
CE204 Object-Oriented Programming

Week-1 (Software Engineering and OOP with Java -I)

Spring Semester, 2021-2022

Download DOC-PDF, DOC-DOCX, SLIDE, PPTX,

CE204 Object-Oriented Programming

 RTEU CE204 Week-1

file:///E:/UgurCoruh/RTEU/Lectures/2021-2022%20Bahar%20CE100%20-%20Algorithms%20and%20Programming%20II/ce204-object-oriented-programming/docs/week-1/ce204-week-1.tr.md_doc.pdf
file:///E:/UgurCoruh/RTEU/Lectures/2021-2022%20Bahar%20CE100%20-%20Algorithms%20and%20Programming%20II/ce204-object-oriented-programming/docs/week-1/ce204-week-1.tr.md_word.docx
file:///E:/UgurCoruh/RTEU/Lectures/2021-2022%20Bahar%20CE100%20-%20Algorithms%20and%20Programming%20II/ce204-object-oriented-programming/docs/week-1/ce204-week-1.tr.md_slide.pdf
file:///E:/UgurCoruh/RTEU/Lectures/2021-2022%20Bahar%20CE100%20-%20Algorithms%20and%20Programming%20II/ce204-object-oriented-programming/docs/week-1/ce204-week-1.tr.md_slide.pptx

Brief Description of Course and Rules

We will first talk about,

1. Course Plan and Communication

2. Grading System, Homeworks, and Exams

please read the syllabus carefully.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 2

Course Growth Track

OOP with Java
UML

PlantUML + UMPLE + UML

PlantUML + UMPLE + UML + Java

Design Patterns + UML + Java + UMPLE

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 3

Outline (1)

Software and Software Engineering

Object Orientation and Review

OOP with Java Intro
Basing Software Development on Reusable Technology

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 4

Outline (2)

Java Classes

Java Objects

Java Methods

Java Inheritance
Java Access Modifiers

This and InstanceOf Keywords

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 5

Software and Software Engineering

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 6

Software

Computer Software is the product that software engineers design and build.

It encompasses

programs that execute within a computer of any size and

architecture,

documents that encompass hard-copy and virtual forms,

data that combine numbers and text but also includes representations of
pictorial, video, and audio information.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 7

The Nature of Software... (1)

Software is intangible

Hard to understand development effort

Software is easy to reproduce

Cost is in its development
in other engineering products, manufacturing is the costly stage

The industry is labor-intensive

Hard to automate

Untrained people can hack something together

Quality problems are hard to notice

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 8

The Nature of Software... (2)

Software is easy to modify

People make changes without fully understanding it

Software does not "wear out"

It deteriorates by having its design changed:
erroneously, or

in ways that were not anticipated, thus making it complex

Conclusions

Much software has poor design and is getting worse
We have to learn to ‘engineer’ software

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 9

Some types of Software

Real time embedded software
E.g. control and monitoring systems

Must react immediately

Safety often a concern
Data processing software

Used to run businesses

Accuracy and security of data are key
Game software

Mobile device software

Web-based software

Etc.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 10

Single Chance

Most of the clients use applications to ease their tasks to make money. For this reason,
you do not have a chance to try your application development in real system. Before
this deployment you have to use

Theory

Experimentation

Guesses

Feedback

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 11

Lets talk about.

The Project Construction Cycle - The Tree Swing Example

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 12

1-How the customer explained it

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 13

2-How the project leader understood it.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 14

3- How the analyst designed it

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 15

4-How the programmer wrote it

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 16

5-What the beta testers received

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 17

6-How the business consultant described it

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 18

7- How the project was documented

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 19

8-What operations installed

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 20

9-How the customer was billed

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 21

10-How it was supported

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 22

11-What marketing advertised

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 23

12-What the customer really needed

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 24

13-The disaster recover plan

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 25

14- What the digg effect can do to your site

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 26

15- (Finally) When it was delivered

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 27

Need for a good programming method

Common problems

Why does it take so long?

Why are development costs so high?

Why can’t find all faults before delivery?

Why can’t we measure development?

NIST reported that even though 50 percent of software development budgets go to
testing, flaws in software still cost the U.S. economy $59.5 billion annually.*

Updated NIST Software Uses Combination Testing to Catch Bugs Fast and Easy | NIST

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 28

https://www.nist.gov/news-events/news/2010/11/updated-nist-software-uses-combination-testing-catch-bugs-fast-and-easy

What is Software Engineering? (1)

The process of solving customers' problems by the
systematic development and evolution of large,

high-quality software systems within
cost,
time and

other constraints

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 29

What is Software Engineering? (2)

Solving customers’ problems
The goal

Sometimes the solution is to buy, not build

Adding unnecessary features often makes software worse

Software engineers must communicate effectively to identify and
understand the problem

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 30

What is Software Engineering? (3)

Systematic development and evolution
An engineering process involves applying well understood techniques in a
organized and disciplined way

Many well-accepted practices have been formally standardized
e.g. by the IEEE or ISO

Most development work is evolution

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 31

What is Software Engineering? (4)

Large, high quality software systems
Software engineering techniques are needed because large systems cannot be
completely understood by one person

Teamwork and co-ordination are required

Key challenge: Dividing up the work and ensuring that the parts of the system
work properly together

The end-product must be of sufficient quality

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 32

What is Software Engineering? (5)

Cost, time and other constraints
Finite resources

The benefit must outweigh the cost

Others are competing to do the job cheaper and faster
Inaccurate estimates of cost and time have caused many project failures

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 33

The Software Engineering Profession

The term Software Engineering was coined in 1968

People began to realize that the principles of engineering should be applied to
software development

Engineering is a licensed profession

In order to protect the public

Engineers design artifacts following well accepted practices which involve the
application of science, mathematics and economics
Ethical practice is also a key tenet of the profession

In many countries, much software engineering does not require an engineering
licence, but is still engineering

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 34

Software Engineering Code of Ethics

Software engineers shall
Act consistently with public interest
Act in the best interests of their clients

Develop and maintain with the highest standards possible

Maintain integrity and independence

Promote an ethical approach in management
Advance the integrity and reputation of the profession

Be fair and supportive to colleagues

Participate in lifelong learning

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 35

Software Quality

Usability
Users can learn it and fast and get their job done easily

Efficiency
It doesn’t waste resources such as CPU time and memory

Reliability
It does what it is required to do without failing

Maintainability
It can be easily changed

Reusability
Its parts can be used in other projects, so reprogramming is not needed

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 36

Software Quality and Stakeholders

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 37

Software Quality and Stakeholders

Customer (those who pay):
solves problems at an acceptable cost in terms of money paid and resources
used

User
easy to learn; efficient to use; helps get work done

Developer
easy to design; easy to maintain; easy to reuse its parts

Development manager
sells more and pleases customers while costing less to develop and maintain

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 38

Software Quality Metrics – User

A program must do its job correctly. It must be useful and - usable

A program must run as fast as necessary (Real-time constraints)
A program must not waste system resources(processor time, - memory, disk
capacity, network capacity) too much

It must be reliable
It must be easily updated

A good software must have sufficient documentation (users manual)

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 39

Software Quality Metrics – SW Developer

Source code must be readable and understandable

It must be easy to maintain and update the program

A program must consist of independent modules
An error may not affect other parts of a program (Locality of errors)

Modules of the program must be reusable in other projects

A software project must meet its deadline

Good software must have sufficient documentation

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 40

Software Quality Metrics - OOP

OOP techniques ensure high-quality programs

While designing and coding a program, these quality metrics must always be
considered

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 41

Software Quality: Conflicts and Objectives

The different qualities can conflict

Increasing efficiency can reduce maintainability or reusability

Increasing usability can reduce efficiency

Setting objectives for quality is a key engineering activity

You then design to meet the objectives
Avoids "over-engineering" which wastes money

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 42

Software Engineering Projects

Most projects are evolutionary or maintenance projects, involving work on
legacy systems

Corrective projects: fixing defects
Adaptive projects: changing the system in response to changes in

Operating system

Database
Rules and regulations

Enhancement projects: adding new features for users

Reengineering or perfective projects: changing the system internally so it is
more maintainable

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 43

Software Engineering Projects Start Points

Green Field Development Brownfield Development

Start afresh Build on existing code

Choose your technology Technology already chosen

Use your best ideas, patterns, techniques Understand previous developers' code

Learn from mistakes Live with mistakes

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 44

Software Engineering Projects Start Points

Requirements must be
determined

Clients have produced
requirements

New development, Green Field
Project

A B

Evolution of Existing System,
Brown Field Project

C D

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 45

Activities Common to Software Projects

Requirements and specification
Includes

Domain analysis

Defining the problem

Requirements gathering
Obtaining input from as many sources as possible

Requirements analysis
Organizing the information

Requirements specification
Writing detailed instructions about how the software should behave

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 46

Activities Common to Software Projects

Design
Deciding how the requirements should be implemented, using the available
technology

Includes:
Systems engineering: Deciding what should be in hardware and what in
software
Software architecture: Dividing the system into subsystems and deciding
how the subsystems will interact

Detailed design of the internals of a subsystem
User interface design

Design of databases

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 47

Activities Common to Software Projects

Modeling
Creating representations of the domain or the software

Use case modeling
Structural modeling

Dynamic and behavioural modeling

Programming

Quality assurance
Reviews and inspections

Testing

Deployment
Managing the process

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 48

Software Projects Development Team

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 49

Software Life Cycle

Requirements Phase

Specification Phase

Design Phase
Implementation Phase

Integration Phase

Maintenance Phase

Retirement Phase

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 50

Requirements Phase

Defining constraints
Functions

Due dates
Costs

Reliability

Size

Types
Functional

Non-Functional

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 51

Specification Phase

Documentation of requirements
Inputs & Outputs

Formal

Understandable for user & developer
Usually functional requirements (what to do)

Base for testing & maintenance

The contract between customer & developer

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 52

Design Phase

Defining Internal structure (how to do)

Has some levels (or types of docs)
Architectural design

Detailed design

Important
To backtrack the aims of decisions

To easily maintain

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 53

Implementation and Integration Phases

Implementation phase: Simply coding
Unit tests

For verification

Combining modules
System tests

For validation

Quality tests

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 54

Maintenance Phase

Corrective

Enhancement

Perfective

Adaptive

Usually maintainers are not the same people with developers.

The only input is (in general) the source code of the software

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 55

Retirement Phase

When the cost of maintenance is not effective.
Changes are so drastic, that the software should be redesigned.

