
CE103 Algorithms and Programming I

Week-6

C++ Functional Console Programming

Download DOC, SLIDE, PPTX

CE103 Algorithms and Programming I

 RTEU CE103 Week-6

file:///C:/Users/ugur.coruh/Desktop/ce103-algorithms-and-programming-I/docs/week-6-cpp/ce103-week-6-cpp.en.md_doc.pdf
file:///C:/Users/ugur.coruh/Desktop/ce103-algorithms-and-programming-I/docs/week-6-cpp/ce103-week-6-cpp.en.md_slide.pdf
file:///C:/Users/ugur.coruh/Desktop/ce103-algorithms-and-programming-I/docs/week-6-cpp/ce103-week-6-cpp.en.md_slide.pptx

C++ Functional Console Programming

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 2

Books and Resources

free-programming-books/free-programming-books-langs.md at master ·
EbookFoundation/free-programming-books · GitHub

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 3

https://github.com/EbookFoundation/free-programming-books/blob/master/books/free-programming-books-langs.md#c-1

C++ Functional Console Programming

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 4

C++ Introduction

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 5

C++ Variables, Literals and Constants
In this tutorial, we will learn about variables, literals, and constants in C++ with the help
of examples.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 6

C++ Variables

In programming, a variable is a container (storage area) to hold data.

To indicate the storage area, each variable should be given a unique name (identifier).
For example,

int age = 14;

Here, age is a variable of the int data type, and we have assigned an integer value 14
to it.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 7

Note: The int data type suggests that the variable can only hold integers. Similarly, we
can use the double data type if we have to store decimals and exponentials.

We will learn about all the data types in detail in the next tutorial.

The value of a variable can be changed, hence the name variable.

int age = 14; // age is 14
age = 17; // age is 17

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 8

Rules for naming a variable

A variable name can only have alphabets, numbers, and the underscore _ .

A variable name cannot begin with a number.
It is a preferred practice to begin variable names with a lowercase character. For
example, name is preferable to Name.

A variable name cannot be a keyword. For example, int is a keyword that is used
to denote integers.
A variable name can start with an underscore. However, it's not considered a good
practice.

Note: We should try to give meaningful names to variables. For example, first_name is a
better variable name than fn.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 9

https://www.programiz.com/cpp-programming/keywords-identifiers

C++ Literals

Literals are data used for representing fixed values. They can be used directly in the
code. For example: 1 , 2.5 , 'c' etc.

Here, 1 , 2.5 and 'c' are literals. Why? You cannot assign different values to these
terms.

Here's a list of different literals in C++ programming.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 10

1. Integers

An integer is a numeric literal(associated with numbers) without any fractional or
exponential part. There are three types of integer literals in C programming:

decimal (base 10)
octal (base 8)

hexadecimal (base 16)

For example:

Decimal: 0, -9, 22 etc
Octal: 021, 077, 033 etc
Hexadecimal: 0x7f, 0x2a, 0x521 etc

In C++ programming, octal starts with a 0 , and hexadecimal starts with a 0x .

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 11

2. Floating-point Literals

A floating-point literal is a numeric literal that has either a fractional form or an
exponent form. For example:

-2.0

0.0000234

-0.22E-5

Note: E-5 = 10-5

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 12

3. Characters

A character literal is created by enclosing a single character inside single quotation
marks. For example: 'a' , 'm' , 'F' , '2' , '}' etc.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 13

4. Escape Sequences

Sometimes, it is necessary to use characters that cannot be typed or has special
meaning in C++ programming. For example, newline (enter), tab, question mark, etc.

In order to use these characters, escape sequences are used.

Escape Sequences Characters

\b Backspace

\f Form feed

\n Newline

\r Return

\t Horizontal tab

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 14

5. String Literals

A string literal is a sequence of characters enclosed in double-quote marks. For
example:

"good" string constant

"" null string constant

" " string constant of six white space

"x" string constant having a single character

"Earth is round\n" prints string with a newline

We will learn about strings in detail in the C++ string tutorial.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 15

C++ Constants

In C++, we can create variables whose value cannot be changed. For that, we use
the const keyword. Here's an example:

const int LIGHT_SPEED = 299792458;
LIGHT_SPEED = 2500 // Error! LIGHT_SPEED is a constant.

Here, we have used the keyword const to declare a constant named LIGHT_SPEED . If
we try to change the value of LIGHT_SPEED , we will get an error.

A constant can also be created using the #define preprocessor directive. We will learn
about it in detail in the C++ Macros tutorial.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 16

C++ Data Types
In this tutorial, we will learn about basic data types such as int, float, char, etc. in C++
programming with the help of examples.

In C++, data types are declarations for variables. This determines the type and size of
data associated with variables. For example,

int age = 13;

Here, age is a variable of type int . Meaning, the variable can only store integers of
either 2 or 4 bytes.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 17

C++ Fundamental Data Types

The table below shows the fundamental data types, their meaning, and their sizes (in
bytes):

Data Type Meaning Size (in Bytes)

int Integer 2 or 4

float Floating-point 4

double Double Floating-point 8

char Character 1

wchar t Wide Character 2
Now, let us discuss these fundamental data types in more detail.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 18

1. C++ int

The int keyword is used to indicate integers.

Its size is usually 4 bytes. Meaning, it can store values from -2147483648 to
2147483647.

For example,

int salary = 85000;

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 19

2. C++ float and double

float and double are used to store floating-point numbers (decimals and
exponentials).

The size of float is 4 bytes and the size of double is 8 bytes. Hence, double has
two times the precision of float . To learn more, visit C++ float and double.

For example,

float area = 64.74;
double volume = 134.64534;

As mentioned above, these two data types are also used for exponentials. For example,

double distance = 45E12 // 45E12 is equal to 45*10^12

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 20

3. C++ char

Keyword char is used for characters.

Its size is 1 byte.

Characters in C++ are enclosed inside single quotes ' ' .

For example,

char test = 'h';

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 21

Note: In C++, an integer value is stored in a char variable rather than the character
itself. To learn more, visit C++ characters.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 22

https://www.programiz.com/cpp-programming/char-type

4. C++ wchar_t

Wide character wchar_t is similar to the char data type, except its size is 2 bytes
instead of 1.
It is used to represent characters that require more memory to represent them than
a single char .

For example,

wchar_t test = L'ם' // storing Hebrew character;

Notice the letter L before the quotation marks.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 23

Note: There are also two other fixed-size character
types char16_t and char32_t introduced in C++11.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 24

5. C++ bool

The bool data type has one of two possible values: true or false .

Booleans are used in conditional statements and loops (which we will learn in later
chapters).

For example,

bool cond = false;

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 25

6. C++ void

The void keyword indicates an absence of data. It means "nothing" or "no value".

We will use void when we learn about functions and pointers.

Note: We cannot declare variables of the void type.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 26

C++ Type Modifiers

We can further modify some of the fundamental data types by using type modifiers.
There are 4 type modifiers in C++. They are:

1. signed

2. unsigned

3. short

4. long

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 27

We can modify the following data types with the above modifiers:

int

double

char

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 28

C++ Modified Data Types List

Data Type
Size (in
Bytes)

Meaning

Si (i

signed int 4 used for integers (equivalent to int)

unsigned

int
4 can only store positive integers

short 2 used for small integers (range -32768 to 32767)

unsigned

short
2 used for small positive integers (range 0 to 65,535)

long at least 4 used for large integers (equivalent to long int)

unsigned used for large positive integers or 0 (equivalent to

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 29

Let's see a few examples.

long b = 4523232;
long int c = 2345342;
long double d = 233434.56343;
short d = 3434233; // Error! out of range
unsigned int a = -5; // Error! can only store positive numbers or 0

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 30

Derived Data Types

Data types that are derived from fundamental data types are derived types. For
example: arrays, pointers, function types, structures, etc.

We will learn about these derived data types in later tutorials.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 31

C++ Basic Input/Output
In this tutorial, we will learn to use the cin object to take input from the user, and the
cout object to display output to the user with the help of examples.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 32

C++ Output

In C++, cout sends formatted output to standard output devices, such as the screen.
We use the cout object along with the << operator for displaying output.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 33

Example 1: String Output

#include <iostream>
using namespace std;

int main() {
 // prints the string enclosed in double quotes
 cout << "This is C++ Programming";
 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 34

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 35

https://www.programiz.com/cpp-programming/online-compiler

Output

This is C++ Programming

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 36

How does this program work?

We first include the iostream header file that allows us to display output.

The cout object is defined inside the std namespace. To use
the std namespace, we used the using namespace std; statement.

Every C++ program starts with the main() function. The code execution begins
from the start of the main() function.

cout is an object that prints the string inside quotation marks " " . It is followed
by the << operator.

return 0; is the "exit status" of the main() function. The program ends with this
statement, however, this statement is not mandatory.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 37

Note: If we don't include the using namespace std; statement, we need to
use std::cout instead of cout .

This is the preferred method as using the std namespace can create potential
problems.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 38

However, we have used the std namespace in our tutorials in order to make the codes
more readable.

#include <iostream>

int main() {
 // prints the string enclosed in double quotes
 std::cout << "This is C++ Programming";
 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 39

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 40

https://www.programiz.com/cpp-programming/online-compiler

Example 2: Numbers and Characters Output

To print the numbers and character variables, we use the same cout object but without
using quotation marks.

#include <iostream>
using namespace std;

int main() {
 int num1 = 70;
 double num2 = 256.783;
 char ch = 'A';

 cout << num1 << endl; // print integer
 cout << num2 << endl; // print double
 cout << "character: " << ch << endl; // print char
 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 41

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 42

https://www.programiz.com/cpp-programming/online-compiler

Output

70
256.783
character: A

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 43

Notes:

The endl manipulator is used to insert a new line. That's why each output is
displayed in a new line.
The << operator can be used more than once if we want to print different
variables, strings and so on in a single statement. For example:

cout << "character: " << ch << endl;

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 44

C++ Input

In C++, cin takes formatted input from standard input devices such as the keyboard.
We use the cin object along with the >> operator for taking input.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 45

Example 3: Integer Input/Output

#include <iostream>
using namespace std;

int main() {
 int num;
 cout << "Enter an integer: ";
 cin >> num; // Taking input
 cout << "The number is: " << num;
 return 0;
}

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 46

https://www.programiz.com/cpp-programming/online-compiler

Output

Enter an integer: 70
The number is: 70

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 47

In the program, we used

cin >> num;

to take input from the user. The input is stored in the variable num. We use
the >> operator with cin to take input.

Note: If we don't include the using namespace std; statement, we need to
use std::cin instead of cin .

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 48

C++ Taking Multiple Inputs

#include <iostream>
using namespace std;

int main() {
 char a;
 int num;

 cout << "Enter a character and an integer: ";
 cin >> a >> num;

 cout << "Character: " << a << endl;
 cout << "Number: " << num;

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 49

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 50

https://www.programiz.com/cpp-programming/online-compiler

Output

Enter a character and an integer: F
23
Character: F
Number: 23

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 51

C++ Type Conversion
In this tutorial, we will learn about the basics of C++ type conversion with the help of
examples.

C++ allows us to convert data of one type to that of another. This is known as type
conversion.

There are two types of type conversion in C++.

1. Implicit Conversion
2. Explicit Conversion (also known as Type Casting)

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 52

Implicit Type Conversion

The type conversion that is done automatically done by the compiler is known as
implicit type conversion. This type of conversion is also known as automatic conversion.

Let us look at two examples of implicit type conversion.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 53

Example 1: Conversion From int to double

// Working of implicit type-conversion

#include <iostream>
using namespace std;

int main() {
 // assigning an int value to num_int
 int num_int = 9;

 // declaring a double type variable
 double num_double;

 // implicit conversion
 // assigning int value to a double variable
 num_double = num_int;

 cout << "num_int = " << num_int << endl;
 cout << "num_double = " << num_double << endl;

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 54

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 55

https://www.programiz.com/cpp-programming/online-compiler

Output

num_int = 9
num_double = 9

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 56

In the program, we have assigned an int data to a double variable.

num_double = num_int;

Here, the int value is automatically converted to double by the compiler before it is
assigned to the num_double variable. This is an example of implicit type conversion.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 57

Example 2: Automatic Conversion from double to int

//Working of Implicit type-conversion

#include <iostream>
using namespace std;

int main() {

 int num_int;
 double num_double = 9.99;

 // implicit conversion
 // assigning a double value to an int variable
 num_int = num_double;

 cout << "num_int = " << num_int << endl;
 cout << "num_double = " << num_double << endl;

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 58

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 59

https://www.programiz.com/cpp-programming/online-compiler

Output

num_int = 9
num_double = 9.99

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 60

In the program, we have assigned a double data to an int variable.

num_int = num_double;

Here, the double value is automatically converted to int by the compiler before it is
assigned to the num_int variable. This is also an example of implicit type conversion.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 61

Note: Since int cannot have a decimal part, the digits after the decimal point
are truncated in the above example.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 62

Data Loss During Conversion (Narrowing Conversion)

As we have seen from the above example, conversion from one data type to another is
prone to data loss. This happens when data of a larger type is converted to data of a
smaller type.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 63

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 64

Possible Data Loss During Type Conversion

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 65

C++ Explicit Conversion

When the user manually changes data from one type to another, this is known
as explicit conversion. This type of conversion is also known as type casting.

There are three major ways in which we can use explicit conversion in C++. They are:

1. C-style type casting (also known as cast notation)

2. Function notation (also known as old C++ style type casting)
3. Type conversion operators

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 66

C-style Type Casting

As the name suggests, this type of casting is favored by the C programming language.
It is also known as cast notation.

The syntax for this style is:

(data_type)expression;

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 67

For example,

// initializing int variable
int num_int = 26;

// declaring double variable
double num_double;

// converting from int to double
num_double = (double)num_int;

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 68

Function-style Casting

We can also use the function like notation to cast data from one type to another.

The syntax for this style is:

data_type(expression);

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 69

For example,

// initializing int variable
int num_int = 26;

// declaring double variable
double num_double;

// converting from int to double
num_double = double(num_int);

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 70

Example 3: Type Casting

#include <iostream>

using namespace std;

int main() {
 // initializing a double variable
 double num_double = 3.56;
 cout << "num_double = " << num_double << endl;

 // C-style conversion from double to int
 int num_int1 = (int)num_double;
 cout << "num_int1 = " << num_int1 << endl;

 // function-style conversion from double to int
 int num_int2 = int(num_double);
 cout << "num_int2 = " << num_int2 << endl;

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 71

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 72

https://www.programiz.com/cpp-programming/online-compiler

Output

num_double = 3.56
num_int1 = 3
num_int2 = 3

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 73

We used both the C style type conversion and the function-style casting for type
conversion and displayed the results. Since they perform the same task, both give us
the same output.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 74

Type Conversion Operators

Besides these two type castings, C++ also has four operators for type conversion. They
are known as type conversion operators. They are:

static_cast

dynamic_cast

const_cast

reinterpret_cast

We will learn about these casts in later tutorials.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 75

Recommended Tutorials:

C++ string to int and Vice-versa
C++ string to float, double and Vice-versa

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 76

https://www.programiz.com/cpp-programming/string-int-conversion
https://www.programiz.com/cpp-programming/string-float-conversion

C++ Operators
In this tutorial, we will learn about the different types of operators in C++ with the help
of examples. In programming, an operator is a symbol that operates on a value or a
variable.

Operators are symbols that perform operations on variables and values. For
example, + is an operator used for addition, while - is an operator used for
subtraction.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 77

Operators in C++ can be classified into 6 types:

1. Arithmetic Operators

2. Assignment Operators

3. Relational Operators
4. Logical Operators

5. Bitwise Operators

6. Other Operators

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 78

https://www.programiz.com/cpp-programming/operators#arithmetic
https://www.programiz.com/cpp-programming/operators#assignment
https://www.programiz.com/cpp-programming/operators#relational
https://www.programiz.com/cpp-programming/operators#logical
https://www.programiz.com/cpp-programming/operators#bitwise
https://www.programiz.com/cpp-programming/operators#other-operators

1. C++ Arithmetic Operators

Arithmetic operators are used to perform arithmetic operations on variables and data.
For example,

a + b;

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 79

Here, the + operator is used to add two variables a and b. Similarly there are various
other arithmetic operators in C++.

Operator Operation

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulo Operation (Remainder after division)

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 80

Example 1: Arithmetic Operators

#include <iostream>
using namespace std;

int main() {
 int a, b;
 a = 7;
 b = 2;

 // printing the sum of a and b
 cout << "a + b = " << (a + b) << endl;

 // printing the difference of a and b
 cout << "a - b = " << (a - b) << endl;

 // printing the product of a and b
 cout << "a * b = " << (a * b) << endl;

 // printing the division of a by b
 cout << "a / b = " << (a / b) << endl;

 // printing the modulo of a by b
 cout << "a % b = " << (a % b) << endl;

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 81

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 82

https://www.programiz.com/cpp-programming/online-compiler

Output

a + b = 9
a - b = 5
a * b = 14
a / b = 3
a % b = 1

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 83

Here, the operators + , - and * compute addition, subtraction, and multiplication
respectively as we might have expected.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 84

/ Division Operator

Note the operation (a / b) in our program. The / operator is the division operator.

As we can see from the above example, if an integer is divided by another integer, we
will get the quotient. However, if either divisor or dividend is a floating-point number,
we will get the result in decimals.

In C++,

7/2 is 3
7.0 / 2 is 3.5
7 / 2.0 is 3.5
7.0 / 2.0 is 3.5

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 85

% Modulo Operator

The modulo operator % computes the remainder. When a = 9 is divided by b = 4 ,
the remainder is 1.

Note: The % operator can only be used with integers.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 86

Increment and Decrement Operators

C++ also provides increment and decrement operators: ++ and -- respectively.

++ increases the value of the operand by 1

-- decreases it by 1

For example,

int num = 5;

// increment operator
++num; // 6

Here, the code ++num; increases the value of num by 1.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 87

Example 2: Increment and Decrement Operators

// Working of increment and decrement operators

#include <iostream>
using namespace std;

int main() {
 int a = 10, b = 100, result_a, result_b;

 // incrementing a by 1 and storing the result in result_a
 result_a = ++a;
 cout << "result_a = " << result_a << endl;

 // decrementing b by 1 and storing the result in result_b
 result_b = --b;
 cout << "result_b = " << result_b << endl;

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 88

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 89

https://www.programiz.com/cpp-programming/online-compiler

Output

result_a = 11
result_b = 99

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 90

In the above program, we have used the ++ and -- operators as prefixes (++a and --
b). However, we can also use these operators as postfix (a++ and b--).

To learn more, visit increment and decrement operators.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 91

https://www.programiz.com/article/increment-decrement-operator-difference-prefix-postfix

2. C++ Assignment Operators

In C++, assignment operators are used to assign values to variables. For example,

// assign 5 to a
a = 5;

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 92

Here, we have assigned a value of 5 to the variable a.

Operator Example Equivalent to

= a = b; a = b;

+= a += b; a = a + b;

-= a -= b; a = a - b;

*= a *= b; a = a * b;

/= a /= b; a = a / b;

%= a %= b; a = a % b;

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 93

Example 3: Assignment Operators

#include <iostream>
using namespace std;

int main() {
 int a, b;

 // 2 is assigned to a
 a = 2;

 // 7 is assigned to b
 b = 7;

 cout << "a = " << a << endl;
 cout << "b = " << b << endl;
 cout << "\nAfter a += b;" << endl;

 // assigning the sum of a and b to a
 a += b; // a = a +b
 cout << "a = " << a << endl;

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 94

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 95

https://www.programiz.com/cpp-programming/online-compiler

Output

a = 2
b = 7
After a += b;
a = 9

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 96

3. C++ Relational Operators

A relational operator is used to check the relationship between two operands. For
example,

// checks if a is greater than b
a > b;

Here, > is a relational operator. It checks if a is greater than b or not.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 97

If the relation is true, it returns 1 whereas if the relation is false, it returns 0.

Operator Meaning Example

== Is Equal To 3 == 5 gives us false

!= Not Equal To 3 != 5 gives us true

> Greater Than 3 > 5 gives us false

< Less Than 3 < 5 gives us true

>= Greater Than or Equal To 3 >= 5 give us false

<= Less Than or Equal To 3 <= 5 gives us true

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 98

Example 4: Relational Operators
#include <iostream>
using namespace std;

int main() {
 int a, b;
 a = 3;
 b = 5;
 bool result;

 result = (a == b); // false
 cout << "3 == 5 is " << result << endl;

 result = (a != b); // true
 cout << "3 != 5 is " << result << endl;

 result = a > b; // false
 cout << "3 > 5 is " << result << endl;

 result = a < b; // true
 cout << "3 < 5 is " << result << endl;

 result = a >= b; // false
 cout << "3 >= 5 is " << result << endl;

 result = a <= b; // true
 cout << "3 <= 5 is " << result << endl;

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 99

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 100

https://www.programiz.com/cpp-programming/online-compiler

Output

3 == 5 is 0
3 != 5 is 1
3 > 5 is 0
3 < 5 is 1
3 >= 5 is 0
3 <= 5 is 1

Note: Relational operators are used in decision-making and loops.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 101

4. C++ Logical Operators

Logical operators are used to check whether an expression is true or false. If the
expression is true, it returns 1 whereas if the expression is false, it returns 0.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 102

Operator Example Meaning

&& expression1 && expression2
Logical AND.
True only if all the operands are true.

| expression1 | expression2
Logical OR.
True if at least one of the operands is true.

! **!**expression
Logical NOT.
True only if the operand is false.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 103

In C++, logical operators are commonly used in decision making. To further understand
the logical operators, let's see the following examples,

Suppose,
a = 5
b = 8

Then,

(a > 3) && (b > 5) evaluates to true
(a > 3) && (b < 5) evaluates to false

(a > 3) || (b > 5) evaluates to true
(a > 3) || (b < 5) evaluates to true
(a < 3) || (b < 5) evaluates to false

!(a < 3) evaluates to true
!(a > 3) evaluates to false

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 104

Example 5: Logical Operators
#include <iostream>
using namespace std;

int main() {
 bool result;

 result = (3 != 5) && (3 < 5); // true
 cout << "(3 != 5) && (3 < 5) is " << result << endl;

 result = (3 == 5) && (3 < 5); // false
 cout << "(3 == 5) && (3 < 5) is " << result << endl;

 result = (3 == 5) && (3 > 5); // false
 cout << "(3 == 5) && (3 > 5) is " << result << endl;

 result = (3 != 5) || (3 < 5); // true
 cout << "(3 != 5) || (3 < 5) is " << result << endl;

 result = (3 != 5) || (3 > 5); // true
 cout << "(3 != 5) || (3 > 5) is " << result << endl;

 result = (3 == 5) || (3 > 5); // false
 cout << "(3 == 5) || (3 > 5) is " << result << endl;

 result = !(5 == 2); // true
 cout << "!(5 == 2) is " << result << endl;

 result = !(5 == 5); // false
 cout << "!(5 == 5) is " << result << endl;

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 105

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 106

https://www.programiz.com/cpp-programming/online-compiler

Output

(3 != 5) && (3 < 5) is 1
(3 == 5) && (3 < 5) is 0
(3 == 5) && (3 > 5) is 0
(3 != 5) || (3 < 5) is 1
(3 != 5) || (3 > 5) is 1
(3 == 5) || (3 > 5) is 0
!(5 == 2) is 1
!(5 == 5) is 0

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 107

Explanation of logical operator program

(3 != 5) && (3 < 5) evaluates to 1 because both operands (3 != 5) and (3 <
5) are 1 (true).

(3 == 5) && (3 < 5) evaluates to 0 because the operand (3 == 5) is 0 (false).

(3 == 5) && (3 > 5) evaluates to 0 because both operands (3 == 5) and (3 >
5) are 0 (false).

(3 != 5) || (3 < 5) evaluates to 1 because both operands (3 != 5) and (3 <
5) are 1 (true).

(3 != 5) || (3 > 5) evaluates to 1 because the operand (3 != 5) is 1 (true).

(3 == 5) || (3 > 5) evaluates to 0 because both operands (3 == 5) and (3 >
5) are 0 (false).

!(5 == 2) evaluates to 1 because the operand (5 == 2) is 0 (false).

