues (Standard, Circular and Double Ended) (Array and Linked List) (FIFO-First-in-
First-Out or FCFS-Fist Come First Serve)

● Multievel Queues (MLQ)
● Hanoi Tower
● Tree Structures and Binary Tree and Traversals (In-Order, Pre-Order, Post-Order)
● Heaps (Max, Min, Binary , Binomial, Fibonacci, Leftist, K-ary) and Priority Queue
● Heap Sort
● Huffman Coding
● Graph Representations (Adjency Matrix, Incidence Matrix, Adjency List) and Basics
● Graph Traversals (Depth-First Search (DFS), Iterative Deepening Search(IDS) or

Iterative Deepening Depth First Search(IDDFS), Breadth-First Search (BFS), Depth-
limited Search, Uniform Cost Search, Bidirectional Search)

● Water Jug Problem
● Graph Topological Sorting
● Graph Minimum Spanning Tree (MST)
● Graph Backtracking (Tug of War, n-Queen’s, m Coloring, Euler& Hamiltonian Path)
● Graph Shortest Paths
● Graph Connectivity, Max Flow, Isomorphism, Canonization and Cuts (Max /Min)
● Alpha-Beta Prunning
● Hasse Diagrams
● Petri Nets
● Bipartite Graphs
● Graph Cycle Detection (Brent’s, Hare and Tortoise Algorithms)
● Bayesian Network
● Linear, Binary, Interpolation and Fibonacci Search
● Hashing and Hash Tables (Direct-Adress Tables, Hash Tables, Hash Functions, Open

Adressing, Perfect Hashing)
● Common Sorting Algorithms (Insertion, Selection, Radix, Quick, Heap, Permutation,

Gnome, Comb, Flash, Stooge, Bees, Lucky, Indirect (Pointer), External (Segmented),
Shaker/Bidirectional Bubble, Shell Sort)

● Comparison of Sorting Methods
● Common Tree Data Structures and Operations (Binary Search Tree, AVL Tree, B Tree

and Derivations (2 3 4 Trees, 2 3 Trees, B+ Trees, B# Trees), R Tree, Red-Black Tree,
Splay Tree, Van Emde Boas Tree, Binomial Tree, Minimax Tree)

● Comparison of Search Trees
● Augmenting Data Structures
● String LCS Problem (Hunt Macllory, Levenstein, Wagner-Fischer)
● String Alignment (Needleman Wunsch, Smith Waterman, Hunt Macllory), Tokenizer and

Comparison
● String Search (Reverse Factor) Algorithms (Knuth-Morris-Pratt, Horspool, Boyer-Moore,

Brute-Force, DFA Text Search)
● Tries and Patricia Tree (Radix Tree)
● Data Structure for Disjoint Sets
● Sequential File Organization (Binary Search, Interpolation Search, Self-Organizing

Sequential Search)
● Direct File Organization Locating Information
● Direct File Organization Hashing Functions (MD5, HAVAL, SHA1, Key Mod N, Key Mod

P, Truncation, Folding, Squaring, Radix Conversion, Polynomial Hashing, Alphabetic
Keys, Collisions)

● Direct File Organization Collision Resolution
● Direct File Organization Coalesced Hashing (EISCH, LISCH, BEISCH, BLISCH,

REISCH, RLISCH, EICH, LICH)
● Direct File Organization Progressive Overflow (Linear Probing, Quadratic Probing)

Page 4/15

● Direct File Organization Double Hashing, Use of Buckets, Linear Quotient, Brent’s
Method, Binary Tree and Computed Chaining Insertion (CCI)

● Perfect Hashing and SimHash for Direct File Organization
● Comparison of Collision Resolution Methods
● Indexed Sequential File Organization
● Secondary Key Retrivals and Bits and Hashing for Classification and Checking
● Binary Tree Structures for Files (Binary Search, AVL Trees, Internal Path Reduction

Trees)
● B-Trees and Derivates for Files (B Tree, B+Tree, B# Tree)
● Hashing Techniques for Expandable Files (Extendible, Dynamic and Linear Hashing)
● Tries, Approximate String Matching, Trie Hashing, Patricia Tree and Digital Search Tree

for File Organization
● Secondary Key Retrivial (K-d Trees and Grid Files)
● File Sorting (Insertion, Quick, Heap Sorts, External Sorting, Sorting By Merging and Disk

Sort)

D. Textbooks and Required Hardware

This course does not require a coursebook. If necessary, you can use the following books and
open-source online resources.

