
CE204 Object-Oriented Programming

Week-2 (OOP with Java-II)

Spring Semester, 2021-2022

Download DOC-PDF, DOC-DOCX, SLIDE, PPTX,

CE204 Object-Oriented Programming

 RTEU CE204 Week-2

file:///E:/UgurCoruh/RTEU/Lectures/2021-2022%20Bahar%20CE100%20-%20Algorithms%20and%20Programming%20II/ce204-object-oriented-programming/docs/week-2/ce204-week-2.tr.md_doc.pdf
file:///E:/UgurCoruh/RTEU/Lectures/2021-2022%20Bahar%20CE100%20-%20Algorithms%20and%20Programming%20II/ce204-object-oriented-programming/docs/week-2/ce204-week-2.tr.md_word.docx
file:///E:/UgurCoruh/RTEU/Lectures/2021-2022%20Bahar%20CE100%20-%20Algorithms%20and%20Programming%20II/ce204-object-oriented-programming/docs/week-2/ce204-week-2.tr.md_slide.pdf
file:///E:/UgurCoruh/RTEU/Lectures/2021-2022%20Bahar%20CE100%20-%20Algorithms%20and%20Programming%20II/ce204-object-oriented-programming/docs/week-2/ce204-week-2.tr.md_slide.pptx

OOP with Java-II

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 2

Outline (1)

Java super Keyword

Java final Keyword
Java Polymorphism / Encapsulation

Java Method Overriding

Java Nested Inner Class

Java Static Class
Java Anonymous Class

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 3

Outline (2)

Java Enums / Enum-Constructor / Enum-String

Java Abstract Class
Java Object Class

Java Forms of Inheritance

Java Benefits and Costs of Inheritance

Java Packages
Java Access Protection in Packages

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 4

Java super keyword

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 5

Java super keyword

In java, super is a keyword used to refers to the parent class object.

The super keyword came into existence to solve the naming conflicts in the
inheritance.
When both parent class and child class have members with the same name,

then the super keyword is used to refer to the parent class version.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 6

Java super keyword

In another word, The super keyword in Java is used in subclasses to access
superclass members (attributes, constructors and methods).

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 7

Java super keyword

In java, the super keyword is used for the following purposes.
To refer parent class data members

To refer parent class methods

To call parent class constructor

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 8

Java super keyword

To call methods of the superclass that is overridden in the subclass.

To access attributes (fields) of the superclass if both superclass and subclass have
attributes with the same name.

To explicitly call superclass no-arg (default) or parameterized constructor from the
subclass constructor.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 9

Java super keyword

The super keyword is used inside the child class only.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 10

super to refer parent class data members

When both parent class and child class have data members with the same name,
then the super keyword is used to refer to the parent class data member from
child class.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 11

super to refer parent class data members

class ParentClass{

 int num = 10;

}

class ChildClass extends ParentClass{

 int num = 20;

 void showData() {
 System.out.println("Inside the ChildClass");
 System.out.println("ChildClass num = " + num);
 System.out.println("ParentClass num = " + super.num);
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 12

super to refer parent class data members

public class SuperKeywordExample {

 public static void main(String[] args) {
 ChildClass obj = new ChildClass();

 obj.showData();

 System.out.println("\nInside the non-child class");
 System.out.println("ChildClass num = " + obj.num);
 //System.out.println("ParentClass num = " + super.num); //super can't be used here
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 13

super to refer parent class method

When both parent class and child class have method with the same name,
then the super keyword is used to refer to the parent class method from child
class.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 14

super to refer parent class method

class ParentClass{

 int num1 = 10;

 void showData() {
 System.out.println("\nInside the ParentClass showData method");
 System.out.println("ChildClass num = " + num1);
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 15

super to refer parent class method

class ChildClass extends ParentClass{

 int num2 = 20;

 void showData() {
 System.out.println("\nInside the ChildClass showData method");
 System.out.println("ChildClass num = " + num2);

 super.showData();

 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 16

super to refer parent class method

public class SuperKeywordExample {

 public static void main(String[] args) {
 ChildClass obj = new ChildClass();

 obj.showData();
 //super.showData(); // super can't be used here

 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 17

super to call parent class constructor

When an object of child class is created, it automatically calls the parent class
default-constructor before it's own.

But, the parameterized constructor of parent class must be called explicitly using
the super keyword inside the child class constructor.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 18

super to call parent class constructor

class ParentClass{

 int num1;

 ParentClass(){
 System.out.println("\nInside the ParentClass default constructor");
 num1 = 10;
 }

 ParentClass(int value){
 System.out.println("\nInside the ParentClass parameterized constructor");
 num1 = value;
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 19

super to call parent class constructor

class ChildClass extends ParentClass{

 int num2;

 ChildClass(){
 super(100);
 System.out.println("\nInside the ChildClass constructor");
 num2 = 200;
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 20

super to call parent class constructor

public class SuperKeywordExample {

 public static void main(String[] args) {

 ChildClass obj = new ChildClass();

 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 21

super to call parent class constructor

To call the parameterized constructor of the parent class,

the super keyword must be the first statement inside the child class constructor,

and we must pass the parameter values.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 22

Access Overridden Methods of the superclass

If methods with the same name are defined in both superclass and subclass, the
method in the subclass overrides the method in the superclass. This is called
method overriding.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 23

Example 1: Method overriding

class Animal {

 // overridden method
 public void display(){
 System.out.println("I am an animal");
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 24

Example 1: Method overriding

class Dog extends Animal {

 // overriding method
 @Override
 public void display(){
 System.out.println("I am a dog");
 }

 public void printMessage(){
 display();
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 25

Example 1: Method overriding

class Main {
 public static void main(String[] args) {
 Dog dog1 = new Dog();
 dog1.printMessage();
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 26

Example 1: Method overriding

In this example, by making an object dog1 of Dog class, we can call its method
printMessage() which then executes the display() statement.

Since display() is defined in both the classes, the method of subclass Dog overrides the
method of superclass Animal. Hence, the display() of the subclass is called.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 27

Example 1: Method overriding

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 28

What if the overridden method of the superclass has to be called?

We use super.display() if the overridden method display() of superclass Animal
needs to be called.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 29

Example 2: super to Call Superclass Method

class Animal {

 // overridden method
 public void display(){
 System.out.println("I am an animal");
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 30

Example 2: super to Call Superclass Method

class Dog extends Animal {

 // overriding method
 @Override
 public void display(){
 System.out.println("I am a dog");
 }

 public void printMessage(){

 // this calls overriding method
 display();

 // this calls overridden method
 super.display();
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 31

Example 2: super to Call Superclass Method

class Main {
 public static void main(String[] args) {
 Dog dog1 = new Dog();
 dog1.printMessage();
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 32

Example 2: super to Call Superclass Method

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 33

Access Attributes of the Superclass

The superclass and subclass can have attributes with the same name.
We use the super keyword to access the attribute of the superclass.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 34

Example 3: Access superclass attribute

class Animal {
 protected String type="animal";
}

class Dog extends Animal {
 public String type="mammal";

 public void printType() {
 System.out.println("I am a " + type);
 System.out.println("I am an " + super.type);
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 35

Example 3: Access superclass attribute

class Main {
 public static void main(String[] args) {
 Dog dog1 = new Dog();
 dog1.printType();
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 36

Example 3: Access superclass attribute

In this example, we have defined the same instance field type in both the
superclass Animal and the subclass Dog .

We then created an object dog1 of the Dog class. Then, the printType() method
is called using this object.

Inside the printType() function,
type refers to the attribute of the subclass Dog .

super.type refers to the attribute of the superclass Animal.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 37

Use of super() to access superclass constructor

As we know, when an object of a class is created, its default constructor is
automatically called.

