
CE103 Algorithms and Programming I
C++ Functional Console Programming

Author: Asst. Prof. Dr. Uğur CORUH

Contents
0.1 CE103 Algorithms and Programming I . 7

0.1.1 Week-6 . 7
0.1.2 Books and Resources . 7
0.1.3 C++ Functional Console Programming . 7
0.1.4 C++ Introduction . 7

1 C++ Variables, Literals and Constants 8
1.1 C++ Variables . 8

1.1.1 Rules for naming a variable . 8
1.2 C++ Literals . 8

1.2.1 1. Integers . 8
1.2.2 2. Floating-point Literals . 9
1.2.3 3. Characters . 9
1.2.4 4. Escape Sequences . 9
1.2.5 5. String Literals . 9

1.3 C++ Constants . 10

2 C++ Data Types 10
2.1 C++ Fundamental Data Types . 10

2.1.1 1. C++ int . 10
2.1.2 2. C++ float and double . 11
2.1.3 3. C++ char . 11
2.1.4 4. C++ wchar_t . 11
2.1.5 5. C++ bool . 11
2.1.6 6. C++ void . 11

2.2 C++ Type Modifiers . 12
2.2.1 C++ Modified Data Types List . 12

2.3 Derived Data Types . 12

3 C++ Basic Input/Output 12
3.1 C++ Output . 13

3.1.1 Example 1: String Output . 13
3.1.2 Example 2: Numbers and Characters Output . 14

3.2 C++ Input . 14
3.2.1 Example 3: Integer Input/Output . 14

3.3 C++ Taking Multiple Inputs . 15

4 C++ Type Conversion 15
4.1 Implicit Type Conversion . 16

4.1.1 Example 1: Conversion From int to double . 16
4.1.2 Example 2: Automatic Conversion from double to int 17
4.1.3 Data Loss During Conversion (Narrowing Conversion) 17

4.2 C++ Explicit Conversion . 19
4.2.1 C-style Type Casting . 19

1

4.2.2 Function-style Casting . 19
4.2.3 Example 3: Type Casting . 20
4.2.4 Type Conversion Operators . 20

5 C++ Operators 21
5.1 1. C++ Arithmetic Operators . 21

5.1.1 Example 1: Arithmetic Operators . 21
5.1.2 Increment and Decrement Operators . 22
5.1.3 Example 2: Increment and Decrement Operators . 23

5.2 2. C++ Assignment Operators . 23
5.2.1 Example 3: Assignment Operators . 24

5.3 3. C++ Relational Operators . 24
5.3.1 Example 4: Relational Operators . 25

5.4 4. C++ Logical Operators . 26
5.4.1 Example 5: Logical Operators . 26

5.5 5. C++ Bitwise Operators . 27
5.6 6. Other C++ Operators . 28

6 C++ Comments 28
6.1 Single Line Comments . 28
6.2 Multi-line comments . 29
6.3 Using Comments for Debugging . 29
6.4 Why use Comments? . 30

6.4.1 C++ Flow Control . 30

7 C++ if, if…else and Nested if…else 30
7.1 C++ if Statement . 30

7.1.1 Example 1: C++ if Statement . 31
7.2 C++ if…else . 32

7.2.1 Example 2: C++ if…else Statement . 33
7.3 C++ if…else…else if statement . 34

7.3.1 Example 3: C++ if…else…else if . 35
7.4 C++ Nested if…else . 36

7.4.1 Example 4: C++ Nested if . 36
7.5 Body of if…else With Only One Statement . 37
7.6 More on Decision Making . 38

8 C++ for Loop 38
8.1 C++ for loop . 39
8.2 Flowchart of for Loop in C++ . 41

8.2.1 Example 1: Printing Numbers From 1 to 5 . 42
8.2.2 Example 2: Display a text 5 times . 42
8.2.3 Example 3: Find the sum of first n Natural Numbers 43

8.3 Ranged Based for Loop . 44
8.3.1 Example 4: Range Based for Loop . 44
8.3.2 C++ Infinite for loop . 45

9 C++ while and do…while Loop 45
9.1 C++ while Loop . 45

9.1.1 Flowchart of while Loop . 46
9.1.2 Example 1: Display Numbers from 1 to 5 . 47
9.1.3 Example 2: Sum of Positive Numbers Only . 47

9.2 C++ do…while Loop . 48
9.2.1 Flowchart of do…while Loop . 49
9.2.2 Example 3: Display Numbers from 1 to 5 . 49
9.2.3 Example 4: Sum of Positive Numbers Only . 50

9.3 Infinite while loop . 51
9.4 for vs while loops . 52

2

10 C++ break Statement 52
10.1 Working of C++ break Statement . 53
10.2 Example 1: break with for loop . 53
10.3 Example 2: break with while loop . 54
10.4 break with Nested loop . 55

11 C++ continue Statement 56
11.1 Working of C++ continue Statement . 57
11.2 Example 1: continue with for loop . 57
11.3 Example 2: continue with while loop . 58
11.4 continue with Nested loop . 59

12 C++ switch..case Statement 60
12.1 Flowchart of switch Statement . 63

12.1.1 Example: Create a Calculator using the switch Statement 64

13 C++ goto Statement 65
13.1 Syntax of goto Statement . 66

13.1.1 Example: goto Statement . 66
13.1.2 Reason to Avoid goto Statement . 67
13.1.3 C++ Functions . 67

14 C++ Functions 68
14.1 C++ User-defined Function . 68

14.1.1 C++ Function Declaration . 68
14.1.2 Calling a Function . 69
14.1.3 Example 1: Display a Text . 69
14.1.4 Function Parameters . 70
14.1.5 Example 2: Function with Parameters . 70
14.1.6 Return Statement . 71
14.1.7 Example 3: Add Two Numbers . 72
14.1.8 Function Prototype . 73
14.1.9 Example 4: C++ Function Prototype . 74
14.1.10Benefits of Using User-Defined Functions . 74

14.2 C++ Library Functions . 75
14.2.1 Example 5: C++ Program to Find the Square Root of a Number 75

15 C++ User-defined Function Types 76
15.1 Example 1: No arguments passed and no return value . 76
15.2 Example 2: No arguments passed but a return value . 77
15.3 Example 3: Arguments passed but no return value . 78
15.4 Example 4: Arguments passed and a return value. 79
15.5 Which method is better? . 79

16 C++ Function Overloading 80
16.1 Example 1: Overloading Using Different Types of Parameter 80
16.2 Example 2: Overloading Using Different Number of Parameters 81

17 C++ Programming Default Arguments (Parameters) 84
17.1 Working of default arguments . 84
17.2 Example: Default Argument . 85
17.3 Things to Remember . 86

18 C++ Storage Class 87
18.1 Local Variable . 87

18.1.1 Example 1: Local variable . 88
18.2 Global Variable . 88

18.2.1 Example 2: Global variable . 88

3

18.2.2 Static Local variable . 89
18.2.3 Example 3: Static local variable . 89

18.3 Register Variable (Deprecated in C++11) . 90
18.4 Thread Local Storage . 90

19 C++ Recursion 91
19.1 Working of Recursion in C++ . 91
19.2 Example 1: Factorial of a Number Using Recursion . 92

19.2.1 Working of Factorial Program . 93
19.3 Advantages and Disadvantages of Recursion . 94

19.3.1 Advantages of C++ Recursion . 94
19.3.2 Disadvantages of C++ Recursion . 94

20 C++ Return by Reference 94
20.1 Example: Return by Reference . 94

20.1.1 Important Things to Remember When Returning by Reference. 95
20.1.2 C++ Arrays & String . 95

21 C++ Arrays 96
21.1 C++ Array Declaration . 96
21.2 Access Elements in C++ Array . 96

21.2.1 Few Things to Remember: . 96
21.3 C++ Array Initialization . 97

21.3.1 C++ Array With Empty Members . 97
21.4 How to insert and print array elements? . 98
21.5 Example 1: Displaying Array Elements . 98
21.6 Example 2: Take Inputs from User and Store Them in an Array 99
21.7 Example 3: Display Sum and Average of Array Elements Using for Loop 100
21.8 C++ Array Out of Bounds . 101

22 C++ Multidimensional Arrays 101
22.1 Multidimensional Array Initialization . 102

22.1.1 1. Initialization of two-dimensional array . 102
22.1.2 2. Initialization of three-dimensional array . 103

22.2 Example 1: Two Dimensional Array . 104
22.3 Example 2: Taking Input for Two Dimensional Array . 104
22.4 Example 3: Three Dimensional Array . 105

23 Passing Array to a Function in C++ Programming 107
23.1 Syntax for Passing Arrays as Function Parameters . 107

23.1.1 Example 1: Passing One-dimensional Array to a Function 107
23.1.2 Passing Multidimensional Array to a Function . 108
23.1.3 Example 2: Passing Multidimensional Array to a Function 108

23.2 C++ Returning an Array From a Function . 109

24 C++ Strings 110
24.1 C-strings . 110

24.1.1 How to define a C-string? . 110
24.1.2 Alternative ways of defining a string . 110
24.1.3 Example 1: C++ String to read a word . 110
24.1.4 Example 2: C++ String to read a line of text . 111

24.2 string Object . 111
24.2.1 Example 3: C++ string using string data type . 112

24.3 Passing String to a Function . 112
24.3.1 C++ Structures . 114

25 C++ Structures 115
25.1 How to declare a structure in C++ programming? . 115

4

25.2 How to define a structure variable? . 116
25.3 How to access members of a structure? . 116
25.4 Example: C++ Structure . 116

26 C++ Structure and Function 117
26.1 Passing structure to function in C++ . 117

26.1.1 Example 1: C++ Structure and Function . 117
26.1.2 Example 2: Returning structure from function in C++ 118

27 C++ Pointers to Structure 119
27.1 Example: Pointers to Structure . 120

28 C++ Enumeration 121
28.1 Enumerated Type Declaration . 121

28.1.1 Example 1: Enumeration Type . 122
28.1.2 Example2: Changing Default Value of Enums . 122

28.2 Why enums are used in C++ programming? . 122
28.2.1 How to use enums for flags? . 123

29 C++ Classes and Objects 124
29.1 C++ Class . 125

29.1.1 Create a Class . 125
29.2 C++ Objects . 125

29.2.1 Syntax to Define Object in C++ . 125
29.2.2 C++ Access Data Members and Member Functions 126
29.2.3 Example 1: Object and Class in C++ Programming 126
29.2.4 Example 2: Using public and private in C++ Class . 128