!(5 == 5) evaluates to 0 because the operand (5 == 5) is 1 (true).

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 108

5. C++ Bitwise Operators

In C++, bitwise operators are used to perform operations on individual bits. They can
only be used alongside char and int data types.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 109

Operator Description

& Binary AND

| Binary OR

^ Binary XOR

~ Binary One's Complement

<< Binary Shift Left

>> Binary Shift Right

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 110

To learn more, visit C++ bitwise operators.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 111

https://www.programiz.com/cpp-programming/bitwise-operators

6. Other C++ Operators

Here's a list of some other common operators available in C++. We will learn about
them in later tutorials.

Operator Description Example

sizeof returns the size of data type sizeof(int); // 4

?:
returns value based on the
condition

string result = (5 > 0) ? "even"

: "odd"; // "even"

&
represents memory address of the
operand

// address of num

.
accesses members of struct
variables or class objects

s1.marks = 92;

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 112

C++ Comments
In this tutorial, we will learn about C++ comments, why we use them, and how to use
them with the help of examples.

C++ comments are hints that a programmer can add to make their code easier to read
and understand. They are completely ignored by C++ compilers.

There are two ways to add comments to code:

// - Single Line Comments

/* */ -Multi-line Comments

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 113

Single Line Comments

In C++, any line that starts with // is a comment. For example,

// declaring a variable
int a;

// initializing the variable 'a' with the value 2
a = 2;

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 114

Here, we have used two single-line comments:

// declaring a variable

// initializing the variable 'a' with the value 2

We can also use single line comment like this:

int a; // declaring a variable

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 115

Multi-line comments

In C++, any line between /* and */ is also a comment. For example,

/* declaring a variableto store salary to employees*/
int salary = 2000;

This syntax can be used to write both single-line and multi-line comments.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 116

Using Comments for Debugging

Comments can also be used to disable code to prevent it from being executed. For
example,

#include <iostream>
using namespace std;
int main() {
 cout << "some code";
 cout << ''error code; cout << "some other code"; return 0;}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 117

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 118

https://www.programiz.com/cpp-programming/online-compiler

If we get an error while running the program, instead of removing the error-prone code,
we can use comments to disable it from being executed; this can be a valuable
debugging tool.

#include <iostream>
using namespace std;
int main() {
 cout << "some code";
 // cout << ''error code;
 cout << "some other code";

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 119

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 120

https://www.programiz.com/cpp-programming/online-compiler

Pro Tip: Remember the shortcut for using comments; it can be really helpful. For most
code editors, it's Ctrl + / for Windows and Cmd + / for Mac.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 121

Why use Comments?

If we write comments on our code, it will be easier for us to understand the code in the
future. Also, it will be easier for your fellow developers to understand the code.

Note: Comments shouldn't be the substitute for a way to explain poorly written code in
English. We should always write well-structured and self-explanatory code. And, then
use comments.

As a general rule of thumb, use comments to explain Why you did something rather
than How you did something, and you are good.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 122

C++ Flow Control

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 123

C++ if, if...else and Nested if...else
In this tutorial, we will learn about the if...else statement to create decision making
programs with the help of examples.

In computer programming, we use the if...else statement to run one block of code
under certain conditions and another block of code under different conditions.

For example, assigning grades (A, B, C) based on marks obtained by a student.

if the percentage is above 90, assign grade A

if the percentage is above 75, assign grade B

if the percentage is above 65, assign grade C

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 124

There are three forms of if...else statements in C++.

1. if statement

2. if...else statement

3. if...else if...else statement

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 125

C++ if Statement

The syntax of the if statement is:

if (condition) {
 // body of if statement
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 126

The if statement evaluates the condition inside the parentheses () .

If the condition evaluates to true , the code inside the body of if is executed.

If the condition evaluates to false , the code inside the body of if is skipped.

Note: The code inside { } is the body of the if statement.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 127

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 128

How if Statement Works

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 129

Example 1: C++ if Statement

// Program to print positive number entered by the user
// If the user enters a negative number, it is skipped

#include <iostream>
using namespace std;

int main() {

 int number;

 cout << "Enter an integer: ";
 cin >> number;

 // checks if the number is positive
 if (number > 0) {
 cout << "You entered a positive integer: " << number << endl;
 }

 cout << "This statement is always executed.";

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 130

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 131

https://www.programiz.com/cpp-programming/online-compiler

Output 1

Enter an integer: 5
You entered a positive number: 5
This statement is always executed.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 132

When the user enters 5 , the condition number > 0 is evaluated to true and the
statement inside the body of if is executed.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 133

Output 2

Enter a number: -5
This statement is always executed.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 134

When the user enters -5 , the condition number > 0 is evaluated to false and the
statement inside the body of if is not executed.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 135

C++ if...else

The if statement can have an optional else clause. Its syntax is:

if (condition) {
 // block of code if condition is true
}
else {
 // block of code if condition is false
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 136

The if..else statement evaluates the condition inside the parenthesis.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 137

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 138

How if...else Statement Works

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 139

If the condition evaluates true ,

the code inside the body of if is executed

the code inside the body of else is skipped from execution

If the condition evaluates false ,

the code inside the body of else is executed

the code inside the body of if is skipped from execution

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 140

Example 2: C++ if...else Statement

// Program to check whether an integer is positive or negative
// This program considers 0 as a positive number

#include <iostream>
using namespace std;

int main() {

 int number;

 cout << "Enter an integer: ";
 cin >> number;

 if (number >= 0) {
 cout << "You entered a positive integer: " << number << endl;
 }
 else {
 cout << "You entered a negative integer: " << number << endl;
 }

 cout << "This line is always printed.";

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 141

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 142

https://www.programiz.com/cpp-programming/online-compiler

Output 1

Enter an integer: 4
You entered a positive integer: 4.
This line is always printed.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 143

In the above program, we have the condition number >= 0 . If we enter the number
greater or equal to 0, then the condition evaluates true .

Here, we enter 4. So, the condition is true . Hence, the statement inside the body
of if is executed.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 144

Output 2

Enter an integer: -4
You entered a negative integer: -4.
This line is always printed.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 145

Here, we enter -4. So, the condition is false . Hence, the statement inside the body
of else is executed.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 146

C++ if...else...else if statement

The if...else statement is used to execute a block of code among two alternatives.
However, if we need to make a choice between more than two alternatives, we use
the if...else if...else statement.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 147

The syntax of the if...else if...else statement is:

if (condition1) {
 // code block 1
}
else if (condition2){
 // code block 2
}
else {
 // code block 3
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 148

Here,

If condition1 evaluates to true , the code block 1 is executed.

If condition1 evaluates to false , then condition2 is evaluated.

If condition2 is true , the code block 2 is executed.

If condition2 is false , the code block 3 is executed.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 149

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 150

How if...else if...else Statement Works

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 151

Note: There can be more than one else if statement but only
one if and else statements.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 152

Example 3: C++ if...else...else if
// Program to check whether an integer is positive, negative or zero

#include <iostream>
using namespace std;

int main() {

 int number;

 cout << "Enter an integer: ";
 cin >> number;

 if (number > 0) {
 cout << "You entered a positive integer: " << number << endl;
 }
 else if (number < 0) {
 cout << "You entered a negative integer: " << number << endl;
 }
 else {
 cout << "You entered 0." << endl;
 }

 cout << "This line is always printed.";

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 153

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 154

https://www.programiz.com/cpp-programming/online-compiler

Output 1

Enter an integer: 1
You entered a positive integer: 1.
This line is always printed.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 155

Output 2

Enter an integer: -2
You entered a negative integer: -2.
This line is always printed.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 156

Output 3

Enter an integer: 0
You entered 0.
This line is always printed.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 157

In this program, we take a number from the user. We then use the if...else
if...else ladder to check whether the number is positive, negative, or zero.

If the number is greater than 0 , the code inside the if block is executed. If the
number is less than 0 , the code inside the else if block is executed. Otherwise, the
code inside the else block is executed.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 158

C++ Nested if...else

Sometimes, we need to use an if statement inside another if statement. This is
known as nested if statement.

Think of it as multiple layers of if statements. There is a first, outer if statement, and
inside it is another, inner if statement. Its syntax is:

// outer if statement
if (condition1) {

 // statements

 // inner if statement
 if (condition2) {
 // statements
 }
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 159

Notes:

We can add else and else if statements to the inner if statement as required.

The inner if statement can also be inserted inside the outer else or else
if statements (if they exist).

We can nest multiple layers of if statements.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 160

Example 4: C++ Nested if
// C++ program to find if an integer is positive, negative or zero
// using nested if statements

#include <iostream>
using namespace std;

int main() {

 int num;

 cout << "Enter an integer: ";
 cin >> num;

 // outer if condition
 if (num != 0) {

 // inner if condition
 if (num > 0) {
 cout << "The number is positive." << endl;
 }
 // inner else condition
 else {
 cout << "The number is negative." << endl;
 }
 }
 // outer else condition
 else {
 cout << "The number is 0 and it is neither positive nor negative." << endl;
 }

 cout << "This line is always printed." << endl;

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 161

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 162

https://www.programiz.com/cpp-programming/online-compiler

Output 1

Enter an integer: 35
The number is positive.
This line is always printed.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 163

Output 2

Enter an integer: -35
The number is negative.
This line is always printed.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 164

Output 3

Enter an integer: 0
The number is 0 and it is neither positive nor negative.
This line is always printed.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 165

In the above example,

We take an integer as an input from the user and store it in the variable num.

We then use an if...else statement to check whether num is not equal to 0 .
If true , then the inner if...else statement is executed.

If false , the code inside the outer else condition is executed, which
prints "The number is 0 and it is neither positive nor negative."

The inner if...else statement checks whether the input number is positive i.e.
if num is greater than 0.

If true , then we print a statement saying that the number is positive.

If false , we print that the number is negative.

Note: As you can see, nested if...else makes your logic complicated. If possible, you
should always try to avoid nested if...else .

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 166

Body of if...else With Only One Statement

If the body of if...else has only one statement, you can omit { } in the program.
For example, you can replace

int number = 5;

if (number > 0) {
 cout << "The number is positive." << endl;
}
else {
 cout << "The number is negative." << endl;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 167

with

int number = 5;

if (number > 0)
 cout << "The number is positive." << endl;
else
 cout << "The number is negative." << endl;

The output of both programs will be the same.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 168

Note: Although it's not necessary to use { } if the body of if...else has only one
statement, using { } makes your code more readable.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 169

More on Decision Making

In certain situations, a ternary operator can replace an if...else statement. To learn
more, visit C++ Ternary Operator.

If we need to make a choice between more than one alternatives based on a given test
condition, the switch statement can be used. To learn more, visit C++ switch.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 170

https://www.programiz.com/cpp-programming//cpp-programming/ternary-operator/
https://www.programiz.com/cpp-programming/switch-case

Check out these examples to learn more:

C++ Program to Check Whether Number is Even or Odd

C++ Program to Check Whether a character is Vowel or Consonant.

C++ Program to Find Largest Number Among Three Numbers

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 171

https://www.programiz.com/cpp-programming/examples/even-odd
https://www.programiz.com/cpp-programming/examples/vowel-consonant
https://www.programiz.com/cpp-programming/examples/largest-number-among-three

C++ for Loop
In this tutorial, we will learn about the C++ for loop and its working with the help of
some examples.

In computer programming, loops are used to repeat a block of code.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 172

For example, let's say we want to show a message 100 times. Then instead of writing
the print statement 100 times, we can use a loop.

That was just a simple example; we can achieve much more efficiency and
sophistication in our programs by making effective use of loops.

There are 3 types of loops in C++.

for loop

while loop

do...while loop

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 173

This tutorial focuses on C++ for loop. We will learn about the other type of loops in
the upcoming tutorials.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 174

C++ for loop

The syntax of for-loop is:

for (initialization; condition; update) {
 // body of-loop
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 175

Here,

initialization - initializes variables and is executed only once

condition - if true , the body of for loop is executed
if false , the for loop is terminated

update - updates the value of initialized variables and again checks the condition

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 176

To learn more about conditions , check out our tutorial on C++ Relational and Logical
Operators.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 177

https://www.programiz.com/cpp-programming/relational-logical-operators

Flowchart of for Loop in C++

Flowchart of for loop in C++

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 178

Example 1: Printing Numbers From 1 to 5

#include <iostream>

using namespace std;

int main() {
 for (int i = 1; i <= 5; ++i) {
 cout << i << " ";
 }
 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 179

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 180

https://www.programiz.com/cpp-programming/online-compiler

Output

1 2 3 4 5

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 181

Here is how this program works

Iteration Variable i <= 5 Action

1st i = 1 true 1 is printed. i is increased to 2 .

2nd i = 2 true 2 is printed. i is increased to 3 .

3rd i = 3 true 3 is printed. i is increased to 4 .

4th i = 4 true 4 is printed. i is increased to 5 .

5th i = 5 true 5 is printed. i is increased to 6 .

6th i = 6 false The loop is terminated

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 182

Example 2: Display a text 5 times

// C++ Program to display a text 5 times

#include <iostream>

using namespace std;

int main() {
 for (int i = 1; i <= 5; ++i) {
 cout << "Hello World! " << endl;
 }
 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 183

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 184

https://www.programiz.com/cpp-programming/online-compiler

Output

Hello World!
Hello World!
Hello World!
Hello World!
Hello World!

Here is how this program works

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 185

Iteration Variable i <= 5 Action

1st i = 1 true Hello World! is printed and i is increased to 2 .

2nd i = 2 true Hello World! is printed and i is increased to 3 .

3rd i = 3 true Hello World! is printed and i is increased to 4 .

4th i = 4 true Hello World! is printed and i is increased to 5 .

5th i = 5 true Hello World! is printed and i is increased to 6 .

6th i = 6 false The loop is terminated

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 186

Example 3: Find the sum of first n Natural Numbers

// C++ program to find the sum of first n natural numbers
// positive integers such as 1,2,3,...n are known as natural numbers

#include <iostream>

using namespace std;

int main() {
 int num, sum;
 sum = 0;

 cout << "Enter a positive integer: ";
 cin >> num;

 for (int i = 1; i <= num; ++i) {
 sum += i;
 }

 cout << "Sum = " << sum << endl;

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 187

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 188

https://www.programiz.com/cpp-programming/online-compiler

Output

Enter a positive integer: 10
Sum = 55

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 189

In the above example, we have two variables num and sum. The sum variable is
assigned with 0 and the num variable is assigned with the value provided by the user.

Note that we have used a for loop.

for(int i = 1; i <= num; ++i)

Here,

int i = 1 : initializes the i variable

i <= num : runs the loop as long as i is less than or equal to num

++i : increases the i variable by 1 in each iteration

When i becomes 11 , the condition is false and sum will be equal to 0 + 1 + 2 +
... + 10 .

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 190

Ranged Based for Loop

In C++11, a new range-based for loop was introduced to work with collections such
as arrays and vectors. Its syntax is:

for (variable : collection) {
 // body of loop
}

Here, for every value in the collection, the for loop is executed and the value is assigned
to the variable.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 191

Example 4: Range Based for Loop

#include <iostream>

using namespace std;

int main() {

 int num_array[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

 for (int n : num_array) {
 cout << n << " ";
 }

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 192

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 193

https://www.programiz.com/cpp-programming/online-compiler

Output

1 2 3 4 5 6 7 8 9 10

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 194

In the above program, we have declared and initialized an int array named num_array.
It has 10 items.

Here, we have used a range-based for loop to access all the items in the array.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 195

C++ Infinite for loop

If the condition in a for loop is always true , it runs forever (until memory is full).
For example,

// infinite for loop
for(int i = 1; i > 0; i++) {
 // block of code
}

In the above program, the condition is always true which will then run the code for
infinite times.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 196

Check out these examples to learn more:

C++ Program to Calculate Sum of Natural Numbers

C++ Program to Find Factorial

C++ Program to Generate Multiplication Table

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 197

https://www.programiz.com/cpp-programming/examples/sum-natural-number
https://www.programiz.com/cpp-programming/examples/factorial
https://www.programiz.com/cpp-programming/examples/multiplication-table

In the next tutorial, we will learn about while and do...while loop.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 198

C++ while and do...while Loop
In this tutorial, we will learn the use of while and do...while loops in C++ programming
with the help of some examples.

In computer programming, loops are used to repeat a block of code.

For example, let's say we want to show a message 100 times. Then instead of writing
the print statement 100 times, we can use a loop.

That was just a simple example; we can achieve much more efficiency and
sophistication in our programs by making effective use of loops.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 199

There are 3 types of loops in C++.

1. for loop

2. while loop

3. do...while loop

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 200

In the previous tutorial, we learned about the C++ for loop. Here, we are going to learn
about while and do...while loops.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 201

https://www.programiz.com/cpp-programming/for-loop

C++ while Loop

The syntax of the while loop is:

while (condition) {
 // body of the loop
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 202

Here,

A while loop evaluates the condition

If the condition evaluates to true , the code inside the while loop is executed.

The condition is evaluated again.

This process continues until the condition is false .

When the condition evaluates to false , the loop terminates.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 203

To learn more about the conditions , visit C++ Relational and Logical Operators.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 204

https://www.programiz.com/cpp-programming/relational-logical-operators

Flowchart of while Loop

Flowchart of C++ while loop

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 205

Example 1: Display Numbers from 1 to 5

// C++ Program to print numbers from 1 to 5

#include <iostream>

using namespace std;

int main() {
 int i = 1;

 // while loop from 1 to 5
 while (i <= 5) {
 cout << i << " ";
 ++i;
 }

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 206

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 207

https://www.programiz.com/cpp-programming/online-compiler

Output

1 2 3 4 5

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 208

Here is how the program works.

Iteration Variable i <= 5 Action

1st i = 1 true 1 is printed and i is increased to 2 .

2nd i = 2 true 2 is printed and i is increased to 3 .

3rd i = 3 true 3 is printed and i is increased to 4

4th i = 4 true 4 is printed and i is increased to 5 .

5th i = 5 true 5 is printed and i is increased to 6 .

6th i = 6 false The loop is terminated

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 209

Example 2: Sum of Positive Numbers Only
// program to find the sum of positive numbers
// if the user enters a negative number, the loop ends
// the negative number entered is not added to the sum

#include <iostream>
using namespace std;

int main() {
 int number;
 int sum = 0;

 // take input from the user
 cout << "Enter a number: ";
 cin >> number;

 while (number >= 0) {
 // add all positive numbers
 sum += number;

 // take input again if the number is positive
 cout << "Enter a number: ";
 cin >> number;
 }

 // display the sum
 cout << "\nThe sum is " << sum << endl;

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 210

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 211

https://www.programiz.com/cpp-programming/online-compiler

Output

Enter a number: 6
Enter a number: 12
Enter a number: 7
Enter a number: 0
Enter a number: -2
The sum is 25

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 212

In this program, the user is prompted to enter a number, which is stored in the
variable number.

In order to store the sum of the numbers, we declare a variable sum and initialize it to
the value of 0 .

The while loop continues until the user enters a negative number. During each
iteration, the number entered by the user is added to the sum variable.

When the user enters a negative number, the loop terminates. Finally, the total sum is
displayed.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 213

C++ do...while Loop

The do...while loop is a variant of the while loop with one important difference: the
body of do...while loop is executed once before the condition is checked.

Its syntax is:

do {
 // body of loop;
}
while (condition);

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 214

Here,

The body of the loop is executed at first. Then the condition is evaluated.

If the condition evaluates to true , the body of the loop inside the do statement
is executed again.

The condition is evaluated once again.

If the condition evaluates to true , the body of the loop inside the do statement
is executed again.

This process continues until the condition evaluates to false . Then the loop
stops.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 215

Flowchart of do...while Loop

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 216

Flowchart of C++ do...while loop

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 217

Example 3: Display Numbers from 1 to 5

// C++ Program to print numbers from 1 to 5

#include <iostream>

using namespace std;

int main() {
 int i = 1;

 // do...while loop from 1 to 5
 do {
 cout << i << " ";
 ++i;
 }
 while (i <= 5);

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 218

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 219

https://www.programiz.com/cpp-programming/online-compiler

Output

1 2 3 4 5

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 220

Here is how the program works.

Iteration Variable i <= 5 Action

i = 1 not checked 1 is printed and i is increased to 2

1st i = 2 true 2 is printed and i is increased to 3

2nd i = 3 true 3 is printed and i is increased to 4

3rd i = 4 true 4 is printed and i is increased to 5

4th i = 5 true 5 is printed and i is increased to 6

5th i = 6 false The loop is terminated

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 221

Example 4: Sum of Positive Numbers Only

// program to find the sum of positive numbers
// If the user enters a negative number, the loop ends
// the negative number entered is not added to the sum

#include <iostream>
using namespace std;

int main() {
 int number = 0;
 int sum = 0;

 do {
 sum += number;

 // take input from the user
 cout << "Enter a number: ";
 cin >> number;
 }
 while (number >= 0);

 // display the sum
 cout << "\nThe sum is " << sum << endl;

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 222

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 223

https://www.programiz.com/cpp-programming/online-compiler

Output 1

Enter a number: 6
Enter a number: 12
Enter a number: 7
Enter a number: 0
Enter a number: -2
The sum is 25

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 224

Here, the do...while loop continues until the user enters a negative number. When
the number is negative, the loop terminates; the negative number is not added to
the sum variable.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 225

Output 2

Enter a number: -6
The sum is 0.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 226

The body of the do...while loop runs only once if the user enters a negative number.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 227

Infinite while loop

If the condition of a loop is always true , the loop runs for infinite times (until the
memory is full). For example,

// infinite while loop
while(true) {
 // body of the loop
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 228

Here is an example of an infinite do...while loop.

// infinite do...while loop

int count = 1;

do {
 // body of loop
}
while(count == 1);

In the above programs, the condition is always true . Hence, the loop body will run
for infinite times.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 229

for vs while loops

A for loop is usually used when the number of iterations is known. For example,

// This loop is iterated 5 times
for (int i = 1; i <=5; ++i) {
 // body of the loop
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 230

Here, we know that the for-loop will be executed 5 times.

However, while and do...while loops are usually used when the number of iterations
is unknown. For example,

while (condition) {
 // body of the loop
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 231

Check out these examples to learn more:

C++ Program to Display Fibonacci Series

C++ Program to Find GCD

C++ Program to Find LCM

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 232

https://www.programiz.com/cpp-programming/examples/fibonacci-series
https://www.programiz.com/cpp-programming/examples/hcf-gcd
https://www.programiz.com/cpp-programming/examples/lcm

C++ break Statement
In this tutorial, we will learn about the break statement and its working in loops with the
help of examples.

In C++, the break statement terminates the loop when it is encountered.

The syntax of the break statement is:

break;

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 233

Before you learn about the break statement, make sure you know about:

C++ for loop

C++ if...else

C++ while loop

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 234

https://www.programiz.com/cpp-programming/for-loop
https://www.programiz.com/cpp-programming/for-loop
https://www.programiz.com/cpp-programming/do-while-loop

Working of C++ break Statement

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 235

Working of break statement in C++

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 236

Example 1: break with for loop

// program to print the value of i

#include <iostream>
using namespace std;

int main() {
 for (int i = 1; i <= 5; i++) {
 // break condition
 if (i == 3) {
 break;
 }
 cout << i << endl;
 }

return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 237

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 238

https://www.programiz.com/cpp-programming/online-compiler

Output

1
2

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 239

In the above program, the for loop is used to print the value of i in each iteration.
Here, notice the code:

if (i == 3) {
 break;
}

This means, when i is equal to 3, the break statement terminates the loop. Hence, the
output doesn't include values greater than or equal to 3.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 240

Note: The break statement is usually used with decision-making statements.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 241

Example 2: break with while loop

// program to find the sum of positive numbers
// if the user enters a negative numbers, break ends the loop
// the negative number entered is not added to sum

#include <iostream>
using namespace std;

int main() {
 int number;
 int sum = 0;

 while (true) {
 // take input from the user
 cout << "Enter a number: ";
 cin >> number;

 // break condition
 if (number < 0) {
 break;
 }

 // add all positive numbers
 sum += number;
 }

 // display the sum
 cout << "The sum is " << sum << endl;

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 242

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 243

https://www.programiz.com/cpp-programming/online-compiler

Output

Enter a number: 1
Enter a number: 2
Enter a number: 3
Enter a number: -5
The sum is 6.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 244

In the above program, the user enters a number. The while loop is used to print the
total sum of numbers entered by the user. Here, notice the code,

if(number < 0) {
 break;
}

This means, when the user enters a negative number, the break statement terminates
the loop and codes outside the loop are executed.