So many changes may have been made.
The update frequency of docs is not enough.

The hardware (or OS) will be changed.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 56

Software Development Process

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 57

Software Development Process

Analysis: Understanding requirements. They may change during (or after)
development of the system! Building the programming team.

Design: Identifying the key concepts involved in a solution and creation of the
models.

This stage has a strong effect on the quality of the software. Therefore, before
the coding, verification of the created model must be done.

Design process is connected with the programming scheme. Here, our design
style is object-oriented.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 58

Software Development Process

Coding: The solution (model) is expressed in a program.

In this course we will use Java.

Documentation: Each phase of a software project must be clearly explained. A users
manual should also be written.

Test: the behavior of the program for possible inputs must be examined.

These steps are important design principles and design patterns, which help us
developing high-quality software. The Unified Modeling Language (UML) is useful to
express the model.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 59

Unified Process (UP)

The UP promotes several best practices.
Iterative

Incremental

Risk-driven

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 60

Unified Process (UP)

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 61

Unified Process (UP)

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 62

Object Orientation Part-1

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 63

OOP Concepts in Java

OOP stands for Object-Oriented Programming. OOP is a programming paradigm in
which every program is follows the concept of object. In other words, OOP is a way of
writing programs based on the object concept.

The object-oriented programming paradigm has the following core concepts.

Encapsulation
Inheritance

Polymorphism

Abstraction

The popular object-oriented programming languages are Smalltalk, C++, Java, PHP, C#,
Python, etc.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 64

Encapsulation

Encapsulation is the process of combining data and code into a single unit (object /
class). In OOP, every object is associated with its data and code. In programming, data is
defined as variables and code is defined as methods. The java programming language
uses the class concept to implement encapsulation.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 65

Encapsulation

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 66

Inheritance

Inheritance is the process of acquiring properties and behaviors from one object to
another object or one class to another class. In inheritance, we derive a new class from
the existing class. Here, the new class acquires the properties and behaviors from the
existing class. In the inheritance concept, the class which provides properties is called as
parent class and the class which recieves the properties is called as child class. The
parent class is also known as base class or supre class. The child class is also known as
derived class or sub class.

In the inheritance, the properties and behaviors of base class extended to its derived
class, but the base class never receive properties or behaviors from its derived class.

In java programming language the keyword extends is used to implement inheritance.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 67

Inheritance

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 68

Polymorphism

Polymorphism is the process of defining same method with different implementation.
That means creating multiple methods with different behaviors.

The java uses method overloading and method overriding to implement polymorphism.

Method overloading - multiple methods with same name but different parameters.

Method overriding - multiple methods with same name and same parameters.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 69

Polymorphism

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 70

Abstraction

Abstraction is hiding the internal details and showing only esential functionality. In the
abstraction concept, we do not show the actual implemention to the end user, instead
we provide only esential things. For example, if we want to drive a car, we does not
need to know about the internal functionality like how wheel system works? how brake
system works? how music system works? etc.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 71

Abstraction

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 72

Why Object Technology

Expectations are,

Reducing the effort, complexity, and cost of development and maintenance of
software systems.

Reducing the time to adapt an existing system (quicker reaction to changes in the
business environment): Flexibility, reusability.

Increasing the reliability of the system.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 73

What is Programming?

A programming language provides a way to express concepts.
Program development involves creating models of real world - situations and
building computer programs based on these models.

Computer programs describe the method of implementing the model.
Computer programs may contain computer world representations of the things
that constitute the solutions of real world problems.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 74

What is Programming?

If successful, this medium of expression (the object-oriented way) will be significantly
easier, more flexible, and efficient than the alternatives as problems grow larger and
more complex

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 75

Why JAVA

Java supports writing high quality programs (pure OO)

Provides an easy-to-use language
Provides an interpreted environment for

Improved development speed

Code portability
Simple

Architecture Neutral and Portable

Robust and Secure

High Performance

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 76

Why JAVA

Write less code
can be four times smaller than the same program written in C++

Write better code
encourages good coding practices, garbage collection for avoiding memory
leaks, wide-ranging, easily extendible API

Avoid platform dependencies
Write once, run anywhere

Gained popularity in gadgets such as
PDAs, cell phones etc.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 77

Learning JAVA

Many syntax and grammar rules

Learning how to write “good programs”
Focusing on concepts and not get lost in language-technical - details

Paying attention to design techniques rather than details

Building an effective programming scheme

Practicing, practicing and practicing!
Consequently, new and better ways of building systems

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 78

Java Buzz Words

Simple

Secure

Portable

Object-oriented
Robust

Architecture-neutral (or) Platform Independent

Multi-threaded

Interpreted
High performance

Distributed

Dynamic

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 79

Simple

Java programming language is very simple and easy to learn, understand, and code.
Most of the syntaxes in java follow basic programming language C and object-oriented
programming concepts are similar to C++. In a java programming language, many
complicated features like pointers, operator overloading, structures, unions, etc. have
been removed. One of the most useful features is the garbage collector it makes java
more simple.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 80

Secure

Java is said to be more secure programming language because it does not have
pointers concept, java provides a feature "applet" which can be embedded into a web
application. The applet in java does not allow access to other parts of the computer,
which keeps away from harmful programs like viruses and unauthorized access.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 81

Portable

Portability is one of the core features of java which enables the java programs to run on
any computer or operating system. For example, an applet developed using java runs
on a wide variety of CPUs, operating systems, and browsers connected to the Internet.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 82

Object-oriented

Java is said to be a pure object-oriented programming language. In java, everything is
an object. It supports all the features of the object-oriented programming paradigm.
The primitive data types java also implemented as objects using wrapper classes, but
still, it allows primitive data types to archive high-performance.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 83

Robust

Java is more robust because the java code can be executed on a variety of
environments, java has a strong memory management mechanism (garbage collector),
java is a strictly typed language, it has a strong set of exception handling mechanism,
and many more.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 84

Architecture-neutral (or) Platform Independent

Java has invented to archive "write once; run anywhere, any time, forever". The java
provides JVM (Java Virtual Machine) to to archive architectural-neutral or platform-
independent. The JVM allows the java program created using one operating system can
be executed on any other operating system.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 85

Multi-threaded

Java supports multi-threading programming, which allows us to write programs that do
multiple operations simultaneously.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 86

Interpreted

Java enables the creation of cross-platform programs by compiling into an intermediate
representation called Java bytecode. The byte code is interpreted to any machine code
so that it runs on the native machine.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 87

High performance

Java provides high performance with the help of features like JVM, interpretation, and
its simplicity.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 88

Distributed

Java programming language supports TCP/IP protocols which enable the java to
support the distributed environment of the Internet. Java also supports Remote Method
Invocation (RMI), this feature enables a program to invoke methods across a network.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 89

Dynamic

Java is said to be dynamic because the java byte code may be dynamically updated on a
running system and it has a dynamic memory allocation and deallocation (objects and
garbage collector).

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 90

The Basics of Java

History

The first object oriented programming language was Simula-67
designed to allow programmers to write simulation programs

In the early 1980’s, Smalltalk was developed at Xerox PARC
New syntax, large open-source library of reusable code, bytecode, platform
independence, garbage collection.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 91

The Basics of Java

late 1980’s, C++ was developed by B. Stroustrup,
Recognized the advantages of OO but also recognized that there were
tremendous numbers of C programmers

In 1991, engineers at Sun Microsystems started a project to design a language that
could be used in consumer ‘smart devices’: Oak

When the Internet gained popularity, Sun saw an opportunity to exploit the
technology.

The new language, renamed Java, was formally presented in 1995 at the
SunWorld ’95 conference.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 92

Java documentation

Looking up classes and methods is an essential skill
Looking up unknown classes and methods will get you a long way towards
understanding code

Java documentation can be automatically generated by a program called Javadoc
Documentation is generated from the code and its comments
You should format your comments as shown in some of the book’s examples

These may include embeded html

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 93

Characters and Strings

Character is a class representing Unicode characters
More than a byte each

Represent any world language

char is a primitive data type containing a Unicode character
String is a class containing collections of characters

+ is the operator used to concatenate strings

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 94

Arrays and Collections

Arrays are of fixed size and lack methods to manipulate them

ArrayList is the most widely used class to hold a collection of other objects
More powerful than arrays, but less efficient

Iterators are used to access members of Vectors
Enumerations were formally used, but were more complex

a = new ArrayList();

Iterator i = a.iterator();

while(i.hasNext())

{

 aMethod(i.next());

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 95

Casting

Java is very strict about types
If variable v is declared to have type X, you can only invoke operations on v
that are defined in X or its superclasses

Even though an instance of a subclass of X may be actually stored in the
variable

If you know an instance of a subclass is stored, then you can cast the variable
to the subclass

E.g. if I know a Vector contains instances of String, I can get the next
element of its Iterator using:

(String)i.next();

To avoid casting you could also have used templates::

a = ArrayList<String>; i=a.iterator(); i.next()

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 96

Exceptions

Anything that can go wrong should result in the raising of an Exception
Exception is a class with many subclasses for specific things that can go wrong

Use a try - catch block to trap an exception

try

{

 // some code

}

catch (ArithmeticException e)
{

 // code to handle division by zero

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 97

Interfaces

Like abstract classes, but cannot have executable statements
Define a set of operations that make sense in several classes

Abstract Data Types

A class can implement any number of interfaces
It must have concrete methods for the operations

You can declare the type of a variable to be an interface
This is just like declaring the type to be an abstract class

Important interfaces in Java’s library include
Runnable, Collection, Iterator, Comparable, Cloneable

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 98

Packages and importing

A package combines related classes into subsystems
All the classes in a particular directory

Classes in different packages can have the same name
Although not recommended

Importing a package is done as follows:
import finance.banking.accounts.*;

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 99

Access control

Applies to methods and variables
public

Any class can access

protected
Only code in the package, or subclasses can access

(blank)
Only code in the package can access

private
Only code written in the class can access
Inheritance still occurs!

