
CE204 Object-Oriented Programming

Week-4 (UML-Unified Modelling Language)

Spring Semester, 2021-2022

Download DOC-PDF, DOC-DOCX, SLIDE, PPTX,

CE204 Object-Oriented Programming

 RTEU CE204 Week-4

file:///E:/UgurCoruh/RTEU/Lectures/2021-2022%20Bahar%20CE100%20-%20Algorithms%20and%20Programming%20II/ce204-object-oriented-programming/docs/week-4/ce204-week-4.tr.md_doc.pdf
file:///E:/UgurCoruh/RTEU/Lectures/2021-2022%20Bahar%20CE100%20-%20Algorithms%20and%20Programming%20II/ce204-object-oriented-programming/docs/week-4/ce204-week-4.tr.md_word.docx
file:///E:/UgurCoruh/RTEU/Lectures/2021-2022%20Bahar%20CE100%20-%20Algorithms%20and%20Programming%20II/ce204-object-oriented-programming/docs/week-4/ce204-week-4.tr.md_slide.pdf
file:///E:/UgurCoruh/RTEU/Lectures/2021-2022%20Bahar%20CE100%20-%20Algorithms%20and%20Programming%20II/ce204-object-oriented-programming/docs/week-4/ce204-week-4.tr.md_slide.pptx

UML-Unified Modelling Language

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 2

Outline

UML Overview

UML Tools

UML Building Blocks
UML Architecture

UML Diagrams Overview

UML Relationship

UML Association vs. Aggregation vs. Composition

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 3

Outline

UML- Association

UML-Dependency

UML-Generalization
UML-Realization

UML Class Diagram

UML Object Diagram

UML Component Diagram

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 4

Outline

UML Deployment Diagram

UML Interaction Diagram
UML Use Case Diagram

UML Sequence Diagram

UML Collaboration Diagram

UML State Machine Diagram
UML Activity Diagram

UML Timing Diagram

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 5

UML Overview

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 6

UML Overview

UML (Unified Modeling Language) is a general-purpose, graphical modeling
language in the field of Software Engineering.
UML is used to specify, visualize, construct, and document the artifacts (major
elements) of the software system.

It was initially developed by Grady Booch, Ivar Jacobson, and James Rumbaugh in
1994-95 at Rational software,

and its further development was carried out through 1996.
In 1997, it got adopted as a standard by the Object Management Group.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 7

What is UML

The UML stands for Unified modeling language, is a standardized general-purpose
visual modeling language in the field of Software Engineering.

It is used for specifying, visualizing, constructing, and documenting the primary
artifacts of the software system.
It helps in designing and characterizing, especially those software systems that
incorporate the concept of Object orientation.

It describes the working of both the software and hardware systems.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 8

Goals of UML

Since it is a general-purpose modeling language, it can be utilized by all the
modelers.

UML came into existence after the introduction of object-oriented concepts to
systemize and consolidate the object-oriented development, due to the absence of
standard methods at that time.

The UML diagrams are made for business users, developers, ordinary people, or
anyone who is looking forward to understand the system, such that the system can
be software or non-software.
Thus it can be concluded that the UML is a simple modeling approach that is used
to model all the practical systems.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 9

Characteristics of UML

The UML has the following features:
It is a generalized modeling language.

It is distinct from other programming languages like C++, Python, etc.

It is interrelated to object-oriented analysis and design.

It is used to visualize the workflow of the system.
It is a pictorial language, used to generate powerful modeling artifacts.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 10

Conceptual Modeling

Before moving ahead with the concept of UML, we should first understand the
basics of the conceptual model.

A conceptual model is composed of several interrelated concepts. It makes it easy
to understand the objects and how they interact with each other. This is the first
step before drawing UML diagrams.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 11

Conceptual Modeling

Following are some object-oriented concepts that are needed to begin with UML:
Object: An object is a real world entity. There are many objects present within
a single system. It is a fundamental building block of UML.
Class: A class is a software blueprint for objects, which means that it defines
the variables and methods common to all the objects of a particular type.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 12

Conceptual Modeling

Abstraction: Abstraction is the process of portraying the essential characteristics of
an object to the users while hiding the irrelevant information. Basically, it is used to
envision the functioning of an object.

Inheritance: Inheritance is the process of deriving a new class from the existing
ones.
Polymorphism: It is a mechanism of representing objects having multiple forms
used for different purposes.

Encapsulation: It binds the data and the object together as a single unit, enabling
tight coupling between them.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 13

OO Analysis and Design

OO is an analysis of objects, and design means combining those identified objects.

So, the main purpose of OO analysis is identifying the objects for designing a
system.

The analysis can also be done for an existing system.

The analysis can be more efficient if we can identify the objects. Once we have
identified the objects, their relationships are then identified, and the design is also
produced.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 14

OO Analysis and Design

The purpose of OO is:
To identify the objects of a system.

To identify their relationships.

To make a design that is executable when the concepts of OO are employed.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 15

OO Analysis and Design

Step 1: OO Analysis

The main purpose of OO analysis is identifying the objects and describing them
correctly.
After the objects are identified, the designing step is easily carried out. It is a must
to identify the objects with responsibilities.

Here the responsibility refers to the functions performed by the objects.
Each individual object has its own functions to perform.

The purpose of the system is fulfilled by collaborating these responsibilities.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 16

OO Analysis and Design

Step 2: OO Design

This phase mainly emphasizes on meeting the requirements.

In this phase, the objects are joined together as per the intended associations.

After the association is completed, the designing phase also gets complete.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 17

OO Analysis and Design

Step 3: OO Implementation

This is the last phase that comes after the designing is done.

It implements the design using any OO languages like C++, Java, etc.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 18

Role of UML in OO design

As the UML is a modeling language used to model software as well as non-
software systems,

but here it focuses on modeling OO software applications.

It is essential to understand the relation between the OO design and UML.
The OO design can be converted into the UML as and when required.

The OO languages influence the programming world as they model real world
objects.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 19

Role of UML in OO design

The UML itself is an amalgamation of object-oriented notations like
Object-Oriented Design (OOD),

Object Modeling Technique (OMT), and

Object-Oriented Software Engineering (OOSE).
The strength of these three approaches is utilized by the UML to represent more
consistency.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 20

UML Tools

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 21

UML Tools

Plantuml

Plantuml is an open-source online and offline modeling tool with textual inputs to create
flowcharts, process diagrams, UML, ER, and network diagrams.

PlantUML diagrams are “Diagrams as Code” in PlantUML syntax.

https://crashedmind.github.io/PlantUMLHitchhikersGuide/C4/C4Stdlib.html

https://en.wikipedia.org/wiki/4%2B1_architectural_view_model

https://c4model.com/img/c4-overview.png

https://plantuml.com/

https://crashedmind.github.io/PlantUMLHitchhikersGuide/about/AboutPlantUML.html

https://github.com/jupe/puml2code

http://static.codingthearchitecture.com/visualising-software-architecture.pdf

http://static.codingthearchitecture.com/documenting-software-architecture.pdf

https://en.wikipedia.org/wiki/C4 model

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 22

https://crashedmind.github.io/PlantUMLHitchhikersGuide/C4/C4Stdlib.html
https://en.wikipedia.org/wiki/4%2B1_architectural_view_model
https://c4model.com/img/c4-overview.png
https://plantuml.com/
https://crashedmind.github.io/PlantUMLHitchhikersGuide/about/AboutPlantUML.html
https://github.com/jupe/puml2code
http://static.codingthearchitecture.com/visualising-software-architecture.pdf
http://static.codingthearchitecture.com/documenting-software-architecture.pdf
https://en.wikipedia.org/wiki/C4_model

UML Tools

Draw.IO

Draw.io is an open-source modeling tool to create flowcharts, process diagrams, UML, ER, and
network diagrams.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 23

http://draw.io/
http://draw.io/

UML Tools

Draw.IO

Features:

Since it is very easy to use, it provides an intuitive interface, drag& drop functionality, a huge
amount of templates, and also, it does not need to install.

It offers security and reliability.
It can be used anywhere, both online and offline.

It is compatible with every browser.

Download link: https://www.draw.io

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 24

http://draw.io/
https://www.draw.io/

UML Tools

Umple

Umple is an object-oriented and modeling language that textually supports state diagrams and
class diagrams. It adapts JAVA, C++, and PHP, which results in more readable and short lines of
code.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 25

UML Tools

Umple

Features:

It includes Singleton pattern, keys, immutability, mixins, and aspect-oriented code injection,
which makes UML more understandable to the users.

It enforces referential integrity by supporting UML multiplicity.

Download link: https://cruise.eecs.uottawa.ca/umple/

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 26

https://cruise.eecs.uottawa.ca/umple/

UML Tools

Visual Paradigm

A visual Paradigm is a tool that supports SysML, UML2, and Business Process Modeling Notation
from Object Management Group. It involves report generation as well as code generation.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 27

UML Tools

Visual Paradigm

Features:

It supports all of the 14 UML2 diagrams.

It supports BPMN 2.0, ERD, ORMD, SysML.

Download link: https://www.visual-paradigm.com

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 28

https://www.visual-paradigm.com/

UML Tools

StarUML

StarUML is an open-source software modeling tool, which is provided by MKLab. It has come up
with eleven different types of modeling diagrams. It also supports UML2.0 specified diagrams.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 29

UML Tools

StarUML

Features:

It let you create Object, Use case, Deployment, Sequence, Collaboration, Activity, and Profile
diagrams.
It is a UML 2.x standard compliant.

It offers multiplatform support (MacOS, Windows, and Linux).

Download link: http://staruml.io

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 30

http://staruml.io/

UML Tools

Umbrello

Umbrello is a Unified Modeling language tool, which is based on KDE technology. It supports
both reverse engineering and code generation for C++ and Java.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 31

UML Tools

Umbrello

Features:

It implements both structural and behavioral diagrams.

It imports C++ and can export up to a wider range of languages.

Download link: https://umbrello.kde.org

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 32

https://umbrello.kde.org/

UML Tools

UML designer tool

The UML designer tool helps in modifying and envisioning UML2.5 models. It allows you to
create all of the UML diagrams.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 33

UML Tools

UML designer tool

Features:

It provides transparency to work on DSL as well as UML models.

With the UML designer tool, the user can reuse the provided presentations.

It implements Component, Class, and Composite structure diagrams.
To start working with DSL, you can use UML legacy models.

Download link: http://www.umldesigner.org/download/

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 34

http://www.umldesigner.org/download/

UML Tools

Altova

Altova has provided UModel, which is another UML software modeling tool. It supports all types
of 14 UML2 diagrams as well as SysML for the embedded systems.

It also holds up for business process modeling for enterprise analysts.

It generates visually designed software models by incorporating Java, C++, and C #or Visual Basic
.NET.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 35

UML Tools

Altova

Features:

It provides a dedicated toolbar for an individual diagram.

It offers unlimited undo/redo, which inspires to discover new ideas.

In UML diagrams, you can easily add a hyperlink to any element.

It also provides an intuitive color-coding, icons, customized alignment grid, and cascading
styles for colors, fonts line size.

Download link: https://www.altova.com/umodel

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 36

https://www.altova.com/umodel

UML Tools

WhitestarUML

Whitestar UML is a division of StarUML 5.0 that offers bug fixes and has improved its
compatibility with the latest operating systems, i.e., support of Unicode strings or simply being
developed and tested on Windows 7 and 8.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 37

UML Tools

WhitestarUML

Features:

It offers a refreshed user interface.

It completely handles the functioning of Unicode strings.

It provides support on Windows 7, 8, and 10.

On-demand upload and download of units.
It directly integrates the ERD profile and extends to generate and parse the SQL tables.

Download link: http://whitestaruml.sourceforge.net

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 38

http://whitestaruml.sourceforge.net/

UML Tools

GenMyModel

GenMyModel is an online modeling platform that offers Business (Archimate, BPMN, flowcharts
support) as well as IT modeling (RDS, UML2.5 class diagrams).

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 39

UML Tools

GenMyModel

Features:

It provides an online platform.

It generates online code.

It provides a centralized repository for easy and simultaneous model collaboration.
You can import or export as a PDF.

