
CE204 Object-Oriented Programming

Week-7 (UMPLE - Part 2)

Spring Semester, 2021-2022

Download DOC-PDF, DOC-DOCX, SLIDE, PPTX,

CE204 Object-Oriented Programming

 RTEU CE204 Week-7

file:///E:/UgurCoruh/RTEU/Lectures/2021-2022%20Bahar%20CE100%20-%20Algorithms%20and%20Programming%20II/ce204-object-oriented-programming/docs/week-7/ce204-week-7.en.md_doc.pdf
file:///E:/UgurCoruh/RTEU/Lectures/2021-2022%20Bahar%20CE100%20-%20Algorithms%20and%20Programming%20II/ce204-object-oriented-programming/docs/week-7/ce204-week-7.en.md_word.docx
file:///E:/UgurCoruh/RTEU/Lectures/2021-2022%20Bahar%20CE100%20-%20Algorithms%20and%20Programming%20II/ce204-object-oriented-programming/docs/week-7/ce204-week-7.en.md_slide.pdf
file:///E:/UgurCoruh/RTEU/Lectures/2021-2022%20Bahar%20CE100%20-%20Algorithms%20and%20Programming%20II/ce204-object-oriented-programming/docs/week-7/ce204-week-7.en.md_slide.pptx

UMPLE

Common Scope

What is UMPLE?

What is its purpose?

How to create a UML model with UMPLE?
What is philosophy of UMPLE?

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 2

Common Scope

How to use UMPLE?
UMPLE Online
Command-Line

Eclipse Plugin

Visual Studio Code Plugin

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 3

Common Scope

How to learn UMPLE?
Online Documentations

Video Tutorials

UMPLE Community

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 4

Common Scope

Overview of the basics of Umple
Associations in Umple

State machines in Umple

Product lines in Umple: Mixins and Mixsets

Other separation of concerns mechanisms: (Aspects and traits) and their code generation
Other advanced features of Umple

Hands-on exercise developing versions of a concurrent system using state machines and product
lines.
Umple as written in itself: A case study.

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 5

Common Scope

Introduction:
Overview of Model-Driven Development

Languages / Tools / Motivation for Umple

Class Modeling
Tools / Attributes / Methods / Associations / Exercises /
Patterns

Modeling with State Machines
Basics / Concurrency / Case study and exercises

Separation of Concerns in Models
Mixins / Aspects / Traits

More Case Studies and Hands-on Exercises
Umple in itself / Real-Time / Data Oriented

Conclusion

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 6

Outline - Part 2

Modeling exercises
Simple patterns (if time)

Basic state machines

Analysing models

Concurrency
State machine case study

Mixins

Aspect orientation

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 7

Outline - Part 2

Traits

Mixins and Traits together

Mixsets
Case Studies

Unit Testing with UMPLE

UMPLE issues list

UMPLE's Architecture
Umplification

Conclusion

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 8

Modeling exercises

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 9

Modeling Exercise

Build a class diagram for the following description.

If you think there are key requirements missing, then add them.

A football (soccer) team has players. Each player plays a position. The team plays some
games against other teams during each season. The system needs to record who scored
goals, and the score of each game.

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 10

Simple patterns (if time)

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 11

Singleton pattern

Standard pattern to enable only a single instance of a class to be created.

private constructor

getInstance() method

Declaring in Umple

class University {
singleton;
name;
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 12

Delegation pattern

A class calls a method in its "neighbour"

class RegularFlight {
flightNumber;
}

Class SpecificFlight {
* -- 1 RegularFlight;
flightNumber = {getRegularFlight().getFullNumber()}
}

Full details of this example in the user manual

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 13

Basic constraints

Shown in square brackets
Code is added to the constructor and the set method

class X {
Integer i;
[! (i == 10)]
}

We will see constraints later in state machines

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 14

Basic state machines

http://statemachines.umple.org

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 15

http://statemachines.umple.org/

Basics of state machines

At any given point in time, the system is in one state.

It will remain in this state until an event occurs that causes it to change state.

A state is represented by a rounded rectangle containing the name of the state.