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 100

Threads and concurrency

Thread:
Sequence of executing statements that can be running concurrently with other
threads

To create a thread in Java:
Create a class implementing Runnable or extending Thread
Implement the run method as a loop that does something for a period of time

Create an instance of this class

Invoke the start operation, which calls run

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 101

Programming Style Guidelines

Remember that programs are for people to read
Always choose the simpler alternative
Reject clever code that is hard to understand

Shorter code is not necessarily better

Choose good names
Make them highly descriptive

Do not worry about using long names

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 102

Programming style

Comment extensively
Comment whatever is non-obvious
Do not comment the obvious

Comments should be 25-50% of the code

Organize class elements consistently
Variables, constructors, public methods then private methods

Be consistent regarding layout of code

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 103

Programming style

Avoid duplication of code
Do not "clone" if possible

Create a new method and call it
Cloning results in two copies that may both have bugs

When one copy of the bug is fixed, the other may be forgotten

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 104

Programming style

Adhere to good object oriented principles
E.g. the ‘isa rule’

Prefer private as opposed to public

Do not mix user interface code with non-user interface code
Interact with the user in separate classes

This makes non-UI classes more reusable

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 105

Difficulties and Risks in Programming

Language evolution and deprecated features:
Java is evolving, so some features are ‘deprecated’ at every release

Efficiency can be a concern in some object oriented systems
Java can be less efficient than other languages

VM-based

Dynamic binding

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 106

C++ vs Java

Comparison
Index

C++ Java

Platform-
independent

C++ is
platform-
dependent.

Java is platform-independent.

Mainly used
for

C++ is mainly
used for system
programming.

Java is mainly used for application programming. It
is widely used in Windows-based, web-based,
enterprise, and mobile applications.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 107

C++ vs Java

Comparison
Index

C++ Java

Multiple
inheritance

C++ supports
multiple
inheritance.

Java doesn't support multiple inheritance through
class. It can be achieved by using interfaces in java.

Operator
Overloading

C++ supports
operator
overloading.

Java doesn't support operator overloading.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 108

C++ vs Java

Comparison
Index

C++ Java

Goto
C++ supports the goto
statement.

Java doesn't support the goto statement.

Compiler
and
Interpreter

C++ uses compiler only.
C++ is compiled and run
using the compiler which
converts source code into
machine code so, C++ is
platform dependent.

Java uses both compiler and interpreter.
Java source code is converted into
bytecode at compilation time. The
interpreter executes this bytecode at
runtime and produces output. Java is
interpreted that is why it is platform-
independent.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 109

C++ vs Java

Comparison
Index

C++ Java

Pointers
C++ supports pointers.
You can write a pointer
program in C++.

Java supports pointer internally. However,
you can't write the pointer program in java.
It means java has restricted pointer support
in java.

Design Goal

C++ was designed for
systems and applications
programming. It was an
extension of the C
programming language.

Java was designed and created as an
interpreter for printing systems but later
extended as a support network computing.
It was designed to be easy to use and
accessible to a broader audience.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 110

C++ vs Java

Comparison
Index

C++ Java

Structure
and Union

C++ supports structures and unions.
Java doesn't support
structures and
unions.

Thread
Support

C++ doesn't have built-in support for threads. It
relies on third-party libraries for thread support.

Java has built-in
thread support.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 111

C++ vs Java

Comparison
Index

C++ Java

Documentation
comment

C++ doesn't support
documentation
comments.

Java supports documentation comment
(/** ... */) to create documentation for
java source code.

Virtual
Keyword

C++ supports virtual
keyword so that we can
decide whether or not to
override a function.

Java has no virtual keyword. We can
override all non-static methods by
default. In other words, non-static
methods are virtual by default.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 112

C++ vs Java

Comparison
Index

C++ Java

unsigned
right shift
>>>

C++ doesn't
support >>>
operator.

Java supports unsigned right shift >>> operator that
fills zero at the top for the negative numbers. For
positive numbers, it works same like >> operator.

Inheritance
Tree

C++ always
creates a new
inheritance
tree.

Java always uses a single inheritance tree because all
classes are the child of the Object class in Java. The
Object class is the root of the inheritance tree in java.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 113

C++ vs Java

Comparison
Index

C++ Java

Hardware
C++ is nearer to
hardware.

Java is not so interactive with hardware.

Object-
oriented

C++ is an object-
oriented language.
However, in the C
language, a single root
hierarchy is not
possible.

Java is also an object-oriented language.
However, everything (except fundamental
types) is an object in Java. It is a single root
hierarchy as everything gets derived from
java.lang.Object.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 114

Object Orientation Part-2

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 115

Procedural Programming

Pascal, C, Basic, Fortran and similar traditional languages are procedural
Each statement tells the computer to do something

The emphasis is on doing things
Functions

A program is divided into functions
Each function has a clearly defined purpose and interface

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 116

Procedural Programming

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 117

Problems with Procedural Programming

Data Is undervalued

Data is, after all, the reason for a program’s existence. The important parts of a
program are not functions that display the data or functions that checks for
correct input; they are data

Procedural programs don’t model the real world very well.

The real world does not consist of functions

Global data can be corrupted by functions that have no business changing it

To add new data items, all the functions that access data must be modified so that
they can also access these new items

Creating new data types is difficult

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 118

Besides

It is also possible to write good programs by using procedural programming (C
programs).

But object-oriented programming offers programmers many advantages, enables
them to write high-quality programs

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 119

Object-Oriented Programming

The fundamental idea behind object-oriented programming:

The real world consists of objects. Computer programs may contain computer
world representations of the things (objects) that constitute the solutions of real
world problems.
Real world objects have two parts:

Properties (or state: characteristics that can change),

Behavior (or abilities: things they can do).
To solve a programming problem in an object-oriented language,the programmer
no longer asks how the problem will be divided into functions, but how it will be
divided into objects.

The emphasis is on data

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 120

Object-Oriented Programming

What kinds of things become objects in object-oriented programs?
Human entities: Employees, customers, salespeople,worker, manager

Graphics program: Point, line, square, circle, ...

Mathematics: Complex numbers, matrix

Computer user environment: Windows, menus, buttons
Data-storage constructs: Customized arrays, stacks, linked lists

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 121

OOP: Encapsulation and Data Hiding

Thinking in terms of objects rather than functions
Close match between objects in the programming sense and objects in the real
world

Both data and the functions that operate on that data are combined into a single
program entity

Data represent the properties (state), and functions represent the behavior of an
object. Data and its functions are said to be encapsulated into a single entity

An object’s functions, called member functions in Java typically provide the only
way to access its data. The data is hidden, so it is safe from accidental alteration.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 122

OOP: Encapsulation and Data Hiding

Encapsulation and data hiding are key terms in the

description of object-oriented languages.

If you want to modify the data in an object, you know exactly what functions to
interact with it

The member functions in the object.
No other functions can access the data: This simplifies writing, debugging, and
maintaining the program.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 123

Example: A Point on the plane

A Point on a plane has two properties; x-y coordinates.

Abilities (behavior) of a Point are, moving on the plane, appearing on the screen
and disappearing.

A model for 2 dimensional points with the following parts:
Two integer variables (x,y) to represent x and y coordinates

A function to move the point: move

A function to print the point on the screen: print

A function to hide the point: hide

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 124

Example: A Point on the plane

Once the model has been built and tested, it is possible to create many objects of
this model, in the main program.

Point pointOne = new Point(67, 89);

Point pointTwo = new Point(12, 34);

public class Point {

 public int x = 0;

 public int y = 0;

 public Point(int a, int b) {

 x = a;

 y = b;

 }

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 125

Object Model

A Java program typically consists of a number of objects that communicate with each
other by calling one another’s member functions.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 126

OOP vs. Procedural Programming

Procedural languages still require you to think in terms of the structure of the
computer rather than the structure of the problem you are trying to solve.

The programmer must establish the association between the machine model and
the model of the problem that is actually being solved.

The effort required to perform this mapping produces programs that are difficult
to write and expensive to maintain. Because the real world thing and their models
on the computer are quite different

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 127

Example: Procedural Programming

Real world thing: student

Computer model: char *, int, float

It is said that the C language is closer to the computer than the problem.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 128

OOP vs. Procedural Programming

The OO approach provides tools for the programmer to represent elements in the
problem space

Objects are both in the problem space and the solution

The OO programs are easy to update by adding new types of objects
OOP allows you to describe the problem in terms of the problem, rather than in
terms of the computer where the solution will run.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 129

OOP vs. Procedural Programming

Benefits of the object-oriented programming:

Readability

Understandability

Low probability of errors
Maintenance

Reusability

Teamwork

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 130

OOP vs. Procedural Programming

Procedural paradigm:

Software is organized around the notion of procedures

Procedural abstraction
Works as long as the data is simple

Adding data abstractions groups together the pieces of data that describe some
entity

Helps reduce the system’s complexity.
Such as Records and structures

Object oriented paradigm:

Organizing procedural abstractions in the context of data abstractions

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 131

Object Oriented paradigm

All computations are performed in the context of objects.
The objects are instances of classes, which:

are data abstractions

contain procedural abstractions that operate on the objects

A running program can be seen as a collection of objects collaborating to
perform a given task

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 132

A View of the Two paradigms

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 133

Classes and Objects

Object

A chunk of structured data in a running software system

Has properties
Represent its state

Has behaviour
How it acts and reacts

May simulate the behaviour of an object in the real world

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 134

Objects: Shown as a UML instance diagram

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 135

Classes

A class:

A unit of abstraction in an object oriented (OO) program

Represents similar objects
Its instances

A kind of software module
Describes its instances’ structure (properties)

Contains methods to implement their behaviour

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 136

Is Something a Class or an Instance?

Something should be a class if it could have instances

Something should be an instance if it is clearly a single member of the set defined by a class

Film

Class; instances are individual films.

Reel of Film:

Class; instances are physical reels

Film reel with serial number SW19876

Instance of ReelOfFilm

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 137

Is Something a Class or an Instance?

Science Fiction
Instance of the class Genre.

Science Fiction Film
Class; instances include ‘Star Wars’

Showing of ‘Star Wars’ in the Phoenix Cinema at 7 p.m.:
Instance of ShowingOfFilm

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 138

Naming classes

Use capital letters
E.g. BankAccount not bankAccount

Use singular nouns

Use the right level of generality
E.g. Municipality , not City

Make sure the name has only one meaning
E.g. "bus" has several meanings

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 139

Instance Variables

Variables defined inside a class corresponding to data present in each instance
Also called fields or member variables

Attributes
Simple data
E.g. name , dateOfBirth

Associations
Relationships to other important classes

E.g. supervisor , coursesTaken

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 140

Variables vs. Objects

A variable
Refers to an object

May refer to different objects at different points in time

An object can be referred to by several different variables at the same time
Type of a variable

Determines what classes of objects it may contain

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 141

Class variables

A class variable’s value is shared by all instances of a class.
Also called a static variable
If one instance sets the value of a class variable, then all the other instances
see the same changed value.