Download link: https://www.genmymodel.com

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 40

https://www.genmymodel.com/

UML Tools

Umletino

It is an online platform that offers UML tools for faster development of UML diagrams. It is based
on UMLet, which is an eclipse plugin or work as a standalone tool.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 41

UML Tools

Umletino

Features:

It allows you to export the diagram as XML or any other image file such as Gif, JPEG, or SVG
format.
It is an installation free web application.

Download link: http://www.umlet.com/umletino/umletino.html

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 42

http://www.umlet.com/umletino/umletino.html

UML Tools

Diagramo

Diagramo is an online open-source HTML5 software that allows you to build flowcharts. It allows
easy download and installation on the servers.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 43

UML Tools

Diagramo

Features:

It saves diagrams as images.

It is a kind of UML diagram as it offers a flowchart focused software.

It offers lifetime support and storage.

Download link: http://diagramo.com

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 44

http://diagramo.com/

UML Tools

Astah

Astah, which was previously known as JUDE (Java and UML Developer's Environment) is a UML
modeling tool.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 45

UML Tools

Astah

Features:

It import XML file and export HTML, RTF, and image files.

It intuitively works with Windows, Mac, and Linux operating systems.

Download link: http://astah.net

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 46

http://astah.net/

UML Tools

BOUML

BOUML is a UML diagram designer which is programmed in Qt and C++. It permits you to
specify and generate code in C++, Java, Idl, Php, Python, and MySQL.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 47

UML Tools

BOUML

Features:

It supports code generation, reverse engineering, and it is multilingual.

It runs on Windows, Linux, and MacOS X.

Since it is very fast, it does not necessitate much memory to handle thousands of classes.

Download link: https://www.bouml.fr

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 48

https://www.bouml.fr/

UML Tools

ConceptDraw

ConceptDraw is a software, which is used in diagraming for creating business graphics that
include diagrams, flowcharts, Infographics, data envisioning, data presentation, and project
management documentation.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 49

UML Tools

ConceptDraw

Features:

It is used for creating UML diagrams, DFD, ERD, computer network topology, etc.

It improves the interaction by empowering technical representation techniques.

It provides a powerful and inclusive drawing tool.

Download link: https://www.conceptdraw.com/products/drawing-tool

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 50

https://www.conceptdraw.com/products/drawing-tool

UML Tools

Dia

Dia is an open-source general-purpose drawing tool, which is licensed under GPL. It let you
create flow charts, UML diagrams, network diagrams, circuit diagrams, and many more. It allows
you to incorporate a subset of Scalable Vector Graphics (SVG) while writing a simple XML file for
drawing new shapes.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 51

UML Tools

Dia

Features:

Dia can export diagrams to several formats, which include EPS (Encapsulated PostScript),
SVG (Scalable Vector Graphics), DXF (AutoCAD's Drawing Interchange Format), CGM
(Computer Graphics Metafile defined by ISO standards), WMF (Windows Meta File), PNG
(Portable Network Graphics), JPEG (Joint Photographic Experts Group), and VDX (Microsoft's
XML for Visio drawing).

It let you create many different types of diagrams as it incorporates special objects that help
you in drawing ER diagrams, UML diagrams, network diagrams, flowcharts, etc.

Download link: http://dia-installer.de

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 52

http://dia-installer.de/

UML Tools

Sparxsystems

Sparxsystems is a diagram designing tool that helps in visualizing, analyzing, modeling, testing,
and maintain software, system, processes, and architectures. It builds a robust and maintainable
software.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 53

UML Tools

Sparxsystems

Features:

It integrates and connects a wide range of structural and behavioral information in a visual
format to create a logical and justified model.

It builds strategic and business level models.
It provides domain-specific profiles and reusable model patterns.

It also provides role-based security.

Download link: https://sparxsystems.com

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 54

https://sparxsystems.com/

UML Tools

Gliffy

Gliffy is an open-source software that designs UML diagrams, floor plans, Venn diagrams,
flowcharts, and much more. It allows the user to share and edit Gliffy diagrams dynamically.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 55

UML Tools

Gliffy

Features:

It constitutes a drag and drop interface.

It exports diagrams in various formats that are; PDF, JPEG, PNG, and SVG.

It is supported by all web browsers such as Google Chrome, Firefox, Safari, and Internet
Explorer 9+.

Download link: https://www.gliffy.com

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 56

https://www.gliffy.com/

UML Tools

Lucidchart

Lucidchart is an HTML-5 based UML tool that allows user interaction while drawing, editing, and
sharing diagrams and charts. With Lucidchart, you can create simple flowcharts as well as
complex technical diagrams.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 57

UML Tools

Lucidchart

Features:

It works faster with keyboard shortcuts.

It constitutes the concept of containerization as the complex diagram involves several steps
and people.
It manages user account by increasing security.

It is platform-independent.

Download link: https://www.lucidchart.com/pages/

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 58

https://www.lucidchart.com/pages/

UML Tools

Magic Draw

Magic Draw is used to model UML diagrams, SysML, BPMN, and UPDM that supports the
dynamic collaboration of the team. This tool is meant for business analysts, software analysts,
programmers, and QA engineers. It facilitates analyzing and designing object-oriented systems
and databases.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 59

UML Tools

Magic Draw

Features:

It provides round-trip support for programming languages (J2EE, C#, C++, COBRA IDL), .NET,
XML Schema, DDL generation, and database schema.

It incorporates the concept of reverse engineering.

It is a domain-specific language.

It constitutes model decomposition that categorizes the main project into several distinct
independents parts.

It encompasses model refactoring to improve the existing model.

Download link: https://www.nomagic.com/products/magicdraw

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 60

https://www.nomagic.com/products/magicdraw

UML Tools

Visio

Visio is a part of the Microsoft family, which is a diagramming software. It is helpful in drawing
building plans, floor charts, data flow diagrams, process flow diagrams, business process
modeling, swimlane diagrams, and many more.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 61

UML Tools

Visio

Features:

It connects the diagrams and the flowcharts to real-time data.

Since it is a platform-independent, it can be accessed from anywhere.

Download link: https://products.office.com/en-in/visio/flowchart-software

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 62

https://products.office.com/en-in/visio/flowchart-software

UML Tools

Modelio

Modelio is an open-source UML tool that amalgamates UML2 and BPMN standards to support
an inclusive range of models and diagrams.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 63

UML Tools

Modelio

Features:

It provides support to Jython, which is a scripting language.

It provides a BPMN integrated support with UML.

It offers XMI import/export.

Download link: https://www.modelio.org

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 64

https://www.modelio.org/

UML Tools

Nclass

Nclass is an open-source tool, used to create class diagrams that support #C and Java. It requires
a framework of .NET 4.0. It has designed a simple and user-friendly user interface for fast and
easy development.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 65

UML Tools

Nclass

Features:

It provides a simple and easy user interface.

It offers a multilingual user interface.

It provides mono support for the non-windows user.

It has come up with inline class editors for fast and easy editing.
It incorporates source code generation and reverse engineering from .Net assemblies.

Download link: http://nclass.sourceforge.net

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 66

http://nclass.sourceforge.net/

UML Tools

Open ModelSphere

Open ModelSphere, which is written in Java, is an open-source data, process, and UML modeling
tool. It supports forward and reverse engineering.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 67

UML Tools

Open ModelSphere

Features:

It provides support to the user interface written in English and French language.

It provides an in-built interface to connect to the SQL database via JDBC/ODBC drivers.

It has come up with a bi-directional plug-in database interface.
It supports physical, logical, and database modeling.

Download link: http://www.modelsphere.com/org/

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 68

http://www.modelsphere.com/org/

UML Tools

Systems design rhapsody

System design rhapsody provides a collaborative design and modeling environment, which is
based on UML for creating real-time, embedded systems. It helps in managing complex issues
such as product system development.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 69

UML Tools

Systems design rhapsody

Features:

For the system and software engineers, it has come up with a collaborative design,
development, and a test environment based on UML, SysML, and AUTOSAR.

It helps in analyzing and elaborating project requirements.
It outperforms in the real-time, embedded, agile engineering environment.

It generates documentation after automating design reviews.

Download link: https://www.ibm.com/in-en/marketplace/systems-design-rhapsody

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 70

https://www.ibm.com/in-en/marketplace/systems-design-rhapsody

UML Tools

Reactive Blocks

A visual model-driven environment is based on the activity diagram that is supported by reactive
blocks. Since it is a UML tool, it incorporates code generation, hierarchical modeling, and an
extensive library of ready-to-use components for the Java platform.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 71

UML Tools

Reactive Blocks

Features:

It helps in creating complex graphical applications by amalgamating reusable blocks.

It provides support to Java, Open Services Gateway Initiative, Eclipse Kura, and ESF.

Download link: http://www.bitreactive.com/reactive-blocks/

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 72

http://www.bitreactive.com/reactive-blocks/

UML Tools

Software Ideas Modeler

Software Ideas Modeler is the CASE and designing tool written in C# that supports all of the 14
diagrams specified by UML2.5, SysML, ERD, Archimate, flowcharts, DFD, wire frames, user stories,
and much more.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 73

UML Tools

Software Ideas Modeler

Features:

It can be used for creating infographics, which is used for data visualization.
It involves automatic scrolling, drag and drop, undo/ redo facilities.

It offers simple task management.

It supports reverse engineering.

It also supports SVN.

Download link: https://www.softwareideas.net

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 74

https://www.softwareideas.net/

UML Building Blocks

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 75

UML Building Blocks

UML is composed of three main building blocks, i.e.,

Things,
Relationships, and

Diagrams.

Building blocks generate one complete UML model diagram by rotating around
several different blocks.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 76

Things

Anything that is a real world entity or object is termed as things. It can be divided
into several different categories:

Structural things
Behavioral things

Grouping things

Annotational things

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 77

Structural things

Nouns that depicts the static behavior of a model is termed as structural things.

They display the physical and conceptual components.
They include class, object, interface, node, collaboration, component, and a use
case.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 78

Structural things

Class:

A Class is a set of identical
things that outlines the
functionality and properties
of an object.

It also represents the
abstract class whose
functionalities are not
defined. Its notation is as
follows

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 79

Structural things

Object:

An individual that describes
the behavior and the
functions of a system.
The notation of the object is
similar to that of the class;
the only difference is that
the object name is always
underlined and its notation
is given follow;

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 80

Structural things

Interface:

A set of operations that
describes the functionality
of a class, which is
implemented whenever an
interface is implemented.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 81

Structural things

Collaboration:

It represents the interaction
between things that is done
to meet the goal.

It is symbolized as a dotted
ellipse with its name written
inside it.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 82

Structural things

Use case:

Use case is the core concept
of object-oriented modeling.

It portrays a set of actions
executed by a system to
achieve the goal.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 83

Structural things

Actor:

It comes under the use case
diagrams.

It is an object that interacts
with the system, for
example, a user.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 84

Structural things

Component:
It represents the physical
part of the system.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 85

Structural things

Node:
A physical element that
exists at run time.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 86

Behavioral Things

They are the verbs that encompass the dynamic parts of a model.

It depicts the behavior of a system.

They involve
state machine,

activity diagram,

interaction diagram,

grouping things,
annotation things

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 87

Behavioral Things

State Machine:
It defines a sequence of
states that an entity goes
through in the software
development lifecycle.
It keeps a record of several
distinct states of a system
component.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 88

Behavioral Things

Activity Diagram:
It portrays all the activities
accomplished by different
entities of a system.
It is represented the same as
that of a state machine
diagram. It consists of an
initial state, final state, a
decision box, and an action
notation.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 89

Behavioral Things

Interaction Diagram:
It is used to envision the
flow of messages between
several components in a
system.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 90

Grouping Things

It is a method that together binds the elements of the UML model.

In UML, the package is the only thing, which is used for grouping.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 91

Grouping Things

Package: Package is the only
thing that is available for
grouping behavioral and
structural things.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 92

Annotation Things

It is a mechanism that captures the remarks, descriptions, and comments of UML
model elements.

In UML, a note is the only Annotational thing.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 93

Annotation Things

Note:
It is used to attach the
constraints, comments, and
rules to the elements of the
model.