30 C++ Constructors 129
30.1 C++ Default Constructor . 129

30.1.1 Example 1: C++ Default Constructor . 130
30.2 C++ Parameterized Constructor . 130

30.2.1 Example 2: C++ Parameterized Constructor . 130
30.3 C++ Copy Constructor . 131

30.3.1 Example 3: C++ Copy Constructor . 132

31 How to pass and return object from C++ Functions? 133
31.1 Example 1: C++ Pass Objects to Function . 133
31.2 Example 2: C++ Return Object from a Function . 135

32 C++ Operator Overloading 136
32.1 Syntax for C++ Operator Overloading . 137
32.2 Operator Overloading in Unary Operators . 137

32.2.1 Example1: ++ Operator (Unary Operator) Overloading 137
32.2.2 Example 2: ++ Operator (Unary Operator) Overloading 138
32.2.3 Example 3: Return Value from Operator Function (++ Operator) 140

32.3 Operator Overloading in Binary Operators . 141
32.3.1 Example 4: C++ Binary Operator Overloading . 142

32.4 Things to Remember in C++ Operator Overloading . 144

33 C++ Pointers 145

34 C++ Pointers 145
34.1 Address in C++ . 145

34.1.1 Example 1: Printing Variable Addresses in C++ . 145
34.2 C++ Pointers . 146

34.2.1 Assigning Addresses to Pointers . 146
34.2.2 Get the Value from the Address Using Pointers . 146

5

34.2.3 Example 2: Working of C++ Pointers . 147
34.2.4 Changing Value Pointed by Pointers . 148
34.2.5 Example 3: Changing Value Pointed by Pointers . 148

34.3 Common mistakes when working with pointers . 149

35 C++ Pointers and Arrays 150
35.1 Point to Every Array Elements . 151
35.2 Example 1: C++ Pointers and Arrays . 152
35.3 Example 2: Array name used as pointer . 153

36 C++ Call by Reference: Using pointers 154
36.1 Example 1: Passing by reference without pointers . 156
36.2 Example 2: Passing by reference using pointers . 157

37 C++ Memory Management: new and delete 159
37.1 C++ new Operator . 159
37.2 delete Operator . 159
37.3 Example 1: C++ Dynamic Memory Allocation . 160
37.4 Example 2: C++ new and delete Operator for Arrays . 161
37.5 Example 3: C++ new and delete Operator for Objects . 162

38 C++ Inheritance 163
38.1 is-a relationship . 164
38.2 Example 1: Simple Example of C++ Inheritance . 165
38.3 C++ protected Members . 166

38.3.1 Example 2 : C++ protected Members . 166
38.4 Access Modes in C++ Inheritance . 168
38.5 Member Function Overriding in Inheritance . 168

39 C++ Public, Protected and Private Inheritance 169
39.1 public, protected and private inheritance in C++ . 169
39.2 Example 1: C++ public Inheritance . 170

39.2.1 Accessibility in public Inheritance . 171
39.3 Example 2: C++ protected Inheritance . 171

39.3.1 Accessibility in protected Inheritance . 173
39.4 Example 3: C++ private Inheritance . 173

39.4.1 Accessibility in private Inheritance . 174

40 C++ Function Overriding 174
40.1 Example 1: C++ Function Overriding . 175
40.2 Access Overridden Function in C++ . 176

40.2.1 Example 2: C++ Access Overridden Function to the Base Class 177
40.2.2 Example 3: C++ Call Overridden Function From Derived Class 178
40.2.3 Example 4: C++ Call Overridden Function Using Pointer 180

41 C++ Multiple, Multilevel and Hierarchical Inheritance 181
41.1 C++ Multilevel Inheritance . 182

41.1.1 Example 1: C++ Multilevel Inheritance . 182
41.2 C++ Multiple Inheritance . 183

41.2.1 Example 2: Multiple Inheritance in C++ Programming 183
41.2.2 Ambiguity in Multiple Inheritance . 184

41.3 C++ Hierarchical Inheritance . 184
41.3.1 Syntax of Hierarchical Inheritance . 184
41.3.2 Example 3: Hierarchical Inheritance in C++ Programming 185

42 C++ friend Function and friend Classes 186
42.1 friend Function in C++ . 186

42.1.1 Example 1: Working of friend Function . 187

6

42.1.2 Example 2: Add Members of Two Different Classes . 188
42.2 friend Class in C++ . 189

42.2.1 Example 3: C++ friend Class . 189

43 C++ Virtual Functions 190
43.1 Example 1: C++ virtual Function . 191
43.2 C++ override Identifier . 193

43.2.1 Use of C++ override . 194
43.3 Use of C++ Virtual Functions . 194
43.4 Example 2: C++ virtual Function Demonstration . 195

44 C++ Class Templates 197
44.1 Class Template Declaration . 198
44.2 Creating a Class Template Object . 198
44.3 Example 1: C++ Class Templates . 198
44.4 Defining a Class Member Outside the Class Template . 200
44.5 Example 2: Simple Calculator Using Class Templates . 200
44.6 C++ Class Templates With Multiple Parameters . 202

44.6.1 Example 3: C++ Templates With Multiple Parameters 202
44.6.2 References . 204

List of Figures

List of Tables

0.1 CE103 Algorithms and Programming I
0.1.1 Week-6

0.1.1.1 C++ Functional Console Programming Download DOC1, SLIDE2, PPTX3

0.1.1.2 C++ Functional Console Programming

0.1.2 Books and Resources

free-programming-books/free-programming-books-langs.md at master · EbookFoundation/free-programming-
books · GitHub4

0.1.3 C++ Functional Console Programming

0.1.4 C++ Introduction

1ce103-week-6-cpp.en.md_doc.pdf
2ce103-week-6-cpp.en.md_slide.pdf
3ce103-week-6-cpp.en.md_slide.pptx
4https://github.com/EbookFoundation/free-programming-books/blob/master/books/free-programming-books-langs.md

#c-1

7

ce103-week-6-cpp.en.md_doc.pdf
ce103-week-6-cpp.en.md_slide.pdf
ce103-week-6-cpp.en.md_slide.pptx
https://github.com/EbookFoundation/free-programming-books/blob/master/books/free-programming-books-langs.md#c-1
https://github.com/EbookFoundation/free-programming-books/blob/master/books/free-programming-books-langs.md#c-1

1 C++ Variables, Literals and Constants
In this tutorial, we will learn about variables, literals, and constants in C++ with the help of examples.

1.1 C++ Variables
In programming, a variable is a container (storage area) to hold data.

To indicate the storage area, each variable should be given a unique name (identifier). For example,

int age = 14;

Here, age is a variable of the int data type, and we have assigned an integer value 14 to it.

Note: The int data type suggests that the variable can only hold integers. Similarly, we can use
the double data type if we have to store decimals and exponentials.

We will learn about all the data types in detail in the next tutorial.

The value of a variable can be changed, hence the name variable.

int age = 14; // age is 14
age = 17; // age is 17

1.1.1 Rules for naming a variable

• A variable name can only have alphabets, numbers, and the underscore _.
• A variable name cannot begin with a number.
• It is a preferred practice to begin variable names with a lowercase character. For example, name is

preferable to Name.
• A variable name cannot be a keyword5. For example, int is a keyword that is used to denote integers.
• A variable name can start with an underscore. However, it’s not considered a good practice.

Note: We should try to give meaningful names to variables. For example, first_name is a better variable
name than fn.

1.2 C++ Literals
Literals are data used for representing fixed values. They can be used directly in the code. For exam-
ple: 1, 2.5, 'c' etc.

Here, 1, 2.5 and 'c' are literals. Why? You cannot assign different values to these terms.

Here’s a list of different literals in C++ programming.

1.2.1 1. Integers

An integer is a numeric literal(associated with numbers) without any fractional or exponential part. There
are three types of integer literals in C programming:

• decimal (base 10)
• octal (base 8)
• hexadecimal (base 16)

For example:
5https://www.programiz.com/cpp-programming/keywords-identifiers

8

https://www.programiz.com/cpp-programming/keywords-identifiers

Decimal: 0, -9, 22 etc
Octal: 021, 077, 033 etc
Hexadecimal: 0x7f, 0x2a, 0x521 etc

In C++ programming, octal starts with a 0, and hexadecimal starts with a 0x.

1.2.2 2. Floating-point Literals

A floating-point literal is a numeric literal that has either a fractional form or an exponent form. For example:

-2.0

0.0000234

-0.22E-5

Note: E-5 = 10-5

1.2.3 3. Characters

A character literal is created by enclosing a single character inside single quotation marks. For exam-
ple: 'a', 'm', 'F', '2', '}' etc.

1.2.4 4. Escape Sequences

Sometimes, it is necessary to use characters that cannot be typed or has special meaning in C++ program-
ming. For example, newline (enter), tab, question mark, etc.

In order to use these characters, escape sequences are used.

Escape Sequences Characters
\b Backspace
\f Form feed
\n Newline
\r Return
\t Horizontal tab
\v Vertical tab
\\ Backslash
\' Single quotation mark
\" Double quotation mark
\? Question mark
\0 Null Character

1.2.5 5. String Literals

A string literal is a sequence of characters enclosed in double-quote marks. For example:

"good" string constant
"" null string constant
" " string constant of six white space
"x" string constant having a single character
"Earth is round\n" prints string with a newline

9

We will learn about strings in detail in the C++ string tutorial.

1.3 C++ Constants
In C++, we can create variables whose value cannot be changed. For that, we use the const keyword. Here’s
an example:

const int LIGHT_SPEED = 299792458;
LIGHT_SPEED = 2500 // Error! LIGHT_SPEED is a constant.

Here, we have used the keyword const to declare a constant named LIGHT_SPEED. If we try to change the
value of LIGHT_SPEED, we will get an error.

A constant can also be created using the #define preprocessor directive. We will learn about it in detail in
the C++ Macros tutorial.

2 C++ Data Types
In this tutorial, we will learn about basic data types such as int, float, char, etc. in C++ programming with
the help of examples.

In C++, data types are declarations for variables. This determines the type and size of data associated with
variables. For example,

int age = 13;

Here, age is a variable of type int. Meaning, the variable can only store integers of either 2 or 4 bytes.

2.1 C++ Fundamental Data Types
The table below shows the fundamental data types, their meaning, and their sizes (in bytes):

Data Type Meaning Size (in Bytes)
int Integer 2 or 4
float Floating-point 4
double Double Floating-point 8
char Character 1
wchar_t Wide Character 2
bool Boolean 1
void Empty 0

Now, let us discuss these fundamental data types in more detail.