The while loop continues until the user enters a negative number.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 245

break with Nested loop

When break is used with nested loops, break terminates the inner loop. For example,

// using break statement inside
// nested for loop

#include <iostream>
using namespace std;

int main() {
 int number;
 int sum = 0;

 // nested for loops

 // first loop
 for (int i = 1; i <= 3; i++) {
 // second loop
 for (int j = 1; j <= 3; j++) {
 if (i == 2) {
 break;
 }
 cout << "i = " << i << ", j = " << j << endl;
 }
 }

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 246

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 247

https://www.programiz.com/cpp-programming/online-compiler

Output

i = 1, j = 1
i = 1, j = 2
i = 1, j = 3
i = 3, j = 1
i = 3, j = 2
i = 3, j = 3

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 248

In the above program, the break statement is executed when i == 2 . It terminates
the inner loop, and the control flow of the program moves to the outer loop.

Hence, the value of i = 2 is never displayed in the output.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 249

The break statement is also used with the switch statement. To learn more, visit C++
switch statement.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 250

https://www.programiz.com/cpp-programming/switch-case

C++ continue Statement
In this tutorial, we will learn about the continue statement and its working with loops
with the help of examples.

In computer programming, the continue statement is used to skip the current iteration
of the loop and the control of the program goes to the next iteration.

The syntax of the continue statement is:

continue;

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 251

Before you learn about the continue statement, make sure you know about,

C++ for loop

C++ if...else

C++ while loop

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 252

https://www.programiz.com/cpp-programming/for-loop
https://www.programiz.com/cpp-programming/for-loop
https://www.programiz.com/cpp-programming/do-while-loop

Working of C++ continue Statement

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 253

Working of continue statement in C++

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 254

Example 1: continue with for loop

In a for loop, continue skips the current iteration and the control flow jumps to
the update expression.

// program to print the value of i

#include <iostream>
using namespace std;

int main() {
 for (int i = 1; i <= 5; i++) {
 // condition to continue
 if (i == 3) {
 continue;
 }

 cout << i << endl;
 }

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 255

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 256

https://www.programiz.com/cpp-programming/online-compiler

Output

1
2
4
5

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 257

In the above program, we have used the the for loop to print the value of i in each
iteration. Here, notice the code,

if (i == 3) {
 continue;
}

This means

When i is equal to 3 , the continue statement skips the current iteration and
starts the next iteration

Then, i becomes 4 , and the condition is evaluated again.

Hence, 4 and 5 are printed in the next two iterations.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 258

Note: The continue statement is almost always used with decision-making statements.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 259

Example 2: continue with while loop

In a while loop, continue skips the current iteration and control flow of the program
jumps back to the while condition .

// program to calculate positive numbers till 50 only
// if the user enters a negative number,
// that number is skipped from the calculation

// negative number -> loop terminate
// numbers above 50 -> skip iteration

#include <iostream>
using namespace std;

int main() {
 int sum = 0;
 int number = 0;

 while (number >= 0) {
 // add all positive numbers
 sum += number;

 // take input from the user
 cout << "Enter a number: ";
 cin >> number;

 // continue condition
 if (number > 50) {
 cout << "The number is greater than 50 and won't be calculated." << endl;
 number = 0; // the value of number is made 0 again
 continue;
 }
 }

 // display the sum
 cout << "The sum is " << sum << endl;

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 260

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 261

https://www.programiz.com/cpp-programming/online-compiler

Output

Enter a number: 12
Enter a number: 0
Enter a number: 2
Enter a number: 30
Enter a number: 50
Enter a number: 56
The number is greater than 50 and won't be calculated.
Enter a number: 5
Enter a number: -3
The sum is 99

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 262

In the above program, the user enters a number. The while loop is used to print the
total sum of positive numbers entered by the user, as long as the numbers entered are
not greater than 50 .

Notice the use of the continue statement.

 if (number > 50){
 continue;
}

When the user enters a number greater than 50 , the continue statement skips
the current iteration. Then the control flow of the program goes to
the condition of while loop.

When the user enters a number less than 0 , the loop terminates.

Note: The continue statement works in the same way for the do...while loops.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 263

continue with Nested loop

When continue is used with nested loops, it skips the current iteration of the inner
loop. For example,

// using continue statement inside
// nested for loop

#include <iostream>
using namespace std;

int main() {
 int number;
 int sum = 0;

 // nested for loops

 // first loop
 for (int i = 1; i <= 3; i++) {
 // second loop
 for (int j = 1; j <= 3; j++) {
 if (j == 2) {
 continue;
 }
 cout << "i = " << i << ", j = " << j << endl;
 }
 }

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 264

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 265

https://www.programiz.com/cpp-programming/online-compiler

Output

i = 1, j = 1
i = 1, j = 3
i = 2, j = 1
i = 2, j = 3
i = 3, j = 1
i = 3, j = 3

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 266

In the above program, when the continue statement executes, it skips the current
iteration in the inner loop. And the control of the program moves to the update
expression of the inner loop.

Hence, the value of j = 2 is never displayed in the output.

Note: The break statement terminates the loop entirely. However,
the continue statement only skips the current iteration.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 267

https://www.programiz.com/cpp-programming/break-statement

C++ switch..case Statement
In this tutorial, we will learn about switch statement and its working in C++
programming with the help of some examples.

The switch statement allows us to execute a block of code among many alternatives.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 268

The syntax of the switch statement in C++ is:

switch (expression) {
 case constant1:
 // code to be executed if
 // expression is equal to constant1;
 break;

 case constant2:
 // code to be executed if
 // expression is equal to constant2;
 break;
 .
 .
 .
 default:
 // code to be executed if
 // expression doesn't match any constant
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 269

How does the switch statement work?

The expression is evaluated once and compared with the values of each case label.

If there is a match, the corresponding code after the matching label is executed.
For example, if the value of the variable is equal to constant2 , the code after case
constant2: is executed until the break statement is encountered.

If there is no match, the code after default: is executed.

Note: We can do the same thing with the if...else..if ladder. However, the syntax of
the switch statement is cleaner and much easier to read and write.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 270

https://www.programiz.com/cpp-programming/break-statement

Flowchart of switch Statement

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 271

Flowchart of C++ switch...case statement

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 272

Example: Create a Calculator using the switch Statement
// Program to build a simple calculator using switch Statement
#include <iostream>
using namespace std;

int main() {
 char oper;
 float num1, num2;
 cout << "Enter an operator (+, -, *, /): ";
 cin >> oper;
 cout << "Enter two numbers: " << endl;
 cin >> num1 >> num2;

 switch (oper) {
 case '+':
 cout << num1 << " + " << num2 << " = " << num1 + num2;
 break;
 case '-':
 cout << num1 << " - " << num2 << " = " << num1 - num2;
 break;
 case '*':
 cout << num1 << " * " << num2 << " = " << num1 * num2;
 break;
 case '/':
 cout << num1 << " / " << num2 << " = " << num1 / num2;
 break;
 default:
 // operator is doesn't match any case constant (+, -, *, /)
 cout << "Error! The operator is not correct";
 break;
 }

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 273

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 274

https://www.programiz.com/cpp-programming/online-compiler

Output 1

Enter an operator (+, -, *, /): +
Enter two numbers:
2.3
4.5
2.3 + 4.5 = 6.8

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 275

Output 2

Enter an operator (+, -, *, /): -
Enter two numbers:
2.3
4.5
2.3 - 4.5 = -2.2

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 276

Output 3

Enter an operator (+, -, *, /): *
Enter two numbers:
2.3
4.5
2.3 * 4.5 = 10.35

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 277

Output 4

Enter an operator (+, -, *, /): /
Enter two numbers:
2.3
4.5
2.3 / 4.5 = 0.511111

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 278

Output 5

Enter an operator (+, -, *, /): ?
Enter two numbers:
2.3
4.5
Error! The operator is not correct.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 279

In the above program, we are using the switch...case statement to perform addition,
subtraction, multiplication, and division.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 280

How This Program Works

1. We first prompt the user to enter the desired operator. This input is then stored in
the char variable named oper.

2. We then prompt the user to enter two numbers, which are stored in the float
variables num1 and num2.

3. The switch statement is then used to check the operator entered by the user:
If the user enters + , addition is performed on the numbers.

If the user enters - , subtraction is performed on the numbers.

If the user enters * , multiplication is performed on the numbers.

If the user enters / , division is performed on the numbers.

If the user enters any other character, the default code is printed.

Notice that the break statement is used inside each case block. This terminates
the switch statement.

If the break statement is not used, all cases after the correct case are executed.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 281

C++ goto Statement
In this article, you'll learn about goto statment, how it works and why should it be
avoided.

In C++ programming, the goto statement is used for altering the normal sequence of
program execution by transferring control to some other part of the program.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 282

Syntax of goto Statement

goto label;
...
...
...
label:
statement;
...

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 283

In the syntax above, label is an identifier. When goto label; is encountered, the
control of program jumps to label: and executes the code below it.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 284

Working of goto in C++

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 285

Example: goto Statement
// This program calculates the average of numbers entered by the user.
// If the user enters a negative number, it ignores the number and
// calculates the average number entered before it.

include <iostream>
using namespace std;

int main()
{
 float num, average, sum = 0.0;
 int i, n;

 cout << "Maximum number of inputs: ";
 cin >> n;

 for(i = 1; i <= n; ++i)
 {
 cout << "Enter n" << i << ": ";
 cin >> num;

 if(num < 0.0)
 {
 // Control of the program move to jump:
 goto jump;
 }
 sum += num;
 }

jump:
 average = sum / (i - 1);
 cout << "\nAverage = " << average;
 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 286

Output

Maximum number of inputs: 10
Enter n1: 2.3
Enter n2: 5.6
Enter n3: -5.6
Average = 3.95

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 287

You can write any C++ program without the use of goto statement and is generally
considered a good idea not to use them.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 288

Reason to Avoid goto Statement

The goto statement gives the power to jump to any part of a program but, makes the
logic of the program complex and tangled.

In modern programming, the goto statement is considered a harmful construct and a
bad programming practice.

The goto statement can be replaced in most of C++ program with the use
of break and continue statements.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 289

https://www.programiz.com/cpp-programming/break-statement
https://www.programiz.com/cpp-programming/continue-statement

C++ Functions

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 290

C++ Functions
In this tutorial, we will learn about the C++ function and function expressions with the
help of examples.

A function is a block of code that performs a specific task.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 291

Suppose we need to create a program to create a circle and color it. We can create two
functions to solve this problem:

a function to draw the circle

a function to color the circle

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 292

Dividing a complex problem into smaller chunks makes our program easy to
understand and reusable.

There are two types of function:

1. Standard Library Functions: Predefined in C++

2. User-defined Function: Created by users

In this tutorial, we will focus mostly on user-defined functions.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 293

C++ User-defined Function

C++ allows the programmer to define their own function.

A user-defined function groups code to perform a specific task and that group of code
is given a name (identifier).

When the function is invoked from any part of the program, it all executes the codes
defined in the body of the function.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 294

C++ Function Declaration

The syntax to declare a function is:

returnType functionName (parameter1, parameter2,...) {
 // function body
}

Here's an example of a function declaration.

// function declaration
void greet() {
 cout << "Hello World";
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 295

Here,

the name of the function is greet()

the return type of the function is void

the empty parentheses mean it doesn't have any parameters
the function body is written inside {}

Note: We will learn about returnType and parameters later in this tutorial.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 296

Calling a Function

In the above program, we have declared a function named greet() . To use
the greet() function, we need to call it.

Here's how we can call the above greet() function.

int main() {

 // calling a function
 greet();

}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 297

How Function works in C++

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 298

Example 1: Display a Text

#include <iostream>
using namespace std;

// declaring a function
void greet() {
 cout << "Hello there!";
}

int main() {

 // calling the function
 greet();

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 299

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 300

https://www.programiz.com/cpp-programming/online-compiler

Output

Hello there!

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 301

Function Parameters

As mentioned above, a function can be declared with parameters (arguments). A
parameter is a value that is passed when declaring a function.

For example, let us consider the function below:

void printNum(int num) {
 cout << num;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 302

Here, the int variable num is the function parameter.

We pass a value to the function parameter while calling the function.

int main() {
 int n = 7;

 // calling the function
 // n is passed to the function as argument
 printNum(n);

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 303

Example 2: Function with Parameters

// program to print a text

#include <iostream>
using namespace std;

// display a number
void displayNum(int n1, float n2) {
 cout << "The int number is " << n1;
 cout << "The double number is " << n2;
}

int main() {

 int num1 = 5;
 double num2 = 5.5;

 // calling the function
 displayNum(num1, num2);

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 304

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 305

https://www.programiz.com/cpp-programming/online-compiler

Output

The int number is 5
The double number is 5.5

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 306

In the above program, we have used a function that has one int parameter and
one double parameter.

We then pass num1 and num2 as arguments. These values are stored by the function
parameters n1 and n2 respectively.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 307

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 308

C++ function with parameters

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 309

Note: The type of the arguments passed while calling the function must match with the
corresponding parameters defined in the function declaration.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 310

Return Statement

In the above programs, we have used void in the function declaration. For example,

void displayNumber() {
 // code
}

This means the function is not returning any value.

It's also possible to return a value from a function. For this, we need to specify
the returnType of the function during function declaration.

Then, the return statement can be used to return a value from a function.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 311

For example,

int add (int a, int b) {
 return (a + b);
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 312

Here, we have the data type int instead of void . This means that the function returns
an int value.

The code return (a + b); returns the sum of the two parameters as the function
value.

The return statement denotes that the function has ended. Any code
after return inside the function is not executed.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 313

Example 3: Add Two Numbers

// program to add two numbers using a function

#include <iostream>

using namespace std;

// declaring a function
int add(int a, int b) {
 return (a + b);
}

int main() {

 int sum;

 // calling the function and storing
 // the returned value in sum
 sum = add(100, 78);

 cout << "100 + 78 = " << sum << endl;

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 314

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 315

https://www.programiz.com/cpp-programming/online-compiler

Output

100 + 78 = 178

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 316

In the above program, the add() function is used to find the sum of two numbers.

We pass two int literals 100 and 78 while calling the function.

We store the returned value of the function in the variable sum, and then we print it.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 317

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 318

Working of C++ Function with return statement

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 319

Notice that sum is a variable of int type. This is because the return value of add() is
of int type.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 320

Function Prototype

In C++, the code of function declaration should be before the function call. However, if
we want to define a function after the function call, we need to use the function
prototype. For example,

// function prototype
void add(int, int);

int main() {
 // calling the function before declaration.
 add(5, 3);
 return 0;
}

// function definition
void add(int a, int b) {
 cout << (a + b);
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 321

In the above code, the function prototype is:

void add(int, int);

This provides the compiler with information about the function name and its
parameters. That's why we can use the code to call a function before the function has
been defined.

The syntax of a function prototype is:

returnType functionName(dataType1, dataType2, ...);

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 322

Example 4: C++ Function Prototype
// using function definition after main() function
// function prototype is declared before main()

#include <iostream>

using namespace std;

// function prototype
int add(int, int);

int main() {
 int sum;

 // calling the function and storing
 // the returned value in sum
 sum = add(100, 78);

 cout << "100 + 78 = " << sum << endl;

 return 0;
}

// function definition
int add(int a, int b) {
 return (a + b);
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 323

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 324

https://www.programiz.com/cpp-programming/online-compiler

Output

100 + 78 = 178

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 325

The above program is nearly identical to Example 3. The only difference is that here, the
function is defined after the function call.

That's why we have used a function prototype in this example.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 326

Benefits of Using User-Defined Functions

Functions make the code reusable. We can declare them once and use them
multiple times.

Functions make the program easier as each small task is divided into a function.

Functions increase readability.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 327

C++ Library Functions

Library functions are the built-in functions in C++ programming.

Programmers can use library functions by invoking the functions directly; they don't
need to write the functions themselves.

Some common library functions in C++ are sqrt() , abs() , isdigit() , etc.

In order to use library functions, we usually need to include the header file in which
these library functions are defined.

For instance, in order to use mathematical functions such as sqrt() and abs() , we
need to include the header file cmath .

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 328

Example 5: C++ Program to Find the Square Root of a Number

#include <iostream>
#include <cmath>
using namespace std;

int main() {
 double number, squareRoot;

 number = 25.0;

 // sqrt() is a library function to calculate the square root
 squareRoot = sqrt(number);

 cout << "Square root of " << number << " = " << squareRoot;

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 329

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 330

https://www.programiz.com/cpp-programming/online-compiler

Output

Square root of 25 = 5

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 331

In this program, the sqrt() library function is used to calculate the square root of a
number.

The function declaration of sqrt() is defined in the cmath header file. That's why we
need to use the code #include <cmath> to use the sqrt() function.

To learn more, visit C++ Standard Library functions.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 332

https://www.programiz.com/cpp-programming/library-function

C++ User-defined Function Types
In this tutorial, you will learn about different approaches you can take to solve a single
problem using functions.

For better understanding of arguments and return in functions, user-defined functions
can be categorised as:

Function with no argument and no return value
Function with no argument but return value

Function with argument but no return value

Function with argument and return value

Consider a situation in which you have to check prime number. This problem is solved
below by making user-defined function in 4 different ways as mentioned above.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 333

https://www.programiz.com/cpp-programming/user-defined-function-types#no_argument_no_return
https://www.programiz.com/cpp-programming/user-defined-function-types#no_argument_yes_return
https://www.programiz.com/cpp-programming/user-defined-function-types#yes_argument_no_return
https://www.programiz.com/cpp-programming/user-defined-function-types#yes_argument_yes_return

Example 1: No arguments passed and no return value
include <iostream>
using namespace std;

void prime();

int main()
{
 // No argument is passed to prime()
 prime();
 return 0;
}

// Return type of function is void because value is not returned.
void prime()
{

 int num, i, flag = 0;

 cout << "Enter a positive integer enter to check: ";
 cin >> num;

 for(i = 2; i <= num/2; ++i)
 {
 if(num % i == 0)
 {
 flag = 1;
 break;
 }
 }

 if (flag == 1)
 {
 cout << num << " is not a prime number.";
 }
 else
 {
 cout << num << " is a prime number.";
 }
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 334

In the above program, prime() is called from the main() with no arguments.

prime() takes the positive number from the user and checks whether the number is a
prime number or not.

Since, return type of prime() is void , no value is returned from the function.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 335

Example 2: No arguments passed but a return value
#include <iostream>
using namespace std;

int prime();

int main()
{
 int num, i, flag = 0;

 // No argument is passed to prime()
 num = prime();
 for (i = 2; i <= num/2; ++i)
 {
 if (num%i == 0)
 {
 flag = 1;
 break;
 }
 }

 if (flag == 1)
 {
 cout<<num<<" is not a prime number.";
 }
 else
 {
 cout<<num<<" is a prime number.";
 }
 return 0;
}

// Return type of function is int
int prime()
{
 int n;

 printf("Enter a positive integer to check: ");
 cin >> n;

 return n;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 336

In the above program, prime() function is called from the main() with no arguments.

prime() takes a positive integer from the user. Since, return type of the function is
an int , it returns the inputted number from the user back to the
calling main() function.

Then, whether the number is prime or not is checked in the main() itself and printed
onto the screen.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 337

Example 3: Arguments passed but no return value
#include <iostream>
using namespace std;

void prime(int n);

int main()
{
 int num;
 cout << "Enter a positive integer to check: ";
 cin >> num;

 // Argument num is passed to the function prime()
 prime(num);
 return 0;
}

// There is no return value to calling function. Hence, return type of function is void. */
void prime(int n)
{
 int i, flag = 0;
 for (i = 2; i <= n/2; ++i)
 {
 if (n%i == 0)
 {
 flag = 1;
 break;
 }
 }

 if (flag == 1)
 {
 cout << n << " is not a prime number.";
 }
 else {
 cout << n << " is a prime number.";
 }
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 338

In the above program, positive number is first asked from the user which is stored in the
variable num.

Then, num is passed to the prime() function where, whether the number is prime or
not is checked and printed.

Since, the return type of prime() is a void , no value is returned from the function.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 339

Example 4: Arguments passed and a return value.
#include <iostream>
using namespace std;

int prime(int n);

int main()
{
 int num, flag = 0;
 cout << "Enter positive integer to check: ";
 cin >> num;

 // Argument num is passed to check() function
 flag = prime(num);

 if(flag == 1)
 cout << num << " is not a prime number.";
 else
 cout<< num << " is a prime number.";
 return 0;
}

/* This function returns integer value. */
int prime(int n)
{
 int i;
 for(i = 2; i <= n/2; ++i)
 {
 if(n % i == 0)
 return 1;
 }

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 340

In the above program, a positive integer is asked from the user and stored in the
variable num .

Then, num is passed to the function prime() where, whether the number is prime or
not is checked.

Since, the return type of prime() is an int , 1 or 0 is returned to the main() calling
function. If the number is a prime number, 1 is returned. If not, 0 is returned.

Back in the main() function, the returned 1 or 0 is stored in the variable flag, and the
corresponding text is printed onto the screen.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 341

Which method is better?

All four programs above gives the same output and all are technically correct program.

There is no hard and fast rule on which method should be chosen.

The particular method is chosen depending upon the situation and how you want to
solve a problem.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 342

C++ Function Overloading
In this tutorial, we will learn about the function overloading in C++ with examples.

In C++, two functions can have the same name if the number and/or type of arguments
passed is different.

These functions having the same name but different arguments are known as
overloaded functions. For example:

// same name different arguments
int test() { }
int test(int a) { }
float test(double a) { }
int test(int a, double b) { }

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 343

Here, all 4 functions are overloaded functions.

Notice that the return types of all these 4 functions are not the same. Overloaded
functions may or may not have different return types but they must have different
arguments. For example,

// Error code
int test(int a) { }
double test(int b){ }

Here, both functions have the same name, the same type, and the same number of
arguments. Hence, the compiler will throw an error.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 344

Example 1: Overloading Using Different Types of Parameter

// Program to compute absolute value
// Works for both int and float

#include <iostream>
using namespace std;

// function with float type parameter
float absolute(float var){
 if (var < 0.0)
 var = -var;
 return var;
}

// function with int type parameter
int absolute(int var) {
 if (var < 0)
 var = -var;
 return var;
}

int main() {

 // call function with int type parameter
 cout << "Absolute value of -5 = " << absolute(-5) << endl;

 // call function with float type parameter
 cout << "Absolute value of 5.5 = " << absolute(5.5f) << endl;
 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 345

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 346

https://www.programiz.com/cpp-programming/online-compiler

Output

Absolute value of -5 = 5
Absolute value of 5.5 = 5.5

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 347

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 348

Working of overloading for the absolute() function

In this program, we overload the absolute() function. Based on the type of parameter
passed during the function call, the corresponding function is called.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 349

Example 2: Overloading Using Different Number of Parameters
#include <iostream>
using namespace std;

// function with 2 parameters
void display(int var1, double var2) {
 cout << "Integer number: " << var1;
 cout << " and double number: " << var2 << endl;
}

// function with double type single parameter
void display(double var) {
 cout << "Double number: " << var << endl;
}

// function with int type single parameter
void display(int var) {
 cout << "Integer number: " << var << endl;
}

int main() {

 int a = 5;
 double b = 5.5;

 // call function with int type parameter
 display(a);

 // call function with double type parameter
 display(b);

 // call function with 2 parameters
 display(a, b);

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 350

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 351

https://www.programiz.com/cpp-programming/online-compiler

Output

Integer number: 5
Float number: 5.5
Integer number: 5 and double number: 5.5

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 352

Here, the display() function is called three times with different arguments. Depending
on the number and type of arguments passed, the corresponding display() function
is called.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 353

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 354

Working of overloading for the display() function

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 355

The return type of all these functions is the same but that need not be the case for
function overloading.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 356

Note: In C++, many standard library functions are overloaded. For example,
the sqrt() function can take double , float , int, etc. as parameters. This is possible
because the sqrt() function is overloaded in C++.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 357

C++ Programming Default Arguments (Parameters)
In this tutorial, we will learn C++ default arguments and their working with the help of
examples.