● C How to Program, 7/E. Deitel & Deitel. 2013, Prentice-Hall.
● Intro to Java Programming, Comprehensive Version (10th Edition) 10th Edition by Y.

Daniel Liang
● Introduction to Algorithms, Third Edition By Thomas H. Cormen, Charles E. Leiserson,

Ronald L. Rivest, and Clifford Stein
● Problem Solving and Program Design in C, J.R. Hanly, and E.B. Koffman, 6th Edition.

● Alan L. Tharp. 1988. File organization and processing. John Wiley & Sons, Inc., USA.

● Richard Jankowski. 2010. Advanced data structures by Peter Brass Cambridge
University Press 2008. SIGACT News 41, 1 (March 2010), 19–20.
DOI:https://doi.org/10.1145/1753171.1753176

● Robert Sedgewick and Kevin Wayne. 2011. Algorithms (4th. ed.). Addison-Wesley
Professional.

● Additional Books TBD

During this course, you should have a laptop for programming practices. You will have your
development environment, and you will use this for examination and assignments also
classroom practices.

E. Grading System

Midterm and Final grades will be calculated with the weighted average of the project or

homework-based examinations. Midterm grades will be calculated between term beginning to

the midterm week, and Final grades will be calculated between Midterm and Final week

homeworks or projects as follow.

𝑎𝑛 = 𝐻𝑜𝑚𝑒𝑤𝑜𝑟𝑘 𝑜𝑟 𝑃𝑟𝑜𝑗𝑒𝑐𝑡 𝑊𝑒𝑖𝑔ℎ𝑡

Page 5/15

𝐻𝑊𝑛 = 𝐻𝑜𝑚𝑒𝑤𝑜𝑟𝑘 𝑜𝑟 𝑃𝑟𝑜𝑗𝑒𝑐𝑡 𝑃𝑜𝑖𝑛𝑡𝑠

𝑛 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐻𝑜𝑚𝑒𝑤𝑜𝑟𝑘 𝑜𝑟 𝑃𝑟𝑜𝑗𝑒𝑐𝑡

𝐺𝑟𝑎𝑑𝑒 =
(𝑎1𝐻𝑊1 + 𝑎2𝐻𝑊2 + ⋯ + 𝑎𝑛𝐻𝑊𝑛)

𝑛

Homework/Exam Weight

𝑀𝑖𝑑𝑡𝑒𝑟𝑚 %40

𝐹𝑖𝑛𝑎𝑙 %60

𝑃𝑎𝑠𝑠𝑖𝑛𝑔 𝐺𝑟𝑎𝑑𝑒 =
40 ∗ 𝑀𝑖𝑑𝑡𝑒𝑟𝑚𝐺𝑟𝑎𝑑𝑒 + 60 ∗ 𝐹𝑖𝑛𝑎𝑙𝐺𝑟𝑎𝑑𝑒

100

F. Instructional Strategies and Methods

The basic teaching method of this course will be planned to be face-to-face in the classroom, and
support resources, homeworks, and announcements will be shared over google classroom.
Students are expected to be in the university. This responsibility is very important to complete this
course with success. If pandemic situation changes and distance education is required during this
course, this course will be done using synchronous and asynchronous distance education
methods. In this scenario, students are expected to be in the online platform, zoom, or meet at
the time specified in the course schedule. Attendance will be taken.

G. Late Homework

Throughout the semester, assignments must be submitted as specified by the announced

deadline. Overdue assignments will not be accepted. Unexpected situations must be reported to

the instructor for late homeworks by students.

H. Course Platform and Communication

Google Classroom will be used as a course learning management system. All electronic

resources and announcements about the course will be shared on this platform. It is very

important to check the course page daily, access the necessary resources and announcements,

and communicate with the instructor as you needed to complete the course with success.

I. Academic Integrity, Plagiarism & Cheating

Academic Integrity is one of the most important principles of RTEÜ University. Anyone who
breaches the principles of academic honesty is severely punished.

 It is natural to interact with classmates and others to "study together". It may also be the case
where a student asks to help from someone else, paid or unpaid, better understand a difficult
topic or a whole course. However, what is the borderline between "studying together" or "taking
private lessons" and "academic dishonesty"? When is it plagiarism, when is it cheating?

It is obvious that looking at another student's paper or any source other than what is allowed
during the exam is cheating and will be punished. However, it is known that many students come

Page 6/15

to university with very little experience concerning what is acceptable and what counts as
"copying", especially for assignments.