2.1.1 1. C++ int

• The int keyword is used to indicate integers.
• Its size is usually 4 bytes. Meaning, it can store values from -2147483648 to 2147483647.
• For example,

int salary = 85000;

10

2.1.2 2. C++ float and double

• float and double are used to store floating-point numbers (decimals and exponentials).
• The size of float is 4 bytes and the size of double is 8 bytes. Hence, double has two times the

precision of float. To learn more, visit C++ float and double.
• For example,

float area = 64.74;
double volume = 134.64534;

As mentioned above, these two data types are also used for exponentials. For example,

double distance = 45E12 // 45E12 is equal to 45*10^12

2.1.3 3. C++ char

• Keyword char is used for characters.
• Its size is 1 byte.
• Characters in C++ are enclosed inside single quotes ' '.
• For example,

char test = 'h';

Note: In C++, an integer value is stored in a char variable rather than the character itself. To learn more,
visit C++ characters6.

2.1.4 4. C++ wchar_t

• Wide character wchar_t is similar to the char data type, except its size is 2 bytes instead of 1.
• It is used to represent characters that require more memory to represent them than a single char.
• For example,

wchar_t test = L'�' // storing Hebrew character;

Notice the letter L before the quotation marks.

Note: There are also two other fixed-size character types char16_t and char32_t introduced in C++11.

2.1.5 5. C++ bool

• The bool data type has one of two possible values: true or false.
• Booleans are used in conditional statements and loops (which we will learn in later chapters).
• For example,

bool cond = false;

2.1.6 6. C++ void

• The void keyword indicates an absence of data. It means “nothing” or “no value”.
• We will use void when we learn about functions and pointers.

Note: We cannot declare variables of the void type.

6https://www.programiz.com/cpp-programming/char-type

11

https://www.programiz.com/cpp-programming/char-type

2.2 C++ Type Modifiers
We can further modify some of the fundamental data types by using type modifiers. There are 4 type
modifiers in C++. They are:

1. signed
2. unsigned
3. short
4. long

We can modify the following data types with the above modifiers:

• int
• double
• char

2.2.1 C++ Modified Data Types List

Data Type
Size (in
Bytes) Meaning

signed int 4 used for integers (equivalent to int)
unsigned int 4 can only store positive integers
short 2 used for small integers (range -32768 to 32767)
unsigned short 2 used for small positive integers (range 0 to 65,535)
long at least 4 used for large integers (equivalent to long int)
unsigned long 4 used for large positive integers or 0 (equivalent to unsigned long int)
long long 8 used for very large integers (equivalent to long long int).
unsigned long
long

8 used for very large positive integers or 0 (equivalent to unsigned long
long int)

long double 12 used for large floating-point numbers
signed char 1 used for characters (guaranteed range -127 to 127)
unsigned char 1 used for characters (range 0 to 255)

Let’s see a few examples.

long b = 4523232;
long int c = 2345342;
long double d = 233434.56343;
short d = 3434233; // Error! out of range
unsigned int a = -5; // Error! can only store positive numbers or 0

2.3 Derived Data Types
Data types that are derived from fundamental data types are derived types. For example: arrays, pointers,
function types, structures, etc.

We will learn about these derived data types in later tutorials.

3 C++ Basic Input/Output
In this tutorial, we will learn to use the cin object to take input from the user, and the cout object to display
output to the user with the help of examples.

12

3.1 C++ Output
In C++, cout sends formatted output to standard output devices, such as the screen. We use the cout object
along with the << operator for displaying output.

3.1.1 Example 1: String Output

#include <iostream>
using namespace std;

int main() {
// prints the string enclosed in double quotes
cout << "This is C++ Programming";
return 0;

}

Run Code7

Output

This is C++ Programming

How does this program work?

• We first include the iostream header file that allows us to display output.
• The cout object is defined inside the std namespace. To use the std namespace, we used the using

namespace std; statement.
• Every C++ program starts with the main() function. The code execution begins from the start of

the main() function.
• cout is an object that prints the string inside quotation marks " ". It is followed by the << operator.
• return 0; is the “exit status” of the main() function. The program ends with this statement, however,

this statement is not mandatory.

Note: If we don’t include the using namespace std; statement, we need to use std::cout instead of cout.

This is the preferred method as using the std namespace can create potential problems.

However, we have used the std namespace in our tutorials in order to make the codes more readable.

#include <iostream>

int main() {
// prints the string enclosed in double quotes
std::cout << "This is C++ Programming";
return 0;

}

Run Code8

7https://www.programiz.com/cpp-programming/online-compiler
8https://www.programiz.com/cpp-programming/online-compiler

13

https://www.programiz.com/cpp-programming/online-compiler
https://www.programiz.com/cpp-programming/online-compiler

3.1.2 Example 2: Numbers and Characters Output

To print the numbers and character variables, we use the same cout object but without using quotation
marks.

#include <iostream>
using namespace std;

int main() {
int num1 = 70;
double num2 = 256.783;
char ch = 'A';

cout << num1 << endl; // print integer
cout << num2 << endl; // print double
cout << "character: " << ch << endl; // print char
return 0;

}

Run Code9

Output

70
256.783
character: A

Notes:

• The endl manipulator is used to insert a new line. That’s why each output is displayed in a new line.
• The << operator can be used more than once if we want to print different variables, strings and so on

in a single statement. For example:

cout << "character: " << ch << endl;

3.2 C++ Input
In C++, cin takes formatted input from standard input devices such as the keyboard. We use the cin object
along with the >> operator for taking input.

3.2.1 Example 3: Integer Input/Output

#include <iostream>
using namespace std;

int main() {
int num;
cout << "Enter an integer: ";
cin >> num; // Taking input
cout << "The number is: " << num;

9https://www.programiz.com/cpp-programming/online-compiler

14

https://www.programiz.com/cpp-programming/online-compiler

return 0;
}

Run Code10

Output

Enter an integer: 70
The number is: 70

In the program, we used

cin >> num;

to take input from the user. The input is stored in the variable num. We use the >> operator with cin to
take input.

Note: If we don’t include the using namespace std; statement, we need to use std::cin instead of cin.

3.3 C++ Taking Multiple Inputs
#include <iostream>
using namespace std;

int main() {
char a;
int num;

cout << "Enter a character and an integer: ";
cin >> a >> num;

cout << "Character: " << a << endl;
cout << "Number: " << num;

return 0;
}

Run Code11

Output

Enter a character and an integer: F
23
Character: F
Number: 23

4 C++ Type Conversion
In this tutorial, we will learn about the basics of C++ type conversion with the help of examples.

C++ allows us to convert data of one type to that of another. This is known as type conversion.
10https://www.programiz.com/cpp-programming/online-compiler
11https://www.programiz.com/cpp-programming/online-compiler

15

https://www.programiz.com/cpp-programming/online-compiler
https://www.programiz.com/cpp-programming/online-compiler

There are two types of type conversion in C++.

1. Implicit Conversion
2. Explicit Conversion (also known as Type Casting)

4.1 Implicit Type Conversion
The type conversion that is done automatically done by the compiler is known as implicit type conversion.
This type of conversion is also known as automatic conversion.

Let us look at two examples of implicit type conversion.

4.1.1 Example 1: Conversion From int to double

// Working of implicit type-conversion

#include <iostream>
using namespace std;

int main() {
// assigning an int value to num_int
int num_int = 9;

// declaring a double type variable
double num_double;

// implicit conversion
// assigning int value to a double variable
num_double = num_int;

cout << "num_int = " << num_int << endl;
cout << "num_double = " << num_double << endl;

return 0;
}

Run Code12

Output

num_int = 9
num_double = 9

In the program, we have assigned an int data to a double variable.

num_double = num_int;

Here, the int value is automatically converted to double by the compiler before it is assigned to
the num_double variable. This is an example of implicit type conversion.

12https://www.programiz.com/cpp-programming/online-compiler

16

https://www.programiz.com/cpp-programming/online-compiler

4.1.2 Example 2: Automatic Conversion from double to int

//Working of Implicit type-conversion

#include <iostream>
using namespace std;

int main() {

int num_int;
double num_double = 9.99;

// implicit conversion
// assigning a double value to an int variable
num_int = num_double;

cout << "num_int = " << num_int << endl;
cout << "num_double = " << num_double << endl;

return 0;
}

Run Code13

Output

num_int = 9
num_double = 9.99

In the program, we have assigned a double data to an int variable.

num_int = num_double;

Here, the double value is automatically converted to int by the compiler before it is assigned to
the num_int variable. This is also an example of implicit type conversion.

Note: Since int cannot have a decimal part, the digits after the decimal point are truncated in the above
example.

4.1.3 Data Loss During Conversion (Narrowing Conversion)

As we have seen from the above example, conversion from one data type to another is prone to data loss.
This happens when data of a larger type is converted to data of a smaller type.

13https://www.programiz.com/cpp-programming/online-compiler

17

https://www.programiz.com/cpp-programming/online-compiler

18

Possible Data Loss During Type Conversion

4.2 C++ Explicit Conversion
When the user manually changes data from one type to another, this is known as explicit conversion. This
type of conversion is also known as type casting.

There are three major ways in which we can use explicit conversion in C++. They are:

1. C-style type casting (also known as cast notation)
2. Function notation (also known as old C++ style type casting)
3. Type conversion operators

4.2.1 C-style Type Casting

As the name suggests, this type of casting is favored by the C programming language. It is also known
as cast notation.

The syntax for this style is:

(data_type)expression;

For example,

// initializing int variable
int num_int = 26;

// declaring double variable
double num_double;

// converting from int to double
num_double = (double)num_int;

4.2.2 Function-style Casting

We can also use the function like notation to cast data from one type to another.

The syntax for this style is:

data_type(expression);

For example,

// initializing int variable
int num_int = 26;

// declaring double variable
double num_double;

// converting from int to double
num_double = double(num_int);

19

4.2.3 Example 3: Type Casting

#include <iostream>

using namespace std;

int main() {
// initializing a double variable
double num_double = 3.56;
cout << "num_double = " << num_double << endl;

// C-style conversion from double to int
int num_int1 = (int)num_double;
cout << "num_int1 = " << num_int1 << endl;

// function-style conversion from double to int
int num_int2 = int(num_double);
cout << "num_int2 = " << num_int2 << endl;

return 0;
}

Run Code14

Output

num_double = 3.56
num_int1 = 3
num_int2 = 3

We used both the C style type conversion and the function-style casting for type conversion and
displayed the results. Since they perform the same task, both give us the same output.

4.2.4 Type Conversion Operators

Besides these two type castings, C++ also has four operators for type conversion. They are known as type
conversion operators. They are:

• static_cast
• dynamic_cast
• const_cast
• reinterpret_cast

We will learn about these casts in later tutorials.