In C++ programming, we can provide default values for function parameters.

If a function with default arguments is called without passing arguments, then the
default parameters are used.

However, if arguments are passed while calling the function, the default arguments are
ignored.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 358

https://www.programiz.com/cpp-programming/function

Working of default arguments

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 359

How default arguments work in C++

We can understand the working of default arguments from the image above:

1. When temp() is called, both the default parameters are used by the function.

2. When temp(6) is called, the first argument becomes 6 while the default value is
used for the second parameter.

3. When temp(6, -2.3) is called, both the default parameters are overridden,
resulting in i = 6 and f = -2.3 .

4. When temp(3.4) is passed, the function behaves in an undesired way because the
second argument cannot be passed without passing the first argument.

Therefore, 3.4 is passed as the first argument. Since the first argument has been
defined as int , the value that is actually passed is 3 .

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 360

Example: Default Argument

#include <iostream>
using namespace std;

// defining the default arguments
void display(char = '*', int = 3);

int main() {
 int count = 5;

 cout << "No argument passed: ";
 // *, 3 will be parameters
 display();

 cout << "First argument passed: ";
 // #, 3 will be parameters
 display('#');

 cout << "Both arguments passed: ";
 // $, 5 will be parameters
 display('$', count);

 return 0;
}

void display(char c, int count) {
 for(int i = 1; i <= count; ++i)
 {
 cout << c;
 }
 cout << endl;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 361

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 362

https://www.programiz.com/cpp-programming/online-compiler

Output

No argument passed: ***
First argument passed: ###
Both arguments passed: $$$$$

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 363

Here is how this program works:

1. display() is called without passing any arguments. In this case, display() uses
both the default parameters c = '*' and n = 1 .

2. display('#') is called with only one argument. In this case, the first
becomes '#' . The second default parameter n = 1 is retained.

3. display('#', count) is called with both arguments. In this case, default
arguments are not used.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 364

We can also define the default parameters in the function definition itself. The program
below is equivalent to the one above.

#include <iostream>
using namespace std;

// defining the default arguments
void display(char c = '*', int count = 3) {
 for(int i = 1; i <= count; ++i) {
 cout << c;
 }
 cout << endl;
}

int main() {
 int count = 5;

 cout << "No argument passed: ";
 // *, 3 will be parameters
 display();

 cout << "First argument passed: ";
 // #, 3 will be parameters
 display('#');

 cout << "Both argument passed: ";
 // $, 5 will be parameters
 display('$', count);

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 365

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 366

https://www.programiz.com/cpp-programming/online-compiler

Things to Remember

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 367

1. Once we provide a default value for a parameter, all subsequent parameters must
also have default values. For example,

// Invalid
void add(int a, int b = 3, int c, int d);

// Invalid
void add(int a, int b = 3, int c, int d = 4);

// Valid
void add(int a, int c, int b = 3, int d = 4);

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 368

2. If we are defining the default arguments in the function definition instead of the
function prototype, then the function must be defined before the function call.

// Invalid code

int main() {
 // function call
 display();
}

void display(char c = '*', int count = 5) {
 // code
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 369

C++ Storage Class
In this article, you'll learn about different storage classes in C++. Namely: local, global,
static local, register and thread local.

Every variable in C++ has two features: type and storage class.

Type specifies the type of data that can be stored in a variable. For
example: int , float , char etc.

And, storage class controls two different properties of a variable: lifetime (determines
how long a variable can exist) and scope (determines which part of the program can
access it).

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 370

Depending upon the storage class of a variable, it can be divided into 4 major types:

Local variable
Global variable

Static local variable

Register Variable

Thread Local Storage

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 371

https://www.programiz.com/cpp-programming/storage-class#local_variable
https://www.programiz.com/cpp-programming/storage-class#global_variable
https://www.programiz.com/cpp-programming/storage-class#static_variable
https://www.programiz.com/cpp-programming/storage-class#register%20variable
https://www.programiz.com/cpp-programming/storage-class#thread_local_storage

Local Variable

A variable defined inside a function (defined inside function body between braces) is
called a local variable or automatic variable.

Its scope is only limited to the function where it is defined. In simple terms, local
variable exists and can be accessed only inside a function.

The life of a local variable ends (It is destroyed) when the function exits.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 372

https://www.programiz.com/cpp-programming/function

Example 1: Local variable

#include <iostream>
using namespace std;

void test();

int main()
{
 // local variable to main()
 int var = 5;

 test();

 // illegal: var1 not declared inside main()
 var1 = 9;
}

void test()
{
 // local variable to test()
 int var1;
 var1 = 6;

 // illegal: var not declared inside test()
 cout << var;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 373

The variable var cannot be used inside test() and var1 cannot be used
inside main() function.

Keyword auto was also used for defining local variables before as: auto int var;

But, after C++11 auto has a different meaning and should not be used for defining
local variables.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 374

http://en.cppreference.com/w/cpp/language/auto

Global Variable

If a variable is defined outside all functions, then it is called a global variable.

The scope of a global variable is the whole program. This means, It can be used and
changed at any part of the program after its declaration.

Likewise, its life ends only when the program ends.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 375

Example 2: Global variable
#include <iostream>
using namespace std;

// Global variable declaration
int c = 12;

void test();

int main()
{
 ++c;

 // Outputs 13
 cout << c <<endl;
 test();

 return 0;
}

void test()
{
 ++c;

 // Outputs 14
 cout << c;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 376

Output

13
14

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 377

In the above program, c is a global variable.

This variable is visible to both functions main() and test() in the above program.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 378

Static Local variable

Keyword static is used for specifying a static variable. For example:

...
int main()
{
 static float a;

}

A static local variable exists only inside a function where it is declared (similar to a local
variable) but its lifetime starts when the function is called and ends only when the
program ends.

The main difference between local variable and static variable is that, the value of static
variable persists the end of the program.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 379

Example 3: Static local variable

#include <iostream>
using namespace std;

void test()
{
 // var is a static variable
 static int var = 0;
 ++var;

 cout << var << endl;
}

int main()
{

 test();
 test();

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 380

Output

1
2

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 381

In the above program, test() function is invoked 2 times.

During the first call, variable var is declared as static variable and initialized to 0. Then 1
is added to var which is displayed in the screen.

When the function test() returns, variable var still exists because it is a static variable.

During second function call, no new variable var is created. The same var is increased by
1 and then displayed to the screen.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 382

Output of above program if var was not specified as static variable

1
1

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 383

Register Variable (Deprecated in C++11)

Keyword register is used for specifying register variables.

Register variables are similar to automatic variables and exists inside a particular
function only. It is supposed to be faster than the local variables.

If a program encounters a register variable, it stores the variable in processor's register
rather than memory if available. This makes it faster than the local variables.

However, this keyword was deprecated in C++11 and should not be used.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 384

Thread Local Storage

Thread-local storage is a mechanism by which variables are allocated such that there is
one instance of the variable per extant thread.

Keyword thread_local is used for this purpose.

Learn more about thread local storage.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 385

http://www.codeproject.com/Articles/8113/Thread-Local-Storage-The-C-Way

C++ Recursion
In this tutorial, we will learn about recursive function in C++ and its working with the
help of examples.

A function that calls itself is known as a recursive function. And, this technique is known
as recursion.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 386

https://www.programiz.com/cpp-programming/function

Working of Recursion in C++

void recurse()
{

 recurse();

}

int main()
{

 recurse();

}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 387

The figure below shows how recursion works by calling itself over and over again.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 388

How recursion works in C++ programming

The recursion continues until some condition is met.

To prevent infinite recursion, if...else statement (or similar approach) can be used where
one branch makes the recursive call and the other doesn't.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 389

https://www.programiz.com/cpp-programming/if-else

Example 1: Factorial of a Number Using Recursion

// Factorial of n = 1*2*3*...*n

#include <iostream>
using namespace std;

int factorial(int);

int main() {
 int n, result;

 cout << "Enter a non-negative number: ";
 cin >> n;

 result = factorial(n);
 cout << "Factorial of " << n << " = " << result;
 return 0;
}

int factorial(int n) {
 if (n > 1) {
 return n * factorial(n - 1);
 } else {
 return 1;
 }
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 390

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 391

https://www.programiz.com/cpp-programming/online-compiler

Output

Enter a non-negative number: 4
Factorial of 4 = 24

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 392

Working of Factorial Program

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 393

How this C++ recursion program works

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 394

As we can see, the factorial() function is calling itself. However, during each call, we
have decreased the value of n by 1 . When n is less than 1 , the factorial() function
ultimately returns the output.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 395

Advantages and Disadvantages of Recursion

Below are the pros and cons of using recursion in C++.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 396

Advantages of C++ Recursion

It makes our code shorter and cleaner.

Recursion is required in problems concerning data structures and advanced
algorithms, such as Graph and Tree Traversal.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 397

Disadvantages of C++ Recursion

It takes a lot of stack space compared to an iterative program.

It uses more processor time.

It can be more difficult to debug compared to an equivalent iterative program.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 398

C++ Return by Reference
In this article, you'll learn how to return a value by reference in a function and use it
efficiently in your program.

In C++ Programming, not only can you pass values by reference to a function but you
can also return a value by reference.

To understand this feature, you should have the knowledge of:

Global variables

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 399

https://www.programiz.com/cpp-programming/function
https://www.programiz.com/cpp-programming/storage-class#global_variable

Example: Return by Reference

#include <iostream>
using namespace std;

// global variable
int num;

// function declaration
int& test();

int main() {

 // assign 5 to num variable
 // equivalent to num = 5;
 test() = 5;

 cout << num;

 return 0;
}

// function definition
// returns the address of num variable
int& test() {
 return num;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 400

Output

5

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 401

In program above, the return type of function test() is int& . Hence, this function
returns a reference of the variable num.

The return statement is return num; . Unlike return by value, this statement doesn't
return value of num, instead it returns the variable itself (address).

So, when the variable is returned, it can be assigned a value as done in test() = 5;

This stores 5 to the variable num, which is displayed onto the screen.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 402

Important Things to Remember When Returning by Reference.

Ordinary function returns value but this function doesn't. Hence, you cannot return
a constant from the function.

int& test() {

 return 2;

}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 403

You cannot return a local variable from this function.

int& test() {

 int n = 2;
 return n;

}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 404

C++ Arrays & String

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 405

C++ Arrays
In this tutorial, we will learn to work with arrays. We will learn to declare, initialize, and
access array elements in C++ programming with the help of examples.

In C++, an array is a variable that can store multiple values of the same type. For
example,

Suppose a class has 27 students, and we need to store the grades of all of them. Instead
of creating 27 separate variables, we can simply create an array:

double grade[27];

Here, grade is an array that can hold a maximum of 27 elements of double type.

In C++, the size and type of arrays cannot be changed after its declaration.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 406

C++ Array Declaration

dataType arrayName[arraySize];

For example,

int x[6];

Here,

int - type of element to be stored

x - name of the array

6 - size of the array

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 407

Access Elements in C++ Array

In C++, each element in an array is associated with a number. The number is known as
an array index. We can access elements of an array by using those indices.

// syntax to access array elements
array[index];

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 408

Consider the array x we have seen above.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 409

Elements of an array in C++

Few Things to Remember:

The array indices start with 0 . Meaning x[0] is the first element stored at index 0 .

If the size of an array is n , the last element is stored at index (n-1) . In this
example, x[5] is the last element.

Elements of an array have consecutive addresses. For example, suppose the
starting address of x[0] is 2120.

Then, the address of the next element x[1] will be 2124, the address of x[2] will
be 2128, and so on.

Here, the size of each element is increased by 4. This is because the size of int is
4 bytes.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 410

C++ Array Initialization

In C++, it's possible to initialize an array during declaration. For example,

// declare and initialize and array
int x[6] = {19, 10, 8, 17, 9, 15};

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 411

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 412

C++ Array elements and their data

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 413

Another method to initialize array during declaration:

// declare and initialize an array
int x[] = {19, 10, 8, 17, 9, 15};

Here, we have not mentioned the size of the array. In such cases, the compiler
automatically computes the size.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 414

C++ Array With Empty Members

In C++, if an array has a size n , we can store upto n number of elements in the array.
However, what will happen if we store less than n number of elements.

For example,

// store only 3 elements in the array
int x[6] = {19, 10, 8};

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 415

Here, the array x has a size of 6 . However, we have initialized it with only 3 elements.

In such cases, the compiler assigns random values to the remaining places. Oftentimes,
this random value is simply 0 .

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 416

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 417

Empty array members are automatically assigned the value 0

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 418

How to insert and print array elements?

int mark[5] = {19, 10, 8, 17, 9}

// change 4th element to 9
mark[3] = 9;

// take input from the user
// store the value at third position
cin >> mark[2];

// take input from the user
// insert at ith position
cin >> mark[i-1];

// print first element of the array
cout << mark[0];

// print ith element of the array
cout >> mark[i-1];

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 419

Example 1: Displaying Array Elements

#include <iostream>
using namespace std;

int main() {

 int numbers[5] = {7, 5, 6, 12, 35};

 cout << "The numbers are: ";

 // Printing array elements
 // using range based for loop
 for (const int &n : numbers) {
 cout << n << " ";
 }

 cout << "\nThe numbers are: ";

 // Printing array elements
 // using traditional for loop
 for (int i = 0; i < 5; ++i) {
 cout << numbers[i] << " ";
 }

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 420

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 421

https://www.programiz.com/cpp-programming/online-compiler

Output

The numbers are: 7 5 6 12 35
The numbers are: 7 5 6 12 35

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 422

Here, we have used a for loop to iterate from i = 0 to i = 4 . In each iteration, we
have printed numbers[i] .

We again used a range-based for loop to print out the elements of the array. To learn
more about this loop, check C++ Ranged for Loop.

Note: In our range-based loop, we have used the code const int &n instead of int
n as the range declaration. However, the const int &n is more preferred because:

1. Using int n simply copies the array elements to the variable n during each
iteration. This is not memory-efficient.

&n, however, uses the memory address of the array elements to access their data
without copying them to a new variable. This is memory-efficient.

2. We are simply printing the array elements, not modifying them. Therefore, we
use const so as not to accidentally change the values of the array.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 423

https://www.programiz.com/cpp-programming/ranged-for-loop

Example 2: Take Inputs from User and Store Them in an Array

#include <iostream>
using namespace std;

int main() {

 int numbers[5];

 cout << "Enter 5 numbers: " << endl;

 // store input from user to array
 for (int i = 0; i < 5; ++i) {
 cin >> numbers[i];
 }

 cout << "The numbers are: ";

 // print array elements
 for (int n = 0; n < 5; ++n) {
 cout << numbers[n] << " ";
 }

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 424

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 425

https://www.programiz.com/cpp-programming/online-compiler

Output

Enter 5 numbers:
11
12
13
14
15
The numbers are: 11 12 13 14 15

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 426

Once again, we have used a for loop to iterate from i = 0 to i = 4 . In each
iteration, we took an input from the user and stored it in numbers[i] .

Then, we used another for loop to print all the array elements.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 427

Example 3: Display Sum and Average of Array Elements Using for
Loop

#include <iostream>
using namespace std;

int main() {

 // initialize an array without specifying size
 double numbers[] = {7, 5, 6, 12, 35, 27};

 double sum = 0;
 double count = 0;
 double average;

 cout << "The numbers are: ";

 // print array elements
 // use of range-based for loop
 for (const double &n : numbers) {
 cout << n << " ";

 // calculate the sum
 sum += n;

 // count the no. of array elements
 ++count;
 }

 // print the sum
 cout << "\nTheir Sum = " << sum << endl;

 // find the average
 average = sum / count;
 cout << "Their Average = " << average << endl;

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 428

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 429

https://www.programiz.com/cpp-programming/online-compiler

Output

The numbers are: 7 5 6 12 35 27
Their Sum = 92
Their Average = 15.3333

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 430

In this program:

1. We have initialized a double array named numbers but without specifying its size.
We also declared three double variables sum, count, and average.

Here, sum =0 and count = 0 .

2. Then we used a range-based for loop to print the array elements. In each
iteration of the loop, we add the current array element to sum.

3. We also increase the value of count by 1 in each iteration, so that we can get the
size of the array by the end of the for loop.

4. After printing all the elements, we print the sum and the average of all the
numbers. The average of the numbers is given by average = sum / count;

Note: We used a ranged for loop instead of a normal for loop.

A normal for loop requires us to specify the number of iterations, which is given by
the size of the array.

B t d f l d t i h ifi ti

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 431

C++ Array Out of Bounds

If we declare an array of size 10, then the array will contain elements from index 0 to 9.

However, if we try to access the element at index 10 or more than 10, it will result in
Undefined Behaviour.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 432

C++ Multidimensional Arrays
In this tutorial, we'll learn about multi-dimensional arrays in C++. More specifically, how
to declare them, access them, and use them efficiently in our program.

In C++, we can create an array of an array, known as a multidimensional array. For
example:

int x[3][4];

Here, x is a two-dimensional array. It can hold a maximum of 12 elements.

We can think of this array as a table with 3 rows and each row has 4 columns as shown
below.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 433

https://www.programiz.com/cpp-programming/arrays

Elements in two-dimensional array in C++ Programming

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 434

Three-dimensional arrays also work in a similar way. For example:

float x[2][4][3];

This array x can hold a maximum of 24 elements.

We can find out the total number of elements in the array simply by multiplying its
dimensions:

2 x 4 x 3 = 24

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 435

Multidimensional Array Initialization

Like a normal array, we can initialize a multidimensional array in more than one way.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 436

1. Initialization of two-dimensional array

int test[2][3] = {2, 4, 5, 9, 0, 19};

The above method is not preferred. A better way to initialize this array with the same
array elements is given below:

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 437

int test[2][3] = { {2, 4, 5}, {9, 0, 19}};

This array has 2 rows and 3 columns, which is why we have two rows of elements with 3
elements each.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 438

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 439

Initializing a two-dimensional array in C++

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 440

2. Initialization of three-dimensional array

int test[2][3][4] = {3, 4, 2, 3, 0, -3, 9, 11, 23, 12, 23,
 2, 13, 4, 56, 3, 5, 9, 3, 5, 5, 1, 4, 9};

This is not a good way of initializing a three-dimensional array. A better way to initialize
this array is:

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 441

int test[2][3][4] = {
 { {3, 4, 2, 3}, {0, -3, 9, 11}, {23, 12, 23, 2} },
 { {13, 4, 56, 3}, {5, 9, 3, 5}, {5, 1, 4, 9} }
 };

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 442

Notice the dimensions of this three-dimensional array.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 443

The first dimension has the value 2 . So, the two elements comprising the first
dimension are:

Element 1 = { {3, 4, 2, 3}, {0, -3, 9, 11}, {23, 12, 23, 2} }
Element 2 = { {13, 4, 56, 3}, {5, 9, 3, 5}, {5, 1, 4, 9} }

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 444

The second dimension has the value 3 . Notice that each of the elements of the first
dimension has three elements each:

{3, 4, 2, 3}, {0, -3, 9, 11} and {23, 12, 23, 2} for Element 1.
{13, 4, 56, 3}, {5, 9, 3, 5} and {5, 1, 4, 9} for Element 2.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 445

Finally, there are four int numbers inside each of the elements of the second
dimension:

{3, 4, 2, 3}
{0, -3, 9, 11}
...
...

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 446

Example 1: Two Dimensional Array

// C++ Program to display all elements
// of an initialised two dimensional array

#include <iostream>
using namespace std;

int main() {
 int test[3][2] = {{2, -5},
 {4, 0},
 {9, 1}};

 // use of nested for loop
 // access rows of the array
 for (int i = 0; i < 3; ++i) {

 // access columns of the array
 for (int j = 0; j < 2; ++j) {
 cout << "test[" << i << "][" << j << "] = " << test[i][j] << endl;
 }
 }

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 447

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 448

https://www.programiz.com/cpp-programming/online-compiler

Output

test[0][0] = 2
test[0][1] = -5
test[1][0] = 4
test[1][1] = 0
test[2][0] = 9
test[2][1] = 1

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 449

In the above example, we have initialized a two-dimensional int array named test that
has 3 "rows" and 2 "columns".

Here, we have used the nested for loop to display the array elements.

the outer loop from i == 0 to i == 2 access the rows of the array

the inner loop from j == 0 to j == 1 access the columns of the array

Finally, we print the array elements in each iteration.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 450

Example 2: Taking Input for Two Dimensional Array

#include <iostream>
using namespace std;

int main() {
 int numbers[2][3];

 cout << "Enter 6 numbers: " << endl;

 // Storing user input in the array
 for (int i = 0; i < 2; ++i) {
 for (int j = 0; j < 3; ++j) {
 cin >> numbers[i][j];
 }
 }

 cout << "The numbers are: " << endl;

 // Printing array elements
 for (int i = 0; i < 2; ++i) {
 for (int j = 0; j < 3; ++j) {
 cout << "numbers[" << i << "][" << j << "]: " << numbers[i][j] << endl;
 }
 }

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 451

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 452

https://www.programiz.com/cpp-programming/online-compiler

Output

Enter 6 numbers:
1
2
3
4
5
6
The numbers are:
numbers[0][0]: 1
numbers[0][1]: 2
numbers[0][2]: 3
numbers[1][0]: 4
numbers[1][1]: 5
numbers[1][2]: 6

Here, we have used a nested for loop to take the input of the 2d array. Once all the
input has been taken, we have used another nested for loop to print the array
members.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 453

Example 3: Three Dimensional Array
// C++ Program to Store value entered by user in
// three dimensional array and display it.

#include <iostream>
using namespace std;

int main() {
 // This array can store upto 12 elements (2x3x2)
 int test[2][3][2] = {
 {
 {1, 2},
 {3, 4},
 {5, 6}
 },
 {
 {7, 8},
 {9, 10},
 {11, 12}
 }
 };

 // Displaying the values with proper index.
 for (int i = 0; i < 2; ++i) {
 for (int j = 0; j < 3; ++j) {
 for (int k = 0; k < 2; ++k) {
 cout << "test[" << i << "][" << j << "][" << k << "] = " << test[i][j][k] << endl;
 }
 }
 }

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 454

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 455

https://www.programiz.com/cpp-programming/online-compiler

Output

test[0][0][0] = 1
test[0][0][1] = 2
test[0][1][0] = 3
test[0][1][1] = 4
test[0][2][0] = 5
test[0][2][1] = 6
test[1][0][0] = 7
test[1][0][1] = 8
test[1][1][0] = 9
test[1][1][1] = 10
test[1][2][0] = 11
test[1][2][1] = 12

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 456

The basic concept of printing elements of a 3d array is similar to that of a 2d array.

However, since we are manipulating 3 dimensions, we use a nested for loop with 3 total
loops instead of just 2:

the outer loop from i == 0 to i == 1 accesses the first dimension of the array

the middle loop from j == 0 to j == 2 accesses the second dimension of the
array

the innermost loop from k == 0 to k == 1 accesses the third dimension of the
array

As we can see, the complexity of the array increases exponentially with the increase in
dimensions.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 457

Passing Array to a Function in C++ Programming
In this tutorial, we will learn how to pass a single-dimensional and multidimensional
array as a function parameter in C++ with the help of examples.

In C++, we can pass arrays as an argument to a function. And, also we can return arrays
from a function.

Before you learn about passing arrays as a function argument, make sure you know
about C++ Arrays and C++ Functions.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 458

https://www.programiz.com/cpp-programming/arrays
https://www.programiz.com/cpp-programming/function

Syntax for Passing Arrays as Function Parameters

The syntax for passing an array to a function is:

returnType functionName(dataType arrayName[arraySize]) {
 // code
}

Let's see an example,

int total(int marks[5]) {
 // code
}

Here, we have passed an int type array named marks to the function total() . The
size of the array is 5.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 459

Example 1: Passing One-dimensional Array to a Function
// C++ Program to display marks of 5 students

#include <iostream>
using namespace std;

// declare function to display marks
// take a 1d array as parameter
void display(int m[5]) {
 cout << "Displaying marks: " << endl;

 // display array elements
 for (int i = 0; i < 5; ++i) {
 cout << "Student " << i + 1 << ": " << m[i] << endl;
 }
}

int main() {

 // declare and initialize an array
 int marks[5] = {88, 76, 90, 61, 69};

 // call display function
 // pass array as argument
 display(marks);

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 460

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 461

https://www.programiz.com/cpp-programming/online-compiler

Output

Displaying marks:
Student 1: 88
Student 2: 76
Student 3: 90
Student 4: 61
Student 5: 69

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 462

Here,

1. When we call a function by passing an array as the argument, only the name of the
array is used.

display(marks);

Here, the argument marks represent the memory address of the first element of
array marks[5].