It is a kind of yellow sticky
note.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 94

Relationships

It illustrates the meaningful connections between things. It shows the association
between the entities and defines the functionality of an application. There are four
types of relationships

Dependency

Association

Generalization

Realization

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 95

Relationships

Dependency:

Dependency is a kind of relationship in which a
change in target element affects the source
element, or simply we can say the source
element is dependent on the target element.

It is one of the most important notations in
UML. It depicts the dependency from one entity
to another.

It is denoted by a dotted line followed by an
arrow at one side as shown below,

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 96

Relationships

Association:

A set of links that associates the entities to the
UML model.

It tells how many elements are actually taking
part in forming that relationship.

It is denoted by a dotted line with arrowheads
on both sides to describe the relationship with
the element on both sides.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 97

Relationships

Generalization:

It portrays the relationship between a general
thing (a parent class or superclass) and a specific
kind of that thing (a child class or subclass).

It is used to describe the concept of inheritance.

It is denoted by a straight line followed by an
empty arrowhead at one side.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 98

Relationships

Realization:

It is a semantic kind of relationship between two
things, where one defines the behavior to be
carried out, and the other one implements the
mentioned behavior.

It exists in interfaces.
It is denoted by a dotted line with an empty
arrowhead at one side.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 99

Diagrams

The diagrams are the graphical implementation of the models that incorporate
symbols and text.

Each symbol has a different meaning in the context of the UML diagram.

There are thirteen different types of UML diagrams that are available in UML 2.0,
such that each diagram has its own set of a symbol.

And each diagram manifests a different dimension, perspective, and view of the
system.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 100

Diagrams

UML diagrams are classified into three categories that are given below:
Structural Diagram

Behavioral Diagram

Interaction Diagram

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 101

Diagrams

Structural Diagram:
It represents the static view of a system by portraying the structure of a
system.

It shows several objects residing in the system. Following are the structural
diagrams given below:

Class diagram

Object diagram

Package diagram
Component diagram

Deployment diagram

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 102

Diagrams

Behavioral Diagram:
It depicts the behavioral features of a system.

It deals with dynamic parts of the system.
It encompasses the following diagrams:

Activity diagram

State machine diagram
Use case diagram

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 103

Diagrams

Interaction diagram:
It is a subset of behavioral diagrams.

It depicts the interaction between two objects and the data flow between
them.

Following are the several interaction diagrams in UML:
Timing diagram
Sequence diagram

Collaboration diagram

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 104

UML Architecture

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 105

UML Architecture

Software architecture is all about how a software system is built at its highest level.

It is needed to think big from multiple perspectives with quality and design in
mind. The software team is tied to many practical concerns, such as:

The structure of the development team.

The needs of the business.
Development cycle.

The intent of the structure itself.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 106

UML Architecture

Software architecture provides a basic design of a complete software system.
It defines the elements included in the system, the functions each element has, and
how each element relates to one another.

In short, it is a big picture or overall structure of the whole system,
how everything works together

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 107

UML Architecture

To form an architecture, the software architect will take several factors into
consideration:

What will the system be used for?
Who will be using the system?

What quality matters to them?

Where will the system run?

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 108

UML Architecture

The architect plans the structure of the system to meet the needs like these.

It is essential to have proper software architecture, mainly for a large software
system.

Having a clear design of a complete system as a starting point provides a solid
basis for developers to follow

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 109

UML Architecture

Each developer will know what needs to be implemented and how things relate to
meet the desired needs efficiently.

One of the main advantages of software architecture is that it provides high
productivity to the software team. The software development becomes more
effective as it comes up with an explained structure in place to coordinate work,
implement individual features, or ground discussions on potential issues.
With a lucid architecture, it is easier to know where the key responsibilities are
residing in the system and where to make changes to add new requirements or
simply fixing the failures.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 110

UML Architecture

a clear architecture will help to achieve quality in the software with a well-designed
structure using principles like separation of concerns;

the system becomes easier to maintain, reuse, and adapt. The software architecture
is useful to people such as software developers, the project manager, the client,
and the end-user.
Each one will have different perspectives to view the system and will bring different
agendas to a project. Also, it provides a collection of several views

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 111

UML Architecture

It can be best understood as a collection of five views:
Use case view

Design view

Implementation view

Process view
Development view

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 112

UML Architecture
CE204 Object-Oriented Programming

 RTEU CE204 Week-4 113

UML Architecture

Use case view

It is a view that shows the functionality of the system as perceived by external
actors.
It reveals the requirements of the system.

With UML, it is easy to capture the static aspects of this view in the use case
diagrams, whereas it?s dynamic aspects are captured in interaction diagrams, state
chart diagrams, and activity diagrams.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 114

UML Architecture

Design View

It is a view that shows how the functionality is designed inside the system in terms
of static structure and dynamic behavior.
It captures the vocabulary of the problem space and solution space.

With UML, it represents the static aspects of this view in class and object diagrams,
whereas its dynamic aspects are captured in interaction diagrams, state chart
diagrams, and activity diagrams.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 115

UML Architecture

Implementation View

It is the view that represents the organization of the core components and files.

It primarily addresses the configuration management of the system?s releases.
With UML, its static aspects are expressed in component diagrams, and the
dynamic aspects are captured in interaction diagrams, state chart diagrams, and
activity diagrams.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 116

UML Architecture

Process View

It is the view that demonstrates the concurrency of the system.
It incorporates the threads and processes that make concurrent system and
synchronized mechanisms.

It primarily addresses the system's scalability, throughput, and performance.
Its static and dynamic aspects are expressed the same way as the design view but
focus more on the active classes that represent these threads and processes.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 117

UML Architecture

Deployment View

It is the view that shows the deployment of the system in terms of physical
architecture.
It includes the nodes, which form the system hardware topology where the system
will be executed.

It primarily addresses the distribution, delivery, and installation of the parts that
build the physical system.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 118

UML Diagrams Overview

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 119

UML Diagrams Overview

The UML diagrams are categorized into
structural diagrams,

behavioral diagrams, and also

interaction overview diagrams.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 120

UML Diagrams Overview

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 121

Structural Diagrams

Structural diagrams depict a static view or structure of a system. It is widely used in the
documentation of software architecture. It embraces class diagrams, composite
structure diagrams, component diagrams, deployment diagrams, object diagrams, and
package diagrams. It presents an outline for the system. It stresses the elements to be
present that are to be modeled.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 122

Structural Diagrams

Class Diagram:

Class diagrams are one of the most widely used diagrams. It is the backbone of all
the object-oriented software systems.
It depicts the static structure of the system.

It displays the system's class, attributes, and methods.

It is helpful in recognizing the relation between different objects as well as classes.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 123

Structural Diagrams

Composite Structure Diagram:

The composite structure diagrams show parts within the class.
It displays the relationship between the parts and their configuration that ascertain
the behavior of the class.

It makes full use of ports, parts, and connectors to portray the internal structure of
a structured classifier.

It is similar to class diagrams, just the fact it represents individual parts in a detailed
manner when compared with class diagrams.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 124

Structural Diagrams

Object Diagram:

It describes the static structure of a system at a particular point in time.
It can be used to test the accuracy of class diagrams.

It represents distinct instances of classes and the relationship between them at a
time.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 125

Structural Diagrams

Component Diagram:

It portrays the organization of the physical components within the system.

It is used for modeling execution details.
It determines whether the desired functional requirements have been considered
by the planned development or not, as it depicts the structural relationships
between the elements of a software system.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 126

Structural Diagrams

Deployment Diagram:

It presents the system's software and its hardware by telling what the existing
physical components are and what software components are running on them.

It produces information about system software.

It is incorporated whenever software is used, distributed, or deployed across
multiple machines with dissimilar configurations.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 127

Structural Diagrams

Package Diagram:

It is used to illustrate how the packages and their elements are organized.

It shows the dependencies between distinct packages.
It manages UML diagrams by making it easily understandable.

It is used for organizing the class and use case diagrams.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 128

Behavioral Diagrams

Behavioral diagrams portray a dynamic view of a system or the behavior of a
system, which describes the functioning of the system.

It includes use case diagrams, state diagrams, and activity diagrams.

It defines the interaction within the system.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 129

Behavioral Diagrams

State Machine Diagram:

It is a behavioral diagram.

it portrays the system's behavior utilizing finite state transitions.
It is also known as the State-charts diagram.

It models the dynamic behavior of a class in response to external stimuli.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 130

Behavioral Diagrams

Activity Diagram:

It models the flow of control from one activity to the other.
With the help of an activity diagram, we can model sequential and concurrent
activities.

It visually depicts the workflow as well as what causes an event to occur.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 131

Behavioral Diagrams

Use Case Diagram:

It represents the functionality of a system by utilizing actors and use cases.
It encapsulates the functional requirement of a system and its association with
actors.

It portrays the use case view of a system.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 132

Interaction Diagrams

Interaction diagrams are a subclass of behavioral diagrams that give emphasis to
object interactions and also depicts the flow between various use case elements of
a system.

In simple words, it shows how objects interact with each other and how the data
flows within them.
It consists of communication, interaction overview, sequence, and timing diagrams

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 133

Interaction Diagrams

Sequence Diagram:

It shows the interactions between the objects in terms of messages exchanged over
time.

It delineates in what order and how the object functions are in a system.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 134

Interaction Diagrams

Communication Diagram:

It shows the interchange of sequence messages between the objects.

It focuses on objects and their relations.

It describes the static and dynamic behavior of a system.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 135

Interaction Diagrams

Timing Diagram:

It is a special kind of sequence diagram used to depict the object's behavior over a
specific period of time.
It governs the change in state and object behavior by showing the time and
duration constraints.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 136

Interaction Diagrams

Interaction Overview diagram:

It is a mixture of activity and sequence diagram that depicts a sequence of actions
to simplify the complex interactions into simple interactions.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 137

UML Relationship

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 138

UML Relationship

Relationships depict a connection between several things, such as structural,
behavioral, or grouping things in the unified modeling language.
Since it is termed as a link, it demonstrates how things are interrelated to each
other at the time of system execution.

It constitutes four types of relationships, i.e.,
dependency,

association,

generalization, and
realization.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 139

UML Relationship

Dependency

Whenever there is a change in either the structure or the behavior of the class that
affects the other class, such a relationship is termed as a dependency.

Or, simply, we can say a class contained in other class is known as dependency.

It is a unidirectional relationship.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 140

UML Relationship

Association

Association is a structural relationship that represents how two entities are linked
or connected to each other within a system.

It can form several types of associations, such as
one-to-one,

one-to-many,

many-to-one, and
many-to-many.

A ternary association is one that constitutes three links.

It portrays the static relationship between the entities of two classes.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 141

UML Relationship

Association

An association can be categorized into four types of associations, i.e.,
bi-directional,
unidirectional,

aggregation (composition aggregation), and

reflexive,

such that an aggregation is a special form of association and
composition is a special form of aggregation.

The mostly used associations are unidirectional and bi-directional.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 142

UML Relationship

Aggregation

An aggregation is a special form of association.
It portrays a part-of relationship.

It forms a binary relationship, which means it cannot include more than two
classes.
It is also known as Has-a relationship.

It specifies the direction of an object contained in another object.

In aggregation, a child can exist independent of the parent.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 143

UML Relationship

Composition

In a composition relationship, the child depends on the parent.

It forms a two-way relationship.

It is a special case of aggregation.
It is known as Part-of relationship.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 144

UML Relationship

Aggregation vs Composition Relationship

Features Aggregation Relationship Composition Relationship

Dependency
In an aggregation relationship, a child
can exist independent of a parent.

In a composition
relationship, the child
cannot exist independent
of the parent.

Type of
Relationship

It constitutes a Has-a relationship.
It constitutes Part-of
relationship.

Type of
Association

It forms a weak association.
It forms a strong
association.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 145

UML Relationship

Generalization

The generalization relationship implements the object-oriented concept called
inheritance or is-a relationship.

It exists between two objects (things or entities), such that one entity is a parent
(superclass or base class), and the other one is a child (subclass or derived class
These are represented in terms of inheritance.

Any child can access, update, or inherit the functionality, structure, and behavior of
the parent.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 146

UML Relationship

Realization

It is a kind of relationship in which one thing specifies the behavior or a
responsibility to be carried out, and the other thing carries out that behavior.