Special states:

A black circle represents the start state
A circle with a ring around it represents an end state

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 16

Garage door state machine

class GarageDoor{
 status {
 Open {
 buttonOrObstacle -> Closing;
 }
 Closing {
 buttonOrObstacle -> Opening;
 reachBottom -> Closed;
 }
 Closed {
 buttonOrObstacle -> Opening;
 }
 Opening {
 buttonOrObstacle -> HalfOpen;
 reachTop -> Open;
 }
 HalfOpen {
 buttonOrObstacle -> Opening;
 }
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 17

Events

An occurrence that may trigger a change of state
Modeled in Umple as generated methods that can be called

Several states may be able to respond to the same event

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 18

Transitions

A change of state in response to an event.
It is considered to occur instantaneously.

The label on each transition is the event that causes the change of state.

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 19

State diagrams – an example with conditional transitions

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 20

Actions in state diagrams

An action is a block of code that must be executed effectively instantaneously
When a particular transition is taken,
Upon entry into a particular state, or

Upon exit from a particular state

An action should consume no noticeable amount of time

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 21

Nested substates and guard conditions

A state diagram can be nested inside a state.
The states of the inner diagram are called substates.

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 22

Nested state diagram – Another example

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 23

Auto-transitions

A transition taken immediately upon entry into a state
Unless guarded

We will look at an example in the user manual

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 24

Events with parameters

Parameters can be referenced in guards and actions.
We will look at an example in the user manual.

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 25

Analysing models

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 26

Models can be analysed in several ways

Visually

Automatically generated errors and warnings
State tables (next slide)\

Metrics

Formal methods (nuXMV)

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 27

State tables and simulations

Allow analysis of state machines statically without having to write code

We will explore these in UmpleOnline by looking at state machine examples and generating
tables and simulations

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 28

Concurrency

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 29

Do activities and concurrency

A do activity executes
In a separate thread

Until
Its method terminates, or
The state needs to exit (killing the tread)

Example uses:
Outputting a stream (e.g. playing music)
Monitoring something

Running a motor while in the state

Achieving concurrency, using multiple do activities

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 30

Active objects

These start in a separate thread as they are instantiated.

Declared with the keyword

active

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 31

Default threading in state machines

As discussed so far, code generated for state machines has the following behaviour:
A single thread:

Calls an event
Executes the event (running any actions)

Returns to the caller and continues

This has two problems:
If another thread calls the event at the same time they will interfere

There can be deadlocks if an action itself triggers an event

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 32

Queued state machines

Solve the threading problem:

Callers can add events to a queue without blocking
A separate thread takes items off the queue ‘as fast as it can’ and processes them

Umple syntax: queued before the state machine declaration

We will look at examples in the manual

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 33

Pooled state machines

Default Umple Behavior (including with queued):
If an event is received but the system is not in a state that can handle it, then the event is
ignored.

Alternative pooled stereotype:
Uses a queue (see previous slide)

Events that cannot be processed in the current state are left at the head of the queue until a
relevant state reached
The first relevant event nearest the head of the queue is processed

Events may hence be processed out of order, but not ignored

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 34

Unspecified pseudo-event

Matches any event that is not listed

Can be in any state, e.g.

unspecified -> error;

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 35

Example using unspecified

class AutomatedTellerMachine{
 queued sm {
 idle {
 cardInserted -> active; maintain -> maintenance;
 unspecified -> error1;
 }
 maintenance { isMaintained -> idle; }
 active {
 entry /{addLog("Card is read");}
 exit /{addLog("Card is ejected");}
 validating {
 validated -> selecting;
 unspecified -> error2;
 }
 selecting {select -> processing; }
 processing {
 selectAnotherTransiction -> selecting;
 finish -> printing;
 }
 printing {receiptPrinted -> idle;}
 cancel -> idle;
 }
 error1 {entry / {printError1();} ->idle;}
 error2 {entry / {printError2();} ->validating;}
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 36

State machines in the user manual

http://statemachines.umple.org

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 37

http://statemachines.umple.org/

State machine case study

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 38

State machine for a phone line
CE204 Object-Oriented Programming

 RTEU CE204 Week-7 39

Umple for the phone line example

class phone {
state {
onHook {
startDialing -> dialling;
incomingCall -> ringing;