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 463

2. However, notice the parameter of the display() function.

void display(int m[5])

Here, we use the full declaration of the array in the function parameter, including
the square braces [] .

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 464

3. The function parameter int m[5] converts to int* m; . This points to the same
address pointed by the array marks. This means that when we manipulate m[5] in
the function body, we are actually manipulating the original array marks.

C++ handles passing an array to a function in this way to save memory and time.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 465

Passing Multidimensional Array to a Function

We can also pass Multidimensional arrays as an argument to the function. For example,

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 466

https://www.programiz.com/cpp-programming/multidimensional-arrays

Example 2: Passing Multidimensional Array to a Function
// C++ Program to display the elements of two
// dimensional array by passing it to a function

#include <iostream>
using namespace std;

// define a function
// pass a 2d array as a parameter
void display(int n[][2]) {
 cout << "Displaying Values: " << endl;
 for (int i = 0; i < 3; ++i) {
 for (int j = 0; j < 2; ++j) {
 cout << "num[" << i << "][" << j << "]: " << n[i][j] << endl;
 }
 }
}

int main() {

 // initialize 2d array
 int num[3][2] = {
 {3, 4},
 {9, 5},
 {7, 1}
 };

 // call the function
 // pass a 2d array as an argument
 display(num);

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 467

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 468

https://www.programiz.com/cpp-programming/online-compiler

Output

Displaying Values:
num[0][0]: 3
num[0][1]: 4
num[1][0]: 9
num[1][1]: 5
num[2][0]: 7
num[2][1]: 1

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 469

In the above program, we have defined a function named display() . The function
takes a two dimensional array, int n[][2] as its argument and prints the elements of
the array.

While calling the function, we only pass the name of the two dimensional array as the
function argument display(num) .

Note: It is not mandatory to specify the number of rows in the array. However, the
number of columns should always be specified. This is why we have used int n[][2] .

We can also pass arrays with more than 2 dimensions as a function argument.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 470

C++ Returning an Array From a Function

We can also return an array from the function. However, the actual array is not returned.
Instead the address of the first element of the array is returned with the help
of pointers.

We will learn about returning arrays from a function in the coming tutorials.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 471

https://www.programiz.com/cpp-programming/pointers

C++ Strings
In this tutorial, you'll learn to handle strings in C++. You'll learn to declare them,
initialize them and use them for various input/output operations.

String is a collection of characters. There are two types of strings commonly used in
C++ programming language:

Strings that are objects of string class (The Standard C++ Library string class)

C-strings (C-style Strings)

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 472

C-strings

In C programming, the collection of characters is stored in the form of arrays. This is
also supported in C++ programming. Hence it's called C-strings.

C-strings are arrays of type char terminated with null character, that is, \0 (ASCII
value of null character is 0).

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 473

How to define a C-string?

char str[] = "C++";

In the above code, str is a string and it holds 4 characters.

Although, " C++ " has 3 character, the null character \0 is added to the end of the
string automatically.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 474

Alternative ways of defining a string

char str[4] = "C++";

char str[] = {'C','+','+','\0'};
char str[4] = {'C','+','+','\0'};

Like arrays, it is not necessary to use all the space allocated for the string. For example:

char str[100] = "C++";

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 475

Example 1: C++ String to read a word

C++ program to display a string entered by user.

#include <iostream>
using namespace std;

int main()
{
 char str[100];

 cout << "Enter a string: ";
 cin >> str;
 cout << "You entered: " << str << endl;

 cout << "\nEnter another string: ";
 cin >> str;
 cout << "You entered: "<<str<<endl;

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 476

Output

Enter a string: C++
You entered: C++
Enter another string: Programming is fun.
You entered: Programming

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 477

Notice that, in the second example only "Programming" is displayed instead of
"Programming is fun".

This is because the extraction operator >> works as scanf() in C and considers a
space " " has a terminating character.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 478

Example 2: C++ String to read a line of text

C++ program to read and display an entire line entered by user.

#include <iostream>
using namespace std;

int main()
{
 char str[100];
 cout << "Enter a string: ";
 cin.get(str, 100);

 cout << "You entered: " << str << endl;
 return 0;
}

Output

Enter a string: Programming is fun.
You entered: Programming is fun.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 479

To read the text containing blank space, cin.get function can be used. This function
takes two arguments.

First argument is the name of the string (address of first element of string) and second
argument is the maximum size of the array.

In the above program, str is the name of the string and 100 is the maximum size of the
array.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 480

string Object

In C++, you can also create a string object for holding strings.

Unlike using char arrays, string objects has no fixed length, and can be extended as per
your requirement.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 481

Example 3: C++ string using string data type

#include <iostream>
using namespace std;

int main()
{
 // Declaring a string object
 string str;
 cout << "Enter a string: ";
 getline(cin, str);

 cout << "You entered: " << str << endl;
 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 482

Output

Enter a string: Programming is fun.
You entered: Programming is fun.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 483

In this program, a string str is declared. Then the string is asked from the user.

Instead of using cin>> or cin.get() function, you can get the entered line of text
using getline() .

getline() function takes the input stream as the first parameter which
is cin and str as the location of the line to be stored.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 484

Passing String to a Function

Strings are passed to a function in a similar way arrays are passed to a function.

#include <iostream>

using namespace std;

void display(char *);
void display(string);

int main()
{
 string str1;
 char str[100];

 cout << "Enter a string: ";
 getline(cin, str1);

 cout << "Enter another string: ";
 cin.get(str, 100, '\n');

 display(str1);
 display(str);
 return 0;
}

void display(char s[])
{
 cout << "Entered char array is: " << s << endl;
}

void display(string s)
{
 cout << "Entered string is: " << s << endl;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 485

https://www.programiz.com/cpp-programming/passing-arrays-function

Output

Enter a string: Programming is fun.
Enter another string: Really?
Entered string is: Programming is fun.
Entered char array is: Really?

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 486

In the above program, two strings are asked to enter. These are stored
in str and str1 respectively, where str is a char array and str1 is a string object.

Then, we have two functions display() that outputs the string onto the string.

The only difference between the two functions is the parameter. The
first display() function takes char array as a parameter, while the second takes string
as a parameter.

This process is known as function overloading. Learn more about Function Overloading.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 487

https://www.programiz.com/cpp-programming/function-overloading

C++ Structures

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 488

C++ Structures
In this article, you'll learn about structures in C++ programming; what is it, how to
define it and use it in your program.

Structure is a collection of variables of different data types under a single name. It is
similar to a class in that, both holds a collecion of data of different data types.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 489

https://www.programiz.com/cpp-programming/object-class

For example: You want to store some information about a person: his/her name,
citizenship number and salary. You can easily create different variables name, citNo,
salary to store these information separately.

However, in the future, you would want to store information about multiple persons.
Now, you'd need to create different variables for each information per person: name1,
citNo1, salary1, name2, citNo2, salary2

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 490

You can easily visualize how big and messy the code would look. Also, since no relation
between the variables (information) would exist, it's going to be a daunting task.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 491

A better approach will be to have a collection of all related information under a single
name Person , and use it for every person. Now, the code looks much cleaner, readable
and efficient as well.

This collection of all related information under a single name Person is a structure.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 492

How to declare a structure in C++ programming?

The struct keyword defines a structure type followed by an identifier (name of the
structure).

Then inside the curly braces, you can declare one or more members (declare variables
inside curly braces) of that structure. For example:

struct Person
{
 char name[50];
 int age;
 float salary;
};

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 493

Here a structure person is defined which has three members: name, age and salary.

When a structure is created, no memory is allocated.

The structure definition is only the blueprint for the creating of variables. You can
imagine it as a datatype. When you define an integer as below:

int foo;

The int specifies that, variable foo can hold integer element only. Similarly, structure
definition only specifies that, what property a structure variable holds when it is
defined.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 494

Note: Remember to end the declaration with a semicolon (;)

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 495

How to define a structure variable?

Once you declare a structure person as above. You can define a structure variable as:

Person bill;

Here, a structure variable bill is defined which is of type structure P erson .

When structure variable is defined, only then the required memory is allocated by the
compiler.

Considering you have either 32-bit or 64-bit system, the memory of float is 4 bytes,
memory of int is 4 bytes and memory of char is 1 byte.

Hence, 58 bytes of memory is allocated for structure variable bill.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 496

How to access members of a structure?

The members of structure variable is accessed using a dot (.) operator.

Suppose, you want to access age of structure variable bill and assign it 50 to it. You can
perform this task by using following code below:

bill.age = 50;

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 497

Example: C++ Structure

C++ Program to assign data to members of a structure variable and display it.

#include <iostream>
using namespace std;

struct Person
{
 char name[50];
 int age;
 float salary;
};

int main()
{
 Person p1;

 cout << "Enter Full name: ";
 cin.get(p1.name, 50);
 cout << "Enter age: ";
 cin >> p1.age;
 cout << "Enter salary: ";
 cin >> p1.salary;

 cout << "\nDisplaying Information." << endl;
 cout << "Name: " << p1.name << endl;
 cout <<"Age: " << p1.age << endl;
 cout << "Salary: " << p1.salary;

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 498

Output

Enter Full name: Magdalena Dankova
Enter age: 27
Enter salary: 1024.4
Displaying Information.
Name: Magdalena Dankova
Age: 27
Salary: 1024.4

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 499

Here a structure Person is declared which has three members name, age and salary.

Inside main() function, a structure variable p1 is defined. Then, the user is asked to
enter information and data entered by user is displayed.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 500

https://www.programiz.com/cpp-programming/function

You should also check out these structure related tutorials:

How to pass structures to functions?
How to use pointers with structures?

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 501

https://www.programiz.com/cpp-programming/structure-function
https://www.programiz.com/cpp-programming/structure-pointer

C++ Structure and Function
In this article, you'll find relevant examples to pass structures as an argument to a
function, and use them in your program.

Structure variables can be passed to a function and returned in a similar way as normal
arguments.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 502

https://www.programiz.com/cpp-programming/structure
https://www.programiz.com/cpp-programming/function

Passing structure to function in C++

A structure variable can be passed to a function in similar way as normal argument.
Consider this example:

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 503

Example 1: C++ Structure and Function
#include <iostream>
using namespace std;

struct Person {
 char name[50];
 int age;
 float salary;
};

void displayData(Person); // Function declaration

int main() {
 Person p;

 cout << "Enter Full name: ";
 cin.get(p.name, 50);
 cout << "Enter age: ";
 cin >> p.age;
 cout << "Enter salary: ";
 cin >> p.salary;

 // Function call with structure variable as an argument
 displayData(p);

 return 0;
}

void displayData(Person p) {
 cout << "\nDisplaying Information." << endl;
 cout << "Name: " << p.name << endl;
 cout <<"Age: " << p.age << endl;
 cout << "Salary: " << p.salary;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 504

Output

Enter Full name: Bill Jobs
Enter age: 55
Enter salary: 34233.4
Displaying Information.
Name: Bill Jobs
Age: 55
Salary: 34233.4

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 505

In this program, user is asked to enter the name, age and salary of a Person
inside main() function.

Then, the structure variable p is to passed to a function using.

displayData(p);

The return type of displayData() is void and a single argument of type
structure Person is passed.

Then the members of structure p is displayed from this function.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 506

Example 2: Returning structure from function in C++
#include <iostream>
using namespace std;

struct Person {
 char name[50];
 int age;
 float salary;
};

Person getData(Person);
void displayData(Person);

int main() {

 Person p, temp;

 temp = getData(p);
 p = temp;
 displayData(p);

 return 0;
}

Person getData(Person p) {

 cout << "Enter Full name: ";
 cin.get(p.name, 50);

 cout << "Enter age: ";
 cin >> p.age;

 cout << "Enter salary: ";
 cin >> p.salary;

 return p;
}

void displayData(Person p) {
 cout << "\nDisplaying Information." << endl;
 cout << "Name: " << p.name << endl;
 cout <<"Age: " << p.age << endl;
 cout << "Salary: " << p.salary;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 507

The output of this program is the same as the program above.

In this program, we have created two structure variables p and temp of
type Person under the main() function.

The structure variable p is passed to getData() function which takes input from the
user which is then stored in the temp variable.

temp = getData(p);

We then assign the value of temp to p.

p = temp;

Then the structure variable p is passed to displayData() function, which displays the
information.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 508

Note: We don't really need to use the temp variable for most compilers and C++
versions. Instead, we can simply use the following code:

p = getData(p);

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 509

C++ Pointers to Structure
In this article, you'll find relevant examples that will help you to work with pointers to
access data within a structure.

A pointer variable can be created not only for native types like
(int , float , double etc.) but they can also be created for user defined types
like structure.

If you do not know what pointers are, visit C++ pointers.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 510

https://www.programiz.com/cpp-programming/pointers
https://www.programiz.com/cpp-programming/structure
https://www.programiz.com/cpp-programming/pointers

Here is how you can create pointer for structures:

#include <iostream>
using namespace std;

struct temp {
 int i;
 float f;
};

int main() {
 temp *ptr;
 return 0;
}

This program creates a pointer ptr of type structure temp.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 511

Example: Pointers to Structure

#include <iostream>
using namespace std;

struct Distance {
 int feet;
 float inch;
};

int main() {
 Distance *ptr, d;

 ptr = &d;

 cout << "Enter feet: ";
 cin >> (*ptr).feet;
 cout << "Enter inch: ";
 cin >> (*ptr).inch;

 cout << "Displaying information." << endl;
 cout << "Distance = " << (*ptr).feet << " feet " << (*ptr).inch << " inches";

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 512

Output

Enter feet: 4
Enter inch: 3.5
Displaying information.
Distance = 4 feet 3.5 inches

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 513

In this program, a pointer variable ptr and normal variable d of type
structure Distance is defined.

The address of variable d is stored to pointer variable, that is, ptr is pointing to
variable d. Then, the member function of variable d is accessed using pointer.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 514

Notes:

Since pointer ptr is pointing to variable d in this
program, (*ptr).inch and d.inch are equivalent.
Similarly, (*ptr).feet and d.feet are equivalent.

However, if we are using pointers, it is far more preferable to access struct
members using the -> operator, since the . operator has a higher precedence
than the * operator.

Hence, we enclose *ptr in brackets when using (*ptr).inch . Because of this, it is
easier to make mistakes if both operators are used together in a single code.

 ptr->feet is same as (*ptr).feet
 ptr->inch is same as (*ptr).inc

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 515

C++ Enumeration
In this article, you will learn to work with enumeration (enum). Also, you will learn where
enums are commonly used in C++ programming.

An enumeration is a user-defined data type that consists of integral constants. To define
an enumeration, keyword enum is used.

enum season { spring, summer, autumn, winter };

Here, the name of the enumeration is season.

And, spring, summer and winter are values of type season.

By default, spring is 0, summer is 1 and so on. You can change the default value of an
enum element during declaration (if necessary).

enum season
{ spring = 0,
 summer = 4,
 autumn = 8,
 winter = 12
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 516

Enumerated Type Declaration

When you create an enumerated type, only blueprint for the variable is created. Here's
how you can create variables of enum type.

enum boolean { false, true };
// inside function
enum boolean check;

Here, a variable check of type enum boolean is created.

Here is another way to declare same check variable using different syntax.

enum boolean
{
 false, true
} check;

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 517

Example 1: Enumeration Type

#include <iostream>
using namespace std;

enum week { Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday };

int main()
{
 week today;
 today = Wednesday;
 cout << "Day " << today+1;
 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 518

Output

Day 4

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 519

Example2: Changing Default Value of Enums

#include <iostream>
using namespace std;

enum seasons { spring = 34, summer = 4, autumn = 9, winter = 32};

int main() {

 seasons s;

 s = summer;
 cout << "Summer = " << s << endl;

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 520

Output

Summer = 4

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 521

Why enums are used in C++ programming?

An enum variable takes only one value out of many possible values. Example to
demonstrate it,

#include <iostream>
using namespace std;

enum suit {
 club = 0,
 diamonds = 10,
 hearts = 20,
 spades = 3
} card;

int main()
{
 card = club;
 cout << "Size of enum variable " << sizeof(card) << " bytes.";
 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 522

Output

Size of enum variable 4 bytes.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 523

It's because the size of an integer is 4 bytes.;

This makes enum a good choice to work with flags.

You can accomplish the same task using C++ structures. However, working with enums
gives you efficiency along with flexibility.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 524

https://www.programiz.com/cpp-programming/structure

How to use enums for flags?

Let us take an example,

enum designFlags {
 ITALICS = 1,
 BOLD = 2,
 UNDERLINE = 4
} button;

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 525

Suppose you are designing a button for Windows application. You can set
flags ITALICS, BOLD and UNDERLINE to work with text.

There is a reason why all the integral constants are power of 2 in above pseudocode.

// In binary
ITALICS = 00000001
BOLD = 00000010
UNDERLINE = 00000100

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 526

Since, the integral constants are power of 2, you can combine two or more flags at once
without overlapping using bitwise OR | operator. This allows you to choose two or more
flags at once. For example,

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 527

#include <iostream>
using namespace std;

enum designFlags {
 BOLD = 1,
 ITALICS = 2,
 UNDERLINE = 4
};

int main()
{
 int myDesign = BOLD | UNDERLINE;

 // 00000001
 // | 00000100
 // ___________
 // 00000101

 cout << myDesign;

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 528

Output

5

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 529

When the output is 5, you always know that bold and underline is used.

Also, you can add flag to your requirements.

if (myDesign & ITALICS) {
 // code for italics
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 530

Here, we have added italics to our design. Note, only code for italics is written inside
the if statement.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 531

https://www.programiz.com/cpp-programming/if-else

You can accomplish almost anything in C++ programming without using enumerations.
However, they can be pretty handy in certain situations. That's what differentiates good
programmers from great programmers.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 532

C++ Classes and Objects
In this tutorial, we will learn about objects and classes and how to use them in C++ with
the help of examples.

In previous tutorials, we learned about functions and variables. Sometimes it's desirable
to put related functions and data in one place so that it's logical and easier to work
with.

Suppose, we need to store the length, breadth, and height of a rectangular room and
calculate its area and volume.

To handle this task, we can create three variables, say, length, breadth, and height along
with the functions calculateArea() and calculateVolume() .

However, in C++, rather than creating separate variables and functions, we can also
wrap these related data and functions in a single place (by creating objects). This
programming paradigm is known as object-oriented programming.

But before we can create objects and use them in C++, we first need to learn
b t l

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 533

C++ Class

A class is a blueprint for the object.

We can think of a class as a sketch (prototype) of a house. It contains all the details
about the floors, doors, windows, etc. Based on these descriptions we build the house.
House is the object.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 534

g y y

The body of the class is defined inside the curly brackets and terminated by a semicolon
at the end.

class className {
 // some data
 // some functions
};

For example,

class Room {
 public:
 double length;
 double breadth;
 double height;

 double calculateArea(){
 return length * breadth;
 }

 double calculateVolume(){
 return length * breadth * height;

}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 535

Here, we defined a class named Room .

The variables length, breadth, and height declared inside the class are known as data
members. And, the functions calculateArea() and calculateVolume() are known
as member functions of a class.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 536

C++ Objects

When a class is defined, only the specification for the object is defined; no memory or
storage is allocated.

To use the data and access functions defined in the class, we need to create objects.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 537

Syntax to Define Object in C++

className objectVariableName;

We can create objects of Room class (defined in the above example) as follows:

// sample function
void sampleFunction() {
 // create objects
 Room room1, room2;
}

int main(){
 // create objects
 Room room3, room4;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 538

Here, two objects room1 and room2 of the Room class are created
in sampleFunction() . Similarly, the objects room3 and room4 are created in main() .

As we can see, we can create objects of a class in any function of the program. We can
also create objects of a class within the class itself, or in other classes.

Also, we can create as many objects as we want from a single class.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 539

C++ Access Data Members and Member Functions

We can access the data members and member functions of a class by using a . (dot)
operator. For example,

room2.calculateArea();

This will call the calculateArea() function inside the Room class for object room2.

Similarly, the data members can be accessed as:

room1.length = 5.5;

In this case, it initializes the length variable of room1 to 5.5 .

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 540

Example 1: Object and Class in C++ Programming
// Program to illustrate the working of
// objects and class in C++ Programming

#include <iostream>
using namespace std;

// create a class
class Room {

 public:
 double length;
 double breadth;
 double height;

 double calculateArea() {
 return length * breadth;
 }

 double calculateVolume() {
 return length * breadth * height;
 }
};

int main() {

 // create object of Room class
 Room room1;

 // assign values to data members
 room1.length = 42.5;
 room1.breadth = 30.8;
 room1.height = 19.2;

 // calculate and display the area and volume of the room
 cout << "Area of Room = " << room1.calculateArea() << endl;
 cout << "Volume of Room = " << room1.calculateVolume() << endl;

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 541

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 542

https://www.programiz.com/cpp-programming/online-compiler

Output

Area of Room = 1309
Volume of Room = 25132.8

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 543

In this program, we have used the Room class and its object room1 to calculate the area
and volume of a room.

In main() , we assigned the values of length, breadth, and height with the code:

room1.length = 42.5;
room1.breadth = 30.8;
room1.height = 19.2;

We then called the functions calculateArea() and calculateVolume() to perform the
necessary calculations.

Note the use of the keyword public in the program. This means the members are
public and can be accessed anywhere from the program.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 544

As per our needs, we can also create private members using the private keyword. The
private members of a class can only be accessed from within the class. For example,

class Test {

private:
 int a;
 void function1() { }

public:
 int b;
 void function2() { }
}

Here, a and function1() are private. Thus they cannot be accessed from outside the
class.

On the other hand, b and function2() are accessible from everywhere in the program.

To learn more about public and private keywords, please visit our C++ Class Access
Modifiers tutorial.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 545

https://www.programiz.com/cpp-programming/access-modifiers

Example 2: Using public and private in C++ Class
// Program to illustrate the working of
// public and private in C++ Class

#include <iostream>
using namespace std;

class Room {

 private:
 double length;
 double breadth;
 double height;

 public:

 // function to initialize private variables
 void initData(double len, double brth, double hgt) {
 length = len;
 breadth = brth;
 height = hgt;
 }

 double calculateArea() {
 return length * breadth;
 }

 double calculateVolume() {
 return length * breadth * height;
 }
};

int main() {

 // create object of Room class
 Room room1;

 // pass the values of private variables as arguments
 room1.initData(42.5, 30.8, 19.2);

 cout << "Area of Room = " << room1.calculateArea() << endl;
 cout << "Volume of Room = " << room1.calculateVolume() << endl;

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 546

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 547

https://www.programiz.com/cpp-programming/online-compiler

Output

Area of Room = 1309
Volume of Room = 25132.8

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 548

The above example is nearly identical to the first example, except that the class
variables are now private.

Since the variables are now private, we cannot access them directly from main() .
Hence, using the following code would be invalid:

// invalid code
obj.length = 42.5;
obj.breadth = 30.8;
obj.height = 19.2;

Instead, we use the public function initData() to initialize the private variables via the
function parameters double len , double brth , and double hgt .

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 549

To learn more on objects and classes, visit these topics:

C++ Constructors
How to pass and return an object from a function?

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 550

https://www.programiz.com/cpp-programming/constructors
https://www.programiz.com/cpp-programming/pass-return-object-function

C++ Constructors
In this tutorial, we will learn about the C++ constructor and its type with the help
examples.

A constructor is a special type of member function that is called automatically when an
object is created.