To explicitly call the superclass constructor from the subclass constructor, we use
super() . It's a special form of the super keyword.

super() can be used only inside the subclass constructor and must be the first
statement.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 38

Example 4: Use of super()

class Animal {

 // default or no-arg constructor of class Animal
 Animal() {
 System.out.println("I am an animal");
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 39

Example 4: Use of super()

class Dog extends Animal {

 // default or no-arg constructor of class Dog
 Dog() {

 // calling default constructor of the superclass
 super();

 System.out.println("I am a dog");
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 40

Example 4: Use of super()

class Main {
 public static void main(String[] args) {
 Dog dog1 = new Dog();
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 41

Example 4: Use of super()

when an object dog1 of Dog class is created, it automatically calls the default or
no-arg constructor of that class.

Inside the subclass constructor, the super() statement calls the constructor of the
superclass and executes the statements inside it. Hence, we get the output I am an
animal.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 42

Example 4: Use of super()

The flow of the program then returns
back to the subclass constructor and
executes the remaining statements.
Thus, I am a dog will be printed.

However, using super() is not
compulsory. Even if super() is not
used in the subclass constructor, the
compiler implicitly calls the default
constructor of the superclass.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 43

Example 4: Use of super()

So, why use redundant code if the compiler automatically invokes super()?

It is required if the parameterized constructor (a constructor that takes
arguments) of the superclass has to be called from the subclass constructor.

The parameterized super() must always be the first statement

in the body of the constructor of the subclass,

otherwise, we get a compilation error.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 44

Example 5: Call Parameterized Constructor Using super()

class Animal {

 // default or no-arg constructor
 Animal() {
 System.out.println("I am an animal");
 }

 // parameterized constructor
 Animal(String type) {
 System.out.println("Type: "+type);
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 45

Example 5: Call Parameterized Constructor Using super()

class Dog extends Animal {

 // default constructor
 Dog() {

 // calling parameterized constructor of the superclass
 super("Animal");

 System.out.println("I am a dog");
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 46

Example 5: Call Parameterized Constructor Using super()

class Main {
 public static void main(String[] args) {
 Dog dog1 = new Dog();
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 47

Example 5: Call Parameterized
Constructor Using super()

If a parameterized constructor has to
be called, we need to explicitly define
it in the subclass constructor.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 48

Example 5: Call Parameterized Constructor Using super()

Note that in the above example, we explicitly called the parameterized constructor
super("Animal"). The compiler does not call the default constructor of the superclass in
this case.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 49

Java final keyword

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 50

Java final keyword

In java, the final is a keyword and it is used with the following things.
With variable (to create constant)

With method (to avoid method overriding)

With class (to avoid inheritance)

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 51

Java final restrictions

the final variable cannot be reinitialized with another value

the final method cannot be overridden

the final class cannot be extended

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 52

final with variables

When a variable defined with the final keyword,

it becomes a constant, and
it does not allow us to modify the value.

The variable defined with the final keyword allows only a one-time assignment,
once a value assigned to it,

never allows us to change it again.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 53

final with variables example-1

public class FinalVariableExample {
 public static void main(String[] args) {
 final int a = 10;
 System.out.println("a = " + a);
 a = 100; // Can't be modified
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 54

final with variables example-2

class Main {
 public static void main(String[] args) {

 // create a final variable
 final int AGE = 32;

 // try to change the final variable
 AGE = 45;
 System.out.println("Age: " + AGE);
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 55

final with variables recommendation

It is recommended to use uppercase to declare final variables in Java.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 56

final with methods

When a method defined with the final keyword,
it does not allow it to override.

The final method extends to the child class,
but the child class can not override or re-define it.

It must be used as it has implemented in the parent class.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 57

final with methods example-1

class ParentClass{

 int num = 10;

 final void showData() {
 System.out.println("Inside ParentClass showData() method");
 System.out.println("num = " + num);
 }

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 58

final with methods example-1

class ChildClass extends ParentClass{

 void showData() {
 System.out.println("Inside ChildClass showData() method");
 System.out.println("num = " + num);
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 59

final with methods example-1

public class FinalKeywordExample {

 public static void main(String[] args) {

 ChildClass obj = new ChildClass();
 obj.showData();

 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 60

final with methods example-2

class FinalDemo {
 // create a final method
 public final void display() {
 System.out.println("This is a final method.");
 }
}

class Main extends FinalDemo {
 // try to override final method
 public final void display() {
 System.out.println("The final method is overridden.");
 }

 public static void main(String[] args) {
 Main obj = new Main();
 obj.display();
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 61

final with class

When a class defined with final keyword, it can not be extended by any other class.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 62

final with class example-1

final class ParentClass{

 int num = 10;

 void showData() {
 System.out.println("Inside ParentClass showData() method");
 System.out.println("num = " + num);
 }

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 63

final with class example-1

class ChildClass extends ParentClass{

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 64

final with class example-1

public class FinalKeywordExample {

 public static void main(String[] args) {

 ChildClass obj = new ChildClass();

 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 65

final with class example-2

// create a final class
final class FinalClass {
 public void display() {
 System.out.println("This is a final method.");
 }
}

// try to extend the final class
class Main extends FinalClass {
 public void display() {
 System.out.println("The final method is overridden.");
 }

 public static void main(String[] args) {
 Main obj = new Main();
 obj.display();
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 66

Java Polymorphism

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 67

Java Polymorphism

The polymorphism is the process of defining same method with different
implementation. That means creating multiple methods with different behaviors.

In java, polymorphism implemented using
method overloading and
method overriding.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 68

Ad hoc polymorphism

The ad hoc polymorphism is a technique used to define
the same method with different implementations and

different arguments.

In a java programming language, ad hoc polymorphism carried out with
a method overloading concept.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 69

Ad hoc polymorphism

In ad hoc polymorphism the method binding happens at the time of compilation.
Ad hoc polymorphism is also known as compile-time polymorphism.

Every function call binded with the respective overloaded method based on the
arguments.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 70

Ad hoc polymorphism

The ad hoc polymorphism implemented within the class only.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 71

Ad hoc polymorphism example-1

import java.util.Arrays;

public class AdHocPolymorphismExample {

 void sorting(int[] list) {
 Arrays.parallelSort(list);
 System.out.println("Integers after sort: " + Arrays.toString(list));
 }
 void sorting(String[] names) {
 Arrays.parallelSort(names);
 System.out.println("Names after sort: " + Arrays.toString(names));
 }
...

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 72

Ad hoc polymorphism example-1

...
 public static void main(String[] args) {

 AdHocPolymorphismExample obj = new AdHocPolymorphismExample();
 int list[] = {2, 3, 1, 5, 4};
 obj.sorting(list); // Calling with integer array

 String[] names = {"rama", "raja", "shyam", "seeta"};
 obj.sorting(names); // Calling with String array
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 73

Pure polymorphism

The pure polymorphism is a technique used to define the same method with the
same arguments but different implementations.

In a java programming language, pure polymorphism carried out with
a method overriding concept.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 74

Pure polymorphism

In pure polymorphism, the method binding happens at run time.

Pure polymorphism is also known as run-time polymorphism.

Every function call binding with the respective overridden method based on
the object reference.

When a child class has a definition for a member function of the parent class,

the parent class function is said to be overridden.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 75

Pure polymorphism

The pure polymorphism implemented in the inheritance concept only.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 76

Pure polymorphism example-1

class ParentClass{

 int num = 10;

 void showData() {
 System.out.println("Inside ParentClass showData() method");
 System.out.println("num = " + num);
 }

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 77

Pure polymorphism example-1

class ChildClass extends ParentClass{

 void showData() {
 System.out.println("Inside ChildClass showData() method");
 System.out.println("num = " + num);
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 78

Pure polymorphism example-1

public class PurePolymorphism {

 public static void main(String[] args) {

 ParentClass obj = new ParentClass();
 obj.showData();

 obj = new ChildClass();
 obj.showData();

 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 79

Java Method Overriding

During inheritance in Java, if the same method is present in both the superclass
and the subclass.