Recommended Tutorials:

• C++ string to int and Vice-versa15

• C++ string to float, double and Vice-versa16

14https://www.programiz.com/cpp-programming/online-compiler
15https://www.programiz.com/cpp-programming/string-int-conversion
16https://www.programiz.com/cpp-programming/string-float-conversion

20

https://www.programiz.com/cpp-programming/online-compiler
https://www.programiz.com/cpp-programming/string-int-conversion
https://www.programiz.com/cpp-programming/string-float-conversion

5 C++ Operators
In this tutorial, we will learn about the different types of operators in C++ with the help of examples. In
programming, an operator is a symbol that operates on a value or a variable.

Operators are symbols that perform operations on variables and values. For example, + is an operator used
for addition, while - is an operator used for subtraction.

Operators in C++ can be classified into 6 types:

1. Arithmetic Operators17

2. Assignment Operators18

3. Relational Operators19

4. Logical Operators20

5. Bitwise Operators21

6. Other Operators22

5.1 1. C++ Arithmetic Operators
Arithmetic operators are used to perform arithmetic operations on variables and data. For example,

a + b;

Here, the + operator is used to add two variables a and b. Similarly there are various other arithmetic
operators in C++.

Operator Operation
+ Addition
- Subtraction
* Multiplication
/ Division
% Modulo Operation (Remainder after division)

5.1.1 Example 1: Arithmetic Operators

#include <iostream>
using namespace std;

int main() {
int a, b;
a = 7;
b = 2;

// printing the sum of a and b
cout << "a + b = " << (a + b) << endl;

17https://www.programiz.com/cpp-programming/operators#arithmetic
18https://www.programiz.com/cpp-programming/operators#assignment
19https://www.programiz.com/cpp-programming/operators#relational
20https://www.programiz.com/cpp-programming/operators#logical
21https://www.programiz.com/cpp-programming/operators#bitwise
22https://www.programiz.com/cpp-programming/operators#other-operators

21

https://www.programiz.com/cpp-programming/operators#arithmetic
https://www.programiz.com/cpp-programming/operators#assignment
https://www.programiz.com/cpp-programming/operators#relational
https://www.programiz.com/cpp-programming/operators#logical
https://www.programiz.com/cpp-programming/operators#bitwise
https://www.programiz.com/cpp-programming/operators#other-operators

// printing the difference of a and b
cout << "a - b = " << (a - b) << endl;

// printing the product of a and b
cout << "a * b = " << (a * b) << endl;

// printing the division of a by b
cout << "a / b = " << (a / b) << endl;

// printing the modulo of a by b
cout << "a % b = " << (a % b) << endl;

return 0;
}

Run Code23

Output

a + b = 9
a - b = 5
a * b = 14
a / b = 3
a % b = 1

Here, the operators +, - and * compute addition, subtraction, and multiplication respectively as we might
have expected.

/ Division Operator

Note the operation (a / b) in our program. The / operator is the division operator.

As we can see from the above example, if an integer is divided by another integer, we will get the quotient.
However, if either divisor or dividend is a floating-point number, we will get the result in decimals.

In C++,

7/2 is 3
7.0 / 2 is 3.5
7 / 2.0 is 3.5
7.0 / 2.0 is 3.5

% Modulo Operator

The modulo operator % computes the remainder. When a = 9 is divided by b = 4, the remainder is 1.

Note: The % operator can only be used with integers.

5.1.2 Increment and Decrement Operators

C++ also provides increment and decrement operators: ++ and -- respectively.

• ++ increases the value of the operand by 1
23https://www.programiz.com/cpp-programming/online-compiler

22

https://www.programiz.com/cpp-programming/online-compiler

• -- decreases it by 1

For example,

int num = 5;

// increment operator
++num; // 6

Here, the code ++num; increases the value of num by 1.

5.1.3 Example 2: Increment and Decrement Operators

// Working of increment and decrement operators

#include <iostream>
using namespace std;

int main() {
int a = 10, b = 100, result_a, result_b;

// incrementing a by 1 and storing the result in result_a
result_a = ++a;
cout << "result_a = " << result_a << endl;

// decrementing b by 1 and storing the result in result_b
result_b = --b;
cout << "result_b = " << result_b << endl;

return 0;
}

Run Code24

Output

result_a = 11
result_b = 99

In the above program, we have used the ++ and -- operators as prefixes (++a and –b). However, we can
also use these operators as postfix (a++ and b–).

To learn more, visit increment and decrement operators25.

5.2 2. C++ Assignment Operators
In C++, assignment operators are used to assign values to variables. For example,

// assign 5 to a
a = 5;

24https://www.programiz.com/cpp-programming/online-compiler
25https://www.programiz.com/article/increment-decrement-operator-difference-prefix-postfix

23

https://www.programiz.com/cpp-programming/online-compiler
https://www.programiz.com/article/increment-decrement-operator-difference-prefix-postfix

Here, we have assigned a value of 5 to the variable a.

Operator Example Equivalent to
= a = b; a = b;
+= a += b; a = a + b;
-= a -= b; a = a - b;
*= a *= b; a = a * b;
/= a /= b; a = a / b;
%= a %= b; a = a % b;

5.2.1 Example 3: Assignment Operators

#include <iostream>
using namespace std;

int main() {
int a, b;

// 2 is assigned to a
a = 2;

// 7 is assigned to b
b = 7;

cout << "a = " << a << endl;
cout << "b = " << b << endl;
cout << "\nAfter a += b;" << endl;

// assigning the sum of a and b to a
a += b; // a = a +b
cout << "a = " << a << endl;

return 0;
}

Run Code26

Output

a = 2
b = 7
After a += b;
a = 9

5.3 3. C++ Relational Operators
A relational operator is used to check the relationship between two operands. For example,

// checks if a is greater than b
a > b;

26https://www.programiz.com/cpp-programming/online-compiler

24

https://www.programiz.com/cpp-programming/online-compiler

Here, > is a relational operator. It checks if a is greater than b or not.

If the relation is true, it returns 1 whereas if the relation is false, it returns 0.

Operator Meaning Example
== Is Equal To 3 == 5 gives us false
!= Not Equal To 3 != 5 gives us true
> Greater Than 3 > 5 gives us false
< Less Than 3 < 5 gives us true
>= Greater Than or Equal To 3 >= 5 give us false
<= Less Than or Equal To 3 <= 5 gives us true

5.3.1 Example 4: Relational Operators

#include <iostream>
using namespace std;

int main() {
int a, b;
a = 3;
b = 5;
bool result;

result = (a == b); // false
cout << "3 == 5 is " << result << endl;

result = (a != b); // true
cout << "3 != 5 is " << result << endl;

result = a > b; // false
cout << "3 > 5 is " << result << endl;

result = a < b; // true
cout << "3 < 5 is " << result << endl;

result = a >= b; // false
cout << "3 >= 5 is " << result << endl;

result = a <= b; // true
cout << "3 <= 5 is " << result << endl;

return 0;
}

Run Code27

Output

3 == 5 is 0
3 != 5 is 1

27https://www.programiz.com/cpp-programming/online-compiler

25

https://www.programiz.com/cpp-programming/online-compiler

3 > 5 is 0
3 < 5 is 1
3 >= 5 is 0
3 <= 5 is 1

Note: Relational operators are used in decision-making and loops.

5.4 4. C++ Logical Operators
Logical operators are used to check whether an expression is true or false. If the expression is true, it
returns 1 whereas if the expression is false, it returns 0.

Operator Example Meaning
&& expression1 && expression2 Logical AND.True only if all the operands are true.
\| expression1 | expression2 Logical OR.True if at least one of the operands is true.
! !expression Logical NOT.True only if the operand is false.

In C++, logical operators are commonly used in decision making. To further understand the logical operators,
let’s see the following examples,

Suppose,
a = 5
b = 8

Then,

(a > 3) && (b > 5) evaluates to true
(a > 3) && (b < 5) evaluates to false

(a > 3) || (b > 5) evaluates to true
(a > 3) || (b < 5) evaluates to true
(a < 3) || (b < 5) evaluates to false

!(a < 3) evaluates to true
!(a > 3) evaluates to false

5.4.1 Example 5: Logical Operators

#include <iostream>
using namespace std;

int main() {
bool result;

result = (3 != 5) && (3 < 5); // true
cout << "(3 != 5) && (3 < 5) is " << result << endl;

result = (3 == 5) && (3 < 5); // false
cout << "(3 == 5) && (3 < 5) is " << result << endl;

result = (3 == 5) && (3 > 5); // false
cout << "(3 == 5) && (3 > 5) is " << result << endl;

26

result = (3 != 5) || (3 < 5); // true
cout << "(3 != 5) || (3 < 5) is " << result << endl;

result = (3 != 5) || (3 > 5); // true
cout << "(3 != 5) || (3 > 5) is " << result << endl;

result = (3 == 5) || (3 > 5); // false
cout << "(3 == 5) || (3 > 5) is " << result << endl;

result = !(5 == 2); // true
cout << "!(5 == 2) is " << result << endl;

result = !(5 == 5); // false
cout << "!(5 == 5) is " << result << endl;

return 0;
}

Run Code28

Output

(3 != 5) && (3 < 5) is 1
(3 == 5) && (3 < 5) is 0
(3 == 5) && (3 > 5) is 0
(3 != 5) || (3 < 5) is 1
(3 != 5) || (3 > 5) is 1
(3 == 5) || (3 > 5) is 0
!(5 == 2) is 1
!(5 == 5) is 0

Explanation of logical operator program

• (3 != 5) && (3 < 5) evaluates to 1 because both operands (3 != 5) and (3 < 5) are 1 (true).
• (3 == 5) && (3 < 5) evaluates to 0 because the operand (3 == 5) is 0 (false).
• (3 == 5) && (3 > 5) evaluates to 0 because both operands (3 == 5) and (3 > 5) are 0 (false).
• (3 != 5) || (3 < 5) evaluates to 1 because both operands (3 != 5) and (3 < 5) are 1 (true).
• (3 != 5) || (3 > 5) evaluates to 1 because the operand (3 != 5) is 1 (true).
• (3 == 5) || (3 > 5) evaluates to 0 because both operands (3 == 5) and (3 > 5) are 0 (false).
• !(5 == 2) evaluates to 1 because the operand (5 == 2) is 0 (false).
• !(5 == 5) evaluates to 0 because the operand (5 == 5) is 1 (true).

5.5 5. C++ Bitwise Operators
In C++, bitwise operators are used to perform operations on individual bits. They can only be used
alongside char and int data types.