In C++, a constructor has the same name as that of the class and it does not have a
return type. For example,

class Wall {
 public:
 // create a constructor
 Wall() {
 // code
 }
};

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 551

Here, the function Wall() is a constructor of the class Wall . Notice that the
constructor

has the same name as the class,

does not have a return type, and

is public

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 552

C++ Default Constructor

A constructor with no parameters is known as a default constructor. In the example
above, Wall() is a default constructor.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 553

Example 1: C++ Default Constructor

// C++ program to demonstrate the use of default constructor

#include <iostream>
using namespace std;

// declare a class
class Wall {
 private:
 double length;

 public:
 // default constructor to initialize variable
 Wall() {
 length = 5.5;
 cout << "Creating a wall." << endl;
 cout << "Length = " << length << endl;
 }
};

int main() {
 Wall wall1;
 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 554

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 555

https://www.programiz.com/cpp-programming/online-compiler

Output

Creating a Wall
Length = 5.5

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 556

Here, when the wall1 object is created, the Wall() constructor is called. This sets
the length variable of the object to 5.5 .

Note: If we have not defined a constructor in our class, then the C++ compiler will
automatically create a default constructor with an empty code and no parameters.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 557

C++ Parameterized Constructor

In C++, a constructor with parameters is known as a parameterized constructor. This is
the preferred method to initialize member data.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 558

Example 2: C++ Parameterized Constructor
// C++ program to calculate the area of a wall

#include <iostream>
using namespace std;

// declare a class
class Wall {
 private:
 double length;
 double height;

 public:
 // parameterized constructor to initialize variables
 Wall(double len, double hgt) {
 length = len;
 height = hgt;
 }

 double calculateArea() {
 return length * height;
 }
};

int main() {
 // create object and initialize data members
 Wall wall1(10.5, 8.6);
 Wall wall2(8.5, 6.3);

 cout << "Area of Wall 1: " << wall1.calculateArea() << endl;
 cout << "Area of Wall 2: " << wall2.calculateArea();

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 559

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 560

https://www.programiz.com/cpp-programming/online-compiler

Output

Area of Wall 1: 90.3
Area of Wall 2: 53.55

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 561

Here, we have created a parameterized constructor Wall() that has 2
parameters: double len and double hgt . The values contained in these parameters
are used to initialize the member variables length and height.

When we create an object of the Wall class, we pass the values for the member
variables as arguments. The code for this is:

Wall wall1(10.5, 8.6);
Wall wall2(8.5, 6.3);

With the member variables thus initialized, we can now calculate the area of the wall
with the calculateArea() function.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 562

C++ Copy Constructor

The copy constructor in C++ is used to copy data of one object to another.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 563

Example 3: C++ Copy Constructor
#include <iostream>
using namespace std;

// declare a class
class Wall {
 private:
 double length;
 double height;

 public:

 // initialize variables with parameterized constructor
 Wall(double len, double hgt) {
 length = len;
 height = hgt;
 }

 // copy constructor with a Wall object as parameter
 // copies data of the obj parameter
 Wall(Wall &obj) {
 length = obj.length;
 height = obj.height;
 }

 double calculateArea() {
 return length * height;
 }
};

int main() {
 // create an object of Wall class
 Wall wall1(10.5, 8.6);

 // copy contents of wall1 to wall2
 Wall wall2 = wall1;

 // print areas of wall1 and wall2
 cout << "Area of Wall 1: " << wall1.calculateArea() << endl;
 cout << "Area of Wall 2: " << wall2.calculateArea();

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 564

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 565

https://www.programiz.com/cpp-programming/online-compiler

Output

Area of Wall 1: 90.3
Area of Wall 2: 90.3

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 566

In this program, we have used a copy constructor to copy the contents of one object of
the Wall class to another. The code of the copy constructor is:

Wall(Wall &obj) {
 length = obj.length;
 height = obj.height;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 567

Notice that the parameter of this constructor has the address of an object of
the Wall class.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 568

We then assign the values of the variables of the obj object to the corresponding
variables of the object calling the copy constructor. This is how the contents of the
object are copied.

In main() , we then create two objects wall1 and wall2 and then copy the contents
of wall1 to wall2:

// copy contents of wall1 to wall2
Wall wall2 = wall1;

Here, the wall2 object calls its copy constructor by passing the address of
the wall1 object as its argument i.e. &obj = &wall1 .

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 569

Note: A constructor is primarily used to initialize objects. They are also used to run a
default code when an object is created.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 570

How to pass and return object from C++ Functions?
In this tutorial, we will learn to pass objects to a function and return an object from a
function in C++ programming.

In C++ programming, we can pass objects to a function in a similar manner as passing
regular arguments.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 571

Example 1: C++ Pass Objects to Function
// C++ program to calculate the average marks of two students

#include <iostream>
using namespace std;

class Student {

 public:
 double marks;

 // constructor to initialize marks
 Student(double m) {
 marks = m;
 }
};

// function that has objects as parameters
void calculateAverage(Student s1, Student s2) {

 // calculate the average of marks of s1 and s2
 double average = (s1.marks + s2.marks) / 2;

 cout << "Average Marks = " << average << endl;

}

int main() {
 Student student1(88.0), student2(56.0);

 // pass the objects as arguments
 calculateAverage(student1, student2);

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 572

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 573

https://www.programiz.com/cpp-programming/online-compiler

Output

Average Marks = 72

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 574

Here, we have passed two Student objects student1 and student2 as arguments to
the calculateAverage() function.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 575

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 576

Pass objects to function in C++

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 577

Example 2: C++ Return Object from a Function

#include <iostream>
using namespace std;

class Student {
 public:
 double marks1, marks2;
};

// function that returns object of Student
Student createStudent() {
 Student student;

 // Initialize member variables of Student
 student.marks1 = 96.5;
 student.marks2 = 75.0;

 // print member variables of Student
 cout << "Marks 1 = " << student.marks1 << endl;
 cout << "Marks 2 = " << student.marks2 << endl;

 return student;
}

int main() {
 Student student1;

 // Call function
 student1 = createStudent();

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 578

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 579

https://www.programiz.com/cpp-programming/online-compiler

Output

Marks1 = 96.5
Marks2 = 75

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 580

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 581

Return object from function in C++

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 582

In this program, we have created a function createStudent() that returns an object
of Student class.

We have called createStudent() from the main() method.

// Call function
student1 = createStudent();

Here, we are storing the object returned by the createStudent() method in
the student1.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 583

C++ Operator Overloading
In this tutorial, we will learn about operator overloading with the help of examples.

In C++, we can change the way operators work for user-defined types like objects and
structures. This is known as operator overloading. For example,

Suppose we have created three objects c1, c2 and result from a class
named Complex that represents complex numbers.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 584

Since operator overloading allows us to change how operators work, we can redefine
how the + operator works and use it to add the complex numbers of c1 and c2 by
writing the following code:

result = c1 + c2;

instead of something like

result = c1.addNumbers(c2);

This makes our code intuitive and easy to understand.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 585

Note: We cannot use operator overloading for fundamental data types
like int , float , char and so on.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 586

Syntax for C++ Operator Overloading

To overload an operator, we use a special operator function. We define the function
inside the class or structure whose objects/variables we want the overloaded operator
to work with.

class className {

 public
 returnType operator symbol (arguments) {

 }

};

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 587

Here,

returnType is the return type of the function.

operator is a keyword.

symbol is the operator we want to overload. Like: + , < , - , ++ , etc.

arguments is the arguments passed to the function.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 588

Operator Overloading in Unary Operators

Unary operators operate on only one operand. The increment operator ++ and
decrement operator -- are examples of unary operators.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 589

Example1: ++ Operator (Unary Operator) Overloading
// Overload ++ when used as prefix

#include <iostream>
using namespace std;

class Count {
 private:
 int value;

 public:

 // Constructor to initialize count to 5
 Count() : value(5) {}

 // Overload ++ when used as prefix
 void operator ++ () {
 ++value;
 }

 void display() {
 cout << "Count: " << value << endl;
 }
};

int main() {
 Count count1;

 // Call the "void operator ++ ()" function
 ++count1;

 count1.display();
 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 590

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 591

https://www.programiz.com/cpp-programming/online-compiler

Output

Count: 6

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 592

Here, when we use ++count1; , the void operator ++ () is called. This increases
the value attribute for the object count1 by 1.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 593

Note: When we overload operators, we can use it to work in any way we like. For
example, we could have used ++ to increase value by 100.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 594

However, this makes our code confusing and difficult to understand. It's our job as a
programmer to use operator overloading properly and in a consistent and intuitive way.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 595

The above example works only when ++ is used as a prefix. To make ++ work as a
postfix we use this syntax.

void operator ++ (int) {
 // code
}

Notice the int inside the parentheses. It's the syntax used for using unary operators as
postfix; it's not a function parameter.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 596

Example 2: ++ Operator (Unary Operator) Overloading
// Overload ++ when used as prefix and postfix

#include <iostream>
using namespace std;

class Count {
 private:
 int value;

 public:

 // Constructor to initialize count to 5
 Count() : value(5) {}

 // Overload ++ when used as prefix
 void operator ++ () {
 ++value;
 }

 // Overload ++ when used as postfix
 void operator ++ (int) {
 value++;
 }

 void display() {
 cout << "Count: " << value << endl;
 }
};

int main() {
 Count count1;

 // Call the "void operator ++ (int)" function
 count1++;
 count1.display();

 // Call the "void operator ++ ()" function
 ++count1;

 count1.display();
 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 597

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 598

https://www.programiz.com/cpp-programming/online-compiler

Output

Count: 6
Count: 7

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 599

The Example 2 works when ++ is used as both prefix and postfix. However, it doesn't
work if we try to do something like this:

Count count1, result;

// Error
result = ++count1;

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 600

This is because the return type of our operator function is void . We can solve this
problem by making Count as the return type of the operator function.

// return Count when ++ used as prefix

Count operator ++ () {
 // code
}

// return Count when ++ used as postfix

Count operator ++ (int) {
 // code
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 601

Example 3: Return Value from Operator Function (++ Operator)
#include <iostream>
using namespace std;

class Count {
 private:
 int value;

 public
 :
 // Constructor to initialize count to 5
 Count() : value(5) {}

 // Overload ++ when used as prefix
 Count operator ++ () {
 Count temp;

 // Here, value is the value attribute of the calling object
 temp.value = ++value;

 return temp;
 }

 // Overload ++ when used as postfix
 Count operator ++ (int) {
 Count temp;

 // Here, value is the value attribute of the calling object
 temp.value = value++;

 return temp;
 }

 void display() {
 cout << "Count: " << value << endl;
 }
};

int main() {
 Count count1, result;

 // Call the "Count operator ++ ()" function
 result = ++count1;
 result.display();

 // Call the "Count operator ++ (int)" function
 result = count1++;
 result.display();

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 602

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 603

https://www.programiz.com/cpp-programming/online-compiler

Output

Count: 6
Count: 6

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 604

Here, we have used the following code for prefix operator overloading:

// Overload ++ when used as prefix
Count operator ++ () {
 Count temp;

 // Here, value is the value attribute of the calling object
 temp.value = ++value;

 return temp;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 605

The code for the postfix operator overloading is also similar. Notice that we have
created an object temp and returned its value to the operator function.

Also, notice the code

temp.value = ++value;

The variable value belongs to the count1 object in main() because count1 is calling the
function, while temp.value belongs to the temp object.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 606

Operator Overloading in Binary Operators

Binary operators work on two operands. For example,

result = num + 9;

Here, + is a binary operator that works on the operands num and 9 .

When we overload the binary operator for user-defined types by using the code:

obj3 = obj1 + obj2;

The operator function is called using the obj1 object and obj2 is passed as an argument
to the function.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 607

Example 4: C++ Binary Operator Overloading
// C++ program to overload the binary operator +
// This program adds two complex numbers

#include <iostream>
using namespace std;

class Complex {
 private:
 float real;
 float imag;

 public:
 // Constructor to initialize real and imag to 0
 Complex() : real(0), imag(0) {}

 void input() {
 cout << "Enter real and imaginary parts respectively: ";
 cin >> real;
 cin >> imag;
 }

 // Overload the + operator
 Complex operator + (const Complex& obj) {
 Complex temp;
 temp.real = real + obj.real;
 temp.imag = imag + obj.imag;
 return temp;
 }

 void output() {
 if (imag < 0)
 cout << "Output Complex number: " << real << imag << "i";
 else
 cout << "Output Complex number: " << real << "+" << imag << "i";
 }
};

int main() {
 Complex complex1, complex2, result;

 cout << "Enter first complex number:\n";
 complex1.input();

 cout << "Enter second complex number:\n";
 complex2.input();

 // complex1 calls the operator function
 // complex2 is passed as an argument to the function
 result = complex1 + complex2;
 result.output();

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 608

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 609

https://www.programiz.com/cpp-programming/online-compiler

Output

Enter first complex number:
Enter real and imaginary parts respectively: 9 5
Enter second complex number:
Enter real and imaginary parts respectively: 7 6
Output Complex number: 16+11i

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 610

In this program, the operator function is:

Complex operator + (const Complex& obj) {
 // code
}

Instead of this, we also could have written this function like:

Complex operator + (Complex obj) {
 // code
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 611

However,

using & makes our code efficient by referencing the complex2 object instead of
making a duplicate object inside the operator function.
using const is considered a good practice because it prevents the operator
function from modifying complex2.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 612

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 613

Overloading binary operators in C++

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 614

Things to Remember in C++ Operator Overloading

1. Two operators = and & are already overloaded by default in C++. For example,
to copy objects of the same class, we can directly use the = operator. We do not
need to create an operator function.

2. Operator overloading cannot change the precedence and associativity of
operators. However, if we want to change the order of evaluation, parentheses
should be used.

3. There are 4 operators that cannot be overloaded in C++. They are:
i. :: (scope resolution)

ii. . (member selection)

iii. .* (member selection through pointer to function)

iv. ?: (ternary operator)

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 615

https://www.programiz.com/cpp-programming/constructors#copy-constructor
https://www.programiz.com/cpp-programming/operators-precedence-associativity

Visit these pages to learn more on:

How to overload increment operator in right way?
How to overload binary operator - to subtract complex numbers?

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 616

https://www.programiz.com/cpp-programming/increment-decrement-operator-overloading
https://www.programiz.com/cpp-programming/operator-overloading/binary-operator-overloading

C++ Pointers

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 617

C++ Pointers
In this tutorial, we will learn about pointers in C++ and their working with the help of
examples.

In C++, pointers are variables that store the memory addresses of other variables.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 618

Address in C++

If we have a variable var in our program, &var will give us its address in the memory. For
example,

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 619

Example 1: Printing Variable Addresses in C++

#include <iostream>
using namespace std;

int main()
{
 // declare variables
 int var1 = 3;
 int var2 = 24;
 int var3 = 17;

 // print address of var1
 cout << "Address of var1: "<< &var1 << endl;

 // print address of var2
 cout << "Address of var2: " << &var2 << endl;

 // print address of var3
 cout << "Address of var3: " << &var3 << endl;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 620

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 621

https://www.programiz.com/cpp-programming/online-compiler

Output

Address of var1: 0x7fff5fbff8ac
Address of var2: 0x7fff5fbff8a8
Address of var3: 0x7fff5fbff8a4

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 622

Here, 0x at the beginning represents the address is in the hexadecimal form.

Notice that the first address differs from the second by 4 bytes and the second address
differs from the third by 4 bytes.

This is because the size of an int variable is 4 bytes in a 64-bit system.

Note: You may not get the same results when you run the program.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 623

C++ Pointers

As mentioned above, pointers are used to store addresses rather than values.

Here is how we can declare pointers.

int *pointVar;

Here, we have declared a pointer pointVar of the int type.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 624

We can also declare pointers in the following way.

int* pointVar; // preferred syntax

Let's take another example of declaring pointers.

int* pointVar, p;

Here, we have declared a pointer pointVar and a normal variable p.

Note: The * operator is used after the data type to declare pointers.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 625

Assigning Addresses to Pointers

Here is how we can assign addresses to pointers:

int* pointVar, var;
var = 5;

// assign address of var to pointVar pointer
pointVar = &var;

Here, 5 is assigned to the variable var. And, the address of var is assigned to
the pointVar pointer with the code pointVar = &var .

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 626

Get the Value from the Address Using Pointers

To get the value pointed by a pointer, we use the * operator. For example:

int* pointVar, var;
var = 5;

// assign address of var to pointVar
pointVar = &var;

// access value pointed by pointVar
cout << *pointVar << endl; // Output: 5

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 627

In the above code, the address of var is assigned to pointVar. We have used
the *pointVar to get the value stored in that address.

When * is used with pointers, it's called the dereference operator. It operates on a
pointer and gives the value pointed by the address stored in the pointer. That
is, *pointVar = var .

Note: In C++, pointVar and *pointVar is completely different. We cannot do something
like *pointVar = &var;

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 628

Example 2: Working of C++ Pointers
#include <iostream>
using namespace std;
int main() {
 int var = 5;

 // declare pointer variable
 int* pointVar;

 // store address of var
 pointVar = &var;

 // print value of var
 cout << "var = " << var << endl;

 // print address of var
 cout << "Address of var (&var) = " << &var << endl
 << endl;

 // print pointer pointVar
 cout << "pointVar = " << pointVar << endl;

 // print the content of the address pointVar points to
 cout << "Content of the address pointed to by pointVar (*pointVar) = " << *pointVar << endl;

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 629

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 630

https://www.programiz.com/cpp-programming/online-compiler

Output

var = 5
Address of var (&var) = 0x61ff08
pointVar = 0x61ff08
Content of the address pointed to by pointVar (*pointVar) = 5

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 631

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 632

Working of C++ pointers

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 633

Changing Value Pointed by Pointers

If pointVar points to the address of var, we can change the value of var by
using *pointVar.

For example,

int var = 5;
int* pointVar;

// assign address of var
pointVar = &var;

// change value at address pointVar
*pointVar = 1;

cout << var << endl; // Output: 1

Here, pointVar and &var have the same address, the value of var will also be changed
when *pointVar is changed.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 634

Example 3: Changing Value Pointed by Pointers
#include <iostream>
using namespace std;
int main() {
 int var = 5;
 int* pointVar;

 // store address of var
 pointVar = &var;

 // print var
 cout << "var = " << var << endl;

 // print *pointVar
 cout << "*pointVar = " << *pointVar << endl
 << endl;

 cout << "Changing value of var to 7:" << endl;

 // change value of var to 7
 var = 7;

 // print var
 cout << "var = " << var << endl;

 // print *pointVar
 cout << "*pointVar = " << *pointVar << endl
 << endl;

 cout << "Changing value of *pointVar to 16:" << endl;

 // change value of var to 16
 *pointVar = 16;

 // print var
 cout << "var = " << var << endl;

 // print *pointVar
 cout << "*pointVar = " << *pointVar << endl;
 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 635

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 636

https://www.programiz.com/cpp-programming/online-compiler

Output

var = 5
*pointVar = 5
Changing value of var to 7:
var = 7
*pointVar = 7
Changing value of *pointVar to 16:
var = 16
*pointVar = 16

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 637

Common mistakes when working with pointers

Suppose, we want a pointer varPoint to point to the address of var. Then,

int var, *varPoint;

// Wrong!
// varPoint is an address but var is not
varPoint = var;

// Wrong!
// &var is an address
// *varPoint is the value stored in &var
*varPoint = &var;

// Correct!
// varPoint is an address and so is &var
varPoint = &var;

 // Correct!
// both *varPoint and var are values
*varPoint = var;

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 638

Recommended Readings:

How to use generic data type pointers using a void pointer?

How to represent an array using a pointer?
How to use pointers with functions?

How to use pointers with structures?

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 639

https://www.programiz.com/cpp-programming/pointer-void
https://www.programiz.com/cpp-programming/pointers-arrays
https://www.programiz.com/cpp-programming/pointers-function
https://www.programiz.com/cpp-programming/structure-pointer

C++ Pointers and Arrays
In this tutorial, we will learn about the relation between arrays and pointers with the
help of examples.

In C++, Pointers are variables that hold addresses of other variables. Not only can a
pointer store the address of a single variable, it can also store the address of cells of
an array.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 640

https://www.programiz.com/cpp-programming/pointers
https://www.programiz.com/cpp-programming/arrays

Consider this example:

int *ptr;
int arr[5];

// store the address of the first
// element of arr in ptr
ptr = arr;

Here, ptr is a pointer variable while arr is an int array. The code ptr = arr; stores the
address of the first element of the array in variable ptr.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 641

Notice that we have used arr instead of &arr[0] . This is because both are the same.
So, the code below is the same as the code above.

int *ptr;
int arr[5];
ptr = &arr[0];

The addresses for the rest of the array elements are given
by &arr[1] , &arr[2] , &arr[3] , and &arr[4] .

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 642

Point to Every Array Elements

Suppose we need to point to the fourth element of the array using the same
pointer ptr.

Here, if ptr points to the first element in the above example then ptr + 3 will point to
the fourth element. For example,

int *ptr;
int arr[5];
ptr = arr;

ptr + 1 is equivalent to &arr[1];
ptr + 2 is equivalent to &arr[2];
ptr + 3 is equivalent to &arr[3];
ptr + 4 is equivalent to &arr[4];

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 643

Similarly, we can access the elements using the single pointer. For example,

// use dereference operator
*ptr == arr[0];
*(ptr + 1) is equivalent to arr[1];
*(ptr + 2) is equivalent to arr[2];
*(ptr + 3) is equivalent to arr[3];
*(ptr + 4) is equivalent to arr[4];

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 644

Suppose if we have initialized ptr = &arr[2]; then

ptr - 2 is equivalent to &arr[0];
ptr - 1 is equivalent to &arr[1];
ptr + 1 is equivalent to &arr[3];
ptr + 2 is equivalent to &arr[4];

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 645

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 646

Working of C++ Pointers with Arrays

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 647

Note: The address between ptr and ptr + 1 differs by 4 bytes. It is because ptr is a
pointer to an int data. And, the size of int is 4 bytes in a 64-bit operating system.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 648

Similarly, if pointer ptr is pointing to char type data, then the address
between ptr and ptr + 1 is 1 byte. It is because the size of a character is 1 byte.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 649

Example 1: C++ Pointers and Arrays
// C++ Program to display address of each element of an array

#include <iostream>
using namespace std;

int main()
{
 float arr[3];

 // declare pointer variable
 float *ptr;

 cout << "Displaying address using arrays: " << endl;

 // use for loop to print addresses of all array elements
 for (int i = 0; i < 3; ++i)
 {
 cout << "&arr[" << i << "] = " << &arr[i] << endl;
 }

 // ptr = &arr[0]
 ptr = arr;

 cout<<"\nDisplaying address using pointers: "<< endl;

 // use for loop to print addresses of all array elements
 // using pointer notation
 for (int i = 0; i < 3; ++i)
 {
 cout << "ptr + " << i << " = "<< ptr + i << endl;
 }

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 650

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 651

https://www.programiz.com/cpp-programming/online-compiler

Output

Displaying address using arrays:
&arr[0] = 0x61fef0
&arr[1] = 0x61fef4
&arr[2] = 0x61fef8
Displaying address using pointers:
ptr + 0 = 0x61fef0
ptr + 1 = 0x61fef4
ptr + 2 = 0x61fef8

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 652

In the above program, we first simply printed the addresses of the array elements
without using the pointer variable ptr.

Then, we used the pointer ptr to point to the address of a[0], ptr + 1 to point to the
address of a[1], and so on.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 653

In most contexts, array names decay to pointers. In simple words, array names are
converted to pointers. That's the reason why we can use pointers to access elements of
arrays.

However, we should remember that pointers and arrays are not the same.

There are a few cases where array names don't decay to pointers. To learn more,
visit: When does array name doesn't decay into a pointer?

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 654

https://stackoverflow.com/questions/17752978/exceptions-to-array-decaying-into-a-pointer

Example 2: Array name used as pointer

// C++ Program to insert and display data entered by using pointer notation.

#include <iostream>
using namespace std;

int main() {
 float arr[5];

 // Insert data using pointer notation
 cout << "Enter 5 numbers: ";
 for (int i = 0; i < 5; ++i) {

 // store input number in arr[i]
 cin >> *(arr + i) ;

 }

 // Display data using pointer notation
 cout << "Displaying data: " << endl;
 for (int i = 0; i < 5; ++i) {

 // display value of arr[i]
 cout << *(arr + i) << endl ;

 }

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 655

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 656

https://www.programiz.com/cpp-programming/online-compiler

Output

Enter 5 numbers: 2.5
3.5
4.5
5
2
Displaying data:
2.5
3.5
4.5
5
2

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 657

Here,

1. We first used the pointer notation to store the numbers entered by the user into
the array arr.

cin >> *(arr + i) ;

This code is equivalent to the code below:

cin >> arr[i];

Notice that we haven't declared a separate pointer variable, but rather we are using
the array name arr for the pointer notation.