Then, the method in the subclass overrides the same method in the superclass.
This is called method overriding.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 80

Polymorphism using method overriding example-2

class Language {
 public void displayInfo() {
 System.out.println("Common English Language");
 }
}

class Java extends Language {
 @Override
 public void displayInfo() {
 System.out.println("Java Programming Language");
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 81

Polymorphism using method overriding example-2

class Main {
 public static void main(String[] args) {

 // create an object of Java class
 Java j1 = new Java();
 j1.displayInfo();

 // create an object of Language class
 Language l1 = new Language();
 l1.displayInfo();
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 82

Polymorphism using method overriding example-2

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 83

Java Method Overloading

In a Java class, we can create methods with the same name if they differ in parameters.
For example

void func() { ... }
void func(int a) { ... }
float func(double a) { ... }
float func(int a, float b) { ... }

This is known as method overloading in Java. Here, the same method will perform
different operations based on the parameter.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 84

Polymorphism using method overloading example-3

class Pattern {

 // method without parameter
 public void display() {
 for (int i = 0; i < 10; i++) {
 System.out.print("*");
 }
 }

 // method with single parameter
 public void display(char symbol) {
 for (int i = 0; i < 10; i++) {
 System.out.print(symbol);
 }
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 85

Polymorphism using method overloading example-3

class Main {
 public static void main(String[] args) {
 Pattern d1 = new Pattern();

 // call method without any argument
 d1.display();
 System.out.println("\n");

 // call method with a single argument
 d1.display('#');
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 86

Polymorphic Variables

A variable is called polymorphic if it refers to different values under different
conditions.
Object variables (instance variables) represent the behavior of polymorphic
variables in Java.

It is because object variables of a class can refer to objects of its class as well as
objects of its subclasses.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 87

Polymorphic Variables Example-1

class ProgrammingLanguage {
 public void display() {
 System.out.println("I am Programming Language.");
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 88

Polymorphic Variables Example-1

class Java extends ProgrammingLanguage {
 @Override
 public void display() {
 System.out.println("I am Object-Oriented Programming Language.");
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 89

Polymorphic Variables Example-1

class Main {
 public static void main(String[] args) {

 // declare an object variable
 ProgrammingLanguage pl;

 // create object of ProgrammingLanguage
 pl = new ProgrammingLanguage();
 pl.display();

 // create object of Java class
 pl = new Java();
 pl.display();
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 90

Java Encapsulation

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 91

Java Encapsulation

It prevents outer classes from accessing and changing fields and methods of a
class. This also helps to achieve data hiding

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 92

Java Encapsulation Example

class Area {

 // fields to calculate area
 int length;
 int breadth;

 // constructor to initialize values
 Area(int length, int breadth) {
 this.length = length;
 this.breadth = breadth;
 }

 // method to calculate area
 public void getArea() {
 int area = length * breadth;
 System.out.println("Area: " + area);
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 93

Java Encapsulation Example

class Main {
 public static void main(String[] args) {

 // create object of Area
 // pass value of length and breadth
 Area rectangle = new Area(5, 6);
 rectangle.getArea();
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 94

Why Encapsulation?

In Java, encapsulation helps us to keep
related

fields and

methods together,
which makes our code cleaner and easy to read.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 95

Why Encapsulation?

It helps to control the values of our data fields

class Person {
 private int age;

 public void setAge(int age) {
 if (age >= 0) {
 this.age = age;
 }
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 96

Why Encapsulation?

The getter and setter methods provide
read-only or
write-only

access to our class fields

getName() // provides read-only access
setName() // provides write-only access

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 97

Why Encapsulation?

It helps to decouple components of a system.
For example,

we can encapsulate code into multiple bundles.
These decoupled components (bundle)

can be developed,

tested, and
debugged independently and concurrently.

And, any changes in a particular component
do not have any effect on other components.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 98

Why Encapsulation?

We can also achieve data hiding using encapsulation.
In the next example,

if we change the length and breadth variable into private,

then the access to these fields is restricted.
And, they are kept hidden from outer classes.

This is called data hiding.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 99

Why Encapsulation?

class Area {

 // fields to calculate area
 int length;
 int breadth;

 // constructor to initialize values
 Area(int length, int breadth) {
 this.length = length;
 this.breadth = breadth;
 }

 // method to calculate area
 public void getArea() {
 int area = length * breadth;
 System.out.println("Area: " + area);
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 100

Why Encapsulation?

class Main {
 public static void main(String[] args) {

 // create object of Area
 // pass value of length and breadth
 Area rectangle = new Area(5, 6);
 rectangle.getArea();
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 101

Data Hiding

Data hiding is a way of restricting the access of our data members by hiding the
implementation details.

Encapsulation also provides a way for data hiding.

We can use access modifiers to achieve data hiding

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 102

Data hiding using the private specifier example

Making age private allowed us to restrict unauthorized access from outside the
class. This is data hiding.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 103

Data hiding using the private specifier example

class Person {

 // private field
 private int age;

 // getter method
 public int getAge() {
 return age;
 }

 // setter method
 public void setAge(int age) {
 this.age = age;
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 104

Data hiding using the private specifier example

class Main {
 public static void main(String[] args) {

 // create an object of Person
 Person p1 = new Person();

 // change age using setter
 p1.setAge(24);

 // access age using getter
 System.out.println("My age is " + p1.getAge());
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 105

Java Method Overriding

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 106

Java Method Overriding

The method overriding is the process of re-defining a method in a child class that
is already defined in the parent class.
When both parent and child classes have the same method, then that method is
said to be the overriding method.

The method overriding enables the child class to change the implementation of the
method which aquired from parent class according to its requirement.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 107

Java Method Overriding

The method overriding is also known as

dynamic method dispatch or

run time polymorphism or

pure polymorphism.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 108

Java Method Overriding Example

class ParentClass{

 int num = 10;

 void showData() {
 System.out.println("Inside ParentClass showData() method");
 System.out.println("num = " + num);
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 109

Java Method Overriding Example

class ChildClass extends ParentClass{

 void showData() {
 System.out.println("Inside ChildClass showData() method");
 System.out.println("num = " + num);
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 110

Java Method Overriding Example

public class PurePolymorphism {

 public static void main(String[] args) {

 ParentClass obj = new ParentClass();
 obj.showData();

 obj = new ChildClass();
 obj.showData();

 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 111

Rules for method overriding

While overriding a method, we must follow the below list of rules.

Static methods can not be overridden.

Final methods can not be overridden.

Private methods can not be overridden.
Constructor can not be overridden.

An abstract method must be overridden.

Use super keyword to invoke overridden method from child class.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 112

Rules for method overriding

The return type of the overriding method must be same as the parent has it.

The access specifier of the overriding method can be changed, but the visibility
must increase but not decrease. For example, a protected method in the parent
class can be made public, but not private, in the child class.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 113

Rules for method overriding

If the overridden method does not throw an exception in the parent class, then the
child class overriding method can only throw the unchecked exception, throwing a
checked exception is not allowed.

If the parent class overridden method does throw an exception, then the child class
overriding method can only throw the same, or subclass exception, or it may not
throw any exception.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 114

Method Overriding Example

class Animal {
 public void displayInfo() {
 System.out.println("I am an animal.");
 }
}

class Dog extends Animal {
 @Override
 public void displayInfo() {
 System.out.println("I am a dog.");
 }
}

class Main {
 public static void main(String[] args) {
 Dog d1 = new Dog();
 d1.displayInfo();
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 115

Method Overriding Example

annotations are the metadata that we used to provide information to the compiler

It is not mandatory to use @Override. However, when we use this, the method
should follow all the rules of overriding. Otherwise, the compiler will generate an
error.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 116

Method Overriding Example

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 117

super Keyword in Java Overriding

Can we access the method of the superclass after overriding?
The answer is Yes. To access the method of the superclass from the subclass,
we use the super keyword

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 118

Use of super Keyword Example

class Animal {
 public void displayInfo() {
 System.out.println("I am an animal.");
 }
}

class Dog extends Animal {
 public void displayInfo() {
 super.displayInfo();
 System.out.println("I am a dog.");
 }
}

class Main {
 public static void main(String[] args) {
 Dog d1 = new Dog();
 d1.displayInfo();
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 119

Use of super Keyword Example

In the above example, the subclass Dog overrides the method displayInfo() of the
superclass Animal.