}

ringing {
pickUp -> communicating;
otherPartyHangUp -> onHook;

}

communicating {
hangUp -> onHook;
otherPartyHangUp -> waitForHook;
putOnHold -> onHold;

}

onHold {
hangUp -> onHook;
otherPartyHangUp -> waitForHook;
takeOffHold -> communicating;

}

next slide

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 40

Umple for the phone line example

con't.

dialing {
completeNumber ->
waitingForConnection;
hangUp -> onHook;

}

waitingForConnection {
otherPartyPickUp -> communicating;
hangUp -> onHook;
timeOut -> onHook;

}

waitForHook {
hangUp -> onHook;

}

}

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 41

In-class modeling exercise for state machines

Microwave oven system state machine
Events include

pressing of buttons

door opening

door closing

timer ending
etc.

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 42

Mixins

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 43

Mixins : Motivation

Product variants have long been important for

Product lines/families, whose members target different:

hardware, OS, feature sets, basic/pro versions

Feature-oriented development (separation of concerns)

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 44

Separation of concerns by mixins in Umple

Mixins allow including attributes, associations, state
machines, groups of states, stereotypes, etc

Example:

class X { a; }
class X { b; }

The result would be a class with both a and b.

It doesn’t matter whether the mixins are

Both in the same file

One in one file, that includes the other in an other file
In two separate files, with a third file invoking them

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 45

Typical ways of using mixins

Separate groups of classes for

model (classes, attributes, associations)

Methods operating on the model

Allows a clearer view of the core model

Another possibility

One feature per file

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 46

Typical ways of using mixins

Separate model files (classes, attributes associations)

… from files for the same class containing methods
Allows a clearer view of the core model

Separate system features, each into a separate file

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 47

Advantages and disadvantages of mixins

Advantages:

Smaller files that are easier to understand

Different versions of a class for different software versions (e.g. a professional version) can be
built by using different mixins

Disadvantage

Delocalization:
Bits of functionality of a class in different files

The developer may not know that a mixin exists unless a tool helps show this

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 48

Aspect orientation

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 49

Aspects : Motivation

We often don’t quite like the code as generated

Or

We want to do a little more than what the generated code
does

Or

We want to inject some feature (e.g. security checks) into
many places of generated or custom code

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 50

Aspect orientation : General Concept

Create a pointcut that specifies (advises) where to inject code at multiple points elsewhere in a
system

The pointcut uses a pattern

Pieces of code that would otherwise be scattered are thus gathered into the aspect

But: There is potentially acute sensitivity to change

If the code changes the aspect may need to change
Yet without tool support, developers wouldn’t know this

Drawback : Delocalization even stronger than for mixins

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 51

Aspect orientation in Umple

It is common to limit a pointcuts a single class

Inject code before, after, or around execution of custom or generated methods and
constructors

class Person {
name;
before setName {
if (aName != null && aName.length() > 20) { return false;
}
}
}

We have found these limited abilities nonetheless solve key problems

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 52

Traits

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 53

Traits : Motivation

We may want to inject similar elements into unrelated classes

without complex multiple inheritance

Elements can be

Methods

Attributes

Associations

States or state machines

.. Anything

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 54

Separation of Concerns by Traits

Allow modeling elements to be made available in multiple classes

trait Identifiable {
firstName;
lastName;
address;
phoneNumber;
fullName = {firstName + " " + lastName}
Boolean isLongName() {return lastName.length() > 1;}
}

class Person {
isA Identifiable;
}

See more complete version of this in the user manual

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 55

Another Trait example

trait T1{
 abstract void method1(); /* required method */
 abstract void method2();
 void method4(){/*implementation – provided method*/ }
}

trait T2{
 isA T1;
 void method3();
 void method1(){/*implementation*/ }
 void method2(){/*implementation*/ }
}

class C1{
 void method3(){/*implementation*/ }
}

class C2{ isA C1; isA T2;
 void method2(){/*implementation*/ }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 56