The following are attempted as guidelines for the Faculty of Engineering and Architecture students
to highlight the philosophy of academic honesty for assignments for which the student will be
graded. Should a situation arise which is not described below, the student is advised to ask the
instructor or assistant of the course whether what they intend to do would remain within the
framework of academic honesty or not.

a. What is acceptable when preparing an assignment?

● Communicating with classmates about the assignment to understand it better

● Putting ideas, quotes, paragraphs, small pieces of code (snippets) that you find online

or elsewhere into your assignment, provided that

● these are not themselves the whole solution to the assignment,

● you cite the origins of these

● Asking sources for help in guiding you for the English language content of your

assignment.

● Sharing small pieces of your assignment in the classroom to create a class discussion

on some controversial topics.

● Turning to the web or elsewhere for instructions, for references, and solutions to

technical difficulties, but not for direct answers to the assignment

● Discussing solutions to assignments with others using diagrams or summarized

statements but not actual text or code.

● Working with (and even paying) a tutor to help you with the course, provided the tutor

does not do your assignment for you.

b. What is not acceptable?

● Asking a classmate to see their solution to a problem before submitting your

own.

● Failing to cite the origins of any text (or code for programming courses) that you

discover outside of the course's lessons and integrate into your work

● Giving or showing a classmate your solution to a problem when the classmate

is struggling to solve it.

J. Expectations

You are expected to attend classes on time by completing weekly course requirements (readings

and assignments) during the semester. The main communication channel between the instructor

and the students will be emailed. Please send your questions to the instructor's email address

about the course via the email address provided to you by the university. Ensure that you

include the course name in the subject field of your message and your name in the text

field. In addition, the instructor will contact you via email if necessary. For this reason, it is very

important to check your email address every day for healthy communication.

K. Lecture Content and Syllabus Updates

If deemed necessary, changes in the lecture content or course schedule can be made. If any
changes are made in the scope of this document, the instructor will inform you about this.

Page 7/15

Course Schedule Overview

Weeks Dates Subjects Other Tasks

Week 1

20.09.2022
23.09.2022

Course Plan and Communication,

Introduction to Linear & Non-Linear Data Structure
and Performance Analysis

Implementing Pointer and Objects for Data and
Variables

Basic of ASN.1 / BER TLV / PER TLV

TBD

Week 2
27.09.2022
30.09.2022

Linked Lists and Related Algorithms

Arrays and Matrices

TBD

Week 3
04.10.2022
07.10.2022

Stacks, Queue Structures and Related Algorithms
and Problems.

TBD

Week 4
11.10.2022
14.10.2022

Tree Data Structure Types and Applications

(Binary Tree, Tree Traversals, Heaps)

TBD

Week 5
18.10.2022
21.10.2022

Graph Data Structure and Traversals TBD

Week 6

25.10.2022
28.10.2022

Graph MST, Backtracking, Topological Sorting,

Shortest Paths, Connectivity,Max Flow and Cycle

Detection Algorithms.

Graph Isomorphism and canonization

Graph Cuts

TBD

Week 7

01.11.2022
04.11.2022

Linear, Binary and Fibonacci Search

Hashing and Hash Tables with Perpect Hashing

TBD

Week 8
08.11.2022
11.11.2022

Midterm
TBD

Week 9
15.11.2022
18.11.2022

Sorting Algorithms, Taxonomy and Comparisons TBD

Week 10

22.11.2022
25.11.2022

Advaced Tree Data Structures (Binary Search

Tree, AVL Tree, B Trees and derivations,Red-

Black trees, Splay Trees and Augmented Data

Structures, van Emde Boas Trees, Binomial and

Minimax Trees) and Comparisons.

TBD

Week 11
29.11.2022
02.12.2022

String Data Structure, Subsequence Search,

Alignment and Comparison Algorithms.

TBD

Week 12
06.12.2022
09.12.2022

String Search Algorithms, Tries, Data Structures

for Disjoint Sets.

TBD

Week 13

13.12.2022
16.12.2022

Introduction to File Organization and Processing

Sequential File Organization,Direct File

Organization Hash Methods

TBD

Page 8/15

Week 14
20.12.2022
23.12.2022

Direct File Organization Indexes Binary and B

Tree Structures for File.