When we call the method displayInfo() using the d1 object of the Dog subclass, the
method inside the Dog subclass is called; the method inside the superclass is not
called

Inside displayInfo() of the Dog subclass, we have used super.displayInfo() to call
displayInfo() of the superclass.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 120

Use of super Keyword Example

note that constructors in Java are not inherited. Hence, there is no such thing as
constructor overriding in Java.

However, we can call the constructor of the superclass from its subclasses. For that,
we use super()

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 121

Access Specifiers in Method Overriding

The same method declared in the superclass and its subclasses can have different
access specifiers. However, there is a restriction.

We can only use those access specifiers in subclasses that provide larger access
than the access specifier of the superclass. For example,

Suppose, a method myClass() in the superclass is declared protected. Then, the
same method myClass() in the subclass can be either public or protected, but not
private.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 122

Access Specifier in Overriding Example

class Animal {
 protected void displayInfo() {
 System.out.println("I am an animal.");
 }
}

class Dog extends Animal {
 public void displayInfo() {
 System.out.println("I am a dog.");
 }
}

class Main {
 public static void main(String[] args) {
 Dog d1 = new Dog();
 d1.displayInfo();
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 123

Access Specifier in Overriding Example

In the above example, the subclass Dog overrides the method displayInfo() of the
superclass Animal.

Whenever we call displayInfo() using the d1 (object of the subclass), the method
inside the subclass is called.

Notice that, the displayInfo() is declared protected in the Animal superclass. The
same method has the public access specifier in the Dog subclass.

This is possible because the public provides larger access than the protected.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 124

Overriding Abstract Methods

In Java, abstract classes are created to be the superclass of other classes.

And, if a class contains an abstract method,
it is mandatory to override it.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 125

Java Nested and Inner Class

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 126

Java Nested and Inner Class

In Java, you can define a class within another class.
Such class is known as nested class

class OuterClass {
 // ...
 class NestedClass {
 // ...
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 127

Java Nested and Inner Class

There are two types of nested classes you can create in Java.
Non-static nested class (inner class)
Static nested class

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 128

Non-Static Nested Class (Inner Class)

A non-static nested class is a class within another class.

It has access to members of the enclosing class (outer class).
It is commonly known as inner class.

Since the inner class exists within the outer class,

you must instantiate the outer class first,
in order to instantiate the inner class.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 129

Non-Static Nested Class (Inner Class) Example
class CPU {
 double price;
 // nested class
 class Processor{

 // members of nested class
 double cores;
 String manufacturer;

 double getCache(){
 return 4.3;
 }
 }

 // nested protected class
 protected class RAM{

 // members of protected nested class
 double memory;
 String manufacturer;

 double getClockSpeed(){
 return 5.5;
 }
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 130

Non-Static Nested Class (Inner Class) Example

public class Main {
 public static void main(String[] args) {

 // create object of Outer class CPU
 CPU cpu = new CPU();

 // create an object of inner class Processor using outer class
 CPU.Processor processor = cpu.new Processor();

 // create an object of inner class RAM using outer class CPU
 CPU.RAM ram = cpu.new RAM();
 System.out.println("Processor Cache = " + processor.getCache());
 System.out.println("Ram Clock speed = " + ram.getClockSpeed());
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 131

Non-Static Nested Class (Inner Class) Example

In the example program, there are two nested classes:

Processor and RAM inside the outer class:
CPU.

We can declare the inner class as protected.

Hence, we have declared the RAM class as protected.

Inside the Main class,

we first created an instance of an outer class CPU named cpu.

Using the instance of the outer class, we then created objects of inner classes

CPU.Processor processor = cpu.new Processor;
CPU.RAM ram = cpu.new RAM();

We use the dot (.) operator to create an instance of the inner class using the outer class.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 132

Accessing Members of Outer Class within Inner Class

We can access the members of the outer class by using this keyword

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 133

Accessing Members of Outer Class within Inner Class Example

class Car {
 String carName;
 String carType;

 // assign values using constructor
 public Car(String name, String type) {
 this.carName = name;
 this.carType = type;
 }

 // private method
 private String getCarName() {
 return this.carName;
 }
...

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 134

Accessing Members of Outer Class within Inner Class Example

...
// inner class
 class Engine {
 String engineType;
 void setEngine() {

 // Accessing the carType property of Car
 if(Car.this.carType.equals("4WD")){

 // Invoking method getCarName() of Car
 if(Car.this.getCarName().equals("Crysler")) {
 this.engineType = "Smaller";
 } else {
 this.engineType = "Bigger";
 }

 }else{
 this.engineType = "Bigger";
 }
 }
 String getEngineType(){
 return this.engineType;
 }
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 135

Accessing Members of Outer Class within Inner Class Example

public class Main {
 public static void main(String[] args) {

// create an object of the outer class Car
 Car car1 = new Car("Mazda", "8WD");

 // create an object of inner class using the outer class
 Car.Engine engine = car1.new Engine();
 engine.setEngine();
 System.out.println("Engine Type for 8WD= " + engine.getEngineType());

 Car car2 = new Car("Crysler", "4WD");
 Car.Engine c2engine = car2.new Engine();
 c2engine.setEngine();
 System.out.println("Engine Type for 4WD = " + c2engine.getEngineType());
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 136

Accessing Members of Outer Class within Inner Class Example

In the example program, we have the inner class named
Engine inside the outer class Car. Here, notice the line,

if(Car.this.carType.equals("4WD")) {...}

We are using this keyword to access the carType variable of the outer class.
You may have noticed that instead of using this.carType we have used
Car.this.carType

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 137

Accessing Members of Outer Class within Inner Class Example

It is because if we had not mentioned the name of the outer class Car,

then this keyword will represent the member inside the inner class.

Similarly, we are also accessing the method of the outer class from the inner
class.

if (Car.this.getCarName().equals("Crysler") {...}

It is important to note that, although the getCarName() is a private method,
we are able to access it from the inner class.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 138

Static Nested Class

In Java, we can also define a static class inside another class.

Such class is known as static nested class.
Static nested classes are not called static inner classes.

Unlike inner class, a static nested class cannot access the member variables of the outer class.

It is because the static nested class doesn't require you to create an instance of the outer
class.

OuterClass.NestedClass obj = new OuterClass.NestedClass();

Here, we are creating an object of the static nested class by simply using the class name of the
outer class.

Hence, the outer class cannot be referenced using OuterClass.this .

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 139

Static Inner Class Example

class MotherBoard {

 // static nested class
 static class USB{
 int usb2 = 2;
 int usb3 = 1;
 int getTotalPorts(){
 return usb2 + usb3;
 }
 }

}

public class Main {
 public static void main(String[] args) {

 // create an object of the static nested class
 // using the name of the outer class
 MotherBoard.USB usb = new MotherBoard.USB();
 System.out.println("Total Ports = " + usb.getTotalPorts());
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 140

Static Inner Class Example

In the above program, we have created a static class named USB inside the class MotherBoard.
Notice the line,

MotherBoard.USB usb = new MotherBoard.USB();

Here, we are creating an object of USB using the name of the outer class.

Now, let's see what would happen if you try to access the members of the outer class:

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 141

Accessing members of Outer class inside Static Inner Class Example

class MotherBoard {
 String model;
 public MotherBoard(String model) {
 this.model = model;
 }

 // static nested class
 static class USB{
 int usb2 = 2;
 int usb3 = 1;
 int getTotalPorts(){
 // accessing the variable model of the outer classs
 if(MotherBoard.this.model.equals("MSI")) {
 return 4;
 }
 else {
 return usb2 + usb3;
 }
 }
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 142

Accessing members of Outer class inside Static Inner Class Example

public class Main {
 public static void main(String[] args) {

 // create an object of the static nested class
 MotherBoard.USB usb = new MotherBoard.USB();
 System.out.println("Total Ports = " + usb.getTotalPorts());
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 143

Accessing members of Outer class inside Static Inner Class Example

When we try to run the program, we will get an error:

error: non-static variable this cannot be referenced from a static context

This is because we are not using the object of the outer class to create an object of
the inner class.

Hence, there is no reference to the outer class Motherboard stored in
Motherboard.this .

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 144

Key Points to Remember

Java treats the inner class as a regular member of a class. They are just like methods and variables
declared inside a class.