Traits With Parameters

trait T1< TP isA I1 > {
abstract TP method2(TP data);
String method3(TP data){ /*implementation*/ }
}
interface I1{
void method1();
}
class C1{ isA I1;
isA T1<TP = C1>;
void method1(){/*implementation*/}
C1 method2(C1 data){ /*implementation*/ }
}
class C2{
isA I1;
isA T1< TP = C2 >;
void method1(){/*implementation*/}
C2 method2(C2 data){ /*implementation*/ }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 57

Trait Parameters in Methods

trait T1 <TP>{
String method1();
String method2(){
#TP# instance = new #TP#();
return method1() +":"+instance.process();
}
}
class C1{
String process(){/*implementation*/}
}
class C2{
isA T1< TP = C1 >;
String method1(){/*implementation*/ }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 58

Selecting Subsets of Items in Traits

trait T1{
abstract method1();
void method2(){/*implementation*/}
void method3(){/*implementation*/}
void method4(){/*implementation*/}
void method5(){/*implementation*/}
}
class C1{
isA T1<-method2() , -method3()>;
void method1() {/*implementation related to C1*/}
}
class C2{
isA T1<+method5()>;
void method1() {
/*implementation related to C2*/}
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 59

Renaming Elements when Using Traits

trait T1{
abstract method1();
void method2(){/*implementation*/}
void method3(){/*implementation*/}
void method4(){/*implementation*/}
void method5(Integer data){/* implementation*/}
}
class C1{
isA T1< method2() as function2 >;
void method1() {/*implementation related to C1*/}
}
class C2{
isA T1< method3() as private function3 >;
void method1() {/*implementation related to C2*/}
}
class C3{
isA T1< +method5(Integer) as function5 >;
void method1() {/*implementation related to C3*/}
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 60

Associations in Traits: Observer Pattern

class Dashboard{
void update (Sensor sensor){ /*implementation*/ }
}
class Sensor{
isA Subject< Observer = Dashboard >;
}
trait Subject <Observer>{
0..1 -> * Observer;
void notifyObservers() { /*implementation*/ }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 61

Using Traits to Reuse State Machines

trait T1 {
sm1{
s0 {e1-> s1;}
s1 {e0-> s0;}
}
}
trait T2 {
isA T1;
sm2{
s0 {e1-> s1;}
s1 {e0-> s0;}
}
}
class C1 {
isA T2;
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 62

Satisfaction of Required Methods Through State Machines

trait T1{
Boolean m1(String input);
Boolean m2();
sm1{
s1{
e1(String data) -> /{ m1(data); } s2; }
s2{
e2 -> /{ m2(); } s1; }
}
}
class C1{
isA T1;
sm2{
s1{ m1(String str) -> s2;}
s2{ m2 -> s1;}
}
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 63

Changing Name of a State Machine Region

trait T1{
sm {
s1{
r1{ e1-> r11; }
r11{}
||
r2{ e2-> r21; }
r21{}
}
}
}
class C1{
isA T1<sm.s1.r1 as region1,sm.s1.r2 as region2>;
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 64

Changing the Name of an Event

trait T1 {
sm1{
s0 { e1(Integer index)-> s1;}
s1 {e0-> s0;}
}
sm2{
t0 {e1(Integer index)-> t1;}
t1 {e0-> t0;}
}
}
class C1 {
isA T1<sm1.e1(Integer) as event1, *.e0() as event0>;
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 65

Mixins and Traits together

Examples of mixins and traits combined in the user manual:

Mixins with traits:
https://cruise.umple.org/umple/TraitsandUmpleMixins.html

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 66

https://cruise.umple.org/umple/TraitsandUmpleMixins.html

Mixsets

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 67

Mixsets: Motivations

A feature or variant needs to inject or alter code in many
places

Historically tools like the C Preprocessor were used

Now tools like "Pure: Variants"

There is also a need to

Enable model variants in a very straightforward way

Blend variants with code/models in core compilers
With harmonious syntax + analysable semantics

Without the need for tools external to the compiler

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 68

Mixsets: Top-Level Syntax

Mixsets are named sets of mixins

mixset Name {
// Anything valid in Umple at top level
}

The following syntactic sugar works for top level elements (class, trait, interface, association, etc.)

mixset Name class Classname {
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 69