Operator Description
& Binary AND

28https://www.programiz.com/cpp-programming/online-compiler

27

https://www.programiz.com/cpp-programming/online-compiler

Operator Description
\| Binary OR
^ Binary XOR
~ Binary One’s Complement
<< Binary Shift Left
>> Binary Shift Right

To learn more, visit C++ bitwise operators29.

5.6 6. Other C++ Operators
Here’s a list of some other common operators available in C++. We will learn about them in later tutorials.

Operator Description Example
sizeof returns the size of data type sizeof(int); // 4
?: returns value based on the condition string result = (5 > 0) ? "even" :

"odd"; // "even"
& represents memory address of the operand # // address of num
. accesses members of struct variables or class

objects
s1.marks = 92;

-> used with pointers to access the class or struct
variables

ptr->marks = 92;

<< prints the output value cout << 5;
>> gets the input value cin >> num;

6 C++ Comments
In this tutorial, we will learn about C++ comments, why we use them, and how to use them with the help
of examples.

C++ comments are hints that a programmer can add to make their code easier to read and understand.
They are completely ignored by C++ compilers.

There are two ways to add comments to code:

// - Single Line Comments

/* */ -Multi-line Comments

6.1 Single Line Comments
In C++, any line that starts with // is a comment. For example,

// declaring a variable
int a;

// initializing the variable 'a' with the value 2
a = 2;

29https://www.programiz.com/cpp-programming/bitwise-operators

28

https://www.programiz.com/cpp-programming/bitwise-operators

Here, we have used two single-line comments:

• // declaring a variable
• // initializing the variable 'a' with the value 2

We can also use single line comment like this:

int a; // declaring a variable

6.2 Multi-line comments
In C++, any line between /* and */ is also a comment. For example,

/* declaring a variableto store salary to employees*/
int salary = 2000;

This syntax can be used to write both single-line and multi-line comments.

6.3 Using Comments for Debugging
Comments can also be used to disable code to prevent it from being executed. For example,

#include <iostream>
using namespace std;
int main() {

cout << "some code";
cout << ''error code; cout << "some other code"; return 0;}

Run Code30

If we get an error while running the program, instead of removing the error-prone code, we can use comments
to disable it from being executed; this can be a valuable debugging tool.

#include <iostream>
using namespace std;
int main() {

cout << "some code";
// cout << ''error code;
cout << "some other code";

return 0;
}

Run Code31

Pro Tip: Remember the shortcut for using comments; it can be really helpful. For most code editors,
it’s Ctrl + / for Windows and Cmd + / for Mac.

30https://www.programiz.com/cpp-programming/online-compiler
31https://www.programiz.com/cpp-programming/online-compiler

29

https://www.programiz.com/cpp-programming/online-compiler
https://www.programiz.com/cpp-programming/online-compiler

6.4 Why use Comments?
If we write comments on our code, it will be easier for us to understand the code in the future. Also, it will
be easier for your fellow developers to understand the code.

Note: Comments shouldn’t be the substitute for a way to explain poorly written code in English. We should
always write well-structured and self-explanatory code. And, then use comments.

As a general rule of thumb, use comments to explain Why you did something rather than How you did
something, and you are good.

6.4.1 C++ Flow Control

7 C++ if, if…else and Nested if…else
In this tutorial, we will learn about the if…else statement to create decision making programs with the help
of examples.

In computer programming, we use the if...else statement to run one block of code under certain conditions
and another block of code under different conditions.

For example, assigning grades (A, B, C) based on marks obtained by a student.

• if the percentage is above 90, assign grade A
• if the percentage is above 75, assign grade B
• if the percentage is above 65, assign grade C

There are three forms of if...else statements in C++.

1. if statement
2. if...else statement
3. if...else if...else statement

7.1 C++ if Statement
The syntax of the if statement is:

if (condition) {
// body of if statement

}

The if statement evaluates the condition inside the parentheses ().

• If the condition evaluates to true, the code inside the body of if is executed.
• If the condition evaluates to false, the code inside the body of if is skipped.

Note: The code inside { } is the body of the if statement.

30

How if Statement Works

7.1.1 Example 1: C++ if Statement

// Program to print positive number entered by the user
// If the user enters a negative number, it is skipped

#include <iostream>
using namespace std;

int main() {

int number;

cout << "Enter an integer: ";
cin >> number;

// checks if the number is positive
if (number > 0) {
cout << "You entered a positive integer: " << number << endl;

}

cout << "This statement is always executed.";

return 0;
}

Run Code32

Output 1
32https://www.programiz.com/cpp-programming/online-compiler

31

https://www.programiz.com/cpp-programming/online-compiler

Enter an integer: 5
You entered a positive number: 5
This statement is always executed.

When the user enters 5, the condition number > 0 is evaluated to true and the statement inside the body
of if is executed.

Output 2

Enter a number: -5
This statement is always executed.

When the user enters -5, the condition number > 0 is evaluated to false and the statement inside the body
of if is not executed.

7.2 C++ if…else
The if statement can have an optional else clause. Its syntax is:

if (condition) {
// block of code if condition is true

}
else {
// block of code if condition is false

}

The if..else statement evaluates the condition inside the parenthesis.

How if…else Statement Works

32

If the condition evaluates true,

• the code inside the body of if is executed
• the code inside the body of else is skipped from execution

If the condition evaluates false,

• the code inside the body of else is executed
• the code inside the body of if is skipped from execution

7.2.1 Example 2: C++ if…else Statement

// Program to check whether an integer is positive or negative
// This program considers 0 as a positive number

#include <iostream>
using namespace std;

int main() {

int number;

cout << "Enter an integer: ";
cin >> number;

if (number >= 0) {
cout << "You entered a positive integer: " << number << endl;

}
else {
cout << "You entered a negative integer: " << number << endl;

}

cout << "This line is always printed.";

return 0;
}

Run Code33

Output 1

Enter an integer: 4
You entered a positive integer: 4.
This line is always printed.

In the above program, we have the condition number >= 0. If we enter the number greater or equal to 0,
then the condition evaluates true.

Here, we enter 4. So, the condition is true. Hence, the statement inside the body of if is executed.

Output 2
33https://www.programiz.com/cpp-programming/online-compiler

33

https://www.programiz.com/cpp-programming/online-compiler

Enter an integer: -4
You entered a negative integer: -4.
This line is always printed.

Here, we enter -4. So, the condition is false. Hence, the statement inside the body of else is executed.

7.3 C++ if…else…else if statement
The if...else statement is used to execute a block of code among two alternatives. However, if we need
to make a choice between more than two alternatives, we use the if...else if...else statement.

The syntax of the if...else if...else statement is:

if (condition1) {
// code block 1

}
else if (condition2){
// code block 2

}
else {
// code block 3

}

Here,

• If condition1 evaluates to true, the code block 1 is executed.
• If condition1 evaluates to false, then condition2 is evaluated.
• If condition2 is true, the code block 2 is executed.
• If condition2 is false, the code block 3 is executed.

How if…else if…else Statement Works

Note: There can be more than one else if statement but only one if and else statements.

34

7.3.1 Example 3: C++ if…else…else if

// Program to check whether an integer is positive, negative or zero

#include <iostream>
using namespace std;

int main() {

int number;

cout << "Enter an integer: ";
cin >> number;

if (number > 0) {
cout << "You entered a positive integer: " << number << endl;

}
else if (number < 0) {
cout << "You entered a negative integer: " << number << endl;

}
else {
cout << "You entered 0." << endl;

}

cout << "This line is always printed.";

return 0;
}

Run Code34

Output 1

Enter an integer: 1
You entered a positive integer: 1.
This line is always printed.

Output 2

Enter an integer: -2
You entered a negative integer: -2.
This line is always printed.

Output 3

Enter an integer: 0
You entered 0.
This line is always printed.

34https://www.programiz.com/cpp-programming/online-compiler

35

https://www.programiz.com/cpp-programming/online-compiler

In this program, we take a number from the user. We then use the if...else if...else ladder to check
whether the number is positive, negative, or zero.

If the number is greater than 0, the code inside the if block is executed. If the number is less than 0, the
code inside the else if block is executed. Otherwise, the code inside the else block is executed.

7.4 C++ Nested if…else
Sometimes, we need to use an if statement inside another if statement. This is known as nested if state-
ment.

Think of it as multiple layers of if statements. There is a first, outer if statement, and inside it is another,
inner if statement. Its syntax is:

// outer if statement
if (condition1) {

// statements

// inner if statement
if (condition2) {
// statements

}
}

Notes:

• We can add else and else if statements to the inner if statement as required.
• The inner if statement can also be inserted inside the outer else or else if statements (if they exist).
• We can nest multiple layers of if statements.

7.4.1 Example 4: C++ Nested if

// C++ program to find if an integer is positive, negative or zero
// using nested if statements

#include <iostream>
using namespace std;

int main() {

int num;

cout << "Enter an integer: ";
cin >> num;

// outer if condition
if (num != 0) {

// inner if condition
if (num > 0) {

cout << "The number is positive." << endl;
}
// inner else condition
else {

36

cout << "The number is negative." << endl;
}

}
// outer else condition
else {
cout << "The number is 0 and it is neither positive nor negative." << endl;

}

cout << "This line is always printed." << endl;

return 0;
}

Run Code35

Output 1

Enter an integer: 35
The number is positive.
This line is always printed.

Output 2

Enter an integer: -35
The number is negative.
This line is always printed.

Output 3

Enter an integer: 0
The number is 0 and it is neither positive nor negative.
This line is always printed.

In the above example,

• We take an integer as an input from the user and store it in the variable num.
• We then use an if...else statement to check whether num is not equal to 0.

– If true, then the inner if...else statement is executed.
– If false, the code inside the outer else condition is executed, which prints "The number is 0

and it is neither positive nor negative."
• The inner if...else statement checks whether the input number is positive i.e. if num is greater

than 0.
– If true, then we print a statement saying that the number is positive.
– If false, we print that the number is negative.

Note: As you can see, nested if...else makes your logic complicated. If possible, you should always try
to avoid nested if...else.

7.5 Body of if…else With Only One Statement
If the body of if...else has only one statement, you can omit { } in the program. For example, you can
replace

35https://www.programiz.com/cpp-programming/online-compiler

37

https://www.programiz.com/cpp-programming/online-compiler

int number = 5;

if (number > 0) {
cout << "The number is positive." << endl;

}
else {
cout << "The number is negative." << endl;

}

with

int number = 5;

if (number > 0)
cout << "The number is positive." << endl;

else
cout << "The number is negative." << endl;

The output of both programs will be the same.