Class variables are useful for:
Default or ‘constant’ values (e.g. PI)

Lookup tables and similar structures

Caution: do not over-use class variables

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 142

Methods, Operations and Polymorphism

Operation
A higher-level procedural abstraction that specifies a type of behaviour

Independent of any code which implements that behaviour
E.g. calculating area (in general)

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 143

Methods, Operations and Polymorphism

Method
A procedural abstraction used to implement the behaviour of a class
Several different classes can have methods with the same name

They implement the same abstract operation in ways suitable to each
class

E.g. calculating area in a rectangle is done differently from in a circle

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 144

Polymorphism

A property of object oriented software by which an abstract operation may be
performed in different ways in different classes.

Requires that there be multiple methods of the same name

The choice of which one to execute depends on the object that is in a variable
Reduces the need for programmers to code many if-else or switch
statements

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 145

Organizing Classes into Inheritance Hierarchies

Superclasses
Contain features common to a set of subclasses

Inheritance hierarchies
Show the relationships among superclasses and subclasses
A triangle shows a generalization

Inheritance
The implicit possession by all subclasses of features defined in its superclasses

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 146

An Example Inheritance Hierarchy

Inheritance
The implicit possession by all subclasses of features defined in its superclasses

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 147

The Is-a Rule

Always check generalizations to ensure they obey the isa rule
"A checking account is an account"

"A village is a municipality"

Should 'Province' be a subclass of 'Country'?
No, it violates the is-a rule

"A province is a country" is invalid!

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 148

A possible inheritance hierarchy of mathematical objects
CE204 Object-Oriented Programming

 RTEU CE204 Week-1 149

Make Sure all Inherited Features Make Sense in Subclasses
CE204 Object-Oriented Programming

 RTEU CE204 Week-1 150

Inheritance, Polymorphism and Variables
CE204 Object-Oriented Programming

 RTEU CE204 Week-1 151

Some Operations in the Shape Example
CE204 Object-Oriented Programming

 RTEU CE204 Week-1 152

Abstract Classes and Methods

An operation should be declared to exist at the highest class in the hierarchy
where it makes sense

The operation may be abstract (lacking implementation) at that level

If so, the class also must be abstract
No instances can be created

The opposite of an abstract class is a concrete class

If a superclass has an abstract operation then its subclasses at some level must
have a concrete method for the operation

Leaf classes must have or inherit concrete methods for all operations
Leaf classes must be concrete

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 153

Overriding

A method would be inherited, but a subclass contains a new version instead
For extension

E.g. SavingsAccount might charge an extra fee following every debit

For optimization
E.g. The getPerimeterLength method in Circle is much simpler than the
one in Ellipse

For restriction (best to avoid)
E.g. scale(x,y) would not work in Circle

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 154

How a decision is made about which method to run

If there is a concrete method for the operation in the current class, run that
method.

Otherwise, check in the immediate superclass to see if there is a method there; if
so, run it.

Repeat step 2, looking in successively higher superclasses until a concrete method
is found and run.

If no method is found, then there is an error

In Java and C++ the program would not have compiled

In Java and C++ the program would not have compiled

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 155

Dynamic binding

Occurs when decision about which method to run can only be made at run time
Needed when:

A variable is declared to have a superclass as its type, and
There is more than one possible polymorphic method that could be run
among the type of the variable and its subclasses

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 156

Key Terminology

Abstraction
Object something in the world

Class objects

Superclass subclasses
Operation methods

Attributes and associations instance variables

Modularity
Code is divided into classes, and classes into methods

Encapsulation
Details can be hidden in classes
This gives rise to information hiding:

Programmers do not need to know all the details of a class

CE204 Object-Oriented Programming

⟹
⟹

⟹
⟹

⟹

 RTEU CE204 Week-1 157

Basing Software Development on Reusable Technology

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 158

Building on the Experience of Others

Software engineers should avoid re-developing software already developed

Types of reuse:
Reuse of expertise

Reuse of standard designs and algorithms
Reuse of libraries of classes or procedures

Reuse of powerful commands built into languages and operating systems

Reuse of frameworks

Reuse of complete applications

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 159

Frameworks: Reusable Subsystems

A framework is reusable software that implements a generic solution to a
generalized problem.

It provides common facilities applicable to different application programs.

- Principle: Applications that do different, but related, things tend to have
similar designs

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 160

Frameworks to promote reuse

A framework is intrinsically incomplete
Certain classes or methods are used by the framework, but are missing (slots)

Some functionality is optional
Allowance is made for developer to provide it (hooks or extension points)

Developers use the services that the framework provides
Taken together the services are called the Application Program Interface
(API)

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 161

Object-oriented frameworks

In the object oriented paradigm, a framework is composed of a library of classes.

The API is defined by the set of all public methods of these classes.

Some of the classes will normally be abstract and there are often many
Interfaces

Example:

A framework for payroll management

A framework for frequent buyer clubs

A framework for university registration

A framework for e-commerce web sites

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 162

Frameworks and product lines

A product line (or product family) is a set of products built on a common base of
technology.

The various products in the product line have different features to satisfy
different markets

The software common to all products in included in a framework
Each product is produced by filling the available hooks and slots

E.g. software products offering "demo", "lite" or "pro" versions

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 163

Types of frameworks

A horizontal framework provides general application facilities that a large number
of applications can use

A vertical framework (application framework) is more ‘complete’ but still needs
some slots to be filled to adapt it to specific application needs

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 164

The Client-Server Architecture

A distributed system is a system in which:
computations are performed by separate programs

… normally running on separate pieces of hardware
… that co-operate to perform the task of the system.

Server:
A program that provides a service for other programs that connect to it using a
communication channel

Client
A program that accesses a server (or several servers) to obtain services

A server may be accessed by many clients simultaneously

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 165

Example of client-server systems

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 166

Activities of a server

Initializes itself

Starts listening for clients

Handles the following types of
events originating from clients

accepts connections

responds to messages
handles client disconnection

May stop listening

Must cleanly terminate

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 167

Activities of a client

Initializes itself

Initiates a connection

Sends messages

Handles the following types of
events originating from the
server

responds to messages

handles server
disconnection

Must cleanly terminate

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 168

Threads in a client-server system
CE204 Object-Oriented Programming

 RTEU CE204 Week-1 169

Thin- versus fat-client systems

Thin-client system (a)
Client is made as small as possible
Most of the work is done in the server.

Client easy to download over the network

Fat-client system (b)
As much work as possible is delegated to the clients.

Server can handle more clients

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 170

Communications protocols

The messages the client sends to the server form a language.
The server has to be programmed to understand that language.

The messages the server sends to the client also form a language.
The client has to be programmed to understand that language.

When a client and server are communicating, they are in effect having a
conversation using these two languages

The two languages and the rules of the conversation, taken together, are called the
protocol

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 171

Tasks to perform to develop client-server applications

Design the primary work to be performed by both client and server

Design how the work will be distributed

Design the details of the set of messages that will be sent
Design the mechanism for

Initializing

Handling connections
Sending and receiving messages

Terminating

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 172

Advantages of client-server systems

The work can be distributed among different machines

The clients can access the server’s functionality from a distance

The client and server can be designed separately
They can both be simpler

There is a choice about where to keep data:
All the data can be kept centrally at the server
Data can be distributed among many different clients or servers

The server can be accessed simultaneously by many clients

Competing clients can be written to communicate with the same server, and vice-
versa

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 173

Technology Needed to Build Client-Server Systems

Internet Protocol (IP)
Route messages from one computer to another

Long messages are normally split up into small pieces

Transmission Control Protocol (TCP)
Handles connections between two computers

Computers can then exchange many IP messages over a connection

Assures that the messages have been satisfactorily received
A host has an IP address and a host name

Several servers can run on the same host.

Each server is identified by a port number (0 to 65535).
To initiate communication with a server, a client must know both the host
name and the port number

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 174

Establishing a connection in Java

The java.net package
Permits the creation of a TCP/IP connection between two applications

Before a connection can be established, the server must start listening to one of
the ports:

 ServerSocket serverSocket = new ServerSocket(port);

 Socket clientSocket = serverSocket.accept();

For a client to connect to a server:

 Socket clientSocket= new Socket(host, port);

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 175

Exchanging information in Java

Each program uses an instance of
InputStream to receive messages from the other program

OutputStream to send messages to the other program

These are found in package java.io

output = clientSocket.getOutputStream();

input = clientSocket.getInputStream();

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 176

http://java.io/

Sending and receiving messages

without any filters (raw bytes)

output.write(msg);

msg = input.read();

or using DataInputStream / DataOutputStream filters

output.writeDouble(msg);

msg = input.readDouble();

or using ObjectInputStream / ObjectOutputStream filters

output.writeObject(msg);

msg = input.readObject();

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 177

The Object Client-Server Framework (OCSF)
CE204 Object-Oriented Programming

 RTEU CE204 Week-1 178

Using OCSF

Software engineers using OCSF never modify its three classes

They:

Create subclasses of the abstract classes in the framework

Call public methods that are provided by the framework
Override certain slot and hook methods (explicitly designed to be overridden)

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 179

The Client Side

Consists of a single class: AbstractClient
Must be subclassed

Any subclass must provide an implementation for
handleMessageFromServer

Takes appropriate action when a message is received from a server

Implements the Runnable interface
Has a run method which

Contains a loop that executes for the lifetime of the thread

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 180

The public interface of AbstractClient

Controlling methods:
openConnection

closeConnection

sendToServer
Accessing methods:

isConnected

getHost
setHost

getPort

setPort

getInetAddress

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 181

The callback methods of AbstractClient

Methods that may be overridden:

connectionEstablished

connectionClosed

Method that must be implemented:

handleMessageFromServer

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 182

Using AbstractClient

Create a subclass of AbstractClient

Implement handleMessageFromServer slot method

Write code that:
Creates an instance of the new subclass

Calls openConnection

Sends messages to the server using the sendToServer service method
Implement the connectionClosed callback

Implement the connectionException callback

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 183

Internals of AbstractClient

Instance variables:
A Socket which keeps all the information about the connection to the server

Two streams, an ObjectOutputStream and an ObjectInputStream
A Thread that runs using AbstractClient’s run method

Two variables storing the host and port of the server

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 184

The Server Side

Two classes:
One for the thread which listens for new connections (AbstractServer)

One for the threads that handle the connections to clients
(ConnectionToClient)