As we already know, the array name arr points to the first element of the array. So,
we can think of arr as acting like a pointer.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 658

2. Similarly, we then used for loop to display the values of arr using pointer
notation.

cout << *(arr + i) << endl ;

This code is equivalent to

cout << arr[i] << endl ;

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 659

C++ Call by Reference: Using pointers
In this tutorial, we will learn about C++ call by reference to pass pointers as an
argument to the function with the help of examples.

In the C++ Functions tutorial, we learned about passing arguments to a function. This
method used is called passing by value because the actual value is passed.

However, there is another way of passing arguments to a function where the actual
values of arguments are not passed. Instead, the reference to values is passed.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 660

https://www.programiz.com/cpp-programming/function

For example,

// function that takes value as parameter

void func1(int numVal) {
 // code
}

// function that takes reference as parameter
// notice the & before the parameter
void func2(int &numRef) {
 // code
}

int main() {
 int num = 5;

 // pass by value
 func1(num);

 // pass by reference
 func2(num);

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 661

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 662

https://www.programiz.com/cpp-programming/online-compiler

Notice the & in void func2(int &numRef) . This denotes that we are using the address
of the variable as our parameter.

So, when we call the func2() function in main() by passing the variable num as an
argument, we are actually passing the address of num variable instead of the value 5.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 663

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 664

C++ Pass by Value vs. Pass by Reference

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 665

Example 1: Passing by reference without pointers

#include <iostream>
using namespace std;

// function definition to swap values
void swap(int &n1, int &n2) {
 int temp;
 temp = n1;
 n1 = n2;
 n2 = temp;
}

int main()
{

 // initialize variables
 int a = 1, b = 2;

 cout << "Before swapping" << endl;
 cout << "a = " << a << endl;
 cout << "b = " << b << endl;

 // call function to swap numbers
 swap(a, b);

 cout << "\nAfter swapping" << endl;
 cout << "a = " << a << endl;
 cout << "b = " << b << endl;

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 666

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 667

https://www.programiz.com/cpp-programming/online-compiler

Output

Before swapping
a = 1
b = 2
After swapping
a = 2
b = 1

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 668

In this program, we passed the variables a and b to the swap() function. Notice the
function definition,

void swap(int &n1, int &n2)

Here, we are using & to denote that the function will accept addresses as its
parameters.

Hence, the compiler can identify that instead of actual values, the reference of the
variables is passed to function parameters.

In the swap() function, the function parameters n1 and n2 are pointing to the same
value as the variables a and b respectively. Hence the swapping takes place on actual
value.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 669

The same task can be done using the pointers. To learn about pointers, visit C++
Pointers.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 670

https://www.programiz.com/cpp-programming/pointers

Example 2: Passing by reference using pointers
#include <iostream>
using namespace std;

// function prototype with pointer as parameters
void swap(int*, int*);

int main()
{

 // initialize variables
 int a = 1, b = 2;

 cout << "Before swapping" << endl;
 cout << "a = " << a << endl;
 cout << "b = " << b << endl;

 // call function by passing variable addresses
 swap(&a, &b);

 cout << "\nAfter swapping" << endl;
 cout << "a = " << a << endl;
 cout << "b = " << b << endl;
 return 0;
}

// function definition to swap numbers
void swap(int* n1, int* n2) {
 int temp;
 temp = *n1;
 *n1 = *n2;
 *n2 = temp;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 671

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 672

https://www.programiz.com/cpp-programming/online-compiler

Output

Before swapping
a = 1
b = 2
After swapping
a = 2
b = 1

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 673

Here, we can see the output is the same as the previous example. Notice the line,

// &a is address of a
// &b is address of b
swap(&a, &b);

Here, the address of the variable is passed during the function call rather than the
variable.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 674

Since the address is passed instead of value, a dereference operator * must be used to
access the value stored in that address.

temp = *n1;
*n1 = *n2;
*n2 = temp;

*n1 and *n2 gives the value stored at address n1 and n2 respectively.

Since n1 and n2 contain the addresses of a and b, anything is done to *n1 and *n2 will
change the actual values of a and b.

Hence, when we print the values of a and b in the main() function, the values are
changed.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 675

C++ Memory Management: new and delete
In this tutorial, we will learn to manage memory effectively in C++ using new and
delete operations with the help of examples.

C++ allows us to allocate the memory of a variable or an array in run time. This is
known as dynamic memory allocation.

In other programming languages such as Java and Python, the compiler automatically
manages the memories allocated to variables. But this is not the case in C++.

In C++, we need to deallocate the dynamically allocated memory manually after we
have no use for the variable.

We can allocate and then deallocate memory dynamically using
the new and delete operators respectively.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 676

C++ new Operator

The new operator allocates memory to a variable. For example,

// declare an int pointer
int* pointVar;

// dynamically allocate memory
// using the new keyword
pointVar = new int;

// assign value to allocated memory
*pointVar = 45;

Here, we have dynamically allocated memory for an int variable using
the new operator.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 677

Notice that we have used the pointer pointVar to allocate the memory dynamically. This
is because the new operator returns the address of the memory location.

In the case of an array, the new operator returns the address of the first element of the
array.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 678

From the example above, we can see that the syntax for using the new operator is

pointerVariable = new dataType;

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 679

delete Operator

Once we no longer need to use a variable that we have declared dynamically, we can
deallocate the memory occupied by the variable.

For this, the delete operator is used. It returns the memory to the operating system.
This is known as memory deallocation.

The syntax for this operator is

delete pointerVariable;

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 680

Consider the code:

// declare an int pointer
int* pointVar;

// dynamically allocate memory
// for an int variable
pointVar = new int;

// assign value to the variable memory
*pointVar = 45;

// print the value stored in memory
cout << *pointVar; // Output: 45

// deallocate the memory
delete pointVar;

Here, we have dynamically allocated memory for an int variable using the
pointer pointVar.

After printing the contents of pointVar, we deallocated the memory using delete .

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 681

Note: If the program uses a large amount of unwanted memory using new , the system
may crash because there will be no memory available for the operating system. In this
case, the delete operator can help the system from crash.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 682

Example 1: C++ Dynamic Memory Allocation

#include <iostream>
using namespace std;

int main() {

 // declare an int pointer
 int* pointInt;

 // declare a float pointer
 float* pointFloat;

 // dynamically allocate memory
 pointInt = new int;
 pointFloat = new float;

 // assigning value to the memory
 *pointInt = 45;
 *pointFloat = 45.45f;

 cout << *pointInt << endl;
 cout << *pointFloat << endl;

 // deallocate the memory
 delete pointInt;
 delete pointFloat;

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 683

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 684

https://www.programiz.com/cpp-programming/online-compiler

Output

45
45.45

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 685

In this program, we dynamically allocated memory to two variables
of int and float types. After assigning values to them and printing them, we finally
deallocate the memories using the code

delete pointInt;
delete pointFloat;

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 686

Note: Dynamic memory allocation can make memory management more efficient.

Especially for arrays, where a lot of the times we don't know the size of the array until
the run time.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 687

Example 2: C++ new and delete Operator for Arrays
// C++ Program to store GPA of n number of students and display it
// where n is the number of students entered by the user

#include <iostream>
using namespace std;

int main() {

 int num;
 cout << "Enter total number of students: ";
 cin >> num;
 float* ptr;

 // memory allocation of num number of floats
 ptr = new float[num];

 cout << "Enter GPA of students." << endl;
 for (int i = 0; i < num; ++i) {
 cout << "Student" << i + 1 << ": ";
 cin >> *(ptr + i);
 }

 cout << "\nDisplaying GPA of students." << endl;
 for (int i = 0; i < num; ++i) {
 cout << "Student" << i + 1 << ": " << *(ptr + i) << endl;
 }

 // ptr memory is released
 delete[] ptr;

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 688

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 689

https://www.programiz.com/cpp-programming/online-compiler

Output

Enter total number of students: 4
Enter GPA of students.
Student1: 3.6
Student2: 3.1
Student3: 3.9
Student4: 2.9
Displaying GPA of students.
Student1: 3.6
Student2: 3.1
Student3: 3.9
Student4: 2.9

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 690

In this program, we have asked the user to enter the number of students and store it in
the num variable.

Then, we have allocated the memory dynamically for the float array using new.

We enter data into the array (and later print them) using pointer notation.

After we no longer need the array, we deallocate the array memory using the
code delete[] ptr; .

Notice the use of [] after delete . We use the square brackets [] in order to denote
that the memory deallocation is that of an array.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 691

Example 3: C++ new and delete Operator for Objects

#include <iostream>
using namespace std;

class Student {
 private:
 int age;

 public:

 // constructor initializes age to 12
 Student() : age(12) {}

 void getAge() {
 cout << "Age = " << age << endl;
 }
};

int main() {

 // dynamically declare Student object
 Student* ptr = new Student();

 // call getAge() function
 ptr->getAge();

 // ptr memory is released
 delete ptr;

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 692

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 693

https://www.programiz.com/cpp-programming/online-compiler

Output

Age = 12

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 694

In this program, we have created a Student class that has a private variable age.

We have initialized age to 12 in the default constructor Student() and print its value
with the function getAge() .

In main() , we have created a Student object using the new operator and use the
pointer ptr to point to its address.

The moment the object is created, the Student() constructor initializes age to 12 .

We then call the getAge() function using the code:

ptr->getAge();

Notice the arrow operator -> . This operator is used to access class members using
pointers.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 695

C++ Inheritance
In this tutorial, we will learn about inheritance in C++ with the help of examples.

Inheritance is one of the key features of Object-oriented programming in C++. It allows
us to create a new class (derived class) from an existing class (base class).

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 696

https://www.programiz.com/cpp-programming/object-class

The derived class inherits the features from the base class and can have additional
features of its own. For example,

class Animal {
 // eat() function
 // sleep() function
};

class Dog : public Animal {
 // bark() function
};

Here, the Dog class is derived from the Animal class. Since Dog is derived
from Animal , members of Animal are accessible to Dog .

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 697

Inheritance in C++

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 698

Notice the use of the keyword public while inheriting Dog from Animal.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 699

class Dog : public Animal {...};

We can also use the keywords private and protected instead of public . We will
learn about the differences between using private , public and protected later in
this tutorial.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 700

is-a relationship

Inheritance is an is-a relationship. We use inheritance only if an is-a relationship is
present between the two classes.

Here are some examples:

A car is a vehicle.
Orange is a fruit.

A surgeon is a doctor.

A dog is an animal.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 701

Example 1: Simple Example of C++ Inheritance
// C++ program to demonstrate inheritance

#include <iostream>
using namespace std;

// base class
class Animal {

 public:
 void eat() {
 cout << "I can eat!" << endl;
 }

 void sleep() {
 cout << "I can sleep!" << endl;
 }
};

// derived class
class Dog : public Animal {

 public:
 void bark() {
 cout << "I can bark! Woof woof!!" << endl;
 }
};

int main() {
 // Create object of the Dog class
 Dog dog1;

 // Calling members of the base class
 dog1.eat();
 dog1.sleep();

 // Calling member of the derived class
 dog1.bark();

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 702

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 703

https://www.programiz.com/cpp-programming/online-compiler

Output

I can eat!
I can sleep!
I can bark! Woof woof!!

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 704

Here, dog1 (the object of derived class Dog) can access members of the base
class Animal . It's because Dog is inherited from Animal .

// Calling members of the Animal class
dog1.eat();
dog1.sleep();

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 705

C++ protected Members

The access modifier protected is especially relevant when it comes to C++ inheritance.

Like private members, protected members are inaccessible outside of the class.
However, they can be accessed by derived classes and friend classes/functions.

We need protected members if we want to hide the data of a class, but still want that
data to be inherited by its derived classes.

To learn more about protected, refer to our C++ Access Modifiers tutorial.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 706

https://www.programiz.com/cpp-programming/access-modifiers

Example 2 : C++ protected Members
// C++ program to demonstrate protected members

#include <iostream>
#include <string>
using namespace std;

// base class
class Animal {

 private:
 string color;

 protected:
 string type;

 public:
 void eat() {
 cout << "I can eat!" << endl;
 }

 void sleep() {
 cout << "I can sleep!" << endl;
 }

 void setColor(string clr) {
 color = clr;
 }

 string getColor() {
 return color;
 }
};

// derived class
class Dog : public Animal {

 public:
 void setType(string tp) {
 type = tp;
 }

 void displayInfo(string c) {
 cout << "I am a " << type << endl;
 cout << "My color is " << c << endl;
 }

 void bark() {
 cout << "I can bark! Woof woof!!" << endl;
 }
};

int main() {
 // Create object of the Dog class
 Dog dog1;

 // Calling members of the base class
 dog1.eat();
 dog1.sleep();
 dog1.setColor("black");

 // Calling member of the derived class
 dog1.bark();
 dog1.setType("mammal");

 // Using getColor() of dog1 as argument
 // getColor() returns string data
 dog1.displayInfo(dog1.getColor());

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 707

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 708

https://www.programiz.com/cpp-programming/online-compiler

Output

I can eat!
I can sleep!
I can bark! Woof woof!!
I am a mammal
My color is black

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 709

Here, the variable type is protected and is thus accessible from the derived class Dog .
We can see this as we have initialized type in the Dog class using the
function setType() .

On the other hand, the private variable color cannot be initialized in Dog .

class Dog : public Animal {

 public:
 void setColor(string clr) {
 // Error: member "Animal::color" is inaccessible
 color = clr;
 }
};

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 710

Also, since the protected keyword hides data, we cannot access type directly from an
object of Dog or Animal class.

// Error: member "Animal::type" is inaccessible
dog1.type = "mammal";

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 711

Access Modes in C++ Inheritance

In our previous tutorials, we have learned about C++ access specifiers such as public,
private, and protected.

So far, we have used the public keyword in order to inherit a class from a previously-
existing base class. However, we can also use the private and protected keywords to
inherit classes. For example,

class Animal {
 // code
};

class Dog : private Animal {
 // code
};

class Cat : protected Animal {
 // code
};

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 712

https://www.programiz.com/cpp-programming/public-protected-private-inheritance

The various ways we can derive classes are known as access modes. These access
modes have the following effect:

1. public: If a derived class is declared in public mode, then the members of the
base class are inherited by the derived class just as they are.

2. private: In this case, all the members of the base class become private members
in the derived class.

3. protected: The public members of the base class become protected members in
the derived class.

The private members of the base class are always private in the derived class.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 713

To learn more, visit our C++ public, private, protected inheritance tutorial.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 714

https://www.programiz.com/cpp-programming/public-protected-private-inheritance

Member Function Overriding in Inheritance

Suppose, base class and derived class have member functions with the same name and
arguments.

If we create an object of the derived class and try to access that member function, the
member function in the derived class is invoked instead of the one in the base class.

The member function of derived class overrides the member function of base class.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 715

Learn more about Function overriding in C++.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 716

https://www.programiz.com/cpp-programming/function-overriding

C++ Public, Protected and Private Inheritance
In this tutorial, we will learn to use public, protected and private inheritance in C++ with
the help of examples.

In C++ inheritance, we can derive a child class from the base class in different access
modes. For example,

class Base {
....
};

class Derived : public Base {
....
};

Notice the keyword public in the code

class Derived : public Base

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 717

https://www.programiz.com/cpp-programming/inheritance

This means that we have created a derived class from the base class in public mode.
Alternatively, we can also derive classes in protected or private modes.

These 3 keywords (public , protected , and private) are known as access specifiers in
C++ inheritance.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 718

public, protected and private inheritance in C++

public, protected, and private inheritance have the following features:

public inheritance makes public members of the base class public in the
derived class, and the protected members of the base class remain protected in
the derived class.

protected inheritance makes the public and protected members of the base
class protected in the derived class.

private inheritance makes the public and protected members of the base
class private in the derived class.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 719

Note: private members of the base class are inaccessible to the derived class.

class Base {
 public:
 int x;
 protected:
 int y;
 private:
 int z;
};

class PublicDerived: public Base {
 // x is public
 // y is protected
 // z is not accessible from PublicDerived
};

class ProtectedDerived: protected Base {
 // x is protected
 // y is protected
 // z is not accessible from ProtectedDerived
};

class PrivateDerived: private Base {
 // x is private
 // y is private
 // z is not accessible from PrivateDerived
};

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 720

Example 1: C++ public Inheritance
// C++ program to demonstrate the working of public inheritance

#include <iostream>
using namespace std;

class Base {
 private:
 int pvt = 1;

 protected:
 int prot = 2;

 public:
 int pub = 3;

 // function to access private member
 int getPVT() {
 return pvt;
 }
};

class PublicDerived : public Base {
 public:
 // function to access protected member from Base
 int getProt() {
 return prot;
 }
};

int main() {
 PublicDerived object1;
 cout << "Private = " << object1.getPVT() << endl;
 cout << "Protected = " << object1.getProt() << endl;
 cout << "Public = " << object1.pub << endl;
 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 721

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 722

https://www.programiz.com/cpp-programming/online-compiler

Output

Private = 1
Protected = 2
Public = 3

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 723

Here, we have derived PublicDerived from Base in public mode.

As a result, in PublicDerived :

prot is inherited as protected.

pub and getPVT() are inherited as public.

pvt is inaccessible since it is private in Base .

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 724

Since private and protected members are not accessible from main() , we need to
create public functions getPVT() and getProt() to access them:

// Error: member "Base::pvt" is inaccessible
cout << "Private = " << object1.pvt;

// Error: member "Base::prot" is inaccessible
cout << "Protected = " << object1.prot;

Notice that the getPVT() function has been defined inside Base . But
the getProt() function has been defined inside PublicDerived .

This is because pvt, which is private in Base , is inaccessible to PublicDerived .

However, prot is accessible to PublicDerived due to public inheritance.
So, getProt() can access the protected variable from within PublicDerived .

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 725

Accessibility in public Inheritance

Accessibility private members protected members public members

Base Class Yes Yes Yes

Derived Class No Yes Yes

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 726

Example 2: C++ protected Inheritance
// C++ program to demonstrate the working of protected inheritance

#include <iostream>
using namespace std;

class Base {
 private:
 int pvt = 1;

 protected:
 int prot = 2;

 public:
 int pub = 3;

 // function to access private member
 int getPVT() {
 return pvt;
 }
};

class ProtectedDerived : protected Base {
 public:
 // function to access protected member from Base
 int getProt() {
 return prot;
 }

 // function to access public member from Base
 int getPub() {
 return pub;
 }
};

int main() {
 ProtectedDerived object1;
 cout << "Private cannot be accessed." << endl;
 cout << "Protected = " << object1.getProt() << endl;
 cout << "Public = " << object1.getPub() << endl;
 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 727

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 728

https://www.programiz.com/cpp-programming/online-compiler

Output

Private cannot be accessed.
Protected = 2
Public = 3

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 729

Here, we have derived ProtectedDerived from Base in protected mode.

As a result, in ProtectedDerived :

prot, pub and getPVT() are inherited as protected.

pvt is inaccessible since it is private in Base .

As we know, protected members cannot be directly accessed from outside the class. As
a result, we cannot use getPVT() from ProtectedDerived .

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 730

That is also why we need to create the getPub() function in ProtectedDerived in order
to access the pub variable.

// Error: member "Base::getPVT()" is inaccessible
cout << "Private = " << object1.getPVT();

// Error: member "Base::pub" is inaccessible
cout << "Public = " << object1.pub;

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 731

Accessibility in protected Inheritance

Accessibility
private

members
protected
members

public members

Base Class Yes Yes Yes

Derived
Class

No Yes
Yes (inherited as protected
variables)

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 732

Example 3: C++ private Inheritance
// C++ program to demonstrate the working of private inheritance

#include <iostream>
using namespace std;

class Base {
 private:
 int pvt = 1;

 protected:
 int prot = 2;

 public:
 int pub = 3;

 // function to access private member
 int getPVT() {
 return pvt;
 }
};

class PrivateDerived : private Base {
 public:
 // function to access protected member from Base
 int getProt() {
 return prot;
 }

 // function to access private member
 int getPub() {
 return pub;
 }
};

int main() {
 PrivateDerived object1;
 cout << "Private cannot be accessed." << endl;
 cout << "Protected = " << object1.getProt() << endl;
 cout << "Public = " << object1.getPub() << endl;
 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 733

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 734

https://www.programiz.com/cpp-programming/online-compiler

Output

Private cannot be accessed.
Protected = 2
Public = 3

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 735

Here, we have derived PrivateDerived from Base in private mode.

As a result, in PrivateDerived :

prot, pub and getPVT() are inherited as private.

pvt is inaccessible since it is private in Base .

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 736

As we know, private members cannot be directly accessed from outside the class. As a
result, we cannot use getPVT() from PrivateDerived .

That is also why we need to create the getPub() function in PrivateDerived in order
to access the pub variable.

// Error: member "Base::getPVT()" is inaccessible
cout << "Private = " << object1.getPVT();

// Error: member "Base::pub" is inaccessible
cout << "Public = " << object1.pub;

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 737

Accessibility in private Inheritance

Accessibility
private

members
protected members public members

Base Class Yes Yes Yes

Derived
Class

No
Yes (inherited as private
variables)

Yes (inherited as private
variables)

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 738

C++ Function Overriding
In this tutorial, we will learn about function overriding in C++ with the help of
examples.

As we know, inheritance is a feature of OOP that allows us to create derived classes
from a base class. The derived classes inherit features of the base class.

Suppose, the same function is defined in both the derived class and the based class.
Now if we call this function using the object of the derived class, the function of the
derived class is executed.

This is known as function overriding in C++. The function in derived class overrides the
function in base class.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 739

https://www.programiz.com/cpp-programming/inheritance

Example 1: C++ Function Overriding

// C++ program to demonstrate function overriding

#include <iostream>
using namespace std;

class Base {
 public:
 void print() {
 cout << "Base Function" << endl;
 }
};

class Derived : public Base {
 public:
 void print() {
 cout << "Derived Function" << endl;
 }
};

int main() {
 Derived derived1;
 derived1.print();
 return 0;
}

Output

Derived Function

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 740

Here, the same function print() is defined in both Base and Derived classes.

So, when we call print() from the Derived object derived1,
the print() from Derived is executed by overriding the function in Base .

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 741

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 742

Working of function overriding in C++

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 743

As we can see, the function was overridden because we called the function from an
object of the Derived class.

Had we called the print() function from an object of the Base class, the function
would not have been overridden.

// Call function of Base class
Base base1;
base1.print(); // Output: Base Function

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 744

Access Overridden Function in C++

To access the overridden function of the base class, we use the scope resolution
operator :: .

We can also access the overridden function by using a pointer of the base class to point
to an object of the derived class and then calling the function from that pointer.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 745

Example 2: C++ Access Overridden Function to the Base Class
// C++ program to access overridden function
// in main() using the scope resolution operator ::

#include <iostream>
using namespace std;

class Base {
 public:
 void print() {
 cout << "Base Function" << endl;
 }
};

class Derived : public Base {
 public:
 void print() {
 cout << "Derived Function" << endl;
 }
};

int main() {
 Derived derived1, derived2;
 derived1.print();

 // access print() function of the Base class
 derived2.Base::print();

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 746

Output

Derived Function
Base Function

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 747

Here, this statement

derived2.Base::print();

accesses the print() function of the Base class.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 748

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 749

Access overridden function using object of derived class in C++

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 750

Example 3: C++ Call Overridden Function From Derived Class
// C++ program to call the overridden function
// from a member function of the derived class

#include <iostream>
using namespace std;

class Base {
 public:
 void print() {
 cout << "Base Function" << endl;
 }
};

class Derived : public Base {
 public:
 void print() {
 cout << "Derived Function" << endl;

 // call overridden function
 Base::print();
 }
};

int main() {
 Derived derived1;
 derived1.print();
 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 751

Output

Derived Function
Base Function

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 752

In this program, we have called the overridden function inside the Derived class itself.

class Derived : public Base {
 public:
 void print() {
 cout << "Derived Function" << endl;
 Base::print();
 }
};

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 753

Notice the code Base::print(); , which calls the overridden function inside
the Derived class.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 754

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 755

Access overridden function inside derived class in C++

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 756

Example 4: C++ Call Overridden Function Using Pointer
// C++ program to access overridden function using pointer
// of Base type that points to an object of Derived class

#include <iostream>
using namespace std;

class Base {
 public:
 void print() {
 cout << "Base Function" << endl;
 }
};

class Derived : public Base {
 public:
 void print() {
 cout << "Derived Function" << endl;
 }
};

int main() {
 Derived derived1;

 // pointer of Base type that points to derived1
 Base* ptr = &derived1;

 // call function of Base class using ptr
 ptr->print();

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 757

Output

Base Function

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 758

In this program, we have created a pointer of Base type named ptr. This pointer points
to the Derived object derived1.