Use Statements

A use statement specifies inclusion of either
A file, or

A mixset

use Name;

A mixset is conceptually a virtual file that is composed of a
set of model/code elements

The use statement for a mixset can appear
Before, after or among the definition of the mixset parts

In another mixset

On the command line to generate a variant

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 70

Mixsets and Mixins: Synergies

The blocks defined by a mixset are mixins
Mixsets themselves can be composed using mixins

e.g.

mixset Name1 {class X { a; } }

And somewhere else

mixset Name1 {class X { b; } }
use Name1;

Would be the same as:

class X { a; b;}

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 71

Mixset Definitions Internal to a Top-Level Element

class X {
mixset Name2 {a;}
b;

}

Is the same as,

mixset Name2 class X {a;}
class X {b;}

The above works for attributes, associations, state
machines, states, etc.

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 72

Motivating Example: Umple Model/Code for Basic Bank
CE204 Object-Oriented Programming

 RTEU CE204 Week-7 73

Class Diagram of Basic Bank Example:
CE204 Object-Oriented Programming

 RTEU CE204 Week-7 74

Adding Optional Multi-branch Feature
CE204 Object-Oriented Programming

 RTEU CE204 Week-7 75

Example: Multi-branch Umple Model/Code
CE204 Object-Oriented Programming

 RTEU CE204 Week-7 76

Alternative Approach (same system)
CE204 Object-Oriented Programming

 RTEU CE204 Week-7 77

Constraints on Mixsets

require [Mixset1 or Mixset2];

Allowed operators

and, or, xor

not

n..m of {…}

Parentheses allowed

opt X (means 0..1 of {X})

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 78

Case Study and Exercise 1: Modifying the banking example

I will give you the text of the banking example and set up a
task for you to:

Add the ability to have one or more account holders

Add the ability to have one or more co-signers

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 79

Case Study and Exercise 2: Dishwasher example

We will start with the Dishwasher example in UmpleOnline
We will use UmpleOnline’s Task capability to ask you to split the Dishwasher example into two
versions

A cheap version that only does normal wash and not fast wash

A full version that does everything

Hint: Pull out the relevant state and transition for fast wash
and wrap it in a mixset

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 80

Case Study 3: Umple itself, written in Umple

We will look at:
Code in Github

Generated Architecture diagrams
Generated Javadoc

Sample master code

Sample test output

Sample code for generators (that replaced Jet)
UmpleParser (that replaced Antlr

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 81

Unit Testing with UMPLE

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 82

Unit Testing with Umple

To see how to integrate Unit Testing with Umple, see the sample project at
https://github.com/umple/umple/tree/master/sandbox

And the build script at
https://github.com/umple/umple/blob/master/build/build.sandbox.xml

Command line from build directory

ant -f build.xml sandbox

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 83

https://github.com/umple/umple/tree/master/sandbox
https://github.com/umple/umple/blob/master/build/build.sandbox.xml

A Look at How Umple is Written in Itself

Source:
https://github.com/umple/umple/tree/master/cruise.umple/src

Umple’s own class diagram generated by itself from itself:
http://metamodel.umple.org

Colours represent key subsystems

Click on classes to see Javadoc, and then Umple Code

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 84

https://github.com/umple/umple/tree/master/cruise.umple/src
http://metamodel.umple.org/

Testing: TDD with100% pass always required

Multiple levels: https://cruise.eecs.uottawa.ca/qa/index.php

Parsing tests: basic constructs
Metamodel tests: ensure it is populated properly

E.g.
https://github.com/umple/umple/blob/master/cruise.umple/test/cruise/umple/compiler/Ass
ociationTest.java

Implementation template tests: to ensure constructs generate code that looks as expected

Testbed semantic tests: Generate code and make sure it
behaves the way it should

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 85

https://cruise.eecs.uottawa.ca/qa/index.php
https://github.com/umple/umple/blob/master/cruise.umple/test/cruise/umple/compiler/AssociationTest.java

UMPLE issues list

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 86

UMPLE issues list

Tagged by

Priority

Perceived difficulty
Scale (bug, project, research project)

Milestone (slow release)

http://bugs.umple.org

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 87

http://bugs.umple.org/

Using Umple with Builds and Continuous Integration

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 88

Using Umple with Builds and Continuous Integration

Example build scripts
Example travis.yml

Umple’s own Travis page

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 89

https://github.com/umple/umple/blob/10e9b6a8124942b4f24b89e2d85dcc4260989cad/.travis.yml
https://travis-ci.org/github/umple/umple

UMPLE's Architecture

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 90

Umple's Architecture
CE204 Object-Oriented Programming

 RTEU CE204 Week-7 91

Umplification

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 92

Umplification

Umplification: ‘amplication’ + converting into Umple.