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 185

The public interface of AbstractServer

Controlling methods:
listen

stopListening

close
sendToAllClients

Accessing methods:
isListening
getClientConnections

getPort

setPort

setBacklog

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 186

The callback methods of AbstractServer

Methods that may be overridden:
serverStarted
clientConnected

clientDisconnected

clientException

serverStopped
listeningException

serverClosed

Method that must be implemented:
handleMessageFromClient

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 187

The public interface of ConnectionToClient

Controlling methods:

sendToClient

close

Accessing methods:

getInetAddress

setInfo

getInfo

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 188

Using AbstractServer and ConnectionToClient

Create a subclass of AbstractServer

Implement the slot method handleMessageFromClient

Write code that:
Creates an instance of the subclass of AbstractServer

Calls the listen method

Sends messages to clients, using:
the getClientConnections and sendToClient service methods

or sendToAllClients

Implement one or more of the other callback methods

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 189

Internals of AbstractServer and ConnectionToClient

The setInfo and getInfo methods make use of a Java class called HashMap

Many methods in the server side are synchronized
The collection of instances of ConnectionToClient is stored using a special class
called ThreadGroup

The server must pause from listening every 500ms to see if the stopListening
method has been called

if not, then it resumes listening immediately

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 190

An Instant Messaging Application: SimpleChat

ClientConsole can eventually be replaced by ClientGUI

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 191

The server

EchoServer is a subclass of AbstractServer
The main method creates a new instance and starts it

It listens for clients and handles connections until the server is stopped

The three callback methods just print out a message to the user
handleMessageFromClient, serverStarted and serverStopped

The slot method handleMessageFromClient calls sendToAllClients
This echoes any messages

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 192

Key code in EchoServer

public void handleMessageFromClient

 (Object msg, ConnectionToClient client)

{

 System.out.println(

 "Message received: "

 + msg + " from " + client);

 this.sendToAllClients(msg);

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 193

The client

When the client program starts, it creates instances of two classes:
ChatClient

A subclass of AbstractClient

Overrides handleMessageFromServer
This calls the display method of the user interface

ClientConsole
User interface class that implements the interface ChatIF

Hence implements display which outputs to the console

Accepts user input by calling accept in its run method

Sends all user input to the ChatClient by calling its
handleMessageFromClientUI

This, in turn, calls sendToServer

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 194

Key code in ChatClient

public void handleMessageFromClientUI(

 String message)

{

 try

 {

 sendToServer(message);

 }

 catch(IOException e)

 {

 clientUI.display (

 "Could not send message. " +

 "Terminating client.");

 quit();

 }

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 195

Key code in ChatClient

public void handleMessageFromServer(Object msg)

{

 clientUI.display(msg.toString());

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 196

Risks when reusing technology

Poor quality reusable components
Ensure that the developers of the reusable technology:

follow good software engineering practices

are willing to provide active support
Compatibility not maintained

Avoid obscure features

Only re-use technology that others are also re-using

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 197

Risks when developing reusable technology

Investment uncertainty
Plan the development of the reusable technology, just as if it was a product for
a client

The "not invented here syndrome"
Build confidence in the reusable technology by:

Guaranteeing support

Ensuring it is of high quality
Responding to the needs of its users

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 198

Risks when developing reusable technology

Competition
The reusable technology must be as useful and as high quality as possible

Divergence (tendency of various groups to change technology in different ways)
Design it to be general enough, test it and review it in advance

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 199

Risks when adopting a client-server approach

Security
Security is a big problem with no perfect solutions: consider the use of
encryption, firewalls, ...

Need for adaptive maintenance
Ensure that all software is forward and backward compatible with other
versions of clients and servers

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 200

Java Classes and Objects

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 201

Java Classes

Java is an object-oriented programming language, so everything in java program must
be based on the object concept. In a java programming language, the class concept
defines the skeleton of an object.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 202

Java Classes

The java class is a template of an object. The class defines the blueprint of an object.
Every class in java forms a new data type. Once a class got created, we can generate as
many objects as we want. Every class defines the properties and behaviors of an object.
All the objects of a class have the same properties and behaviors that were defined in
the class.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 203

Java Classes

Every class of java programming language has the following characteristics.

Identity - It is the name given to the class.

State - Represents data values that are associated with an object.

Behavior - Represents actions can be performed by an object.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 204

Java Classes

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 205

Creating a Class

In java, we use the keyword class to create a class. A class in java contains properties as
variables and behaviors as methods. Following is the syntax of class in the java.

class <ClassName>{

 data members declaration;

 methods defination;

}

Here, fields (variables) and methods represent the state and behavior of the object
respectively.

fields are used to store data

methods are used to perform some operations

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 206

Creating a Class

A class is a blueprint for the object. Before we create an object, we first need to
define the class.

We can think of the class as a sketch (prototype) of a house. It contains all the
details about the floors, doors, windows, etc. Based on these descriptions we build
the house. House is the object.

Since many houses can be made from the same description, we can create many
objects from a class.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 207

Creating a Class

The ClassName must begin with an alphabet, and the Upper-case letter is
preferred.

The ClassName must follow all naming rules.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 208

Creating a Class

class Bicycle {

 // state or field

 private int gear = 5;

 // behavior or method

 public void braking() {

 System.out.println("Working of Braking");

 }

}

In the above example, we have created a class named Bicycle. It contains a field named
gear and a method named braking().

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 209

Creating a Class

Here, Bicycle is a prototype. Now, we can create any number of bicycles using the
prototype. And, all the bicycles will share the fields and methods of the prototype.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 210

Creating an Object

In java, an object is an instance of a class. When an object of a class is created, the class
is said to be instantiated. All the objects that are created using a single class have the
same properties and methods. But the value of properties is different for every object.
Following is the syntax of class in the java.

<ClassName> <objectName> = new <ClassName>();

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 211

Creating an Object

The objectName must begin with an alphabet, and a Lower-case letter is preferred.

The objectName must follow all naming rules.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 212

Creating an Object

An object is called an instance of a class. For example, suppose Bicycle is a class then
MountainBicycle, SportsBicycle, TouringBicycle, etc can be considered as objects of the
class.

className object = new className();

// for Bicycle class

Bicycle sportsBicycle = new Bicycle();

Bicycle touringBicycle = new Bicycle();

We have used the new keyword along with the constructor of the class to create an
object. Constructors are similar to methods and have the same name as the class. For
example, Bicycle() is the constructor of the Bicycle class.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 213

Creating an Object

Here, sportsBicycle and touringBicycle are the names of objects. We can use them to
access fields and methods of the class.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 214

Access Members of a Class

sportsBicycle.gear - access the field gear

sportsBicycle.braking() - access the method braking()

class Bicycle {

 // field of class

 int gear = 5;

 // method of class

 void braking() {

 ...

 }

}

// create object

Bicycle sportsBicycle = new Bicycle();

// access field and method

sportsBicycle.gear;

sportsBicycle.braking();

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 215

Example: Java Class and Objects

class Lamp {

 // stores the value for light

 // true if light is on

 // false if light is off

 boolean isOn;

 // method to turn on the light

 void turnOn() {

 isOn = true;

 System.out.println("Light on? " + isOn);

 }

 // method to turnoff the light

 void turnOff() {

 isOn = false;

 System.out.println("Light on? " + isOn);

 }

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 216

Example: Java Class and Objects

class Main {

 public static void main(String[] args) {

 // create objects led and halogen

 Lamp led = new Lamp();

 Lamp halogen = new Lamp();

 // turn on the light by

 // calling method turnOn()

 led.turnOn();

 // turn off the light by

 // calling method turnOff()

 halogen.turnOff();

 }

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 217

Example: Create objects inside the same class

Note that in the previous example, we have created objects inside another class and
accessed the members from that class.

However, we can also create objects inside the same class.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 218

Example: Create objects inside the same class

class Lamp {

 // stores the value for light

 // true if light is on

 // false if light is off

 boolean isOn;

 // method to turn on the light

 void turnOn() {

 isOn = true;

 System.out.println("Light on? " + isOn);

 }

 public static void main(String[] args) {

 // create an object of Lamp

 Lamp led = new Lamp();

 // access method using object

 led.turnOn();

 }

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 219

Java Methods

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 220

Java Methods

A method is a block of statements under a name that gets executes only when it is
called. Every method is used to perform a specific task. The major advantage of
methods is code re-usability (define the code once, and use it many times).

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 221

Java Methods

In a java programming language, a method defined as a behavior of an object. That
means, every method in java must belong to a class.

Every method in java must be declared inside a class.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 222

Java Methods

Every method declaration has the following characteristics.

returnType - Specifies the data type of a return value.

name - Specifies a unique name to identify it.
parameters - The data values it may accept or recieve.

{ } - Defienes the block belongs to the method.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 223

Creating a method

A method is created inside the class and it may be created with any access specifier.
However, specifying access specifier is optional.

Following is the syntax for creating methods in java.

class <ClassName>{

 <accessSpecifier> <returnType> <methodName>(parameters){

 ...

 block of statements;

 ...

 }

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 224

Creating a method

modifier static returnType nameOfMethod (parameter1, parameter2, ...) {

 // method body

}

modifier - It defines access types whether the method is public, private, and so on.

static - If we use the static keyword, it can be accessed without creating objects.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 225

Creating a method

The methodName must begin with an alphabet, and the Lower-case letter is
preferred.

The methodName must follow all naming rules.

If you don't want to pass parameters, we ignore it.

If a method defined with return type other than void, it must contain the return
statement, otherwise, it may be ignored.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 226

Calling a method

In java, a method call precedes with the object name of the class to which it belongs
and a dot operator. It may call directly if the method defined with the static modifier.
Every method call must be made, as to the method name with parentheses (), and it
must terminate with a semicolon.

<objectName>.<methodName>(actualArguments);

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 227

Calling a method

The method call must pass the values to parameters if it has.

If the method has a return type, we must provide the receiver.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 228

Calling a Method : Example

import java.util.Scanner;

public class JavaMethodsExample {

 int sNo;

 String name;

 Scanner read = new Scanner(System.in);

 void readData() {

 System.out.print("Enter Serial Number: ");

 sNo = read.nextInt();

 System.out.print("Enter the Name: ");

 name = read.next();

 }

 static void showData(int sNo, String name) {

 System.out.println("Hello, " + name + "! your serial number is " + sNo);

 }

...

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 229

Calling a Method : Example

...

 public static void main(String[] args) {

 JavaMethodsExample obj = new JavaMethodsExample();

 obj.readData(); // method call using object

 showData(obj.sNo, obj.name); // method call without using object

 }

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 230

Variable arguments of a method

In java, a method can be defined with a variable number of arguments. That means
creating a method that receives any number of arguments of the same data type.