TBD

Week 15

27.12.2022
30.12.2022

Hashing Techniques for Expandable Files,Tries

Approximate String Matching

Trie Hashing

Seconday Key Retrieval (2)

File Sorting

TBD

Week 16
03.01.2023
06.01.2023

Final
TBD

Page 9/15

Course Schedule Details

Week-1

1. Introduction to Data Structure

a. Data-in-use

b. Data-in-transit

c. Data-at-rest

2. Performance Analysis

3. Space Complexity

4. Time Complexity

5. Data and Variables

6. Implementing Pointer and Objects

7. Linear & Non-Linear Data Structures

8. ASN.1 / BER TLV / PER TLV

Week-2

1. Single Linked List

2. Circular Linked List

3. Double Linked List

4. XOR Linked List

5. Skip List

6. Strand Sort

7. Arrays

a. Array Rotations

b. Arrangement Rearrangement

c. Searching and Sorting

d. Optimization Problems

8. Matrix

9. Sparse Matrix

Week-3

1. Stack ADT

2. Stack Using Array

3. Stack Using Linked List

4. Expressions

a. Infix

b. Postfix

c. Prefix

5. Infix to Postfix Conversion

6. Postfix Expression Evaluation

7. Queue ADT

a. First Come First Serve, FCFS, FIFO

8. Queue Datastructure Using Array

9. Queue Using Linked List

10. Circular Queue Datastructure

11. Double Ended Queue Datastructure

12. Hanoi Tower

Page 10/15

13. Multilevel Queue (MLQ)

Week-4

1. Tree – Terminology

2. Tree Representations

3. Binary Tree Datastructure

a. Construction and Conversion

b. Checking and Printing

c. Summation

d. Longest Common Ancestor

4. Binary Tree Representations

5. Binary Tree Traversals

a. In-Order

b. Pre-Order

c. Post-Order

6. Threaded Binary Trees

7. Max Priority Queue

8. Heap Data Structure

a. Max-Heap

b. Min-Heap

c. Binary Heap

d. Binomial Heap

e. Fibonacci Heap

i. Structure of Fibonacci Heaps

ii. Mergeable-heap operations

iii. Decreasing a key and deleting a node

iv. Bounding the maximum degree

f. Leftist Heap

g. K-ary Heap

h. Heap Sort

i. Huffman Coding

Week-5

1. Introduction to Graphs

a. Vertex

b. Edge

c. Undirected Graph

d. Directed Graph

e. Mixed Graph

f. End Vertices or Endpoints

g. Origin

h. Destination

i. Adjacent

j. Incident

k. Outgoing Edge

l. Incoming Edge

m. Degree

n. Indegree

o. Outdegree

Page 11/15

p. Parallel edges or Multiple edges

q. Self-loop

r. Simple Graph

s. Path

2. Graph Representations

a. Adjacency Matrix

b. Incidence Matrix

c. Adjacency List

3. Graph Traversal

a. Depth-First Search (DFS)

i. Iterative Deepening Search(IDS) or Iterative Deepening Depth First

Search(IDDFS)

b. Breadth-First Search (BFS)

c. Depth-limited Search

d. Uniform Cost Search

e. Bidirectional Search

f. Water Jug Problem

Week-6

1. Graph Topological Sorting

2. Graph MST

3. Graph Backtracking

a. Tug of War

b. n-Queen's Problem

c. m Coloring Problem

d. Euler & Hamiltonian Path

4. Graph Sortest Paths

5. Graph Connectivity

6. Graph Max Flow

7. Graph Isomorphism

a. https://github.com/Mith13/Graphs-isomorphism

8. Graph canonization

9. Graph Cuts

a. Min Cut

b. Max Cut

10. Alpha-Beta Pruning

11. Hasse Diagrams

12. Petri Nets

13. Bipartite Graphs

14. Cycle Detection

a. Brent’s Algorithm

b. Hare and Tortoise Algorithm

15. Bayesian Network

Week-7

1. Linear Search

2. Binary Search

a. Interpolation Search

3. Fibonacci Search

https://github.com/Mith13/Graphs-isomorphism

Page 12/15

4. Hashing and Hash Tables

a. Direct-Address Tables

b. Hash Tables

c. Hash Functions

d. Open Adressing

e. Perfect Hashing

Week-8 (Midterm)