Note: Although it’s not necessary to use { } if the body of if...else has only one statement, using {
} makes your code more readable.

7.6 More on Decision Making
In certain situations, a ternary operator can replace an if...else statement. To learn more, visit C++
Ternary Operator36.

If we need to make a choice between more than one alternatives based on a given test condition,
the switch statement can be used. To learn more, visit C++ switch37.

Check out these examples to learn more:

C++ Program to Check Whether Number is Even or Odd38

C++ Program to Check Whether a character is Vowel or Consonant.39

C++ Program to Find Largest Number Among Three Numbers40

8 C++ for Loop
In this tutorial, we will learn about the C++ for loop and its working with the help of some examples.

In computer programming, loops are used to repeat a block of code.

For example, let’s say we want to show a message 100 times. Then instead of writing the print statement
100 times, we can use a loop.

36https://www.programiz.com/cpp-programming//cpp-programming/ternary-operator/
37https://www.programiz.com/cpp-programming/switch-case
38https://www.programiz.com/cpp-programming/examples/even-odd
39https://www.programiz.com/cpp-programming/examples/vowel-consonant
40https://www.programiz.com/cpp-programming/examples/largest-number-among-three

38

https://www.programiz.com/cpp-programming//cpp-programming/ternary-operator/
https://www.programiz.com/cpp-programming/switch-case
https://www.programiz.com/cpp-programming/examples/even-odd
https://www.programiz.com/cpp-programming/examples/vowel-consonant
https://www.programiz.com/cpp-programming/examples/largest-number-among-three

That was just a simple example; we can achieve much more efficiency and sophistication in our programs by
making effective use of loops.

There are 3 types of loops in C++.

• for loop
• while loop
• do...while loop

This tutorial focuses on C++ for loop. We will learn about the other type of loops in the upcoming tutorials.

8.1 C++ for loop
The syntax of for-loop is:

for (initialization; condition; update) {
// body of-loop

}

Here,

• initialization - initializes variables and is executed only once
• condition - if true, the body of for loop is executed

if false, the for loop is terminated
• update - updates the value of initialized variables and again checks the condition

To learn more about conditions, check out our tutorial on C++ Relational and Logical Operators41.

41https://www.programiz.com/cpp-programming/relational-logical-operators

39

https://www.programiz.com/cpp-programming/relational-logical-operators

40

8.2 Flowchart of for Loop in C++

41

Flowchart of for loop in C++

8.2.1 Example 1: Printing Numbers From 1 to 5

#include <iostream>

using namespace std;

int main() {
for (int i = 1; i <= 5; ++i) {
cout << i << " ";

}
return 0;

}

Run Code42

Output

1 2 3 4 5

Here is how this program works

Iteration Variable i <= 5 Action
1st i = 1 true 1 is printed. i is increased to 2.
2nd i = 2 true 2 is printed. i is increased to 3.
3rd i = 3 true 3 is printed. i is increased to 4.
4th i = 4 true 4 is printed. i is increased to 5.
5th i = 5 true 5 is printed. i is increased to 6.
6th i = 6 false The loop is terminated

8.2.2 Example 2: Display a text 5 times

// C++ Program to display a text 5 times

#include <iostream>

using namespace std;

int main() {
for (int i = 1; i <= 5; ++i) {

cout << "Hello World! " << endl;
}
return 0;

}

Run Code43

42https://www.programiz.com/cpp-programming/online-compiler
43https://www.programiz.com/cpp-programming/online-compiler

42

https://www.programiz.com/cpp-programming/online-compiler
https://www.programiz.com/cpp-programming/online-compiler

Output

Hello World!
Hello World!
Hello World!
Hello World!
Hello World!

Here is how this program works

Iteration Variable i <= 5 Action
1st i = 1 true Hello World! is printed and i is increased to 2.
2nd i = 2 true Hello World! is printed and i is increased to 3.
3rd i = 3 true Hello World! is printed and i is increased to 4.
4th i = 4 true Hello World! is printed and i is increased to 5.
5th i = 5 true Hello World! is printed and i is increased to 6.
6th i = 6 false The loop is terminated

8.2.3 Example 3: Find the sum of first n Natural Numbers

// C++ program to find the sum of first n natural numbers
// positive integers such as 1,2,3,...n are known as natural numbers

#include <iostream>

using namespace std;

int main() {
int num, sum;
sum = 0;

cout << "Enter a positive integer: ";
cin >> num;

for (int i = 1; i <= num; ++i) {
sum += i;

}

cout << "Sum = " << sum << endl;

return 0;
}

Run Code44

Output

Enter a positive integer: 10
Sum = 55

44https://www.programiz.com/cpp-programming/online-compiler

43

https://www.programiz.com/cpp-programming/online-compiler

In the above example, we have two variables num and sum. The sum variable is assigned with 0 and
the num variable is assigned with the value provided by the user.

Note that we have used a for loop.

for(int i = 1; i <= num; ++i)

Here,

• int i = 1: initializes the i variable
• i <= num: runs the loop as long as i is less than or equal to num
• ++i: increases the i variable by 1 in each iteration

When i becomes 11, the condition is false and sum will be equal to 0 + 1 + 2 + ... + 10.

8.3 Ranged Based for Loop
In C++11, a new range-based for loop was introduced to work with collections such as arrays and vectors.
Its syntax is:

for (variable : collection) {
// body of loop

}

Here, for every value in the collection, the for loop is executed and the value is assigned to the variable.

8.3.1 Example 4: Range Based for Loop

#include <iostream>

using namespace std;

int main() {

int num_array[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

for (int n : num_array) {
cout << n << " ";

}

return 0;
}

Run Code45

Output

1 2 3 4 5 6 7 8 9 10

In the above program, we have declared and initialized an int array named num_array. It has 10 items.

Here, we have used a range-based for loop to access all the items in the array.

45https://www.programiz.com/cpp-programming/online-compiler

44

https://www.programiz.com/cpp-programming/online-compiler

8.3.2 C++ Infinite for loop

If the condition in a for loop is always true, it runs forever (until memory is full). For example,

// infinite for loop
for(int i = 1; i > 0; i++) {

// block of code
}

In the above program, the condition is always true which will then run the code for infinite times.

Check out these examples to learn more:

• C++ Program to Calculate Sum of Natural Numbers46

• C++ Program to Find Factorial47

• C++ Program to Generate Multiplication Table48

In the next tutorial, we will learn about while and do...while loop.

9 C++ while and do…while Loop
In this tutorial, we will learn the use of while and do…while loops in C++ programming with the help of
some examples.

In computer programming, loops are used to repeat a block of code.

For example, let’s say we want to show a message 100 times. Then instead of writing the print statement
100 times, we can use a loop.

That was just a simple example; we can achieve much more efficiency and sophistication in our programs by
making effective use of loops.

There are 3 types of loops in C++.

1. for loop
2. while loop
3. do...while loop

In the previous tutorial, we learned about the C++ for loop49. Here, we are going to learn
about while and do...while loops.

9.1 C++ while Loop
The syntax of the while loop is:

while (condition) {
// body of the loop

}

46https://www.programiz.com/cpp-programming/examples/sum-natural-number
47https://www.programiz.com/cpp-programming/examples/factorial
48https://www.programiz.com/cpp-programming/examples/multiplication-table
49https://www.programiz.com/cpp-programming/for-loop

45

https://www.programiz.com/cpp-programming/examples/sum-natural-number
https://www.programiz.com/cpp-programming/examples/factorial
https://www.programiz.com/cpp-programming/examples/multiplication-table
https://www.programiz.com/cpp-programming/for-loop

Here,

• A while loop evaluates the condition
• If the condition evaluates to true, the code inside the while loop is executed.
• The condition is evaluated again.
• This process continues until the condition is false.
• When the condition evaluates to false, the loop terminates.

To learn more about the conditions, visit C++ Relational and Logical Operators50.

9.1.1 Flowchart of while Loop

Flowchart of C++ while loop

50https://www.programiz.com/cpp-programming/relational-logical-operators

46

https://www.programiz.com/cpp-programming/relational-logical-operators

9.1.2 Example 1: Display Numbers from 1 to 5

// C++ Program to print numbers from 1 to 5

#include <iostream>

using namespace std;

int main() {
int i = 1;

// while loop from 1 to 5
while (i <= 5) {

cout << i << " ";
++i;

}

return 0;
}

Run Code51

Output

1 2 3 4 5

Here is how the program works.

Iteration Variable i <= 5 Action
1st i = 1 true 1 is printed and i is increased to 2.
2nd i = 2 true 2 is printed and i is increased to 3.
3rd i = 3 true 3 is printed and i is increased to 4
4th i = 4 true 4 is printed and i is increased to 5.
5th i = 5 true 5 is printed and i is increased to 6.
6th i = 6 false The loop is terminated

9.1.3 Example 2: Sum of Positive Numbers Only

// program to find the sum of positive numbers
// if the user enters a negative number, the loop ends
// the negative number entered is not added to the sum

#include <iostream>
using namespace std;

int main() {
int number;
int sum = 0;

// take input from the user
51https://www.programiz.com/cpp-programming/online-compiler

47

https://www.programiz.com/cpp-programming/online-compiler

cout << "Enter a number: ";
cin >> number;

while (number >= 0) {
// add all positive numbers
sum += number;

// take input again if the number is positive
cout << "Enter a number: ";
cin >> number;

}

// display the sum
cout << "\nThe sum is " << sum << endl;

return 0;
}

Run Code52

Output

Enter a number: 6
Enter a number: 12
Enter a number: 7
Enter a number: 0
Enter a number: -2
The sum is 25

In this program, the user is prompted to enter a number, which is stored in the variable number.

In order to store the sum of the numbers, we declare a variable sum and initialize it to the value of 0.

The while loop continues until the user enters a negative number. During each iteration, the number entered
by the user is added to the sum variable.

When the user enters a negative number, the loop terminates. Finally, the total sum is displayed.

9.2 C++ do…while Loop
The do...while loop is a variant of the while loop with one important difference: the body
of do...while loop is executed once before the condition is checked.

Its syntax is:

do {
// body of loop;

}
while (condition);

Here,

• The body of the loop is executed at first. Then the condition is evaluated.
52https://www.programiz.com/cpp-programming/online-compiler

48

https://www.programiz.com/cpp-programming/online-compiler

• If the condition evaluates to true, the body of the loop inside the do statement is executed again.
• The condition is evaluated once again.
• If the condition evaluates to true, the body of the loop inside the do statement is executed again.
• This process continues until the condition evaluates to false. Then the loop stops.