It can be represented on a class diagram or component diagrams.

The realization relationship is constituted between interfaces, classes, packages,
and components to link a client element to the supplier element.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 147

UML Association vs. Aggregation vs. Composition

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 148

UML Association vs. Aggregation vs. Composition

In UML diagrams, relationships are used to link several things. It is a connection
between structural, behavioral, or grouping things. Following are the standard UML
relationships enlisted below:

Association

Dependency

Generalization

Realization

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 149

UML Association vs. Aggregation vs. Composition

Association

Association relationship is a structural relationship in which different objects are
linked within the system. It exhibits a binary relationship between the objects
representing an activity. It depicts the relationship between objects, such as a
teacher, can be associated with multiple teachers.

It is represented by a line between the classes followed by an arrow that navigates
the direction, and when the arrow is on both sides, it is then called a bidirectional
association. We can specify the multiplicity of an association by adding the
adornments on the line that will denote the association.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 150

UML Association vs. Aggregation
vs. Composition

Association

A single teacher has multiple
students.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 151

UML Association vs. Aggregation
vs. Composition

Association

A single student can associate with
many teachers.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 152

UML Association vs. Aggregation vs. Composition

The composition and aggregation are two subsets of association.
In both of the cases, the object of one class is owned by the object of another class;

the only difference is that in composition,
the child does not exist independently of its parent, whereas in aggregation,
the child is not dependent on its parent i.e., standalone.

An aggregation is a special form of association, and

composition is the special form of aggregation.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 153

UML Association vs. Aggregation vs. Composition

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 154

UML Association vs. Aggregation vs. Composition

Aggregation

Aggregation is a subset of association, is a collection of different things.
It represents has a relationship.

It is more specific than an association.

It describes a part-whole or part-of relationship.

It is a binary association,
i.e., it only involves two classes.

It is a kind of relationship in which the child is independent of its parent.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 155

UML Association vs. Aggregation vs. Composition

Aggregation

Here we are considering a car and a wheel example.
A car cannot move without a wheel.

But the wheel can be independently used with the bike, scooter, cycle, or any other
vehicle.
The wheel object can exist without the car object, which proves to be an
aggregation relationship.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 156

UML Association vs. Aggregation vs. Composition

Composition

The composition is a part of aggregation, and it portrays the whole-part
relationship.

It depicts dependency between a composite (parent) and its parts (children),
which means that if the composite is discarded, so will its parts get deleted. It
exists between similar objects.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 157

UML Association vs. Aggregation
vs. Composition

Composition

the composition association
relationship connects the Person
class with Brain class, Heart class,
and Legs class.
If the person is destroyed, the
brain, heart, and legs will also
get discarded.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 158

UML Association vs. Aggregation vs. Composition

Association Aggregation Composition

Association
relationship is
represented
using an arrow.

Aggregation relationship is
represented by a straight line
with an empty diamond at one
end.

The composition relationship is
represented by a straight line
with a black diamond at one
end.

In UML, it can
exist between
two or more
classes.

It is a part of the association
relationship.

It is a part of the aggregation
relationship.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 159

UML Association vs. Aggregation vs. Composition

Association Aggregation Composition

It incorporates one-to-
one, one-to-many, many-
to-one, and many-to-
many association between
the classes.

It exhibits a kind of weak
relationship.

It exhibits a strong type of
relationship.

It can associate one more
objects together.

In an aggregation
relationship, the
associated objects exist
independently within the
scope of the system.

In a composition
relationship, the associated
objects cannot exist
independently within the
scope of the system.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 160

UML Association vs. Aggregation vs. Composition

Association Aggregation Composition

In this, objects are linked
together.

In this, the linked objects are
independent of each other.

Here the linked
objects are dependent
on each other.

It may or may not affect
the other associated
element if one element is
deleted.

Deleting one element in the
aggregation relationship does
not affect other associated
elements.

It affects the other
element if one of its
associated element is
deleted.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 161

UML Association vs. Aggregation vs. Composition

Association Aggregation Composition

Example: A tutor can
associate with multiple
students, or one student can
associate with multiple
teachers.

Example: A car needs a wheel for its
proper functioning, but it may not
require the same wheel. It may
function with another wheel as well.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 162

UML- Association

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 163

UML- Association

Association is the semantic relationship between classes that shows how one
instance is connected or merged with others in a system.

The objects are combined either logically or physically.

Since it connects the object of one class to the object of another class, it is
categorized as a structural relationship

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 164

UML- Association

Following are the constraints applied to the association relationship
{implicit}: As the name suggests, the implicit constraints define that the
relationship is not visible, but it is based on a concept.
{ordered}: It describes that the set of entities is in a particular way at one end
in an association.

{changeable}: The changeable constraint ensures that the connections
between several objects within a system are added, improved, and detached,
as and when required.
{addOnly}: It specifies that any new connection can be added from an object
located at the other end in an association.

{frozen}: The frozen constraint specifies that whenever a link is added between
objects, it cannot be altered by the time it is activated over the connection or
given link

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 165

Reflexive Association

In the reflexive associations, the links are between the objects of the same classes.
In other words, it can be said that the reflexive association consists of the same
class at both ends.

An object can also be termed as an instance.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 166

Reflexive Association

The vegetable class has two
objects, i.e., onion and eggplant.
According to the reflexive
association's definition, the link
between the onion and eggplant
exist, as they belong to the same
class, i.e., vegetable.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 167

Directed Association

The directed association is concerned with the direction of flow inside association
classes.

The flow of association can be shown by employing a directed association.

The directed association between two classes is represented by a line with an
arrowhead, which indicates the navigation direction.

The flow of association from one class to another is always in one direction

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 168

Directed Association

It can be said that there is an
association between a person
and the company.
The person works for the
company.

Here the person works for the
company, and not the company
works for a person

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 169

UML-Dependency

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 170

UML-Dependency

Dependency depicts how various things
within a system are dependent on each
other.
In UML, a dependency relationship is the
kind of relationship in which a client (one
element) is dependent on the supplier
(another element).

It is used in class diagrams, component
diagrams, deployment diagrams, and use-
case diagrams, which indicates that a
change to the supplier necessitates a
change to the client.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 171

Types of Dependency Relationship (1 of 6)

Following are the type of dependency relationships, keywords, or stereotypes given below:

<<derive>> -It is a constraint that specifies the template can be initialized by the
source at the target location utilizing given parameters.

<<derive>> -It represents that the source object's location can be evaluated from
the target object.

<<friend>> -It states the uniqueness of the source in the target object.

<<instanceOf>> -It states that an instance of a target classifier is the source object.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 172

Types of Dependency Relationship (2 of 6)

Following are the type of dependency relationships, keywords, or stereotypes given below:

<<instantiate>> -It defines the capability of the source object, creating instances
of a target object.

<<refine>> -It states that the source object comprises of exceptional abstraction
than that of the target object.

<<use>> -When the packages are created in UML, the use of stereotype is used as
it describes that the elements of the source package can also exist in the target
package. It specifies that the source package uses some of the elements of the
target package.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 173

Types of Dependency Relationship (3 of 6)

Following are the type of dependency relationships, keywords, or stereotypes given below:

<<substitute>> -The substitute stereotype state that the client can be substituted
at the runtime for the supplier.

<<access>> -It is also called as private merging in which the source package
accesses the element of the target package.

<<import>> -It specifies that target imports the source package's element as they
are defined within the target. It is also known as public merging.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 174

Types of Dependency Relationship (4 of 6)

Following are the type of dependency relationships, keywords, or stereotypes given below:

<<permit>> -It describes that the source element can access the supplier element
or whatever visibility is provided by the supplier.

<<extend>> -It states that the behavior of the source element can be extended by
the target.

<<include>> -It describes the source element, which can include the behavior of
another element at a specific location, just like a function call in C/C++.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 175

Types of Dependency Relationship (5 of 6)

Following are the type of dependency relationships, keywords, or stereotypes given below:

<<become>> -It states that target is similar to the source with distinct roles and
values.

<<call>> -It specifies that the target object can be invoked by the source.

<<copy>> -It states that the target is an independent replica of a source object.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 176

Types of Dependency Relationship (6 of 6)

Following are the type of dependency relationships, keywords, or stereotypes given below:

<<parameter>> -It describes that the supplier is a parameter of the client's actions.

<<send>> -The client act as an operation, which sends some unspecified targets to
the supplier.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 177

UML-Generalization

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 178

UML-Generalization

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 179

UML-Generalization

In UML modeling, a
generalization relationship is a
relationship that implements the
concept of object orientation
called inheritance.

The generalization relationship
occurs between two entities or
objects, such that one entity is
the parent, and the other one is
the child.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 180

UML-Generalization

The child inherits the functionality of its parent and can access as well as update it.

Generalization relationship is utilized in class, component, deployment, and use
case diagrams to specify that the child inherits actions, characteristics, and
relationships from its parent.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 181

UML-Generalization

To meet UML's standard, it necessitates usage of the same types of model elements
in the generalization relationship, i.e., generalization relation can either be used
between actors or between use cases, but not between an actor and a use case.

The generalization relationship is incorporated to record attributes, operations, and
relationships in a parent model element so that it can be inherited in one or more
child model elements.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 182

UML-Generalization

The parent model element can
have as many children, and also,
the child can have one or more
parents. But most commonly,

it can be seen that there is one
parent model element and
multiple child model elements.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 183

UML-Generalization

The generalization relationship
does not consist of names.

The generalization relationship is
represented by a solid line with a
hollow arrowhead pointing
towards the parent model
element from the child model
element.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 184

Stereotypes and their constraints

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 185

Stereotypes and their constraints

<<implementation>> - It is used to show that the child is implemented by its
parent, such that the child object inherits the structure and behavior of its parent
object without disobeying the rules.

The implementation of stereotype is mostly used in single inheritance.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 186

Stereotypes and their constraints

In the generalization stereotype, there are two types of constraints that are
complete and incomplete to check if all the child objects are involved or not in the
relationship.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 187

Stereotypes and their constraints

As we know, the bank account can be of
two types;

Savings Account and
Credit Card Account.

Both the savings and the credit card
account inherits the generalized properties
from the Bank Account, which is Account
Number, Account Balance, etc.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 188

UML-Realization

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 189

UML-Realization

In UML modeling, the realization is a relationship between two objects, where the
client (one model element) implements the responsibility specified by the supplier
(another model element).
The realization relationship can be employed in class diagrams and components
diagrams.

The realization relationship does not have names.
It is mostly found in the interfaces.

It is represented by a dashed line with a hollow arrowhead at one end that points
from the client to the server.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 190

Interface Realization

Interface realization is a kind of specialized relation between the classifier and the
interface.

In interface realization relationship, realizing classifiers conforms to the contract
defined by the interface.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 191

Interface Realization

A classifier implementing an interface identifies the objects that conform to the
interface and any of its ancestors.

A classifier can execute one or more interfaces. The set of interfaces that are
implemented by the classifier are its given interfaces.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 192

Interface Realization

The given interfaces are the set of services offered by the classifiers to its clients.

The interface realization relationship does not contain names, and if you name it,
then the name will appear beside the connector in the diagram.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 193

Interface Realization

The interface realization
relationship is represented by a
dashed line with a hollow
arrowhead, which points from
the classifier to the given
interface.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 194

Types of realization

Canonical form

Elided form

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 195

Canonical form

In UML, the canonical form realizes the interfaces
across the system.

An interface stereotype is used for creating an
interface, and a realization relationship is employed
to realize (implement) a specific interface.

In this, the realization relationship is represented by a
dashed line with a hollow arrowhead, and the
interface is implemented using an object.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 196

Canonical form

From the diagram given below, it
can be seen that the object
Account Business Rules realizes
the interface Iruleagent.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 197

Elided form

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 198

Elided form

It is that kind of realization relationship in which the
interface is represented by a circle, also known as a
lollipop notation.
When an interface is realized employing anything
present in the system, then an elided structure is
created.