Produces a program with behavior identical to the original one but written in Umple.

Eliminates the distinction between code and model. Proceeds incrementally until the desired level
of abstraction is achieved.

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 93

Umplification: The Transformation Steps

Transformation 0: Initial transformation
Transformation 1: Transformation of generalization, dependency, and namespace declarations.

Transformation 2: Analysis and conversion of many instance
variables, along with the methods that use the variables.

Transformation 2a: Transformation of variables to UML/Umple attributes.

Transformation 2b: Transformation of variables in one or more classes to UML/Umple
associations.

Transformation 2c: Transformation of variables to UML/Umple state machines.

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 94

Umplification Process
CE204 Object-Oriented Programming

 RTEU CE204 Week-7 95

Umplificator Architecture
CE204 Object-Oriented Programming

 RTEU CE204 Week-7 96

Umplification - Example

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 97

Umplification - Example
CE204 Object-Oriented Programming

 RTEU CE204 Week-7 98

Systems umplified (JhotDraw 7.5.1)
CE204 Object-Oriented Programming

 RTEU CE204 Week-7 99

Systems umplified (JhotDraw 7.5.1)
CE204 Object-Oriented Programming

 RTEU CE204 Week-7 100

Systems umplified

Weka

Associations umplified

Args4J- Modernization

Original Args4j source code is composed of 61 classes and 2223 LOC.

Umplified Args4j source code is composed of 122 (2 per input class) umple files and 1980
LOC.

LOC in files containing modeling constructs (X.ump) is 312.

LOC in files with algorithmic/logic code (X code.ump) is 1668.

The developer must then translate 1518 lines of code rather than 2223 lines of code.

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 101

Conclusion

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 102

Conclusion

Umple
Is simple but powerful modeling tool
Generates state-of-the-art code

Enables agility + model-driven development

We call the overall approach model-based programming

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 103

Umple Examples More ..

http://try.umple.org

https://github.com/umple/umple/wiki/examples
http://umpr.a4word.com/

http://code.umple.org

http://metamodel.umple.org

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 104

http://try.umple.org/
https://github.com/umple/umple/wiki/examples
http://umpr.a4word.com/
http://code.umple.org/
http://metamodel.umple.org/

References

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 105

References

UMPLE Tutorials

UMPLE Github
UMPLE Online

UMPLE Documentation

UMPLE CSI5112– February 2018

Umple Tutorial: Models 2020 Web
Umple Tutorial: Models 2020 Pdf

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 106

https://github.com/umple/umple/wiki/Tutorials
https://github.com/umple/umple
https://umple.org/
https://cruise.umple.org/umple/
http://www.site.uottawa.ca/~mgarz042/files/CSI5112-Umple.pdf
https://cruise.umple.org/presentations/umpleModels2020Tutorial/
https://cruise.umple.org/presentations/umpleModels2020Tutorial/UmpleTutForModels2020.pdf

References

Getting Started in UMPLE
Experiential Learning for Software Engineering Using Agile Modeling in Umple
(Youtube)

Experiential Learning for Software Engineering Using Agile Modeling in Umple
(Slide)

Tomassetti Code Generation

CE204 Object-Oriented Programming

 RTEU CE204 Week-7 107

https://cruise.umple.org/umple/GettingStarted.html
https://www.youtube.com/watch?v=yif1clbrXnI&ab_channel=CSEETconf
https://cruise.umple.org/presentations/UmpleTutorialCSEET2020.pdf
https://tomassetti.me/code-generation/

CE204 Object-Oriented Programming

End−Of −Week − 7

 RTEU CE204 Week-7 108