Since inner classes are members of the outer class, you can apply any access modifiers like
private, protected to your inner class which is not possible in normal classes.
Since the nested class is a member of its enclosing outer class, you can use the dot (.) notation to
access the nested class and its members.

Using the nested class will make your code more readable and provide better encapsulation.
Non-static nested classes (inner classes) have access to other members of the outer/enclosing
class, even if they are declared private.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 145

Java Nested Static Class

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 146

Java Nested Static Class

we can have a class inside another class in Java. Such classes are known as nested
classes. In Java, nested classes are of two types:

Nested non-static class (Inner class)

Nested static class.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 147

Java Nested Static Class

We use the keyword static to make our nested class static.
Note: In Java, only nested classes are allowed to be static.

Like regular classes, static nested classes can include both static and non-static
fields and methods. For example,

Class Animal {
 static class Mammal {
 // static and non-static members of Mammal
 }
 // members of Animal
}

Static nested classes are associated with the outer class.
To access the static nested class, we don’t need objects of the outer class.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 148

Static Nested Class Example

class Animal {

// inner class
 class Reptile {
 public void displayInfo() {
 System.out.println("I am a reptile.");
 }
 }

// static class
 static class Mammal {
 public void displayInfo() {
 System.out.println("I am a mammal.");
 }
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 149

Static Nested Class Example

class Main {
 public static void main(String[] args) {
 // object creation of the outer class
 Animal animal = new Animal();

 // object creation of the non-static class
 Animal.Reptile reptile = animal.new Reptile();
 reptile.displayInfo();

 // object creation of the static nested class
 Animal.Mammal mammal = new Animal.Mammal();
 mammal.displayInfo();

 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 150

Static Nested Class Example

In the example program, we have two nested class Mammal and Reptile inside a
class Animal .

To create an object of the non-static class Reptile, we have used
Animal.Reptile reptile = animal.new Reptile()

To create an object of the static class Mammal, we have used
Animal.Mammal mammal = new Animal.Mammal()

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 151

Accessing Members of Outer Class

In Java, static nested classes are associated with the outer class.

This is why static nested classes can only access the class members (static fields
and methods) of the outer class.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 152

Accessing Non-static members Example

class Animal {
 static class Mammal {
 public void displayInfo() {
 System.out.println("I am a mammal.");
 }
 }

 class Reptile {
 public void displayInfo() {
 System.out.println("I am a reptile.");
 }
 }

 public void eat() {
 System.out.println("I eat food.");
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 153

Accessing Non-static members Example

class Main {
 public static void main(String[] args) {
 Animal animal = new Animal();
 Animal.Reptile reptile = animal.new Reptile();
 reptile.displayInfo();

 Animal.Mammal mammal = new Animal.Mammal();
 mammal.displayInfo();
 mammal.eat();
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 154

Accessing Non-static members Example

In the example, we have created a non-static method eat() inside the class
Animal.

Now, if we try to access eat() using the object mammal , the compiler shows an
error.

It is because mammal is an object of a static class and we cannot access non-static
methods from static classes.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 155

Static Top-level Class

only nested classes can be static.

We cannot have static top-level classes.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 156

Static Top-level Class

if we try to make a top-level class static.

static class Animal {
 public static void displayInfo() {
 System.out.println("I am an animal");
 }
}

class Main {
 public static void main(String[] args) {
 Animal.displayInfo();
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 157

Static Top-level Class

Main.java:1: error: modifier static not allowed here
static class Animal {
 ^
1 error
compiler exit status 1

In the example, we have tried to create a static class Animal.

Since Java doesn’t allow static top-level class,
we will get an error.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 158

Java Anonymous Class

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 159

Java Anonymous Class

In Java, a class can contain another class known as nested class. It's possible to
create a nested class without giving any name.

A nested class that doesn't have any name is known as an anonymous class.

An anonymous class must be defined inside another class. Hence, it is also known
as an anonymous inner class. Its syntax is:

class outerClass {

 // defining anonymous class
 object1 = new Type(parameterList) {
 // body of the anonymous class
 };
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 160

Java Anonymous Class

Anonymous classes usually extend subclasses or implement interfaces.

Here, Type can be
a superclass that an anonymous class extends

an interface that an anonymous class implements

The above code creates an object, object1, of an anonymous class at runtime.

Note: Anonymous classes are defined inside an expression. So, the semicolon is
used at the end of anonymous classes to indicate the end of the expression.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 161

Anonymous Class Extending a Class Example

class Polygon {
 public void display() {
 System.out.println("Inside the Polygon class");
 }
}

class AnonymousDemo {
 public void createClass() {

 // creation of anonymous class extending class Polygon
 Polygon p1 = new Polygon() {
 public void display() {
 System.out.println("Inside an anonymous class.");
 }
 };
 p1.display();
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 162

Anonymous Class Extending a Class Example

class Main {
 public static void main(String[] args) {
 AnonymousDemo an = new AnonymousDemo();
 an.createClass();
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 163

Anonymous Class Extending a Class Example

In the example, we have created a class Polygon . It has a single method
display() .

We then created an anonymous class that extends the class Polygon and overrides
the display() method.

When we run the program, an object p1 of the anonymous class is created.
The object then calls the display() method of the anonymous class.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 164

Anonymous Class Implementing an Interface Example

interface Polygon {
 public void display();
}

class AnonymousDemo {
 public void createClass() {

 // anonymous class implementing interface
 Polygon p1 = new Polygon() {
 public void display() {
 System.out.println("Inside an anonymous class.");
 }
 };
 p1.display();
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 165

Anonymous Class Implementing an Interface Example

class Main {
 public static void main(String[] args) {
 AnonymousDemo an = new AnonymousDemo();
 an.createClass();
 }
}

In the example, we have created an anonymous class that implements the Polygon
interface.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 166

Advantages of Anonymous Classes

In anonymous classes, objects are created whenever they are required.

That is, objects are created to perform some specific tasks. For example,

Object = new Example() {
 public void display() {
 System.out.println("Anonymous class overrides the method display().");
 }
};

Here, an object of the anonymous class is created dynamically when we need to
override the display() method.
Anonymous classes also help us to make our code concise.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 167

Java enums

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 168

Java enums

In Java, an enum (short for enumeration) is a type that has a fixed set of constant
values. We use the enum keyword to declare enums. For example,

enum Size {
 SMALL, MEDIUM, LARGE, EXTRALARGE
}

Here, we have created an enum named Size. It contains fixed values SMALL ,
MEDIUM , LARGE , and EXTRALARGE .

These values inside the braces are called enum constants (values).
Note: The enum constants are usually represented in uppercase.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 169

Java Enum Example

enum Size {
 SMALL, MEDIUM, LARGE, EXTRALARGE
}

class Main {
 public static void main(String[] args) {
 System.out.println(Size.SMALL);
 System.out.println(Size.MEDIUM);
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 170

Java Enum Example

we use the enum name to access the constant values.

Also, we can create variables of enum types. For example

Size pizzaSize;

Here, pizzaSize is a variable of the Size type. It can only be assigned with 4 values.

pizzaSize = Size.SMALL;
pizzaSize = Size.MEDIUM;
pizzaSize = Size.LARGE;
pizzaSize = Size.EXTRALARGE;

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 171

Java Enum with the switch statement example

enum Size {
 SMALL, MEDIUM, LARGE, EXTRALARGE
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 172

Java Enum with the switch statement example

class Test {
 Size pizzaSize;
 public Test(Size pizzaSize) {
 this.pizzaSize = pizzaSize;
 }
 public void orderPizza() {
 switch(pizzaSize) {
 case SMALL:
 System.out.println("I ordered a small size pizza.");
 break;
 case MEDIUM:
 System.out.println("I ordered a medium size pizza.");
 break;
 default:
 System.out.println("I don't know which one to order.");
 break;
 }
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 173

Java Enum with the switch statement example

class Main {
 public static void main(String[] args) {
 Test t1 = new Test(Size.MEDIUM);
 t1.orderPizza();
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 174

Java Enum with the switch statement example

In the example, we have created an enum type Size . - We then declared a variable
pizzaSize of the Size type.