// pointer of Base type that points to derived1
Base* ptr = &derived1;

When we call the print() function using ptr, it calls the overridden function
from Base .

// call function of Base class using ptr
ptr->print();

This is because even though ptr points to a Derived object, it is actually of Base type.
So, it calls the member function of Base .

In order to override the Base function instead of accessing it, we need to use virtual
functions in the Base class.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 759

https://www.programiz.com/cpp-programming/virtual-functions

C++ Multiple, Multilevel and Hierarchical Inheritance
In this tutorial, we will learn about different models of inheritance in C++ programming:
Multiple, Multilevel and Hierarchical inheritance with examples.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 760

Inheritance is one of the core feature of an object-oriented programming language. It
allows software developers to derive a new class from the existing class. The derived
class inherits the features of the base class (existing class).

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 761

https://www.programiz.com/cpp-programming/inheritance

There are various models of inheritance in C++ programming.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 762

C++ Multilevel Inheritance

In C++ programming, not only you can derive a class from the base class but you can
also derive a class from the derived class. This form of inheritance is known as multilevel
inheritance.

class A {
...
};
class B: public A {
...
};
class C: public B {
...
};

Here, class B is derived from the base class A and the class C is derived from the derived
class B.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 763

Example 1: C++ Multilevel Inheritance

#include <iostream>
using namespace std;

class A {
 public:
 void display() {
 cout<<"Base class content.";
 }
};

class B : public A {};

class C : public B {};

int main() {
 C obj;
 obj.display();
 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 764

Output

Base class content.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 765

In this program, class C is derived from class B (which is derived from base class A).

The obj object of class C is defined in the main() function.

When the display() function is called, display() in class A is executed. It's because
there is no display() function in class C and class B.

The compiler first looks for the display() function in class C. Since the function
doesn't exist there, it looks for the function in class B (as C is derived from B).

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 766

The function also doesn't exist in class B, so the compiler looks for it in class A (as B is
derived from A).

If display() function exists in C, the compiler overrides display() of class A (because
of member function overriding).

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 767

https://www.programiz.com/cpp-programming/function-overriding

C++ Multiple Inheritance

In C++ programming, a class can be derived from more than one parent. For example,
A class Bat is derived from base classes Mammal and WingedAnimal. It makes sense
because bat is a mammal as well as a winged animal.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 768

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 769

Multiple Inheritance

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 770

Example 2: Multiple Inheritance in C++ Programming

#include <iostream>
using namespace std;

class Mammal {
 public:
 Mammal() {
 cout << "Mammals can give direct birth." << endl;
 }
};

class WingedAnimal {
 public:
 WingedAnimal() {
 cout << "Winged animal can flap." << endl;
 }
};

class Bat: public Mammal, public WingedAnimal {};

int main() {
 Bat b1;
 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 771

Output

Mammals can give direct birth.
Winged animal can flap.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 772

Ambiguity in Multiple Inheritance

The most obvious problem with multiple inheritance occurs during function overriding.

Suppose, two base classes have a same function which is not overridden in derived
class.

If you try to call the function using the object of the derived class, compiler shows error.
It's because compiler doesn't know which function to call. For example,

class base1 {
 public:
 void someFunction() {....}
};
class base2 {
 void someFunction() {....}
};
class derived : public base1, public base2 {};

int main() {
 derived obj;
 obj.someFunction() // Error!
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 773

This problem can be solved using the scope resolution function to specify which
function to class either base1or base2

int main() {
 obj.base1::someFunction(); // Function of base1 class is called
 obj.base2::someFunction(); // Function of base2 class is called.
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 774

C++ Hierarchical Inheritance

If more than one class is inherited from the base class, it's known as hierarchical
inheritance. In hierarchical inheritance, all features that are common in child classes are
included in the base class.

For example, Physics, Chemistry, Biology are derived from Science class. Similarly, Dog,
Cat, Horse are derived from Animal class.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 775

http://www.programtopia.net/cplusplus/docs/hierarchical-inheritance-c-programming?utm_source=programiz&utm_campaign=display

Syntax of Hierarchical Inheritance

class base_class {

}
class first_derived_class: public base_class {

}
class second_derived_class: public base_class {

}
class third_derived_class: public base_class {

}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 776

Example 3: Hierarchical Inheritance in C++ Programming
// C++ program to demonstrate hierarchical inheritance

#include <iostream>
using namespace std;

// base class
class Animal {
 public:
 void info() {
 cout << "I am an animal." << endl;
 }
};

// derived class 1
class Dog : public Animal {
 public:
 void bark() {
 cout << "I am a Dog. Woof woof." << endl;
 }
};

// derived class 2
class Cat : public Animal {
 public:
 void meow() {
 cout << "I am a Cat. Meow." << endl;
 }
};

int main() {
 // Create object of Dog class
 Dog dog1;
 cout << "Dog Class:" << endl;
 dog1.info(); // Parent Class function
 dog1.bark();

 // Create object of Cat class
 Cat cat1;
 cout << "\nCat Class:" << endl;
 cat1.info(); // Parent Class function
 cat1.meow();

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 777

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 778

https://www.programiz.com/cpp-programming/online-compiler

Output

Dog Class:
I am an animal.
I am a Dog. Woof woof.
Cat Class:
I am an animal.
I am a Cat. Meow.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 779

Here, both the Dog and Cat classes are derived from the Animal class. As such, both
the derived classes can access the info() function belonging to the Animal class.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 780

C++ friend Function and friend Classes
In this tutorial, we will learn to create friend functions and friend classes in C++ with the
help of examples.

Data hiding is a fundamental concept of object-oriented programming. It restricts the
access of private members from outside of the class.

Similarly, protected members can only be accessed by derived classes and are
inaccessible from outside. For example,

class MyClass {
 private:
 int member1;
}

int main() {
 MyClass obj;

 // Error! Cannot access private members from here.
 obj.member1 = 5;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 781

However, there is a feature in C++ called friend functions that break this rule and allow
us to access member functions from outside the class.

Similarly, there is a friend class as well, which we will learn later in this tutorial.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 782

friend Function in C++

A friend function can access the private and protected data of a class. We declare a
friend function using the friend keyword inside the body of the class.

class className {

 friend returnType functionName(arguments);

}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 783

Example 1: Working of friend Function
// C++ program to demonstrate the working of friend function

#include <iostream>
using namespace std;

class Distance {
 private:
 int meter;

 // friend function
 friend int addFive(Distance);

 public:
 Distance() : meter(0) {}

};

// friend function definition
int addFive(Distance d) {

 //accessing private members from the friend function
 d.meter += 5;
 return d.meter;
}

int main() {
 Distance D;
 cout << "Distance: " << addFive(D);
 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 784

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 785

https://www.programiz.com/cpp-programming/online-compiler

Output

Distance: 5

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 786

Here, addFive() is a friend function that can access both private and public data
members.

Though this example gives us an idea about the concept of a friend function, it doesn't
show any meaningful use.

A more meaningful use would be operating on objects of two different classes. That's
when the friend function can be very helpful.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 787

Example 2: Add Members of Two Different Classes
// Add members of two different classes using friend functions

#include <iostream>
using namespace std;

// forward declaration
class ClassB;

class ClassA {

 public:
 // constructor to initialize numA to 12
 ClassA() : numA(12) {}

 private:
 int numA;

 // friend function declaration
 friend int add(ClassA, ClassB);
};

class ClassB {

 public:
 // constructor to initialize numB to 1
 ClassB() : numB(1) {}

 private:
 int numB;

 // friend function declaration
 friend int add(ClassA, ClassB);
};

// access members of both classes
int add(ClassA objectA, ClassB objectB) {
 return (objectA.numA + objectB.numB);
}

int main() {
 ClassA objectA;
 ClassB objectB;
 cout << "Sum: " << add(objectA, objectB);
 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 788

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 789

https://www.programiz.com/cpp-programming/online-compiler

Output

Sum: 13

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 790

In this program, ClassA and ClassB have declared add() as a friend function. Thus,
this function can access private data of both classes.

One thing to notice here is the friend function inside ClassA is using the ClassB .
However, we haven't defined ClassB at this point.

// inside classA
friend int add(ClassA, ClassB);

For this to work, we need a forward declaration of ClassB in our program.

// forward declaration
class ClassB;

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 791

friend Class in C++

We can also use a friend Class in C++ using the friend keyword. For example,

class ClassB;

class ClassA {
 // ClassB is a friend class of ClassA
 friend class ClassB;

}

class ClassB {

}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 792

When a class is declared a friend class, all the member functions of the friend class
become friend functions.

Since ClassB is a friend class, we can access all members of ClassA from
inside ClassB .

However, we cannot access members of ClassB from inside ClassA . It is because
friend relation in C++ is only granted, not taken.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 793

Example 3: C++ friend Class
// C++ program to demonstrate the working of friend class

#include <iostream>
using namespace std;

// forward declaration
class ClassB;

class ClassA {
 private:
 int numA;

 // friend class declaration
 friend class ClassB;

 public:
 // constructor to initialize numA to 12
 ClassA() : numA(12) {}
};

class ClassB {
 private:
 int numB;

 public:
 // constructor to initialize numB to 1
 ClassB() : numB(1) {}

 // member function to add numA
 // from ClassA and numB from ClassB
 int add() {
 ClassA objectA;
 return objectA.numA + numB;
 }
};

int main() {
 ClassB objectB;
 cout << "Sum: " << objectB.add();
 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 794

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 795

https://www.programiz.com/cpp-programming/online-compiler

Output

Sum: 13

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 796

Here, ClassB is a friend class of ClassA . So, ClassB has access to the members
of classA .

In ClassB , we have created a function add() that returns the sum of numA and numB.

Since ClassB is a friend class, we can create objects of ClassA inside of ClassB .

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 797

C++ Virtual Functions
In this tutorial, we will learn about C++ virtual function and its use with the help of
examples.

A virtual function is a member function in the base class that we expect to redefine in
derived classes.

Basically, a virtual function is used in the base class in order to ensure that the function
is overridden. This especially applies to cases where a pointer of base class points to an
object of a derived class.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 798

For example, consider the code below:

class Base {
 public:
 void print() {
 // code
 }
};

class Derived : public Base {
 public:
 void print() {
 // code
 }
};

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 799

Later, if we create a pointer of Base type to point to an object of Derived class and
call the print() function, it calls the print() function of the Base class.

In other words, the member function of Base is not overridden.

int main() {
 Derived derived1;
 Base* base1 = &derived1;

 // calls function of Base class
 base1->print();

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 800

In order to avoid this, we declare the print() function of the Base class as virtual by
using the virtual keyword.

class Base {
 public:
 virtual void print() {
 // code
 }
};

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 801

Virtual functions are an integral part of polymorphism in C++. To learn more, check our
tutorial on C++ Polymorphism.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 802

https://www.programiz.com/cpp-programming/polymorphism

Example 1: C++ virtual Function

#include <iostream>
using namespace std;

class Base {
 public:
 virtual void print() {
 cout << "Base Function" << endl;
 }
};

class Derived : public Base {
 public:
 void print() {
 cout << "Derived Function" << endl;
 }
};

int main() {
 Derived derived1;

 // pointer of Base type that points to derived1
 Base* base1 = &derived1;

 // calls member function of Derived class
 base1->print();

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 803

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 804

https://www.programiz.com/cpp-programming/online-compiler

Output

Derived Function

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 805

Here, we have declared the print() function of Base as virtual .

So, this function is overridden even when we use a pointer of Base type that points to
the Derived object derived1.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 806

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 807

Working of virtual functions in C++

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 808

C++ override Identifier

C++ 11 has given us a new identifier override that is very useful to avoid bugs while
using virtual functions.

This identifier specifies the member functions of the derived classes that override the
member function of the base class.

For example,

class Base {
 public:
 virtual void print() {
 // code
 }
};

class Derived : public Base {
 public:
 void print() override {
 // code
 }
};

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 809

If we use a function prototype in Derived class and define that function outside of the
class, then we use the following code:

class Derived : public Base {
 public:
 // function prototype
 void print() override;
};

// function definition
void Derived::print() {
 // code
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 810

Use of C++ override

When using virtual functions, it is possible to make mistakes while declaring the
member functions of the derived classes.

Using the override identifier prompts the compiler to display error messages when
these mistakes are made.

Otherwise, the program will simply compile but the virtual function will not be
overridden.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 811

Some of these possible mistakes are:

Functions with incorrect names: For example, if the virtual function in the base
class is named print() , but we accidentally name the overriding function in the
derived class as pint() .

Functions with different return types: If the virtual function is, say, of void type
but the function in the derived class is of int type.

Functions with different parameters: If the parameters of the virtual function and
the functions in the derived classes don't match.

No virtual function is declared in the base class.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 812

Suppose we have a base class Animal and derived classes Dog and Cat .

Suppose each class has a data member named type. Suppose these variables are
initialized through their respective constructors.

class Animal {
 private:
 string type;

 public:
 Animal(): type("Animal") {}

};

class Dog : public Animal {
 private:
 string type;

 public:
 Animal(): type("Dog") {}

};

class Cat : public Animal {
 private:
 string type;

 public:
 Animal(): type("Cat") {}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 813

each class:

1. getType() to return the value of type

2. print() to print the value of type

We could create both these functions in each class separately and override them, which
will be long and tedious.

Or we could make getType() virtual in the Animal class, then create a single,
separate print() function that accepts a pointer of Animal type as its argument. We
can then use this single function to override the virtual function.

class Animal {

 public:

 virtual string getType {...}
};

...

...

void print(Animal* ani) {

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 814

This will make the code shorter, cleaner, and less repetitive.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 815

Example 2: C++ virtual Function Demonstration
// C++ program to demonstrate the use of virtual function

#include <iostream>
#include <string>
using namespace std;

class Animal {
 private:
 string type;

 public:
 // constructor to initialize type
 Animal() : type("Animal") {}

 // declare virtual function
 virtual string getType() {
 return type;
 }
};

class Dog : public Animal {
 private:
 string type;

 public:
 // constructor to initialize type
 Dog() : type("Dog") {}

 string getType() override {
 return type;
 }
};

class Cat : public Animal {
 private:
 string type;

 public:
 // constructor to initialize type
 Cat() : type("Cat") {}

 string getType() override {
 return type;
 }
};

void print(Animal* ani) {
 cout << "Animal: " << ani->getType() << endl;
}

int main() {
 Animal* animal1 = new Animal();
 Animal* dog1 = new Dog();
 Animal* cat1 = new Cat();

 print(animal1);
 print(dog1);
 print(cat1);

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 816

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 817

https://www.programiz.com/cpp-programming/online-compiler

Output

Animal: Animal
Animal: Dog
Animal: Cat

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 818

Here, we have used the virtual function getType() and an Animal pointer ani in order
to avoid repeating the print() function in every class.

void print(Animal* ani) {
 cout << "Animal: " << ani->getType() << endl;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 819

In main() , we have created 3 Animal pointers to dynamically create objects
of Animal , Dog and Cat classes.

// dynamically create objects using Animal pointers
Animal* animal1 = new Animal();
Animal* dog1 = new Dog();
Animal* cat1 = new Cat();

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 820

We then call the print() function using these pointers:

1. When print(animal1) is called, the pointer points to an Animal object. So, the
virtual function in Animal class is executed inside of print() .

2. When print(dog1) is called, the pointer points to a Dog object. So, the virtual
function is overridden and the function of Dog is executed inside of print() .

3. When print(cat1) is called, the pointer points to a Cat object. So, the virtual
function is overridden and the function of Cat is executed inside of print() .

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 821

C++ Class Templates
In this tutorial, we will learn about class templates in C++ with the help of examples.

Templates are powerful features of C++ which allows us to write generic programs.
There are two ways we can implement templates:

Function Templates

Class Templates

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 822

https://programiz.com/cpp-programming/function-template

Similar to function templates, we can use class templates to create a single class to work
with different data types.

Class templates come in handy as they can make our code shorter and more
manageable.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 823

Class Template Declaration

A class template starts with the keyword template followed by template parameter(s)
inside <> which is followed by the class declaration.

template <class T>
class className {
 private:
 T var;

 public:
 T functionName(T arg);

};

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 824

In the above declaration, T is the template argument which is a placeholder for the
data type used, and class is a keyword.

Inside the class body, a member variable var and a member
function functionName() are both of type T .

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 825

Creating a Class Template Object

Once we've declared and defined a class template, we can create its objects in other
classes or functions (such as the main() function) with the following syntax

className<dataType> classObject;

For example,

className<int> classObject;
className<float> classObject;
className<string> classObject;

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 826

Example 1: C++ Class Templates
// C++ program to demonstrate the use of class templates

#include <iostream>
using namespace std;

// Class template
template <class T>
class Number {
 private:
 // Variable of type T
 T num;

 public:
 Number(T n) : num(n) {} // constructor

 T getNum() {
 return num;
 }
};

int main() {

 // create object with int type
 Number<int> numberInt(7);

 // create object with double type
 Number<double> numberDouble(7.7);

 cout << "int Number = " << numberInt.getNum() << endl;
 cout << "double Number = " << numberDouble.getNum() << endl;

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 827

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 828

https://www.programiz.com/cpp-programming/online-compiler

Output

int Number = 7
double Number = 7.7

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 829

In this program. we have created a class template Number with the code

template <class T>
class Number {
 private:
 T num;

 public:
 Number(T n) : num(n) {}
 T getNum() { return num; }
};

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 830

Notice that the variable num, the constructor argument n, and the
function getNum() are of type T , or have a return type T . That means that they can
be of any type.

In main() , we have implemented the class template by creating its objects

Number<int> numberInt(7);
Number<double> numberDouble(7.7);

Notice the codes Number<int> and Number<double> in the code above.

This creates a class definition each for int and float , which are then used
accordingly.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 831

It is compulsory to specify the type when declaring objects of class templates.
Otherwise, the compiler will produce an error.

//Error
Number numberInt(7);
Number numberDouble(7.7);

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 832

Defining a Class Member Outside the Class Template

Suppose we need to define a function outside of the class template. We can do this
with the following code:

template <class T>
class ClassName {

 // Function prototype
 returnType functionName();
};

// Function definition
template <class T>
returnType ClassName<T>::functionName() {
 // code
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 833

Notice that the code template <class T> is repeated while defining the function
outside of the class. This is necessary and is part of the syntax.

If we look at the code in Example 1, we have a function getNum() that is defined inside
the class template Number .

We can define getNum() outside of Number with the following code:

template <class T>
class Number {

 // Function prototype
 T getnum();
};

// Function definition
template <class T>
T Number<T>::getNum() {
 return num;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 834

Example 2: Simple Calculator Using Class Templates

This program uses a class template to perform addition, subtraction, multiplication and
division of two variables num1 and num2.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 835

The variables can be of any type, though we have only used int and float types in
this example.

#include <iostream>
using namespace std;

template <class T>
class Calculator {
 private:
 T num1, num2;

 public:
 Calculator(T n1, T n2) {
 num1 = n1;
 num2 = n2;
 }

 void displayResult() {
 cout << "Numbers: " << num1 << " and " << num2 << "." << endl;
 cout << num1 << " + " << num2 << " = " << add() << endl;
 cout << num1 << " - " << num2 << " = " << subtract() << endl;
 cout << num1 << " * " << num2 << " = " << multiply() << endl;
 cout << num1 << " / " << num2 << " = " << divide() << endl;
 }

 T add() { return num1 + num2; }
 T subtract() { return num1 - num2; }
 T multiply() { return num1 * num2; }
 T divide() { return num1 / num2; }
};

int main() {
 Calculator<int> intCalc(2, 1);
 Calculator<float> floatCalc(2.4, 1.2);

 cout << "Int results:" << endl;
 intCalc.displayResult();

 cout << endl
 << "Float results:" << endl;
 floatCalc.displayResult();

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 836

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 837

https://www.programiz.com/cpp-programming/online-compiler

Output

Int results:
Numbers: 2 and 1.
2 + 1 = 3
2 - 1 = 1
2 * 1 = 2
2 / 1 = 2
Float results:
Numbers: 2.4 and 1.2.
2.4 + 1.2 = 3.6
2.4 - 1.2 = 1.2
2.4 * 1.2 = 2.88
2.4 / 1.2 = 2

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 838

In the above program, we have declared a class template Calculator .

The class contains two private members of type T : num1 & num2, and a constructor to
initialize the members.

We also have add() , subtract() , multiply() , and divide() functions that have the
return type T . We also have a void function displayResult() that prints out the
results of the other functions.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 839

In main() , we have created two objects of Calculator : one for int data type and
another for float data type.

Calculator<int> intCalc(2, 1);
Calculator<float> floatCalc(2.4, 1.2);

This prompts the compiler to create two class definitions for the respective data types
during compilation.

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 840

C++ Class Templates With Multiple Parameters

In C++, we can use multiple template parameters and even use default arguments for
those parameters. For example,

template <class T, class U, class V = int>
class ClassName {
 private:
 T member1;
 U member2;
 V member3;

 public:

};

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 841

Example 3: C++ Templates With Multiple Parameters
#include <iostream>
using namespace std;

// Class template with multiple and default parameters
template <class T, class U, class V = char>
class ClassTemplate {
 private:
 T var1;
 U var2;
 V var3;

 public:
 ClassTemplate(T v1, U v2, V v3) : var1(v1), var2(v2), var3(v3) {} // constructor

 void printVar() {
 cout << "var1 = " << var1 << endl;
 cout << "var2 = " << var2 << endl;
 cout << "var3 = " << var3 << endl;
 }
};

int main() {
 // create object with int, double and char types
 ClassTemplate<int, double> obj1(7, 7.7, 'c');
 cout << "obj1 values: " << endl;
 obj1.printVar();

 // create object with int, double and bool types
 ClassTemplate<double, char, bool> obj2(8.8, 'a', false);
 cout << "\nobj2 values: " << endl;
 obj2.printVar();

 return 0;
}

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 842

Run Code

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 843

https://www.programiz.com/cpp-programming/online-compiler

Output

obj1 values:
var1 = 7
var2 = 7.7
var3 = c
obj2 values:
var1 = 8.8
var2 = a
var3 = 0

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 844

In this program, we have created a class template, named ClassTemplate , with three
parameters, with one of them being a default parameter.

template <class T, class U, class V = char>
class ClassTemplate {
 // code
};

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 845

Notice the code class V = char . This means that V is a default parameter whose
default type is char .

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 846

Inside ClassTemplate , we declare 3 variables var1, var2 and var3, each corresponding to
one of the template parameters.

class ClassTemplate {
 private:
 T var1;
 U var2;
 V var3;

};

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 847

In main() , we create two objects of ClassTemplate with the code

// create object with int, double and char types
ClassTemplate<int, double> obj1(7, 7.7, 'c');

// create object with double, char and bool types
ClassTemplate<double, char, bool> obj2(8, 8.8, false);

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 848

Here,

Object T U V

obj1 int double char

obj2 double char bool

For obj1, T = int , U = double and V = char .

For obj2, T = double , U = char and V = bool .

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 849

References

Learn C++ Programming

Introduction to C++ | C Plus Plus Programming Language Tutorials

The C and C++ programming tutorials, hands-on approach with program
examples, code samples and tons of output images using Visual C++, C++ Builder,
Linux gcc and g++ compilers and IDE

CE103 Algorithms and Programming I

 RTEU CE103 Week-6 850

https://www.programiz.com/cpp-programming
http://www.btechsmartclass.com/cpp-programming/index.php
https://www.tenouk.com/cncplusplustutorials.html