Here the interface Iruleagent is denoted by an elided
form, which is realized by acctrule.dll.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 199

UML Class Diagram

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 200

UML Class Diagram

The class diagram depicts a static view of an application. It represents the types of
objects residing in the system and the relationships between them. A class consists of
its objects, and also it may inherit from other classes. A class diagram is used to
visualize, describe, document various different aspects of the system, and also construct
executable software code.

It shows the attributes, classes, functions, and relationships to give an overview of the
software system. It constitutes class names, attributes, and functions in a separate
compartment that helps in software development. Since it is a collection of classes,
interfaces, associations, collaborations, and constraints, it is termed as a structural
diagram.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 201

Purpose of Class Diagrams

The main purpose of class diagrams is to build a static view of an application. It is the
only diagram that is widely used for construction, and it can be mapped with object-
oriented languages. It is one of the most popular UML diagrams. Following are the
purpose of class diagrams given below:

It analyses and designs a static view of an application.

It describes the major responsibilities of a system.

It is a base for component and deployment diagrams.
It incorporates forward and reverse engineering.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 202

Benefits of Class Diagrams

It can represent the object model for complex systems.

It reduces the maintenance time by providing an overview of - how an application
is structured before coding.

It provides a general schematic of an application for - better understanding.

It represents a detailed chart by highlighting the desired - code, which is to be
programmed.

It is helpful for the stakeholders and the developers.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 203

Vital components of a Class Diagram

Upper Section

Middle Section

Lower Section

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 204

Upper Section: (the name of the class)

The upper section encompasses the name of the class. A class
is a representation of similar objects that shares the same
relationships, attributes, operations, and semantics. Some of
the following rules that should be taken into account while
representing a class are given below:

Capitalize the initial letter of the class name.

Place the class name in the center of the upper section.

A class name must be written in bold format.
The name of the abstract class should be written in italics
format.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 205

Middle Section: (attributes)

The middle section constitutes the attributes, which describe
the quality of the class. The attributes have the following
characteristics:

The attributes are written along with its visibility - factors,
which are public (+) , private (-) , protected (#) , - and
package (~) .

The accessibility of an attribute class is illustrated by - the
visibility factors.

A meaningful name should be assigned to the attribute, which
will explain its usage inside the class.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 206

Lower Section: (methods)

The lower section contain methods or operations.

The methods are represented in the form of a list, where each
method is written in a single line.

It demonstrates how a class interacts with data.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 207

Relationships

In UML, relationships are of three types:

Dependency

Generalization

Association

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 208

Dependency:

A dependency is a semantic
relationship between two or
more classes where a change in
one class cause changes in
another class.

It forms a weaker relationship.

In the following example,
Student_Name is dependent on
the Student_Id.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 209

Generalization:

A generalization is a relationship
between a parent class
(superclass) and a child class
(subclass).

In this, the child class is inherited
from the parent class.

For example, The Current
Account, Saving Account, and
Credit Account are the
generalized form of Bank
Account.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 210

Association:

It describes a static or physical
connection between two or more
objects.
It depicts how many objects are
there in the relationship.

For example, a department is
associated with the college.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 211

CE204 Object-Oriented Programming

Also...

 RTEU CE204 Week-4 212

Multiplicity:

It defines a specific range of
allowable instances of attributes.
In case if a range is not specified,
one is considered as a default
multiplicity.

For example, multiple patients
are admitted to one hospital.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 213

Aggregation:

An aggregation is a subset of association, which represents has a relationship. It is
more specific then association. It defines a part-whole or part-of relationship. In
this kind of relationship, the child class can exist independently of its parent class.

The company encompasses a number of employees, and even if one employee
resigns, the company still exists.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 214

Composition:

The composition is a subset of aggregation. It portrays the dependency between
the parent and its child, which means if one part is deleted, then the other part also
gets discarded. It represents a whole-part relationship.

A contact book consists of multiple contacts, and if you delete the contact book, all
the contacts will be lost.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 215

Abstract Classes

In the abstract class, no objects can be a direct entity
of the abstract class. The abstract class can neither
be declared nor be instantiated. It is used to find the
functionalities across the classes. The notation of the
abstract class is similar to that of class;

the only difference is that the name of the class is
written in italics. Since it does not involve any
implementation for a given function, it is best to use
the abstract class with multiple objects.

Let us assume that we have an abstract class named
displacement with a method declared inside it, and
that method will be called as a drive (). Now, this
abstract class method can be implemented by any
object, for example, car, bike, scooter, cycle, etc.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 216

How to draw a Class Diagram?

The class diagram is used most widely to construct software applications. It not only
represents a static view of the system but also all the major aspects of an application. A
collection of class diagrams as a whole represents a system.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 217

How to draw a Class Diagram?

Some key points that are needed to keep in mind while drawing a class diagram are
given below:

To describe a complete aspect of the system, it is - suggested to give a meaningful
name to the class diagram.

The objects and their relationships should be acknowledged - in advance.

The attributes and methods (responsibilities) of each class - must be known.

A minimum number of desired properties should be specified - as more number of
the unwanted property will lead to a - complex diagram.

Notes can be used as and when required by the developer to - describe the
aspects of a diagram.

The diagrams should be redrawn and reworked as many times - to make it correct
before producing its final version.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 218

Class Diagram Example

A class diagram describing the sales order system is given below.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 219

Usage of Class diagrams

The class diagram is used to represent a static view of the system. It plays an essential
role in the establishment of the component and deployment diagrams. It helps to
construct an executable code to perform forward and backward engineering for any
system, or we can say it is mainly used for construction. It represents the mapping with
object-oriented languages that are C++, Java, etc. Class diagrams can be used for the
following purposes:

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 220

Usage of Class diagrams

To describe the static view of a system.

To show the collaboration among every instance in the static view.

To describe the functionalities performed by the system.
To construct the software application using object-oriented languages.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 221

UML Object Diagram

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 222

UML Object Diagram

Object diagrams are dependent on the class diagram as they are derived from the
class diagram. It represents an instance of a class diagram. The objects help in
portraying a static view of an object-oriented system at a specific instant.

Both the object and class diagram are similar to some extent; the only difference is
that the class diagram provides an abstract view of a system. It helps in visualizing
a particular functionality of a system.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 223

Notation of an Object Diagram

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 224

Purpose of Object Diagram

The object diagram holds the same purpose as that of a class diagram. The class
diagram provides an abstract view which comprises of classes and their relationships,
whereas the object diagram represents an instance at a particular point of time.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 225

Purpose of Object Diagram

The object diagram is actually similar to the concrete (actual) system behavior. The main
purpose is to depict a static view of a system.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 226

Purpose of Object Diagram

Following are the purposes enlisted below:

It is used to perform forward and reverse engineering.

It is used to understand object behavior and their - relationships practically.
It is used to get a static view of a system.

It is used to represent an instance of a system.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 227

Example of Object Diagram

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 228

How to draw an Object Diagram?

All the objects present in the system should be examined - before start drawing
the object diagram.

Before creating the object diagram, the relation between - the objects must be
acknowledged.

The association relationship among the entities must be - cleared already.

To represent the functionality of an object, a proper - meaningful name should be
assigned.

The objects are to be examined to understand its functionality.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 229

Applications of Object diagrams

The following are the application areas where the object diagrams can be used.

To build a prototype of a system.

To model complex data structures.
To perceive the system from a practical perspective.

Reverse engineering.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 230

Class vs. Object diagram

Class Diagram Object Diagram

It depicts the static view of a system.
It portrays the real-time behavior of
a system.

Dynamic changes are not included in the class
diagram.

Dynamic changes are captured in
the object diagram.

The data values and attributes of an instance
are not involved here.

It incorporates data values and
attributes of an entity.

The object behavior is manipulated in the
class diagram.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 231

UML Component Diagram

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 232

UML Component Diagram

A component diagram is used to break down a large object-oriented system into the
smaller components, so as to make them more manageable. It models the physical view
of a system such as executables, files, libraries, etc. that resides within the node.

It visualizes the relationships as well as the organization between the components
present in the system. It helps in forming an executable system. A component is a single
unit of the system, which is replaceable and executable. The implementation details of a
component are hidden, and it necessitates an interface to execute a function. It is like a
black box whose behavior is explained by the provided and required interfaces.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 233

Notation of a Component Diagram

Component

Node

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 234

Purpose of a Component Diagram

Since it is a special kind of a UML diagram, it holds distinct purposes. It describes all the
individual components that are used to make the functionalities, but not the
functionalities of the system. It visualizes the physical components inside the system.
The components can be a library, packages, files, etc.

The component diagram also describes the static view of a system, which includes the
organization of components at a particular instant. The collection of component
diagrams represents a whole system.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 235

Purpose of a Component Diagram

The main purpose of the component diagram are enlisted below:

It envisions each component of a system.

It constructs the executable by incorporating forward and reverse engineering.

It depicts the relationships and organization of components.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 236

Why use Component Diagram?

The component diagrams have remarkable importance. It is used to depict the
functionality and behavior of all the components present in the system, unlike other
diagrams that are used to represent the architecture of the system, working of a system,
or simply the system itself.

In UML, the component diagram portrays the behavior and organization of
components at any instant of time. The system cannot be visualized by any individual
component, but it can be by the collection of components.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 237

Why use Component Diagram?

Following are some reasons for the requirement of the component diagram:

It portrays the components of a system at the runtime.

It is helpful in testing a system.

It envisions the links between several connections.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 238

When to use a Component Diagram?

It represents various physical components of a system at runtime. It is helpful in
visualizing the structure and the organization of a system. It describes how individual
components can together form a single system.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 239

When to use a Component Diagram?

Following are some reasons, which tells when to use component diagram:

To divide a single system into multiple components according to the functionality.
To represent the component organization of the system.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 240

How to Draw a Component Diagram?

The component diagram is helpful in representing the physical aspects of a system,
which are files, executables, libraries, etc. The main purpose of a component diagram is
different from that of other diagrams. It is utilized in the implementation phase of any
application.

Once the system is designed employing different UML diagrams, and the artifacts are
prepared, the component diagram is used to get an idea of implementation. It plays an
essential role in implementing applications efficiently.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 241

How to Draw a Component Diagram?

Following are some artifacts that are needed to be identified before drawing a
component diagram:

What files are used inside the system?

What is the application of relevant libraries and artifacts?
What is the relationship between the artifacts?

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 242

How to Draw a Component Diagram?

Following are some points that are needed to be kept in - mind after the artifacts are
identified:

Using a meaningful name to ascertain the component for - which the diagram is
about to be drawn.
Before producing the required tools, a mental layout is to be made.

To clarify the important points, notes can be incorporated.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 243

Example of a Component Diagram

A component diagram for an online shopping system is given below:

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 244

Where to use Component Diagrams?

The component diagram is a special purpose diagram, which is used to visualize the
static implementation view of a system. It represents the physical components of a
system, or we can say it portrays the organization of the components inside a system.
The components, such as libraries, files, executables, etc. are first needed to be
organized before the implementation.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 245

Where to use Component Diagrams?

The component diagram can be used for the followings:

To model the components of the system.

To model the schemas of a database.
To model the applications of an application.

To model the system's source code.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 246

UML Deployment Diagram

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 247

UML Deployment Diagram

The deployment diagram visualizes the physical hardware on which the software will be
deployed. It portrays the static deployment view of a system. It involves the nodes and
their relationships.

It ascertains how software is deployed on the hardware. It maps the software
architecture created in design to the physical system architecture, where the software
will be executed as a node. Since it involves many nodes, the relationship is shown by
utilizing communication paths.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 248

Purpose of Deployment Diagram

The main purpose of the deployment diagram is to represent how software is installed
on the hardware component. It depicts in what manner a software interacts with
hardware to perform its execution.

Both the deployment diagram and the component diagram are closely interrelated to
each other as they focus on software and hardware components. The component
diagram represents the components of a system, whereas the deployment diagram
describes how they are actually deployed on the hardware.

The deployment diagram does not focus on the logical components of the system, but
it put its attention on the hardware topology.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 249

Purpose of Deployment Diagram

Following are the purposes of deployment diagram enlisted below:

To envision the hardware topology of the system.