Here, the variable pizzaSize can only be assigned with 4 values (SMALL, MEDIUM,
LARGE, EXTRALARGE).

Notice the statement,

Test t1 = new Test(Size.MEDIUM);

It will call the Test() constructor inside the Test class. Now, the variable
pizzaSize is assigned with the MEDIUM constant.

Based on the value, one of the cases of the switch case statement is executed.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 175

Enum Class in Java

In Java, enum types are considered to be a special type of class.
It was introduced with the release of Java 5.

An enum class can include methods and fields just like regular classes.

enum Size {
 constant1, constant2, …, constantN;

 // methods and fields
}

When we create an enum class, the compiler will create instances (objects) of each
enum constants.

Also, all enum constant is always public static final by default.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 176

Java Enum Class Example

enum Size{
 SMALL, MEDIUM, LARGE, EXTRALARGE;

 public String getSize() {

 // this will refer to the object SMALL
 switch(this) {
 case SMALL:
 return "small";

 case MEDIUM:
 return "medium";

 case LARGE:
 return "large";

 case EXTRALARGE:
 return "extra large";

 default:
 return null;
 }
 }
...

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 177

Java Enum Class Example

...
 public static void main(String[] args) {

 // call getSize()
 // using the object SMALL
 System.out.println("The size of the pizza is " + Size.SMALL.getSize());
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 178

Java Enum Class Example

In the example, we have created an enum class Size. It has four constants SMALL,
MEDIUM, LARGE and EXTRALARGE.

Since Size is an enum class, the compiler automatically creates instances for each
enum constants.
Here inside the main() method, we have used the instance SMALL to call the
getSize() method.

Note: Like regular classes, an enum class also may include constructors

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 179

Methods of Java Enum Class

There are some predefined methods in enum classes that are readily available for
use.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 180

Methods of Java Enum Class

Java Enum ordinal()

The ordinal() method returns the position of an enum constant. For example,

ordinal(SMALL)
// returns 0

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 181

Methods of Java Enum Class

Enum compareTo()

The compareTo() method compares the enum constants based on their ordinal
value. For example,

Size.SMALL.compareTo(Size.MEDIUM)
 // returns ordinal(SMALL) - ordinal(MEDIUM)

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 182

Methods of Java Enum Class

Enum toString()

The toString() method returns the string representation of the enum constants. For
example,

SMALL.toString()
// returns "SMALL"

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 183

Methods of Java Enum Class

Enum name()

The name() method returns the defined name of an enum constant in string form.
The returned value from the name() method is final. For example,

name(SMALL)
// returns "SMALL"

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 184

Methods of Java Enum Class

Java Enum valueOf()

The valueOf() method takes a string and returns an enum constant having the
same string name. For example,

Size.valueOf("SMALL")
// returns constant SMALL.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 185

Methods of Java Enum Class

Enum values()

The values() method returns an array of enum type containing all the enum
constants. For example,

Size[] enumArray = Size.value();

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 186

Why Java Enums?

In Java, enum was introduced to replace the use of int constants.

Suppose we have used a collection of int constants.

class Size {
 public final static int SMALL = 1;
 public final static int MEDIUM = 2;
 public final static int LARGE = 3;
 public final static int EXTRALARGE = 4;
}

Here, the problem arises if we print the constants.
It is because only the number is printed which might not be helpful.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 187

Why Java Enums?

So, instead of using int constants, we can simply use enums. For example,

enum Size {
 SMALL, MEDIUM, LARGE, EXTRALARGE
}

This makes our code more intuitive.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 188

Why Java Enums?

Also, enum provides compile-time type safety.

If we declare a variable of the Size type. For example,

Size size;

Here, it is guaranteed that the variable will hold one of the four values.

Now, If we try to pass values other than those four values,
the compiler will generate an error.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 189

Java enum Constructor

In Java, an enum class may include a constructor like a regular class. These enum
constructors are either

private - accessible within the class or

package-private - accessible within the package

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 190

enum Constructor Example

enum Size {

 // enum constants calling the enum constructors
 SMALL("The size is small."),
 MEDIUM("The size is medium."),
 LARGE("The size is large."),
 EXTRALARGE("The size is extra large.");

 private final String pizzaSize;

 // private enum constructor
 private Size(String pizzaSize) {
 this.pizzaSize = pizzaSize;
 }

 public String getSize() {
 return pizzaSize;
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 191

enum Constructor Example

class Main {
 public static void main(String[] args) {
 Size size = Size.SMALL;
 System.out.println(size.getSize());
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 192

enum Constructor Example

In the example, we have created an enum Size.
It includes a private enum constructor.

The constructor takes a string value as a parameter and assigns value to the
variable pizzaSize.

Since the constructor is private,
we cannot access it from outside the class. However,

we can use enum constants to call the constructor.

In the Main class, we assigned SMALL to an enum variable size.
The constant SMALL then calls the constructor Size with string as an argument.

Finally, we called getSize() using size.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 193

Java enum Strings

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 194

Java enum Strings

In Java, we can get the string representation of enum constants using the toString()
method or the name() method. For example,

enum Size {
 SMALL, MEDIUM, LARGE, EXTRALARGE
}

class Main {
 public static void main(String[] args) {

 System.out.println("string value of SMALL is " + Size.SMALL.toString());
 System.out.println("string value of MEDIUM is " + Size.MEDIUM.name());

 }
}

we have seen the default string representation of an enum constant is the name of
the same constant.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 195

Change Default String Value of enums

We can change the default string representation of enum constants by overriding
the toString() method. For example,

enum Size {
 SMALL {

 // overriding toString() for SMALL
 public String toString() {
 return "The size is small.";
 }
 },

 MEDIUM {

 // overriding toString() for MEDIUM
 public String toString() {
 return "The size is medium.";
 }
 };
}
...

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 196

Change Default String Value of enums

...
class Main {
 public static void main(String[] args) {
 System.out.println(Size.MEDIUM.toString());
 }
}

In the above program, we have created an enum Size. And we have overridden the
toString() method for enum constants SMALL and MEDIUM .

Note: We cannot override the name() method. It is because the name() method is
final .

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 197

Java Abstract Class

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 198

Java Abstract Class

An abstract class is a class that created using abstract keyword. In other words, a
class prefixed with abstract keyword is known as an abstract class.

In java, an abstract class may contain abstract methods (methods without
implementation) and also non-abstract methods (methods with implementation).

We use the following syntax to create an abstract class.

abstract class <ClassName>{
 ...
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 199

Java Abstract Class Example-1

import java.util.*;

abstract class Shape {
 int length, breadth, radius;
 Scanner input = new Scanner(System.in);

 abstract void printArea();

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 200

Java Abstract Class Example-1

class Rectangle extends Shape {
 void printArea() {
 System.out.println("*** Finding the Area of Rectangle ***");
 System.out.print("Enter length and breadth: ");
 length = input.nextInt();
 breadth = input.nextInt();
 System.out.println("The area of Rectangle is: " + length * breadth);
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 201

Java Abstract Class Example-1

class Triangle extends Shape {
 void printArea() {
 System.out.println("\n*** Finding the Area of Triangle ***");
 System.out.print("Enter Base And Height: ");
 length = input.nextInt();
 breadth = input.nextInt();
 System.out.println("The area of Triangle is: " + (length * breadth) / 2);
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 202

Java Abstract Class Example-1

class Cricle extends Shape {
 void printArea() {
 System.out.println("\n*** Finding the Area of Cricle ***");
 System.out.print("Enter Radius: ");
 radius = input.nextInt();
 System.out.println("The area of Cricle is: " + 3.14f * radius * radius);
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 203

Java Abstract Class Example-1

public class AbstractClassExample {
 public static void main(String[] args) {
 Rectangle rec = new Rectangle();
 rec.printArea();

 Triangle tri = new Triangle();
 tri.printArea();

 Cricle cri = new Cricle();
 cri.printArea();
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 204

Java Abstract Class Example-1

An abstract class can not be instantiated but can be referenced.
That means we can not create an object of an abstract class,
but base reference can be created.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 205

Java Abstract Class Example-1

In the example program, the child class objects are created to invoke the
overridden abstract method.
But we may also create base class reference and assign it with child class instance
to invoke the same.