Week-9

5. Sortings

a. Insertion Sort

b. Selection Sort

c. Radix Sort

d. Quick Sort

e. Heap Sort

f. Permutation Sort

g. Gnome Sort

h. Comb Sort

i. Flash Sort

j. Stooge Sort

k. Bees Algorithm

l. Lucky Sort

m. Indirect Sort (Pointer Sort)

n. External Sort (Segmented Sort)

o. Shaker Sort / Bidirectional Bubble Sort

p. Shell Sort

q. Comparison of Sorting Methods

Week-10

1. Trees

a. Binary Search Tree

i. Search and Insertion

ii. Delete

iii. BST over Hash Table

iv. Construction and Conversions

v. Check Smallest/Largest Element

vi. Red Black Tree and Threaded Binary Tree

b. AVL Trees

c. B Trees

i. Defitinion of B Trees

ii. Basic operations on B tree

iii. Deleting a key from a B tree

d. 2 3 4 Trees

e. 2 3 Trees

f. B+ Trees

g. R Trees

h. Red - Black Tree Datastructure

i. Splay Tree Datastructure

Page 13/15

j. Augmenting Data Structures

i. Dynamic order statistics

ii. How to augment a data structure

iii. Interval trees

k. van Emde Boas Trees

i. Preliminary approaches

ii. A recursive structure

iii. The van Emde Boas tree

l. Binomial Trees

m. Comparison of Search Trees

n. Minimax Tree

Week-11

1. Strings

a. Longest common subsequence problem

i. Longest increasing subsequence

ii. Hunt–Szymanski algorithm (Hunt Macllory)

iii. Levenshtein distance

iv. Wagner–Fischer algorithm

b. String Alignment

i. Needleman Wunsch

ii. Smith Waterman

iii. Hunt Macllory

c. String Tokenizer

d. String Comparison

Week-12

2. Strings

a. Reverse Factor Algorithm (String Search)

i. Knuth-Morris-Pratt Algorithm

ii. Horspool Algorithm

iii. Boyer-Moore Algorithm

iv. Brute-Force / Linear Text Search

v. DFA Text Search

1. Tries

a. Patricia Tree (Radix Tree)

2. Data Structures for Disjoint Sets

a. Disjoint-set operations

b. Linked-list representation of disjoint sets

c. Disjoint-set forests

d. Analysis of union by rank with path compression

Week-13

1. File Organization

a. Sequential File Organization

i. Binary Search

ii. Interpolation Search

iii. Self-Organizing Sequential Search

b. Direct File Organization

Page 14/15

i. Locating Information

ii. Hashing Functions (MD5, HAVAL, SHA1 etc.)

1. Key mod N

2. Key mod P

3. Truncation

4. Folding

5. Squaring

6. Radix Conversion

7. Polynomial Hashing

8. Alphabetic Keys

9. Collisions

iii. Collision Resolution

1. Collision resolution with links

2. Collision resolution without links

a. Static positioning of records

b. Dynamic positioning of records

3. Collision resolution with pseudolinks

iv. Coalesced Hashing

1. EISCH

2. LISCH

3. BEISCH

4. BLISCH

5. REISCH

6. RLISCH

7. EICH

8. LICH

v. Progressive Overflow

1. Linear Probing

2. Quadratic Probing

vi. Double Hashing

vii. Use of Buckets

viii. Linear Quotient

ix. Brent’s Method

x. Binary Tree

xi. Computed Chaining Insertion(CCI)

xii. Comparison of Collision Resolution Methods

xiii. Perfect Hashing

xiv. SimHash

Week-14

a. Indexed Sequential File Organization

b. Bits of Information

c. Secondary Key Retrieval

i. Multilist File Organization

ii. Inverted Files

iii. Partial Match Retrieval with Signature Trees

iv. Partial Match Retrieval with Page Signatures

d. Bits and Hashing

i. Signature Hashing

Page 15/15

ii. Bloom Filters

iii. Classification Hashing

iv. Check Hashing

e. Binary Tree Structures

i. Binary Search Trees

ii. AVL Trees

iii. Internal Path Reduction Trees

f. B-Trees and Derivatives

i. B-Trees

ii. B#-Trees

iii. B+ -Trees

Week-15

g. Hashing Techniques for Expandable Files

i. Extendible Hashing

ii. Dynamic Hashing

iii. Linear Hashing

h. Other Tree Structures

i. Tries

ii. Approximate String Matching

iii. Trie Hashing

iv. PATRICIA Trees

v. Digital Search Trees

i. Seconday Key Retrieval (2)

i. K-d trees

ii. Grid Files

j. File Sorting

i. Insertion Sort

ii. Quicksort

iii. Heapsort

iv. External Sorting

v. Sorting by Merging

vi. Disk Sort

Week-16 (Final)