To represent the hardware components on which the software - components are
installed.
To describe the processing of nodes at the runtime.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 250

Symbol and notation of
Deployment diagram

The deployment diagram consist of
the following notations:

A component

An artifact

An interface

A node

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 251

How to draw a Deployment Diagram?

The deployment diagram portrays the deployment view of the system. It helps in
visualizing the topological view of a system. It incorporates nodes, which are physical
hardware. The nodes are used to execute the artifacts. The instances of artifacts can be
deployed on the instances of nodes.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 252

How to draw a Deployment Diagram?

Since it plays a critical role during the administrative process, it involves the following
parameters:

High performance

Scalability

Maintainability
Portability

Easily understandable

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 253

How to draw a Deployment Diagram?

One of the essential elements of the deployment diagram is the nodes and
artifacts.

So it is necessary to identify all of the nodes and the relationship between them.

It becomes easier to develop a deployment diagram if all of the nodes, artifacts,
and their relationship is already known.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 254

Example of a Deployment diagram

A deployment diagram for the Apple iTunes application is given below.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 255

Example of a Deployment diagram

The iTunes setup can be downloaded from the iTunes website, and also it can be
installed on the home computer. Once the installation and the registration are
done, iTunes application can easily interconnect with the Apple iTunes store. Users
can purchase and download music, video, TV serials, etc. and cache it in the media
library.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 256

Example of a Deployment diagram

Devices like Apple iPod Touch and Apple iPhone can update its own media library
from the computer with iTunes with the help of USB or simply by downloading
media directly from the Apple iTunes store using wireless protocols, for example;
Wi-Fi, 3G, or EDGE.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 257

When to use a Deployment Diagram?

The deployment diagram is mostly employed by network engineers, system
administrators, etc. with the purpose of representing the deployment of software on the
hardware system. It envisions the interaction of the software with the hardware to
accomplish the execution. The selected hardware must be of good quality so that the
software can work more efficiently at a faster rate by producing accurate results in no
time.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 258

When to use a Deployment Diagram?

The software applications are quite complex these days, as they are standalone,
distributed, web-based, etc. So, it is very necessary to design efficient software.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 259

When to use a Deployment Diagram?

Deployment diagrams can be used for the followings:

To model the network and hardware topology of a system.

To model the distributed networks and systems.

Implement forwarding and reverse engineering processes.

To model the hardware details for a client/server system.
For modeling the embedded system.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 260

UML Interaction Diagram

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 261

UML Interaction Diagram

UML Interaction Diagram
As the name suggests, the interaction diagram portrays the interactions between
distinct entities present in the model. It amalgamates both the activity and sequence
diagrams. The communication is nothing but units of the behavior of a classifier that
provides context for interactions.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 262

UML Interaction Diagram

A set of messages that are interchanged between the entities to achieve certain
specified tasks in the system is termed as interaction. It may incorporate any feature of
the classifier of which it has access. In the interaction diagram, the critical component is
the messages and the lifeline.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 263

UML Interaction Diagram

In UML, the interaction overview diagram initiates the interaction between the objects
utilizing message passing. While drawing an interaction diagram, the entire focus is to
represent the relationship among different objects which are available within the system
boundary and the message exchanged by them to communicate with each other.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 264

UML Interaction Diagram

The message exchanged among objects is either to pass some information or to
request some information. And based on the information, the interaction diagram is
categorized into the sequence diagram, collaboration diagram, and timing diagram.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 265

UML Interaction Diagram

The sequence diagram envisions the order of the flow of messages inside the system by
depicting the communication between two lifelines, just like a time-ordered sequence
of events.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 266

UML Interaction Diagram

The collaboration diagram, which is also known as the communication diagram,
represents how lifelines connect within the system, whereas the timing diagram focuses
on that instant when a message is passed from one element to the other.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 267

Notation of an Interaction Diagram

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 268

Purpose of an Interaction Diagram

The interaction diagram helps to envision the interactive (dynamic) behavior of any
system. It portrays how objects residing in the system communicates and connects
to each other. It also provides us with a context of communication between the
lifelines inside the system.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 269

Purpose of an Interaction Diagram

Following are the purpose of an interaction diagram given below:
To visualize the dynamic behavior of the system.

To envision the interaction and the message flow in the system.
To portray the structural aspects of the entities within the system.

To represent the order of the sequenced interaction in the system.

To visualize the real-time data and represent the architecture of an object-
oriented system.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 270

How to draw an Interaction Diagram?

Since the main purpose of an interaction diagram is to visualize the dynamic
behavior of the system, it is important to understand what a dynamic aspect really
is and how we can visualize it. The dynamic aspect is nothing but a screenshot of
the system at the run time.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 271

How to draw an Interaction Diagram?

Before drawing an interaction diagram, the first step is to discover the scenario for
which the diagram will be made. Next, we will identify various lifelines that will be
invoked in the communication, and then we will classify each lifeline. After that, the
connections are investigated and how the lifelines are interrelated to each other.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 272

How to draw an Interaction Diagram?

Following are some things that are needed:
A total no of lifeline which will take part in the communication.

The sequence of the message flow among several entities within the system.

No operators used to ease out the functionality of the diagram.
Several distinct messages that depict the interactions in a precise and clear
way.

The organization and structure of a system.
The order of the sequence of the flow of messages.

Total no of time constructs of an object.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 273

Use of an Interaction Diagram

The interaction diagram can be used for:
The sequence diagram is employed to investigate a new application.

The interaction diagram explores and compares the use of the collaboration
diagram sequence diagram and the timing diagram.

The interaction diagram represents the interactive (dynamic) behavior of the
system.
The sequence diagram portrays the order of control flow from one element to
the other elements inside the system, whereas the collaboration diagrams are
employed to get an overview of the object architecture of the system.

The interaction diagram models the system as a time-ordered sequence of a
system.
The interaction diagram models the system as a time-ordered sequence of a
system.

The interaction diagram systemizes the structure of the interactive elements.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 274

UML Use Case Diagram

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 275

UML Use Case Diagram

A use case diagram is used to represent the dynamic behavior of a system. It
encapsulates the system's functionality by incorporating use cases, actors, and their
relationships. It models the tasks, services, and functions required by a
system/subsystem of an application. It depicts the high-level functionality of a
system and also tells how the user handles a system.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 276

Purpose of Use Case Diagrams

The main purpose of a use case diagram is to portray the dynamic aspect of a
system. It accumulates the system's requirement, which includes both internal as
well as external influences. It invokes persons, use cases, and several things that
invoke the actors and elements accountable for the implementation of use case
diagrams. It represents how an entity from the external environment can interact
with a part of the system.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 277

Purpose of Use Case Diagrams

Following are the purposes of a use case diagram given below:

It gathers the system's needs.

It depicts the external view of the system.
It recognizes the internal as well as external factors that influence the system.

It represents the interaction between the actors.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 278

How to draw a Use Case diagram?

It is essential to analyze the whole system before starting with drawing a use case
diagram, and then the system's functionalities are found. And once every single
functionality is identified, they are then transformed into the use cases to be used in the
use case diagram.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 279

How to draw a Use Case diagram?

After that, we will enlist the actors that will interact with the system. The actors are the
person or a thing that invokes the functionality of a system. It may be a system or a
private entity, such that it requires an entity to be pertinent to the functionalities of the
system to which it is going to interact.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 280

How to draw a Use Case diagram?

Once both the actors and use cases are enlisted, the relation between the actor and use
case/ system is inspected. It identifies the no of times an actor communicates with the
system. Basically, an actor can interact multiple times with a use case or system at a
particular instance of time.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 281

How to draw a Use Case diagram?

Following are some rules that must be followed while drawing a use case diagram:
A pertinent and meaningful name should be assigned to the actor or a use
case of a system.

The communication of an actor with a use case must be defined in an
understandable way.

Specified notations to be used as and when required.

The most significant interactions should be represented among the multiple
no of interactions between the use case and actors.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 282

Example of a Use Case Diagram

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 283

Example of a Use Case Diagram

A use case diagram depicting the Online Shopping website is given below.

Here the Web Customer actor makes use of any online shopping website to
purchase online. The top-level uses are as follows; View Items, Make Purchase,
Checkout, Client Register. The View Items use case is utilized by the customer who
searches and view products. The Client Register use case allows the customer to
register itself with the website for availing gift vouchers, coupons, or getting a
private sale invitation. It is to be noted that the Checkout is an included use case,
which is part of Making Purchase, and it is not available by itself.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 284

Example of a Use Case Diagram

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 285

Example of a Use Case Diagram

The View Items is further extended by several use cases such as; Search Items,
Browse Items, View Recommended Items, Add to Shopping Cart, Add to Wish list.
All of these extended use cases provide some functions to customers, which allows
them to search for an item. The View Items is further extended by several use cases
such as; Search Items, Browse Items, View Recommended Items, Add to Shopping
Cart, Add to Wish list. All of these extended use cases provide some functions to
customers, which allows them to search for an item.

Both View Recommended Item and Add to Wish List include the Customer
Authentication use case, as they necessitate authenticated customers, and
simultaneously item can be added to the shopping cart without any user
authentication.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 286

Example of a Use Case Diagram

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 287

Example of a Use Case Diagram

Similarly, the Checkout use case also includes the following use cases, as shown
below. It requires an authenticated Web Customer, which can be done by login
page, user authentication cookie ("Remember me"), or Single Sign-On (SSO). SSO
needs an external identity provider's participation, while Web site authentication
service is utilized in all these use cases.

The Checkout use case involves Payment use case that can be done either by the
credit card and external credit payment services or with PayPal.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 288

Important tips for drawing a Use Case diagram

Following are some important tips that are to be kept in mind while drawing a use
case diagram:

A simple and complete use case diagram should be articulated.

A use case diagram should represent the most significant interaction among
the multiple interactions.
At least one module of a system should be represented by the use case
diagram.

If the use case diagram is large and more complex, then it should be drawn
more generalized.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 289

UML Sequence Diagram

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 290

UML Sequence Diagram

The sequence diagram represents the flow of messages in the system and is also
termed as an event diagram. It helps in envisioning several dynamic scenarios. It
portrays the communication between any two lifelines as a time-ordered sequence
of events, such that these lifelines took part at the run time. In UML, the lifeline is
represented by a vertical bar, whereas the message flow is represented by a vertical
dotted line that extends across the bottom of the page. It incorporates the
iterations as well as branching.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 291

Purpose of a Sequence Diagram

To model high-level interaction among active objects within a system.

To model interaction among objects inside a collaboration realizing a use case.

It either models generic interactions or some certain instances of interaction.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 292

Notations of a Sequence Diagram

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 293

Lifeline

An individual participant in the
sequence diagram is represented
by a lifeline. It is positioned at
the top of the diagram.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 294

Actor

A role played by an entity that
interacts with the subject is
called as an actor. It is out of the
scope of the system. It
represents the role, which
involves human users and
external hardware or subjects. An
actor may or may not represent
a physical entity, but it purely
depicts the role of an entity.
Several distinct roles can be
played by an actor or vice versa.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 295

Activation

It is represented by a thin
rectangle on the lifeline. It
describes that time period in
which an operation is performed
by an element, such that the top
and the bottom of the rectangle
is associated with the initiation
and the completion time, each
respectively.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 296

Messages

The messages depict the interaction between the objects and are represented by
arrows. They are in the sequential order on the lifeline. The core of the sequence
diagram is formed by messages and lifelines.

Following are types of messages enlisted below:

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 297

Call Message:

It defines a particular communication between the lifelines of an interaction, which
represents that the target lifeline has invoked an operation.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 298

Return Message:

It defines a particular communication between the lifelines of interaction that
represent the flow of information from the receiver of the corresponding caller
message.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 299

Self Message:

It describes a communication, particularly between the lifelines of an interaction
that represents a message of the same lifeline, has been invoked.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 300

Recursive Message:

A self message sent for recursive purpose is called a recursive message. In other
words, it can be said that the recursive message is a special case of the self
message as it represents the recursive calls.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 301

Create Message:

It describes a communication, particularly between the lifelines of an interaction
describing that the target (lifeline) has been instantiated.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 302

Destroy Message:

It describes a communication, particularly between the lifelines of an interaction
that depicts a request to destroy the lifecycle of the target.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 303

Duration Message:

It describes a communication particularly between the lifelines of an interaction,
which portrays the time passage of the message while modeling a system.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 304

Note

A note is the capability of attaching several remarks to the element. It basically
carries useful information for the modelers.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 305

Sequence Fragments

Sequence fragments have been introduced by UML 2.0, which makes it quite easy
for the creation and maintenance of an accurate sequence diagram.