The main method of the above program can be written as follows that produce the
same output.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 206

Java Abstract Class Example-1

public static void main(String[] args) {
 Shape obj = new Rectangle(); //Base class reference to Child class instance
 obj.printArea();

 obj = new Triangle();
 obj.printArea();

 obj = new Cricle();
 obj.printArea();
 }

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 207

Java Abstract Class Example-2

abstract class Animal {
 abstract void makeSound();

 public void eat() {
 System.out.println("I can eat.");
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 208

Java Abstract Class Example-2

class Dog extends Animal {

 // provide implementation of abstract method
 public void makeSound() {
 System.out.println("Bark bark");
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 209

Java Abstract Class Example-2

class Main {
 public static void main(String[] args) {

 // create an object of Dog class
 Dog d1 = new Dog();

 d1.makeSound();
 d1.eat();
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 210

Java Abstract Class Example-3

abstract class MotorBike {
 abstract void brake();
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 211

Java Abstract Class Example-3

class SportsBike extends MotorBike {

 // implementation of abstract method
 public void brake() {
 System.out.println("SportsBike Brake");
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 212

Java Abstract Class Example-3

class MountainBike extends MotorBike {

 // implementation of abstract method
 public void brake() {
 System.out.println("MountainBike Brake");
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 213

Java Abstract Class Example-3

class Main {
 public static void main(String[] args) {
 MountainBike m1 = new MountainBike();
 m1.brake();
 SportsBike s1 = new SportsBike();
 s1.brake();
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 214

Accesses Constructor of Abstract Classes

An abstract class can have constructors like the regular class. And, we can access
the constructor of an abstract class from the subclass using the super keyword. For
example,

abstract class Animal {
 Animal() {
 ….
 }
}

class Dog extends Animal {
 Dog() {
 super();
 ...
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 215

Accesses Constructor of Abstract Classes

Note that the super should always be the first statement of the subclass
constructor

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 216

Java Abstract Class

Rules for method overriding

An abstract class must follow the below list of rules.

An abstract class must be created with abstract keyword.

An abstract class can be created without any abstract method.
An abstract class may contain abstract methods and non-abstract methods.

An abstract class may contain final methods that can not be overridden.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 217

Java Abstract Class

Rules for method overriding

An abstract class may contain static methods, but the abstract method can not be
static.

An abstract class may have a constructor that gets executed when the child class
object created.
An abstract method must be overridden by the child class, otherwise, it must be
defined as an abstract class.

An abstract class can not be instantiated but can be referenced.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 218

Java Abstract Class Review

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 219

Java Abstract Class Review

The abstract class in Java cannot be instantiated (we cannot create objects of abstract
classes). We use the abstract keyword to declare an abstract class. For example,

// create an abstract class
abstract class Language {
 // fields and methods
}
...

// try to create an object Language
// throws an error
Language obj = new Language();

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 220

Java Abstract Class Review

An abstract class can have both the regular methods and abstract methods. For
example,

abstract class Language {

 // abstract method
 abstract void method1();

 // regular method
 void method2() {
 System.out.println("This is regular method");
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 221

Java Abstract Method Review

A method that doesn't have its body is known as an abstract method. We use the same abstract
keyword to create abstract methods. For example,

abstract void display();

Here, display() is an abstract method. The body of display() is replaced by ;.

If a class contains an abstract method, then the class should be declared abstract. Otherwise, it will
generate an error. For example,

// error
// class should be abstract
class Language {

 // abstract method
 abstract void method1();
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 222

Java Abstract Class and Method Example

Though abstract classes cannot be instantiated, we can create subclasses from it.
We can then access members of the abstract class using the object of the subclass.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 223

Java Abstract Class and Method Example

abstract class Language {

 // method of abstract class
 public void display() {
 System.out.println("This is Java Programming");
 }
}

class Main extends Language {

 public static void main(String[] args) {

 // create an object of Main
 Main obj = new Main();

 // access method of abstract class
 // using object of Main class
 obj.display();
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 224

Java Abstract Class and Method Example

In the example, we have created an abstract class named Language. The class
contains a regular method display().

We have created the Main class that inherits the abstract class. Notice the
statement,

obj.display();

Here, obj is the object of the child class Main. We are calling the method of the
abstract class using the object obj.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 225

Java Abstract Method Review Keypoints

We use the abstract keyword to create abstract classes and methods.

An abstract method doesn't have any implementation (method body).
A class containing abstract methods should also be abstract.

We cannot create objects of an abstract class.

To implement features of an abstract class, we inherit subclasses from it and create objects of the
subclass.

A subclass must override all abstract methods of an abstract class. However, if the subclass is
declared abstract, it's not mandatory to override abstract methods.
We can access the static attributes and methods of an abstract class using the reference of the
abstract class. For example,

Animal.staticMethod();

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 226

Java Object Class

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 227

Java Object Class

In java, the Object class is the super most class of any class hierarchy.
The Object class in the java programming language is present inside the
java.lang package.

Every class in the java programming language is a subclass of Object class by
default.

The Object class is useful when you want to refer to any object whose type you
don't know.

Because it is the superclass of all other classes in java,
it can refer to any type of object.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 228

Methods of Object class

object getClass()

Returns Class class object

int hashCode()

returns the hashcode number for object being used.

boolean equals(Object obj)

compares the argument object to calling object.

int clone()

Compares two strings, ignoring case

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 229

Methods of Object class

object concat(String)
Creates copy of invoking object

String toString()
Returns the string representation of invoking object.

void notify()
Wakes up a thread, waiting on invoking object's monitor.

void notifyAll()
wakes up all the threads, waiting on invoking object's - monitor.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 230

Methods of Object class

void wait()

causes the current thread to wait, until another thread - notifies

void wait(long,int)

causes the current thread to wait for the specified - milliseconds and
nanoseconds, until another thread notifies.

void finalize()

It is invoked by the garbage collector before an object is being garbage
collected.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 231

Java Forms of Inheritance

The inheritance concept used for the number of purposes in the java programming
language.

One of the main purposes is substitutability.

The substitutability means that when a child class acquires properties from its
parent class, the object of the parent class may be substituted with the child
class object.

For example, if B is a child class of A, anywhere we expect an instance of A we
can use an instance of B.

The substitutability can achieve using inheritance, whether using extends or
implements keywords.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 232

Java Forms of Inheritance

The following are the differnt forms of inheritance in java.

Specialization
Specification

Construction

Extension

Limitation
Combination

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 233

Java Forms of Inheritance

Specialization

It is the most ideal form of inheritance. The subclass is a special case of the parent class.
It holds the principle of substitutability.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 234

Java Forms of Inheritance

Specification

This is another commonly used form of inheritance. In this form of inheritance, the
parent class just specifies which methods should be available to the child class but
doesn't implement them. The java provides concepts like abstract and interfaces to
support this form of inheritance. It holds the principle of substitutability.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 235

Java Forms of Inheritance

Construction

This is another form of inheritance where the child class may change the behavior
defined by the parent class (overriding). It does not hold the principle of substitutability.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 236

Java Forms of Inheritance

Extension

This is another form of inheritance where the child class may add its new properties. It
holds the principle of substitutability.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 237

Java Forms of Inheritance

Limitation

This is another form of inheritance where the subclass restricts the inherited behavior. It
does not hold the principle of substitutability.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 238

Java Forms of Inheritance

Combination

This is another form of inheritance where the subclass inherits properties from multiple
parent classes. Java does not support multiple inheritance type.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 239

Benefits and Costs of Inheritance in java

Inheritance is the core and more useful concept of Object-Oriented Programming.

It proWith inheritance, we will be able to override the methods of the base class so
that the meaningful implementation of the base class method can be designed in
the derived class.

An inheritance leads to less development and maintenance costs. Vides many
benefits, and a few of them are listed below.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 240

Benefits of Inheritance

Inheritance helps in code reuse. The child class may use the code defined in the
parent class without re-writing it.