<returnType> <methodName>(dataType...parameterName);

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 231

Variable arguments of a method : Example

public class JavaMethodWithVariableArgs {

 void diaplay(int...list) {

 System.out.println("\nNumber of arguments: " + list.length);

 for(int i : list) {

 System.out.print(i + "\t");

 }

 }

...

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 232

Variable arguments of a method : Example

...

 public static void main(String[] args) {

 JavaMethodWithVariableArgs obj = new JavaMethodWithVariableArgs();

 obj.diaplay(1, 2);

 obj.diaplay(10, 20, 30, 40, 50);

 }

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 233

Java Normal Method Example

class Main {

 // create a method

 public int addNumbers(int a, int b) {

 int sum = a + b;

 // return value

 return sum;

 }

 public static void main(String[] args) {

 int num1 = 25;

 int num2 = 15;

 // create an object of Main

 Main obj = new Main();

 // calling method

 int result = obj.addNumbers(num1, num2);

 System.out.println("Sum is: " + result);

 }

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 234

Java Static Method Example

class Main {

// create a method

 public static int square(int num) {

 // return statement

 return num * num;

 }

 public static void main(String[] args) {

 int result;

 // call the method

 // store returned value to result

 result = square(10);

 System.out.println("Squared value of 10 is: " + result);

 }

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 235

Java Method Parameters

class Main {

 // method with no parameter

 public void display1() {

 System.out.println("Method without parameter");

 }

 // method with single parameter

 public void display2(int a) {

 System.out.println("Method with a single parameter: " + a);

 }

 public static void main(String[] args) {

 // create an object of Main

 Main obj = new Main();

 // calling method with no parameter

 obj.display1();

 // calling method with the single parameter

 obj.display2(24);

 }

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 236

Java Method Overloading

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 237

Java Method Overloading

two or more methods may have the same name if they differ in parameters (different
number of parameters, different types of parameters, or both). These methods are
called overloaded methods and this feature is called method overloading.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 238

Java Method Overloading

void func() { ... }

void func(int a) { ... }

float func(double a) { ... }

float func(int a, float b) { ... }

Note: The return types of the above methods are not the same. It is because method
overloading is not associated with return types. Overloaded methods may have the
same or different return types, but they must differ in parameters.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 239

Why method overloading?

Suppose, you have to perform the addition of given numbers but there can be any
number of arguments (let’s say either 2 or 3 arguments for simplicity).

In order to accomplish the task, you can create two methods sum2num(int, int) and
sum3num(int, int, int) for two and three parameters respectively. However, other
programmers, as well as you in the future may get confused as the behavior of both
methods are the same but they differ by name.

The better way to accomplish this task is by overloading methods. And, depending
upon the argument passed, one of the overloaded methods is called. This helps to
increase the readability of the program.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 240

How to perform method overloading in Java?

Overloading by changing the number of parameters

class MethodOverloading {

 private static void display(int a){

 System.out.println("Arguments: " + a);

 }

 private static void display(int a, int b){

 System.out.println("Arguments: " + a + " and " + b);

 }

 public static void main(String[] args) {

 display(1);

 display(1, 4);

 }

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 241

How to perform method overloading in Java?

Method Overloading by changing the data type of parameters

class MethodOverloading {

 // this method accepts int

 private static void display(int a){

 System.out.println("Got Integer data.");

 }

 // this method accepts String object

 private static void display(String a){

 System.out.println("Got String object.");

 }

 public static void main(String[] args) {

 display(1);

 display("Hello");

 }

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 242

Java Overloading Example

class HelperService {

 private String formatNumber(int value) {

 return String.format("%d", value);

 }

 private String formatNumber(double value) {

 return String.format("%.3f", value);

 }

 private String formatNumber(String value) {

 return String.format("%.2f", Double.parseDouble(value));

 }

 public static void main(String[] args) {

 HelperService hs = new HelperService();

 System.out.println(hs.formatNumber(500));

 System.out.println(hs.formatNumber(89.9934));

 System.out.println(hs.formatNumber("550"));

 }

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 243

Java Constructor

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 244

Java Constructor

A constructor is a special method of a class that has the same name as the class name.
The constructor gets executes automatically on object creation. It does not require the
explicit method call. A constructor may have parameters and access specifiers too. In
java, if you do not provide any constructor the compiler automatically creates a default
constructor.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 245

Java Constructor

A constructor can not have return value.

public class ConstructorExample {

 ConstructorExample() {

 System.out.println("Object created!");

 }

 public static void main(String[] args) {

 ConstructorExample obj1 = new ConstructorExample();

 ConstructorExample obj2 = new ConstructorExample();

 }

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 246

Types of Constructor

In Java, constructors can be divided into 3 types:

No-Arg Constructor

Parameterized Constructor

Default Constructor

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 247

Java No-Arg Constructors

Java private no-arg constructor

class Main {

 int i;

 // constructor with no parameter

 private Main() {

 i = 5;

 System.out.println("Constructor is called");

 }

 public static void main(String[] args) {

 // calling the constructor without any parameter

 Main obj = new Main();

 System.out.println("Value of i: " + obj.i);

 }

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 248

Java No-Arg Constructors

Java public no-arg constructor

class Company {

 String name;

 // public constructor

 public Company() {
 name = "My Company";

 }

}

class Main {

 public static void main(String[] args) {

 // object is created in another class

 Company obj = new Company();

 System.out.println("Company name = " + obj.name);

 }

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 249

Java Parameterized Constructor

class Main {

 String languages;

 // constructor accepting single value

 Main(String lang) {

 languages = lang;

 System.out.println(languages + " Programming Language");

 }

 public static void main(String[] args) {

 // call constructor by passing a single value

 Main obj1 = new Main("Java");

 Main obj2 = new Main("Python");

 Main obj3 = new Main("C");

 }

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 250

Java Default Constructor

class Main {

 int a;

 boolean b;

 public static void main(String[] args) {

 // A default constructor is called

 Main obj = new Main();

 System.out.println("Default Value:");

 System.out.println("a = " + obj.a);

 System.out.println("b = " + obj.b);

 }

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 251

Java Default Values

The default constructor initializes any uninitialized instance variables with default values.

Type Default Value

boolean false

byte 0

short 0

int 0

long 0L

char \u0000

float 0.0f

double 0.0d

object Reference null

CE204 Object-Oriented Programming

⟹
⟹

⟹
⟹

⟹
⟹
⟹
⟹
⟹
⟹

 RTEU CE204 Week-1 252

Java Default Constructor Equivalent

class Main {

 int a;

 boolean b;

 // a private constructor

 private Main() {

 a = 0;

 b = false;

 }

 public static void main(String[] args) {

 // call the constructor

 Main obj = new Main();

 System.out.println("Default Value:");

 System.out.println("a = " + obj.a);

 System.out.println("b = " + obj.b);

 }

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 253

Constructors Overloading in Java

class Main {

 String language;

 // constructor with no parameter

 Main() {

 this.language = "Java";

 }

 // constructor with a single parameter

 Main(String language) {

 this.language = language;
 }

 public void getName() {

 System.out.println("Programming Langauage: " + this.language);

 }

...

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 254

Constructors Overloading in Java

...

 public static void main(String[] args) {

 // call constructor with no parameter

 Main obj1 = new Main();

 // call constructor with a single parameter

 Main obj2 = new Main("Python");

 obj1.getName();

 obj2.getName();

 }

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 255

Java Inheritance

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 256

Inheritance Concept

The inheritance is a very useful and powerful concept of object-oriented
programming.

In java, using the inheritance concept, we can use the existing features of one class
in another class. - The inheritance provides a greate advantage called code re-
usability.
With the help of code re-usability, the commonly used code in an application need
not be written again and again.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 257

Inheritance Concept
CE204 Object-Oriented Programming

 RTEU CE204 Week-1 258

Inheritance Concept

The inheritance is the process of acquiring the properties of one class to another class.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 259

Inheritance Basics

In inheritance, we use the terms like
parent class,

child class,

base class,
derived class,

superclass, and

subclass.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 260

Inheritance Basics

The Parent class is the class which provides features to another class.

The parent class is also known as Base class or Superclass.

The Child class is the class which receives features from another class.

The child class is also known as the Derived Class or Subclass.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 261

Inheritance Basics

In the inheritance,
the child class acquires the features from its parent class.
But the parent class never acquires the features from its child class.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 262

Inheritance Basics

There are five types of inheritances, and they are as follows.

Simple Inheritance (or) Single Inheritance

Multiple Inheritance

Multi-Level Inheritance

Hierarchical Inheritance
Hybrid Inheritance

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 263

Inheritance Basics

Simple Inheritance (or) Single Inheritance

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 264

Inheritance Basics

Multiple Inheritance

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 265

Inheritance Basics

Multi-Level Inheritance

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 266

Inheritance Basics

Hierarchical Inheritance

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 267

Inheritance Basics

Hybrid Inheritance

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 268

Inheritance Basics

The java programming language does not support multiple inheritance type.

However, it provides an alternate with the concept of interfaces.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 269

Creating Child Class in java

In java, we use the keyword extends to create a child class.
The following syntax used to create a child class in java.

 class <ChildClassName> extends <ParentClassName>{

 ...

 //Implementation of child class

 ...