It is represented by a box called a combined fragment, encloses a part of
interaction inside a sequence diagram.

The type of fragment is shown by a fragment operator.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 306

Sequence Fragments

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 307

Types of fragments

Following are the types of fragments enlisted below;
alt

Alternative multiple fragments: The only fragment for which the condition
is true, will execute.

opt Optional:
If the supplied condition is true, only then the fragments will execute. It is
similar to alt with only one trace.

par Parallel:
Parallel executes fragments.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 308

Types of fragments

loop Loop:
Fragments are run multiple times, and the basis of interaction is shown by the
guard.

region Critical region:
Only one thread can execute a fragment at once.

neg Negative:
A worthless communication is shown by the fragment.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 309

Types of fragments

ref Reference:
An interaction portrayed in another diagram. In this, a frame is drawn so as to
cover the lifelines involved in the communication. The parameter and return
value can be explained.

sd Sequence Diagram:
It is used to surround the whole sequence diagram.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 310

Example of a Sequence Diagram

An example of a high-level
sequence diagram for online
bookshop is given below.

Any online customer can search
for a book catalog, view a
description of a particular book,
add a book to its shopping cart,
and do checkout.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 311

Benefits of a Sequence Diagram

It explores the real-time application.

It depicts the message flow between the different objects.

It has easy maintenance.

It is easy to generate.
Implement both forward and reverse engineering.

It can easily update as per the new change in the system.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 312

The drawback of a Sequence Diagram

In the case of too many lifelines, the sequence diagram can get more complex.

The incorrect result may be produced, if the order of the flow of messages changes.

Since each sequence needs distinct notations for its representation, it may make
the diagram more complex.

The type of sequence is decided by the type of message.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 313

UML Collaboration Diagram

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 314

UML Collaboration Diagram

The collaboration diagram is used to show the relationship between the objects in
a system. Both the sequence and the collaboration diagrams represent the same
information but differently. Instead of showing the flow of messages, it depicts the
architecture of the object residing in the system as it is based on object-oriented
programming. An object consists of several features. Multiple objects present in
the system are connected to each other. The collaboration diagram, which is also
known as a communication diagram, is used to portray the object's architecture in
the system.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 315

Notations of a Collaboration Diagram

Following are the components of a component diagram that are enlisted below:

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 316

Objects:

The representation of an object is done by an object symbol with its name and
class underlined, separated by a colon.

In the collaboration diagram, objects are utilized in the following ways:

The object is represented by specifying their name and class.

It is not mandatory for every class to appear.
A class may constitute more than one object.
In the collaboration diagram, firstly, the object is created, and then its class is
specified.

To differentiate one object from another object, it is necessary to name them.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 317

Actors:

In the collaboration diagram, the actor plays the main role as it invokes the
interaction. Each actor has its respective role and name. In this, one actor initiates
the use case.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 318

Links:

The link is an instance of association, which associates the objects and actors. It
portrays a relationship between the objects through which the messages are sent.
It is represented by a solid line. The link helps an object to connect with or navigate
to another object, such that the message flows are attached to links.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 319

Messages:

It is a communication between objects which carries information and includes a
sequence number, so that the activity may take place. It is represented by a labeled
arrow, which is placed near a link. The messages are sent from the sender to the
receiver, and the direction must be navigable in that particular direction. The
receiver must understand the message.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 320

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 321

When to use a Collaboration Diagram?

The collaborations are used when it is essential to depict the relationship between
the object. Both the sequence and collaboration diagrams represent the same
information, but the way of portraying it quite different. The collaboration
diagrams are best suited for analyzing use cases.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 322

When to use a Collaboration Diagram?

Following are some of the use cases enlisted below for which the collaboration
diagram is implemented:

To model collaboration among the objects or roles that carry the
functionalities of use cases and operations.

To model the mechanism inside the architectural design of the system.

To capture the interactions that represent the flow of messages between the
objects and the roles inside the collaboration.
...

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 323

When to use a Collaboration Diagram?

...
To model different scenarios within the use case or operation, involving a
collaboration of several objects and interactions.
To support the identification of objects participating in the use case.

In the collaboration diagram, each message constitutes a sequence number,
such that the top-level message is marked as one and so on. The messages
sent during the same call are denoted with the same decimal prefix, but with
different suffixes of 1, 2, etc. as per their occurrence.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 324

Steps for creating a Collaboration Diagram

Determine the behavior for which the realization and implementation are specified.

Discover the structural elements that are class roles, objects, and subsystems for
performing the functionality of collaboration.
Choose the context of an interaction: system, subsystem, use case, and operation.

Think through alternative situations that may be involved.
Implementation of a collaboration diagram at an instance level, if needed.
A specification level diagram may be made in the instance level sequence
diagram for summarizing alternative situations.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 325

Example of a Collaboration Diagram

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 326

Benefits of a Collaboration Diagram

The collaboration diagram is also known as Communication Diagram.
It mainly puts emphasis on the structural aspect of an interaction diagram, i.e., how
lifelines are connected.

The syntax of a collaboration diagram is similar to the sequence diagram; just the
difference is that the lifeline does not consist of tails.

The messages transmitted over sequencing is represented by numbering each
individual message.

The collaboration diagram is semantically weak in comparison to the sequence
diagram.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 327

Benefits of a Collaboration Diagram

The special case of a collaboration diagram is the object diagram.
It focuses on the elements and not the message flow, like sequence diagrams.

Since the collaboration diagrams are not that expensive, the sequence diagram can
be directly converted to the collaboration diagram.
There may be a chance of losing some amount of information while implementing
a collaboration diagram with respect to the sequence diagram.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 328

The drawback of a Collaboration Diagram

Multiple objects residing in the system can make a complex collaboration diagram,
as it becomes quite hard to explore the objects.

It is a time-consuming diagram.

After the program terminates, the object is destroyed.
As the object state changes momentarily, it becomes difficult to keep an eye on
every single that has occurred inside the object of a system.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 329

UML State Machine Diagram

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 330

UML State Machine Diagram

The state machine diagram is also called the Statechart or State Transition diagram,
which shows the order of states underwent by an object within the system. It
captures the software system's behavior. It models the behavior of a class, a
subsystem, a package, and a complete system.

It tends out to be an efficient way of modeling the interactions and collaborations
in the external entities and the system. It models event-based systems to handle
the state of an object. It also defines several distinct states of a component within
the system. Each object/component has a specific state.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 331

UML State Machine Diagram

Following are the types of a state machine diagram that are given below:
Behavioral state machine

The behavioral state machine diagram records the behavior of an object
within the system. It depicts an implementation of a particular entity. It
models the behavior of the system.

Protocol state machine
It captures the behavior of the protocol. The protocol state machine
depicts the change in the state of the protocol and parallel changes within
the system. But it does not portray the implementation of a particular
component.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 332

Why State Machine Diagram?

Since it records the dynamic view of a system, it portrays the behavior of a software
application. During a lifespan, an object underwent several states, such that the
lifespan exist until the program is executing. Each state depicts some useful
information about the object.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 333

Why State Machine Diagram?

It blueprints an interactive system that response back to either the internal events
or the external ones. The execution flow from one state to another is represented
by a state machine diagram. It visualizes an object state from its creation to its
termination.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 334

Why State Machine Diagram?

The main purpose is to depict each state of an individual object. It represents an
interactive system and the entities inside the system. It records the dynamic
behavior of the system.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 335

Notation of a State Machine Diagram

Following are the notations of a state machine diagram enlisted below:

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 336

Notation of a State Machine Diagram

Initial state:
It defines the initial state (beginning) of a system, and it is represented by a
black filled circle.
Final state: It represents the final state (end) of a system. It is denoted by a
filled circle present within a circle.

Decision box:
It is of diamond shape that represents the decisions to be made on the basis
of an evaluated guard.
Transition: A change of control from one state to another due to the
occurrence of some event is termed as a transition. It is represented by an
arrow labeled with an event due to which the change has ensued.

State box:
It depicts the conditions or circumstances of a particular object of a class at a
specific point of time. A rectangle with round corners is used to represent the
state box.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 337

Types of State

The UML consist of three states:
Simple state:

It does not constitute any substructure.

Composite state:
It consists of nested states (substates), such that it does not contain more
than one initial state and one final state. It can be nested to any level.

Submachine state:
The submachine state is semantically identical to the composite state, but
it can be reused.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 338

How to Draw a State Machine Diagram?

The state machine diagram is used to portray various states underwent by an
object. The change in one state to another is due to the occurrence of some event.
All of the possible states of a particular component must be identified before
drawing a state machine diagram.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 339

How to Draw a State Machine Diagram?

The primary focus of the state machine diagram is to depict the states of a system.
These states are essential while drawing a state transition diagram. The objects,
states, and events due to which the state transition occurs must be acknowledged
before the implementation of a state machine diagram.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 340

How to Draw a State Machine Diagram?

Following are the steps that are to be incorporated while drawing a state machine
diagram:

A unique and understandable name should be assigned to the state transition
that describes the behavior of the system.
Out of multiple objects, only the essential objects are implemented.

A proper name should be given to the events and the transitions.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 341

When to use a State Machine Diagram?

The state machine diagram implements the real-world models as well as the
object-oriented systems. It records the dynamic behavior of the system, which is
used to differentiate between the dynamic and static behavior of a system.

It portrays the changes underwent by an object from the start to the end. It
basically envisions how triggering an event can cause a change within the system.

State machine diagram is used for:

For modeling the object states of a system.
For modeling the reactive system as it consists of reactive objects.

For pinpointing the events responsible for state transitions.

For implementing forward and reverse engineering.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 342

Example of a State Machine Diagram

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 343

Example of a State Machine Diagram

An example of a top-level state machine diagram showing Bank Automated Teller
Machine (ATM) is given below.

Initially, the ATM is turned off. After the power supply is turned on, the ATM starts
performing the startup action and enters into the Self Test state. If the test fails, the
ATM will enter into the Out Of Service state, or it will undergo a triggerless transition to
the Idle state. This is the state where the customer waits for the interaction.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 344

Example of a State Machine Diagram

Whenever the customer inserts the bank or credit card in the ATM's card reader, the
ATM state changes from Idle to Serving Customer, the entry action readCard is
performed after entering into Serving Customer state. Since the customer can cancel
the transaction at any instant, so the transition from Serving Customer state back to the
Idle state could be triggered by cancel event.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 345

Example of a State Machine Diagram

Here the Serving Customer is a composite state with sequential substates that are
Customer Authentication, Selecting Transaction, and Transaction.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 346

Example of a State Machine Diagram

Customer Authentication and Transaction are the composite states itself is displayed by
a hidden decomposition indication icon. After the transaction is finished, the Serving
Customer encompasses a triggerless transition back to the Idle state. On leaving the
state, it undergoes the exit action ejectCard that discharges the customer card.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 347

Example of a State Machine Diagram

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 348

State Machine vs. Flowchart

State Machine Flowchart
It portrays several states of a system. It demonstrates the execution flow of a
program.
It encompasses the concept of WAIT, i.e., wait for an event or an action. It does
not constitute the concept of WAIT.
It is for real-world modeling systems. It envisions the branching sequence of a
system.
It is a modeling diagram. It is a data flow diagram (DFD)
It is concerned with several states of a system. It focuses on control flow and path.

CE204 Object-Oriented Programming

⟺
⟺

⟺

⟺

⟺
⟺

 RTEU CE204 Week-4 349

UML Activity Diagram

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 350

UML Activity Diagram

In UML, the activity diagram is used to demonstrate the flow of control within the
system rather than the implementation. It models the concurrent and sequential
activities.

The activity diagram helps in envisioning the workflow from one activity to another.
It put emphasis on the condition of flow and the order in which it occurs. The flow
can be sequential, branched, or concurrent, and to deal with such kinds of flows,
the activity diagram has come up with a fork, join, etc.