9.2.1 Flowchart of do…while Loop

Flowchart of C++ do…while loop

9.2.2 Example 3: Display Numbers from 1 to 5

// C++ Program to print numbers from 1 to 5

#include <iostream>

using namespace std;

int main() {
int i = 1;

49

// do...while loop from 1 to 5
do {

cout << i << " ";
++i;

}
while (i <= 5);

return 0;
}

Run Code53

Output

1 2 3 4 5

Here is how the program works.

Iteration Variable i <= 5 Action
i = 1 not checked 1 is printed and i is increased to 2

1st i = 2 true 2 is printed and i is increased to 3
2nd i = 3 true 3 is printed and i is increased to 4
3rd i = 4 true 4 is printed and i is increased to 5
4th i = 5 true 5 is printed and i is increased to 6
5th i = 6 false The loop is terminated

9.2.3 Example 4: Sum of Positive Numbers Only

// program to find the sum of positive numbers
// If the user enters a negative number, the loop ends
// the negative number entered is not added to the sum

#include <iostream>
using namespace std;

int main() {
int number = 0;
int sum = 0;

do {
sum += number;

// take input from the user
cout << "Enter a number: ";
cin >> number;

}
while (number >= 0);

// display the sum
53https://www.programiz.com/cpp-programming/online-compiler

50

https://www.programiz.com/cpp-programming/online-compiler

cout << "\nThe sum is " << sum << endl;

return 0;
}

Run Code54

Output 1

Enter a number: 6
Enter a number: 12
Enter a number: 7
Enter a number: 0
Enter a number: -2
The sum is 25

Here, the do...while loop continues until the user enters a negative number. When the number is negative,
the loop terminates; the negative number is not added to the sum variable.

Output 2

Enter a number: -6
The sum is 0.

The body of the do...while loop runs only once if the user enters a negative number.

9.3 Infinite while loop
If the condition of a loop is always true, the loop runs for infinite times (until the memory is full). For
example,

// infinite while loop
while(true) {

// body of the loop
}

Here is an example of an infinite do...while loop.

// infinite do...while loop

int count = 1;

do {
// body of loop

}
while(count == 1);

In the above programs, the condition is always true. Hence, the loop body will run for infinite times.

54https://www.programiz.com/cpp-programming/online-compiler

51

https://www.programiz.com/cpp-programming/online-compiler

9.4 for vs while loops
A for loop is usually used when the number of iterations is known. For example,

// This loop is iterated 5 times
for (int i = 1; i <=5; ++i) {

// body of the loop
}

Here, we know that the for-loop will be executed 5 times.

However, while and do...while loops are usually used when the number of iterations is unknown. For
example,

while (condition) {
// body of the loop

}

Check out these examples to learn more:

• C++ Program to Display Fibonacci Series55

• C++ Program to Find GCD56

• C++ Program to Find LCM57

10 C++ break Statement
In this tutorial, we will learn about the break statement and its working in loops with the help of examples.

In C++, the break statement terminates the loop when it is encountered.

The syntax of the break statement is:

break;

Before you learn about the break statement, make sure you know about:

• C++ for loop58

• C++ if…else59

• C++ while loop60

55https://www.programiz.com/cpp-programming/examples/fibonacci-series
56https://www.programiz.com/cpp-programming/examples/hcf-gcd
57https://www.programiz.com/cpp-programming/examples/lcm
58https://www.programiz.com/cpp-programming/for-loop
59https://www.programiz.com/cpp-programming/for-loop
60https://www.programiz.com/cpp-programming/do-while-loop

52

https://www.programiz.com/cpp-programming/examples/fibonacci-series
https://www.programiz.com/cpp-programming/examples/hcf-gcd
https://www.programiz.com/cpp-programming/examples/lcm
https://www.programiz.com/cpp-programming/for-loop
https://www.programiz.com/cpp-programming/for-loop
https://www.programiz.com/cpp-programming/do-while-loop

10.1 Working of C++ break Statement

Working of break statement in C++

10.2 Example 1: break with for loop
// program to print the value of i

#include <iostream>
using namespace std;

int main() {
for (int i = 1; i <= 5; i++) {

// break condition
if (i == 3) {

break;
}
cout << i << endl;

}

53

return 0;
}

Run Code61

Output

1
2

In the above program, the for loop is used to print the value of i in each iteration. Here, notice the code:

if (i == 3) {
break;

}

This means, when i is equal to 3, the break statement terminates the loop. Hence, the output doesn’t
include values greater than or equal to 3.

Note: The break statement is usually used with decision-making statements.

10.3 Example 2: break with while loop
// program to find the sum of positive numbers
// if the user enters a negative numbers, break ends the loop
// the negative number entered is not added to sum

#include <iostream>
using namespace std;

int main() {
int number;
int sum = 0;

while (true) {
// take input from the user
cout << "Enter a number: ";
cin >> number;

// break condition
if (number < 0) {

break;
}

// add all positive numbers
sum += number;

}

// display the sum
cout << "The sum is " << sum << endl;

61https://www.programiz.com/cpp-programming/online-compiler

54

https://www.programiz.com/cpp-programming/online-compiler

return 0;
}

Run Code62

Output

Enter a number: 1
Enter a number: 2
Enter a number: 3
Enter a number: -5
The sum is 6.

In the above program, the user enters a number. The while loop is used to print the total sum of numbers
entered by the user. Here, notice the code,

if(number < 0) {
break;

}

This means, when the user enters a negative number, the break statement terminates the loop and codes
outside the loop are executed.

The while loop continues until the user enters a negative number.

10.4 break with Nested loop
When break is used with nested loops, break terminates the inner loop. For example,

// using break statement inside
// nested for loop

#include <iostream>
using namespace std;

int main() {
int number;
int sum = 0;

// nested for loops

// first loop
for (int i = 1; i <= 3; i++) {

// second loop
for (int j = 1; j <= 3; j++) {

if (i == 2) {
break;

}
cout << "i = " << i << ", j = " << j << endl;

}
}

return 0;
}

62https://www.programiz.com/cpp-programming/online-compiler

55

https://www.programiz.com/cpp-programming/online-compiler

Run Code63

Output

i = 1, j = 1
i = 1, j = 2
i = 1, j = 3
i = 3, j = 1
i = 3, j = 2
i = 3, j = 3

In the above program, the break statement is executed when i == 2. It terminates the inner loop, and the
control flow of the program moves to the outer loop.

Hence, the value of i = 2 is never displayed in the output.

The break statement is also used with the switch statement. To learn more, visit C++ switch statement64.

11 C++ continue Statement
In this tutorial, we will learn about the continue statement and its working with loops with the help of
examples.

In computer programming, the continue statement is used to skip the current iteration of the loop and the
control of the program goes to the next iteration.

The syntax of the continue statement is:

continue;

Before you learn about the continue statement, make sure you know about,

• C++ for loop65

• C++ if…else66

• C++ while loop67

63https://www.programiz.com/cpp-programming/online-compiler
64https://www.programiz.com/cpp-programming/switch-case
65https://www.programiz.com/cpp-programming/for-loop
66https://www.programiz.com/cpp-programming/for-loop
67https://www.programiz.com/cpp-programming/do-while-loop

56

https://www.programiz.com/cpp-programming/online-compiler
https://www.programiz.com/cpp-programming/switch-case
https://www.programiz.com/cpp-programming/for-loop
https://www.programiz.com/cpp-programming/for-loop
https://www.programiz.com/cpp-programming/do-while-loop

11.1 Working of C++ continue Statement

Working of continue statement in C++

11.2 Example 1: continue with for loop
In a for loop, continue skips the current iteration and the control flow jumps to the update expression.

// program to print the value of i

#include <iostream>
using namespace std;

int main() {
for (int i = 1; i <= 5; i++) {

// condition to continue
if (i == 3) {

continue;
}

57

cout << i << endl;
}

return 0;
}

Run Code68

Output

1
2
4
5

In the above program, we have used the the for loop to print the value of i in each iteration. Here, notice
the code,

if (i == 3) {
continue;

}

This means

• When i is equal to 3, the continue statement skips the current iteration and starts the next iteration
• Then, i becomes 4, and the condition is evaluated again.
• Hence, 4 and 5 are printed in the next two iterations.

Note: The continue statement is almost always used with decision-making statements.

11.3 Example 2: continue with while loop
In a while loop, continue skips the current iteration and control flow of the program jumps back to
the while condition.

// program to calculate positive numbers till 50 only
// if the user enters a negative number,
// that number is skipped from the calculation

// negative number -> loop terminate
// numbers above 50 -> skip iteration

#include <iostream>
using namespace std;

int main() {
int sum = 0;
int number = 0;

while (number >= 0) {
// add all positive numbers
sum += number;

68https://www.programiz.com/cpp-programming/online-compiler

58

https://www.programiz.com/cpp-programming/online-compiler

// take input from the user
cout << "Enter a number: ";
cin >> number;

// continue condition
if (number > 50) {

cout << "The number is greater than 50 and won't be calculated." << endl;
number = 0; // the value of number is made 0 again
continue;

}
}

// display the sum
cout << "The sum is " << sum << endl;

return 0;
}

Run Code69

Output

Enter a number: 12
Enter a number: 0
Enter a number: 2
Enter a number: 30
Enter a number: 50
Enter a number: 56
The number is greater than 50 and won't be calculated.
Enter a number: 5
Enter a number: -3
The sum is 99

In the above program, the user enters a number. The while loop is used to print the total sum of positive
numbers entered by the user, as long as the numbers entered are not greater than 50.

Notice the use of the continue statement.

if (number > 50){
continue;

}

• When the user enters a number greater than 50, the continue statement skips the current iteration.
Then the control flow of the program goes to the condition of while loop.

• When the user enters a number less than 0, the loop terminates.

Note: The continue statement works in the same way for the do...while loops.

11.4 continue with Nested loop
When continue is used with nested loops, it skips the current iteration of the inner loop. For example,

69https://www.programiz.com/cpp-programming/online-compiler

59

https://www.programiz.com/cpp-programming/online-compiler

// using continue statement inside
// nested for loop

#include <iostream>
using namespace std;

int main() {
int number;
int sum = 0;

// nested for loops

// first loop
for (int i = 1; i <= 3; i++) {

// second loop
for (int j = 1; j <= 3; j++) {

if (j == 2) {
continue;

}
cout << "i = " << i << ", j = " << j << endl;

}
}

return 0;
}

Run Code70

Output

i = 1, j = 1
i = 1, j = 3
i = 2, j = 1
i = 2, j = 3
i = 3, j = 1
i = 3, j = 3

In the above program, when the continue statement executes, it skips the current iteration in the inner
loop. And the control of the program moves to the update expression of the inner loop.