Inheritance can save time and effort as the main code need not be written again.
Inheritance provides a clear model structure which is easy to understand.

An inheritance leads to less development and maintenance costs.

With inheritance, we will be able to override the methods of the base class so that
the meaningful implementation of the base class method can be designed in the
derived class. An inheritance leads to less development and maintenance costs.

In inheritance base class can decide to keep some data private so that it cannot be
altered by the derived class.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 241

Costs of Inheritance

Inheritance decreases the execution speed due to the increased time and effort it
takes, the program to jump through all the levels of overloaded classes.

Inheritance makes the two classes (base and inherited class) get tightly coupled.
This means one cannot be used independently of each other.

The changes made in the parent class will affect the behavior of child class too.

The overuse of inheritance makes the program more complex.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 242

Defining Packages in java

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 243

Defining Packages in java

In java, a package is a container of classes,
interfaces, and

sub-packages.

We may think of it as a folder in a file directory.

We use the packages to
avoid naming conflicts and

to organize
project-related

classes,

interfaces, and
sub-packages into a bundle.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 244

Defining Packages in java

In java, the packages have divided into two types.
Built-in Packages
User-defined Packages

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 245

Built-in Packages

The built-in packages are the packages from java API. The Java API is a library of
pre-defined classes, interfaces, and sub-packages.

The built-in packages were included in the JDK.

There are many built-in packages in java, few of them are as java, lang, io, util,
awt, javax, swing, net, sql , etc.

We need to import the built-in packages to use them in our program.

To import a package, we use the import statement.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 246

User-defined Packages

The user-defined packages are the packages created by the user.

User is free to create their own packages.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 247

Definig a Package in java

We use the package keyword to create or define a package in java programming
language.

package packageName;

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 248

Definig a Package in java

The package statement must be the first statement in the program.

The package name must be a single word.

The package name must use Camel case notation.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 249

Definig a Package in java

create a user-defined package myPackage

package myPackage;

public class DefiningPackage {

 public static void main(String[] args) {

 System.out.println("This class belongs to myPackage.");

 }

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 250

Definig a Package in java

Now, save the example code in a file DefiningPackage.java , and compile it using
the following command.

javac -d . DefiningPackage.java

The above command creates a directory with the package name myPackage, and
the DefiningPackage.class is saved into it.

Run the program use the following command.

java myPackage.DefiningPackage

When we use IDE like Eclipse, Netbeans, etc. the package structure is created
automatically.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 251

Access protection in java packages

In java, the access modifiers define the accessibility of the class and its members.

For example, private members are accessible within the same class members
only. Java has four access modifiers, and they are default, private, protected,
and public.

In java, the package is a container of classes, sub-classes, interfaces, and sub-
packages. The class acts as a container of data and methods. So, the access
modifier decides the accessibility of class members across the different packages.

In java, the accessibility of the members of a class or interface depends on its
access specifiers.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 252

Access protection in java packages

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 253

Access protection in java packages

The public members can be accessed everywhere.

The private members can be accessed only inside the same class.

The protected members are accessible to every child class (same package or other
packages).

The default members are accessible within the same package but not outside the
package.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 254

Access protection in java packages example

class ParentClass{
 int a = 10;
 public int b = 20;
 protected int c = 30;
 private int d = 40;

 void showData() {
 System.out.println("Inside ParentClass");
 System.out.println("a = " + a);
 System.out.println("b = " + b);
 System.out.println("c = " + c);
 System.out.println("d = " + d);
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 255

Access protection in java packages example

class ChildClass extends ParentClass {

 void accessData() {
 System.out.println("Inside ChildClass");
 System.out.println("a = " + a);
 System.out.println("b = " + b);
 System.out.println("c = " + c);
 //System.out.println("d = " + d); // private member can't be accessed
 }

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 256

Access protection in java packages example

public class AccessModifiersExample {

 public static void main(String[] args) {

 ChildClass obj = new ChildClass();
 obj.showData();
 obj.accessData();
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 257

Importing Packages in java

In java, the import keyword used to import built-in and user-defined packages.
When a package has imported, we can refer to all the classes of that package using
their name directly.

The import statement must be after the package statement, and before any other
statement.

Using an import statement, we may import a specific class or all the classes from a
package.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 258

Importing Packages in java

Using one import statement, we may import only one package or a class.

Using an import statement, we can not import a class directly, but it must be a part
of a package.

A program may contain any number of import statements.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 259

Importing specific class

import packageName.ClassName;

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 260

Importing specific class

import a built-in package and Scanner class.

package myPackage;

import java.util.Scanner;

public class ImportingExample {

 public static void main(String[] args) {

 Scanner read = new Scanner(System.in);

 int i = read.nextInt();

 System.out.println("You have entered a number " + i);
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 261

Importing all the classes

Using an importing statement, we can import all the classes of a package. To
import all the classes of the package, we use * symbol.
The following syntax is employed to import all the classes of a package.

import packageName.*;

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 262

Importing all the classes

import a built-in package.

package myPackage;

import java.util.*;

public class ImportingExample {

 public static void main(String[] args) {

 Scanner read = new Scanner(System.in);

 int i = read.nextInt();

 System.out.println("You have entered a number " + i);

 Random rand = new Random();

 int num = rand.nextInt(100);

 System.out.println("Randomly generated number " + num);
 }
}

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 263

Importing all the classes

The import statement imports only classes of the package, but not sub-packages
and its classes.

We may also import sub-packages by using a symbol '.' (dot) to separate parent
package and sub-package.

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 264

References

BtechSmartClass-super Keyword

Programiz-super Keyword
BtechSmartClass-Java final Keyword

Programiz-final Keyword

BtechSmartClass-java Polymorphism

Programiz-Polymorphism
Programiz-Encapsulation

BtechSmartClass-Java Method Overriding

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 265

http://www.btechsmartclass.com/java/java-super-keyword.html
https://www.programiz.com/java-programming/super-keyword
http://www.btechsmartclass.com/java/java-final-keyword.html
https://www.programiz.com/java-programming/final-keyword
http://www.btechsmartclass.com/java/java-polymorphism.html
https://www.programiz.com/java-programming/polymorphism
https://www.programiz.com/java-programming/encapsulation
http://www.btechsmartclass.com/java/java-method-overriding.html

References

Programiz-Method Overriding

Programiz-Nested Inner Class

Programiz-Static Class

Programiz-Anonymous Class
Programiz-enums

Programiz-enum constructor

Programiz-enum string

BtechSmartClass-Java Abstract Class
Programiz-Abstract Classes Methods

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 266

https://www.programiz.com/java-programming/method-overriding
https://www.programiz.com/java-programming/nested-inner-class
https://www.programiz.com/java-programming/static-class
https://www.programiz.com/java-programming/anonymous-class
https://www.programiz.com/java-programming/enums
https://www.programiz.com/java-programming/enum-constructor
https://www.programiz.com/java-programming/enum-string
http://www.btechsmartclass.com/java/java-abstract-class.html
https://www.programiz.com/java-programming/abstract-classes-methods

References

BtechSmartClass-Java Object class

BtechSmartClass-Java Forms of Inheritance

Programiz-Interfaces
BtechSmartClass-Java Benefits and Costs of Inheritance

BtechSmartClass-Java Defining Packages

BtechSmartClass-Java Access Protection in Packages

BtechSmartClass-Java Importing Packages

CE204 Object-Oriented Programming

 RTEU CE204 Week-2 267

http://www.btechsmartclass.com/java/java-Object-class.html
http://www.btechsmartclass.com/java/java-forms-of-inheritance.html
https://www.programiz.com/java-programming/interfaces
http://www.btechsmartclass.com/java/java-benefits-and-costs-of-inheritance.html
http://www.btechsmartclass.com/java/java-defining-packages.html
http://www.btechsmartclass.com/java/java-access-protection-in-packages.html
http://www.btechsmartclass.com/java/java-importing-packages.html

CE204 Object-Oriented Programming

End−Of −Week − 2 −Module

 RTEU CE204 Week-2 268