 }

In a java programming language, a class extends only one class.
Extending multiple classes is not allowed in java.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 270

Single Inheritance in Java Example-1

In this type of inheritance, one child class derives from one parent class.

class ParentClass{

	 int a;

	 void setData(int a) {

	 	 this.a = a;

	 }

}

class ChildClass extends ParentClass{

	 void showData() {

	 	 System.out.println("Value of a is " + a);

	 }

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 271

Single Inheritance in Java Example-1

public class SingleInheritance {

	 public static void main(String[] args) {

	 	 ChildClass obj = new ChildClass();

	 	 obj.setData(100);

	 	 obj.showData();

	 }

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 272

Single Inheritance in Java Example-2

class Animal {

 // field and method of the parent class

 String name;

 public void eat() {

 System.out.println("I can eat");

 }

}

// inherit from Animal

class Dog extends Animal {

 // new method in subclass

 public void display() {

 System.out.println("My name is " + name);

 }

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 273

Single Inheritance in Java Example-2

class Main {

 public static void main(String[] args) {

 // create an object of the subclass

 Dog labrador = new Dog();

 // access field of superclass

 labrador.name = "Rohu";

 labrador.display();

 // call method of superclass

 // using object of subclass

 labrador.eat();

 }

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 274

Single Inheritance in Java Example-2

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 275

Single Inheritance / is-a relationship

In Java, inheritance is an is-a relationship. That is, we use inheritance only if there
exists an is-a relationship between two classes. For example,

Car is a Vehicle

Orange is a Fruit

Surgeon is a Doctor
Dog is an Animal

Here, Car can inherit from Vehicle, Orange can inherit from Fruit, and so
on.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 276

Multi-level Inheritance in java

In this type of inheritance, the child class derives from a class which already derived
from another class

class ParentClass{

	 int a;

	 void setData(int a) {

	 	 this.a = a;

	 }

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 277

Multi-level Inheritance in java

class ChildClass extends ParentClass{

	 void showData() {

	 	 System.out.println("Value of a is " + a);

	 }

}

class ChildChildClass extends ChildClass{

	 void display() {

	 	 System.out.println("Inside ChildChildClass!");

	 }

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 278

Multi-level Inheritance in java

public class MultipleInheritance {

	 public static void main(String[] args) {

	 	 ChildChildClass obj = new ChildChildClass();

	 	 obj.setData(100);

	 	 obj.showData();

	 	 obj.display();

	 }

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 279

Hierarchical Inheritance in java

In this type of inheritance, two or more child classes derive from one parent class.

class ParentClass{

	 int a;

	 void setData(int a) {

	 	 this.a = a;

	 }

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 280

Hierarchical Inheritance in java

class ChildClass extends ParentClass{

	 void showData() {

	 	 System.out.println("Inside ChildClass!");

	 	 System.out.println("Value of a is " + a);

	 }

}

class ChildClassToo extends ParentClass{

	 void display() {

	 	 System.out.println("Inside ChildClassToo!");

	 	 System.out.println("Value of a is " + a);

	 }

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 281

Hierarchical Inheritance in java

public class HierarchicalInheritance {

	 public static void main(String[] args) {

	 	 ChildClass child_obj = new ChildClass();

	 	 child_obj.setData(100);

	 	 child_obj.showData();

	 	 ChildClassToo childToo_obj = new ChildClassToo();

	 	 childToo_obj.setData(200);

	 	 childToo_obj.display();

	 }

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 282

Hybrid Inheritance in java

The hybrid inheritance is the combination of more than one type of inheritance.
We may use any combination as a

single with multiple inheritances,

multi-level with multiple inheritances, etc.,

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 283

Java Access Modifiers

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 284

Java Access Modifiers

In Java, the access specifiers (also known as access modifiers) used to restrict
the scope or

accessibility of a
class,
constructor,

variable,

method or

data member of class and interface.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 285

Java Access Modifiers

There are four access specifiers, and their list is below.

default (or) no modifier

public
protected

private

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 286

Java Access Modifiers

In java, we can not
employ all access
specifiers on
everything. The
following table
describes where we
can apply the access
specifiers.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 287

Java Access Modifiers

Let's look at the following example java code,

which generates an error

because a class does not allow private access specifier

unless it is an inner class.
private class Sample{

...

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 288

Java Access Modifiers

In java, the accessibility
of the members of a
class or interface
depends on its access
specifiers. The
following table
provides information
about the visibility of
both data members
and methods.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 289

Java Access Modifiers

The public members can be accessed everywhere.

The private members can be accessed only inside the same class.

The protected members are accessible to every child class (same package or other
packages).

The default members are accessible within the same package but not outside the
package.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 290

Java Access Modifiers

class ParentClass{

	 int a = 10;

	 public int b = 20;

	 protected int c = 30;

	 private int d = 40;

	

	 void showData() {

	 	 System.out.println("Inside ParentClass");

	 	 System.out.println("a = " + a);

	 	 System.out.println("b = " + b);

	 	 System.out.println("c = " + c);

	 	 System.out.println("d = " + d);

	 }

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 291

Java Access Modifiers

class ChildClass extends ParentClass{

	

	 void accessData() {

	 	 System.out.println("Inside ChildClass");

	 	 System.out.println("a = " + a);

	 	 System.out.println("b = " + b);

	 	 System.out.println("c = " + c);

	 	 //System.out.println("d = " + d);	 // private member can't be accessed
	 }

	

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 292

Java Access Modifiers

public class AccessModifiersExample {

	 public static void main(String[] args) {

	 	 ChildClass obj = new ChildClass();

	 	 obj.showData();

	 	 obj.accessData();

	 }

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 293

Java Access Modifiers

Default Access Modifier
Here, the Logger class has the default access modifier

package defaultpackage;

class Logger {

 void message(){

 System.out.println("This is a message");

 }

}

the class is visible to all the classes that belong to the defaultPackage package

However, if we try to use the Logger class in another class outside of
defaultPackage, we will get a compilation error.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 294

Java Access Modifiers

Private Access Modifier
When variables and methods are declared private, they cannot be accessed
outside of the class

class Data {

 // private variable

 private String name;

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 295

Java Access Modifiers

Private Access Modifier

public class Main {

 public static void main(String[] main){

 // create an object of Data

 Data d = new Data();

 // access private variable and field from another class

 d.name = "My App";

 }

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 296

Java Access Modifiers

Private Access Modifier
When we run the program, we will get the following error

Main.java:18: error: name has private access in Data

 d.name = "My App";

 ^

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 297

Java Access Modifiers

Private Access Modifier
if we need to access those private variables

we can use the getters and setters method

class Data {

 private String name;

 // getter method

 public String getName() {

 return this.name;

 }

 // setter method

 public void setName(String name) {

 this.name= name;

 }

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 298

Java Access Modifiers

Private Access Modifier

public class Main {

 public static void main(String[] main){

 Data d = new Data();

 // access the private variable using the getter and setter

 d.setName("My App");

 System.out.println(d.getName());

 }

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 299

Java Access Modifiers

Private Access Modifier

We cannot declare classes and interfaces private in Java.

However, the nested classes can be declared private.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 300

Java Access Modifiers

Protected Access Modifier
When methods and data members are declared protected,

we can access them within the same package

as well as from subclasses.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 301

Java Access Modifiers

Protected Access Modifier

class Animal {

 // protected method

 protected void display() {

 System.out.println("I am an animal");

 }

}

class Dog extends Animal {

 public static void main(String[] args) {

 // create an object of Dog class

 Dog dog = new Dog();

 // access protected method

 dog.display();

 }

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 302

Java Access Modifiers

Protected Access Modifier (Ex-2)

class Animal {

 protected String name;

 protected void display() {

 System.out.println("I am an animal.");

 }

}

class Dog extends Animal {

 public void getInfo() {

 System.out.println("My name is " + name);

 }

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 303

Java Access Modifiers

Protected Access Modifier (Ex-2)

class Main {

 public static void main(String[] args) {

 // create an object of the subclass

 Dog labrador = new Dog();

 // access protected field and method

 // using the object of subclass

 labrador.name = "Rocky";

 labrador.display();

 labrador.getInfo();

 }

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 304

Java Access Modifiers

Protected Access Modifier

We cannot declare classes or interfaces protected in Java.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 305

Java Access Modifiers

Public Access Modifier
When methods, variables, classes, and so on are declared public,

then we can access them from anywhere.

// Animal.java file

// public class

public class Animal {

 // public variable

 public int legCount;

 // public method

 public void display() {

 System.out.println("I am an animal.");

 System.out.println("I have " + legCount + " legs.");

 }

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 306

Java Access Modifiers

Public Access Modifier

// Main.java

public class Main {

 public static void main(String[] args) {

 // accessing the public class

 Animal animal = new Animal();

 // accessing the public variable

 animal.legCount = 4;

 // accessing the public method

 animal.display();

 }

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 307

Java Constructors in Inheritance

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 308

Java Constructors in Inheritance

It is very important to understand how the constructors get executed in the
inheritance concept.

In the inheritance, the constructors never get inherited to any child class.
In java, the default constructor of a parent class called automatically by the
constructor of its child class.

That means when we create an object of the child class,
the parent class constructor executed, followed by the child class constructor
executed.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 309

Java Constructors in Inheritance - Example

class ParentClass{

	 int a;

	 ParentClass(){

	 	 System.out.println("Inside ParentClass constructor!");

	 }

}

class ChildClass extends ParentClass{

	 ChildClass(){

	 	 System.out.println("Inside ChildClass constructor!!");	 	

	 }

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 310

Java Constructors in Inheritance - Example

class ChildChildClass extends ChildClass{

	 ChildChildClass(){

	 	 System.out.println("Inside ChildChildClass constructor!!");	 	

	 }	

}

public class ConstructorInInheritance {

	 public static void main(String[] args) {

	 	 ChildChildClass obj = new ChildChildClass();

	 }

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 311

Java Constructors in Inheritance

if the parent class contains both default and parameterized constructor,
then only the default constructor called automatically

by the child class constructor

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 312

Java Constructors in Inheritance - Example

class ParentClass{

	 int a;

	 ParentClass(int a){

	 	 System.out.println("Inside ParentClass parameterized constructor!");

	 	 this.a = a;

	 }

	 ParentClass(){

	 	 System.out.println("Inside ParentClass default constructor!");

	 }

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 313

Java Constructors in Inheritance - Example

class ChildClass extends ParentClass{

	 ChildClass(){

	 	 System.out.println("Inside ChildClass constructor!!");	 	

	 }

}

public class ConstructorInInheritance {

	 public static void main(String[] args) {

	 	 ChildClass obj = new ChildClass();

	 }

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 314

Java Constructors in Inheritance

The parameterized constructor of parent class must be called explicitly using the
super keyword.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 315

Method Overriding in Java Inheritance

class Animal {

 // method in the superclass

 public void eat() {

 System.out.println("I can eat");

 }

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 316

Method Overriding in Java Inheritance

// Dog inherits Animal

class Dog extends Animal {

 // overriding the eat() method

 @Override

 public void eat() {

 System.out.println("I eat dog food");

 }

 // new method in subclass

 public void bark() {

 System.out.println("I can bark");

 }

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 317

Method Overriding in Java Inheritance

class Main {

 public static void main(String[] args) {

 // create an object of the subclass

 Dog labrador = new Dog();

 // call the eat() method

 labrador.eat();

 labrador.bark();

 }

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 318

Method Overriding in Java Inheritance

In the above example, the eat() method is present in both the superclass Animal
and the subclass Dog.
Here, we have created an object labrador of Dog.

Now when we call eat() using the object labrador, the method inside Dog is called.
This is because the method inside the derived class overrides the method inside
the base class.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 319

super Keyword in Java Inheritance

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 320

super Keyword in Java Inheritance

the same method in the subclass overrides the method in superclass.