It is also termed as an object-oriented flowchart. It encompasses activities
composed of a set of actions or operations that are applied to model the
behavioral diagram.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 351

Components of an Activity Diagram

Following are the component of an activity diagram:
Activities

Activity partition /swimlane

Forks

Join Nodes
Pins

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 352

Activities

The categorization of behavior into one or more
actions is termed as an activity. In other words, it can
be said that an activity is a network of nodes that are
connected by edges. The edges depict the flow of
execution. It may contain action nodes, control
nodes, or object nodes.

The control flow of activity is represented by control
nodes and object nodes that illustrates the objects
used within an activity. The activities are initiated at
the initial node and are terminated at the final node.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 353

Activity partition /swimlane

The swimlane is used to cluster all the related
activities in one column or one row. It can be either
vertical or horizontal. It used to add modularity to
the activity diagram. It is not necessary to
incorporate swimlane in the activity diagram. But it is
used to add more transparency to the activity
diagram.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 354

Forks

Forks and join nodes generate the concurrent flow
inside the activity. A fork node consists of one inward
edge and several outward edges. It is the same as
that of various decision parameters. Whenever a data
is received at an inward edge, it gets copied and split
crossways various outward edges. It split a single
inward flow into multiple parallel flows.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 355

Join Nodes

Join nodes are the opposite of fork nodes. A Logical AND
operation is performed on all of the inward edges as it
synchronizes the flow of input across one single output
(outward) edge.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 356

Pins

It is a small rectangle, which is attached to the action rectangle. It clears out all the
messy and complicated thing to manage the execution flow of activities. It is an
object node that precisely represents one input to or output from the action.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 357

Notation of an Activity diagram

Activity diagram constitutes following notations:
Initial State:

It depicts the initial stage or beginning of
the set of actions.

Final State:
It is the stage where all the control flows
and object flows end.

Decision Box:
It makes sure that the control flow or object
flow will follow only one path.

Action Box:
It represents the set of actions that are to
be performed.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 358

Why use Activity Diagram?

An event is created as an activity diagram encompassing a group of nodes
associated with edges. To model the behavior of activities, they can be attached to
any modeling element. It can model use cases, classes, interfaces, components, and
collaborations.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 359

Why use Activity Diagram?

It mainly models processes and workflows. It envisions the dynamic behavior of the
system as well as constructs a runnable system that incorporates forward and
reverse engineering. It does not include the message part, which means message
flow is not represented in an activity diagram.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 360

Why use Activity Diagram?

It is the same as that of a flowchart but not exactly a flowchart itself. It is used to
depict the flow between several activities.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 361

How to draw an Activity Diagram?

An activity diagram is a flowchart of activities, as it represents the workflow among
various activities. They are identical to the flowcharts, but they themself are not
exactly the flowchart. In other words, it can be said that an activity diagram is an
enhancement of the flowchart, which encompasses several unique skills.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 362

How to draw an Activity Diagram?

Since it incorporates swimlanes, branching, parallel flows, join nodes, control
nodes, and forks, it supports exception handling. A system must be explored as a
whole before drawing an activity diagram to provide a clearer view of the user. All
of the activities are explored after they are properly analyzed for finding out the
constraints applied to the activities. Each and every activity, condition, and
association must be recognized.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 363

How to draw an Activity Diagram?

After gathering all the essential information, an abstract or a prototype is built,
which is then transformed into the actual diagram.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 364

How to draw an Activity Diagram?

Following are the rules that are to be followed for drawing an activity diagram:
A meaningful name should be given to each and every activity.

Identify all of the constraints.

Acknowledge the activity associations.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 365

Example of an Activity Diagram

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 366

Example of an Activity Diagram

An example of an activity diagram showing the business flow activity of order
processing is given below.

Here the input parameter is the Requested order, and once the order is accepted,
all of the required information is then filled, payment is also accepted, and then the
order is shipped. It permits order shipment before an invoice is sent or payment is
completed.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 367

When to use an Activity Diagram?

An activity diagram can be used to portray business processes and workflows. Also,
it used for modeling business as well as the software. An activity diagram is utilized
for the followings:

To graphically model the workflow in an easier and understandable way.
To model the execution flow among several activities.

To model comprehensive information of a function or an algorithm employed
within the system.
To model the business process and its workflow.

To envision the dynamic aspect of a system.

To generate the top-level flowcharts for representing the workflow of an
application.

To represent a high-level view of a distributed or an object-oriented system.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 368

UML Timing Diagram

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 369

UML Timing Diagram

In UML, the timing diagrams are a part of Interaction diagrams that do not
incorporate similar notations as that of sequence and collaboration diagram. It
consists of a graph or waveform that depicts the state of a lifeline at a specific
point of time. It illustrates how conditions are altered both inside and between
lifelines alongside linear time axis.

The timing diagram describes how an object underwent a change from one form
to another. A waveform portrays the flow among the software programs at several
instances of time.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 370

UML Timing Diagram

Following are some important key points of a timing diagram:
It emphasizes at that particular time when the message has been sent among
objects.

It explains the time processing of an object in detail.

It is employed with distributed and embedded systems.
It also explains how an object undergoes changes in its form throughout its
lifeline.

As the lifelines are named on the left side of an edge, the timing diagrams are
read from left to right.

It depicts a graphical representation of states of a lifeline per unit time.

In UML, the timing diagram has come up with several notations to simplify the
transition state among two lifelines per unit time.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 371

Basic concepts of a Timing Diagram

In UML, the timing diagram constitutes several major elements, which are as
follows:

Lifeline

State or Condition Timeline

Duration Constraint
Time Constraint

Destruction Occurrence

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 372

Lifeline

As the name suggests, the lifeline portrays an individual element in the interaction.
It represents a single entity, which is a part of the interaction. It is represented by
the classifier's name that it depicts. A lifeline can be placed within a "swimlane" or a
diagram frame.

Lifelines representing instances of a System and Virus

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 373

State or Condition Timeline

The timing diagram represents the state of a classifier or attributes that are
participating, or some testable conditions, which is a discrete value of the classifier.

In UML, the state or condition is continuous. It is mainly used to show the
temperature and density where the entities endure a continuous state change.

Timeline showing the change in the state of virus between dormant, Propagation,
Triggering, Execution

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 374

Duration Constraint

The duration constraint is a constraint of an interval, which refers to duration
interval. It is used to determine if the constraint is satisfied for a duration or not.
The duration constraint semantics inherits from the constraints.

The negative trace defines the violated constraints, which means the system is
failed. A graphical association between duration interval and the construct, which it
constrains, may represent a duration constraint.

Ice should melt into the water in 1 to 6 mins.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 375

Time Constraint

It is an interval constraint, which refers to the time interval. Since it is a time
expression, it depicts if the constraint is satisfied or not. The constraints dispense
its time constraints semantics.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 376

Time Constraint

The negative trace defines the violated constraints, which means the system is
failed. The time constraint is represented by a graphical association between the
time interval and the construct which it constrains.

The graphical association is mainly represented by a small line in between a time
interval and an occurrence specification.

A person should wakeup in between 5:40 am, and 6 am

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 377

Destruction Occurrence

The destruction occurrence refers to the occurrence of a message that represents the
destruction of an instance is defined by a lifeline. It may subsequently destruct other
objects owned by the composition of this object, such that nothing occurs after the
destruction event on a given lifeline. It is represented by a cross at the end of a timeline.

Virus lifeline is terminated

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 378

Example of a Timing Diagram

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 379

Example of a Timing Diagram

A timing diagram example of a medical domain that depicts different stages of
Alzheimer's disease (AD) is explained below.

Since Alzheimer's is a very progressive fatal brain disease, it leads to memory loss
and intellectual abilities. The reason behind this disease is yet to be discovered. It
cannot be cured as well as one of the main reasons for rising death rates in the
United States.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 380

Example of a Timing Diagram

The doctor may require a diagnostic framework with three to seven-stage, such
that its evolution may last for about 8 to 10 years. Also, in some cases, it lasts up to
20years from the time neuron starts changing.

The example given below constitutes timing for a seven-stage framework. The
given example is just a UML diagram and should not be considered as a reference
to medical research. The medical details are provided for you to better understand
the UML diagram.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 381

Following are the seven-stage Alzheimer disease framework explained below:

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 382

No Impairment, Normal State
It is the stage where the memory and cognitive abilities look normal.

Normal Aged Forgetfulness
It is mostly seen in people with an age group of 65 who experience subjective
complaints of cognitive and/or functional difficulties, which means they face
problems in recalling the name and past 5 to 10 years of history.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 383

Early Confusional, Mild Cognitive Impairment
It causes a problem in retrieving words, planning, organizing, objects misplacing as
well as forgetting fresh learning, which in turn affects the surrounding.

Late Confusional, Mild Alzheimer's
In this, a person forgets the most recent events and conversations. The person
remembers himself and his family, but face problems while carrying out
sequential tasks such as cooking, driving, etc. Its duration is about two years,

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 384

Early Dementia, Moderate Alzheimer's
In this, the person cannot manage independently. He faces difficulty in
recalling the past details and contact information. It lasts for about 1.5 years.

Middle Dementia, Moderately Severe Alzheimer's
It leads to insufficient awareness about current events, and the person is
unable to recall the past. It causes an inability in people to take a bath and
dress up independently. It lasts for about 2.5 years approximately.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 385

Late or Severe Dementia, Failure to Thrive
It is severely limited intellectual ability. In this, a person either communicates
through short words or cries, which leads health to decline as it shut down the
body system. Its duration is 1 to 2.5 years.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 386

Benefits of Timing Diagram

It depicts the state of an object at a particular point in time.

It implements forward and reverses engineering.

It keeps an eye on every single change that happens within the system.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 387

Drawbacks of Timing Diagram

It is hard to maintain and understand.

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 388

References

visual-paradigm-What is Unified Modeling Language (UML)?

javatpoint-UML Overview

javatpoint-UML Building Blocks

javatpoint-UML Architecture

javatpoint-UML Diagrams Overview

javatpoint-UML Relationship

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 389

https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-uml/
https://www.javatpoint.com/uml
https://www.javatpoint.com/uml-building-blocks
https://www.javatpoint.com/uml-architecture
https://www.javatpoint.com/uml-diagrams
https://www.javatpoint.com/uml-relationship

References

uml-diagrams-org

javatpoint-UML Association vs. Aggregation vs. Composition

javatpoint-UML- Association

javatpoint-UML-Dependency

javatpoint-UML-Generalization

javatpoint-UML-Realization

javatpoint-UML Class Diagram

javatpoint-UML Object Diagram

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 390

https://www.uml-diagrams.org/
https://www.javatpoint.com/uml-association-vs-aggregation-vs-composition
https://www.javatpoint.com/uml-association
https://www.javatpoint.com/uml-dependency
https://www.javatpoint.com/uml-generalization
https://www.javatpoint.com/uml-realization
https://www.javatpoint.com/uml-class-diagram
https://www.javatpoint.com/uml-object-diagram

References

javatpoint-UML Component Diagram

javatpoint-UML Deployment Diagram

javatpoint-UML Interaction Diagram

javatpoint-UML Use Case Diagram

javatpoint-UML Sequence Diagram

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 391

https://www.javatpoint.com/uml-component-diagram
https://www.javatpoint.com/uml-deployment-diagram
https://www.javatpoint.com/uml-interaction-diagram
https://www.javatpoint.com/uml-use-case-diagram
https://www.javatpoint.com/uml-sequence-diagram

References

javatpoint-UML Collaboration Diagram

javatpoint-UML State Machine Diagram

javatpoint-UML Activity Diagram

javatpoint-UML Timing Diagram

javatpoint-UML Tools

CE204 Object-Oriented Programming

 RTEU CE204 Week-4 392

https://www.javatpoint.com/uml-collaboration-diagram
https://www.javatpoint.com/uml-state-machine-diagram
https://www.javatpoint.com/uml-activity-diagram
https://www.javatpoint.com/uml-timing-diagram
https://www.javatpoint.com/uml-tools

CE204 Object-Oriented Programming

End−Of −Week − 4 −Module

 RTEU CE204 Week-4 393