In such a situation, the super keyword is used to call the method of the parent class
from the method of the child class.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 321

super Keyword in Java Inheritance

class Animal {

 // method in the superclass

 public void eat() {

 System.out.println("I can eat");

 }

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 322

super Keyword in Java Inheritance

// Dog inherits Animal

class Dog extends Animal {

 // overriding the eat() method

 @Override

 public void eat() {

 // call method of superclass

 super.eat();

 System.out.println("I eat dog food");

 }

 // new method in subclass

 public void bark() {

 System.out.println("I can bark");

 }

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 323

super Keyword in Java Inheritance

class Main {

 public static void main(String[] args) {

 // create an object of the subclass

 Dog labrador = new Dog();

 // call the eat() method

 labrador.eat();

 labrador.bark();

 }

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 324

Java this Keyword

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 325

Java this Keyword

In Java, this keyword is used to refer to
the current object

inside a
method or a

constructor

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 326

Java this Keyword

class Main {

 int instVar;

 Main(int instVar){

 this.instVar = instVar;

 System.out.println("this reference = " + this);

 }

 public static void main(String[] args) {

 Main obj = new Main(8);

 System.out.println("object reference = " + obj);

 }

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 327

Using this for Ambiguity Variable Names

In Java, it is not allowed to declare two or more variables having the same name
inside a scope (class scope or method scope).
However, instance variables and parameters may have the same name.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 328

Using this for Ambiguity Variable Names

WRONG

class Main {

 int age;

 Main(int age){

 age = age;

 }

 public static void main(String[] args) {

 Main obj = new Main(8);

 System.out.println("obj.age = " + obj.age);

 }

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 329

Using this for Ambiguity Variable Names

CORRECT

class Main {

 int age;

 Main(int age){

 this.age = age;

 }

 public static void main(String[] args) {

 Main obj = new Main(8);

 System.out.println("obj.age = " + obj.age);

 }

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 330

this with Getters and Setters

Another common use of this keyword is in setters and getters methods of a class

class Main {

 String name;

 // setter method

 void setName(String name) {

 this.name = name;

 }

 // getter method

 String getName(){

 return this.name;

 }

 ...

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 331

this with Getters and Setters

...

 public static void main(String[] args) {

 Main obj = new Main();

 // calling the setter and the getter method

 obj.setName("Toshiba");

 System.out.println("obj.name: "+obj.getName());

 }

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 332

Using this in Constructor Overloading

While working with constructor overloading,

we might have to invoke one constructor from another constructor.

In such a case,
we cannot call the constructor explicitly. Instead,

we have to use this keyword.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 333

Using this in Constructor Overloading

class Complex {

 private int a, b;

 // constructor with 2 parameters

 private Complex(int i, int j){

 this.a = i;

 this.b = j;

 }

 // constructor with single parameter

 private Complex(int i){

 // invokes the constructor with 2 parameters

 this(i, i);

 }

 // constructor with no parameter

 private Complex(){

 // invokes the constructor with single parameter

 this(0);

 }

 ...

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 334

Using this in Constructor Overloading

 @Override

 public String toString(){

 return this.a + " + " + this.b + "i";

 }

 public static void main(String[] args) {

 // creating object of Complex class

 // calls the constructor with 2 parameters

 Complex c1 = new Complex(2, 3);

 // calls the constructor with a single parameter

 Complex c2 = new Complex(3);

 // calls the constructor with no parameters

 Complex c3 = new Complex();

 // print objects

 System.out.println(c1);

 System.out.println(c2);

 System.out.println(c3);

 }

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 335

Using this in Constructor Overloading

In the example, we have used this keyword,
to call the constructor Complex(int i, int j) from the constructor
Complex(int i)

to call the constructor Complex(int i) from the constructor Complex()

the line, System.out.println(c1); process, the toString() is called Since we
override the toString() method inside our class, we get the output according to that
method.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 336

Using this in Constructor Overloading

One of the huge advantages of this() is to reduce the amount of duplicate code.
However, we should be always careful while using this().

This is because calling constructor from another constructor adds overhead and it
is a slow process. Another huge advantage of using this() is to reduce the amount
of duplicate code.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 337

Using this in Constructor Overloading

Invoking one constructor from another constructor is called explicit constructor
invocation.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 338

Passing this as an Argument

We can use this keyword to pass the current object as an argument to a method

class ThisExample {

 // declare variables

 int x;

 int y;

 ThisExample(int x, int y) {

 // assign values of variables inside constructor

 this.x = x;

 this.y = y;

 // value of x and y before calling add()

 System.out.println("Before passing this to addTwo() method:");

 System.out.println("x = " + this.x + ", y = " + this.y);

 // call the add() method passing this as argument

 add(this);

 // value of x and y after calling add()

 System.out.println("After passing this to addTwo() method:");

 System.out.println("x = " + this.x + ", y = " + this.y);

 }

 void add(ThisExample o){

 o.x += 2;

 o.y += 2;

 }

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 339

Passing this as an Argument

class Main {

 public static void main(String[] args) {

 ThisExample obj = new ThisExample(1, -2);

 }

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 340

Passing this as an Argument

In the example, inside the constructor ThisExample() , notice the line, add(this);

Here, we are calling the add() method by passing this as an argument.

Since this keyword contains the reference to the object obj of the class,

we can change the value of x and y inside the add() method.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 341

Java instanceof Operator

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 342

Java instanceof Operator

The instanceof operator in Java is used to
check whether an object is an instance of

a particular class or not.

Its syntax is

objectName instanceOf className;

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 343

Example: Java instanceof

class Main {

 public static void main(String[] args) {

 // create a variable of string type

 String name = "My App";

 // checks if name is instance of String

 boolean result1 = name instanceof String;

 System.out.println("name is an instance of String: " + result1);

 // create an object of Main

 Main obj = new Main();

 // checks if obj is an instance of Main

 boolean result2 = obj instanceof Main;

 System.out.println("obj is an instance of Main: " + result2);

 }

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 344

Example: Java instanceof

In the example, we have created a variable name of the String type and an object
obj of the Main class.

Here, we have used the instanceof operator to check whether name and obj are
instances of the String and Main class respectively. And, the operator returns true in
both cases.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 345

Java instanceof during Inheritance

We can use the instanceof operator to check if objects of the subclass is also an
instance of the superclass.

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 346

Java instanceof during Inheritance

// Java Program to check if an object of the subclass

// is also an instance of the superclass

// superclass

class Animal {

}

// subclass

class Dog extends Animal {

}

class Main {

 public static void main(String[] args) {

 // create an object of the subclass

 Dog d1 = new Dog();

 // checks if d1 is an instance of the subclass

 System.out.println(d1 instanceof Dog); // prints true

 // checks if d1 is an instance of the superclass

 System.out.println(d1 instanceof Animal); // prints true

 }

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 347

Java instanceof during Inheritance

In the above example, we have created a subclass Dog that inherits from the
superclass Animal. We have created an object d1 of the Dog class.

Inside the print statement, notice the expression,

d1 instanceof Animal

Here, we are using the instanceof operator to check whether d1 is also an
instance of the superclass Animal

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 348

Java instanceof in Interface

The instanceof operator is also used to check whether an object of a class is
also an instance of the interface implemented by the class

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 349

Java instanceof in Interface

// Java program to check if an object of a class is also

// an instance of the interface implemented by the class

interface Animal {

}

class Dog implements Animal {

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 350

Java instanceof in Interface

class Main {

 public static void main(String[] args) {

 // create an object of the Dog class

 Dog d1 = new Dog();

 // checks if the object of Dog

 // is also an instance of Animal

 System.out.println(d1 instanceof Animal); // returns true

 }

}

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 351

Java instanceof in Interface

In the example, the Dog class implements the Animal interface. Inside the print
statement, notice the expression,

d1 instanceof Animal

Here, d1 is an instance of Dog class. The instanceof operator checks
if d1 is also an instance of the interface Animal .

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 352

Java instanceof in Interface

In Java, all the classes are inherited from the Object class. So, instances of all the classes
are also an instance of the Object class.

In the previous example, if we check,

d1 instanceof Object

The result will be true .

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 353

References

https://www.site.uottawa.ca/~tcl/seg2105/

https://cruise.umple.org/index.shtml

https://cruise.umple.org/umple/GettingStarted.html
Sanem Sarıel Associate Professor, PhD BT503 Application Development with Java
(Kemerburgaz University 2013-2015)

How To Define The Project Scope The Foolproof Way

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 354

https://www.site.uottawa.ca/~tcl/seg2105/
https://cruise.umple.org/index.shtml
https://cruise.umple.org/umple/GettingStarted.html
https://web.itu.edu.tr/sariel/teaching.php
https://medium.com/@ayush_90732/how-to-define-the-project-scope-the-foolproof-way-782b239db2bc

References

BtechSmartClass Java OOP Concepts

BtechSmartClass-Java Buzz Words
JavatPoint-Cpp vs Java

BtechSmartClass-Java Classes

Programiz-Class Objects

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 355

http://www.btechsmartclass.com/java/java-oop-concepts.html
http://www.btechsmartclass.com/java/java-buzz-words.html
https://www.javatpoint.com/cpp-vs-java
http://www.btechsmartclass.com/java/java-classes.html
https://www.programiz.com/java-programming/class-objects

References

BtechSmartClass-Java-Methods-and-Classes

Programiz-Methods
Programiz-Method Overloading

Programiz-Constructors

BtechSmartClass-Java inheritance basics

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 356

http://www.btechsmartclass.com/java/java-methods-and-classes.html
https://www.programiz.com/java-programming/methods
https://www.programiz.com/java-programming/method-overloading
https://www.programiz.com/java-programming/constructors
http://www.btechsmartclass.com/java/java-inheritance-basics.html

References

BtechSmartClass-Java access specifiers
Programiz-Access Modifiers

BtechSmartClass-java constructors in inheritance

Programiz-Inheritance

Programiz-this Keyword
Programiz-instanceof

CE204 Object-Oriented Programming

 RTEU CE204 Week-1 357

http://www.btechsmartclass.com/java/java-access-specifiers.html
https://www.programiz.com/java-programming/access-modifiers
http://www.btechsmartclass.com/java/java-constructors-in-inheritance.html
https://www.programiz.com/java-programming/inheritance
https://www.programiz.com/java-programming/this-keyword
https://www.programiz.com/java-programming/instanceof

CE204 Object-Oriented Programming

End−Of −Week − 1 −Module

 RTEU CE204 Week-1 358