Hence, the value of j = 2 is never displayed in the output.

Note: The break statement71 terminates the loop entirely. However, the continue statement only skips the
current iteration.

12 C++ switch..case Statement
In this tutorial, we will learn about switch statement and its working in C++ programming with the help
of some examples.

The switch statement allows us to execute a block of code among many alternatives.
70https://www.programiz.com/cpp-programming/online-compiler
71https://www.programiz.com/cpp-programming/break-statement

60

https://www.programiz.com/cpp-programming/online-compiler
https://www.programiz.com/cpp-programming/break-statement

The syntax of the switch statement in C++ is:

switch (expression) {
case constant1:

// code to be executed if
// expression is equal to constant1;
break;

case constant2:
// code to be executed if
// expression is equal to constant2;
break;
.
.
.

default:
// code to be executed if
// expression doesn't match any constant

}

How does the switch statement work?

The expression is evaluated once and compared with the values of each case label.

• If there is a match, the corresponding code after the matching label is executed. For example, if the
value of the variable is equal to constant2, the code after case constant2: is executed until the break
statement72 is encountered.

• If there is no match, the code after default: is executed.

Note: We can do the same thing with the if...else..if ladder. However, the syntax of the switch state-
ment is cleaner and much easier to read and write.

72https://www.programiz.com/cpp-programming/break-statement

61

https://www.programiz.com/cpp-programming/break-statement

62

12.1 Flowchart of switch Statement

63

Flowchart of C++ switch…case statement

12.1.1 Example: Create a Calculator using the switch Statement

// Program to build a simple calculator using switch Statement
#include <iostream>
using namespace std;

int main() {
char oper;
float num1, num2;
cout << "Enter an operator (+, -, *, /): ";
cin >> oper;
cout << "Enter two numbers: " << endl;
cin >> num1 >> num2;

switch (oper) {
case '+':

cout << num1 << " + " << num2 << " = " << num1 + num2;
break;

case '-':
cout << num1 << " - " << num2 << " = " << num1 - num2;
break;

case '*':
cout << num1 << " * " << num2 << " = " << num1 * num2;
break;

case '/':
cout << num1 << " / " << num2 << " = " << num1 / num2;
break;

default:
// operator is doesn't match any case constant (+, -, *, /)
cout << "Error! The operator is not correct";
break;

}

return 0;
}

Run Code73

Output 1

Enter an operator (+, -, *, /): +
Enter two numbers:
2.3
4.5
2.3 + 4.5 = 6.8

Output 2
73https://www.programiz.com/cpp-programming/online-compiler

64

https://www.programiz.com/cpp-programming/online-compiler

Enter an operator (+, -, *, /): -
Enter two numbers:
2.3
4.5
2.3 - 4.5 = -2.2

Output 3

Enter an operator (+, -, *, /): *
Enter two numbers:
2.3
4.5
2.3 * 4.5 = 10.35

Output 4

Enter an operator (+, -, *, /): /
Enter two numbers:
2.3
4.5
2.3 / 4.5 = 0.511111

Output 5

Enter an operator (+, -, *, /): ?
Enter two numbers:
2.3
4.5
Error! The operator is not correct.

In the above program, we are using the switch...case statement to perform addition, subtraction, multi-
plication, and division.

How This Program Works

1. We first prompt the user to enter the desired operator. This input is then stored in the char variable
named oper.

2. We then prompt the user to enter two numbers, which are stored in the float variables num1 and num2.
3. The switch statement is then used to check the operator entered by the user:

• If the user enters +, addition is performed on the numbers.
• If the user enters -, subtraction is performed on the numbers.
• If the user enters *, multiplication is performed on the numbers.
• If the user enters /, division is performed on the numbers.
• If the user enters any other character, the default code is printed.

Notice that the break statement is used inside each case block. This terminates the switch statement.

If the break statement is not used, all cases after the correct case are executed.

13 C++ goto Statement
In this article, you’ll learn about goto statment, how it works and why should it be avoided.

65

In C++ programming, the goto statement is used for altering the normal sequence of program execution by
transferring control to some other part of the program.

13.1 Syntax of goto Statement
goto label;
...
...
...
label:
statement;
...

In the syntax above, label is an identifier. When goto label; is encountered, the control of program jumps
to label: and executes the code below it.

Working of goto in C++

13.1.1 Example: goto Statement

// This program calculates the average of numbers entered by the user.
// If the user enters a negative number, it ignores the number and
// calculates the average number entered before it.

include <iostream>
using namespace std;

int main()
{

66

float num, average, sum = 0.0;
int i, n;

cout << "Maximum number of inputs: ";
cin >> n;

for(i = 1; i <= n; ++i)
{

cout << "Enter n" << i << ": ";
cin >> num;

if(num < 0.0)
{

// Control of the program move to jump:
goto jump;

}
sum += num;

}

jump:
average = sum / (i - 1);
cout << "\nAverage = " << average;
return 0;

}

Output

Maximum number of inputs: 10
Enter n1: 2.3
Enter n2: 5.6
Enter n3: -5.6
Average = 3.95

You can write any C++ program without the use of goto statement and is generally considered a good idea
not to use them.

13.1.2 Reason to Avoid goto Statement

The goto statement gives the power to jump to any part of a program but, makes the logic of the program
complex and tangled.

In modern programming, the goto statement is considered a harmful construct and a bad programming
practice.

The goto statement can be replaced in most of C++ program with the use of break74 and continue75 state-
ments.

13.1.3 C++ Functions

74https://www.programiz.com/cpp-programming/break-statement
75https://www.programiz.com/cpp-programming/continue-statement

67

https://www.programiz.com/cpp-programming/break-statement
https://www.programiz.com/cpp-programming/continue-statement

14 C++ Functions
In this tutorial, we will learn about the C++ function and function expressions with the help of examples.

A function is a block of code that performs a specific task.

Suppose we need to create a program to create a circle and color it. We can create two functions to solve
this problem:

• a function to draw the circle
• a function to color the circle

Dividing a complex problem into smaller chunks makes our program easy to understand and reusable.

There are two types of function:

1. Standard Library Functions: Predefined in C++
2. User-defined Function: Created by users

In this tutorial, we will focus mostly on user-defined functions.

14.1 C++ User-defined Function
C++ allows the programmer to define their own function.

A user-defined function groups code to perform a specific task and that group of code is given a name
(identifier).

When the function is invoked from any part of the program, it all executes the codes defined in the body of
the function.

14.1.1 C++ Function Declaration

The syntax to declare a function is:

returnType functionName (parameter1, parameter2,...) {
// function body

}

Here’s an example of a function declaration.

// function declaration
void greet() {

cout << "Hello World";
}

Here,

• the name of the function is greet()
• the return type of the function is void
• the empty parentheses mean it doesn’t have any parameters
• the function body is written inside {}

Note: We will learn about returnType and parameters later in this tutorial.

68

14.1.2 Calling a Function

In the above program, we have declared a function named greet(). To use the greet() function, we need
to call it.

Here’s how we can call the above greet() function.

int main() {

// calling a function
greet();

}

How Function works in C++

14.1.3 Example 1: Display a Text

#include <iostream>
using namespace std;

// declaring a function
void greet() {

cout << "Hello there!";
}

int main() {

// calling the function
greet();

return 0;
}

69

Run Code76

Output

Hello there!

14.1.4 Function Parameters

As mentioned above, a function can be declared with parameters (arguments). A parameter is a value that
is passed when declaring a function.

For example, let us consider the function below:

void printNum(int num) {
cout << num;

}

Here, the int variable num is the function parameter.

We pass a value to the function parameter while calling the function.

int main() {
int n = 7;

// calling the function
// n is passed to the function as argument
printNum(n);

return 0;
}

14.1.5 Example 2: Function with Parameters

// program to print a text

#include <iostream>
using namespace std;

// display a number
void displayNum(int n1, float n2) {

cout << "The int number is " << n1;
cout << "The double number is " << n2;

}

int main() {

int num1 = 5;
double num2 = 5.5;

// calling the function
displayNum(num1, num2);

76https://www.programiz.com/cpp-programming/online-compiler

70

https://www.programiz.com/cpp-programming/online-compiler

return 0;
}

Run Code77

Output

The int number is 5
The double number is 5.5

In the above program, we have used a function that has one int parameter and one double parameter.

We then pass num1 and num2 as arguments. These values are stored by the function parameters n1 and n2 re-
spectively.

C++ function with parameters

Note: The type of the arguments passed while calling the function must match with the corresponding
parameters defined in the function declaration.

14.1.6 Return Statement

In the above programs, we have used void in the function declaration. For example,

void displayNumber() {
// code

}
77https://www.programiz.com/cpp-programming/online-compiler

71

https://www.programiz.com/cpp-programming/online-compiler

This means the function is not returning any value.

It’s also possible to return a value from a function. For this, we need to specify the returnType of the
function during function declaration.

Then, the return statement can be used to return a value from a function.

For example,

int add (int a, int b) {
return (a + b);

}

Here, we have the data type int instead of void. This means that the function returns an int value.

The code return (a + b); returns the sum of the two parameters as the function value.

The return statement denotes that the function has ended. Any code after return inside the function is
not executed.

14.1.7 Example 3: Add Two Numbers

// program to add two numbers using a function

#include <iostream>

using namespace std;

// declaring a function
int add(int a, int b) {

return (a + b);
}

int main() {

int sum;

// calling the function and storing
// the returned value in sum
sum = add(100, 78);

cout << "100 + 78 = " << sum << endl;

return 0;
}

Run Code78

Output

100 + 78 = 178

78https://www.programiz.com/cpp-programming/online-compiler

72

https://www.programiz.com/cpp-programming/online-compiler

In the above program, the add() function is used to find the sum of two numbers.

We pass two int literals 100 and 78 while calling the function.

We store the returned value of the function in the variable sum, and then we print it.

Working of C++ Function with return statement

Notice that sum is a variable of int type. This is because the return value of add() is of int type.

14.1.8 Function Prototype

In C++, the code of function declaration should be before the function call. However, if we want to define
a function after the function call, we need to use the function prototype. For example,

// function prototype
void add(int, int);

int main() {
// calling the function before declaration.
add(5, 3);
return 0;

}

// function definition
void add(int a, int b) {

cout << (a + b);
}

In the above code, the function prototype is:

73

void add(int, int);

This provides the compiler with information about the function name and its parameters. That’s why we
can use the code to call a function before the function has been defined.

The syntax of a function prototype is:

returnType functionName(dataType1, dataType2, ...);

14.1.9 Example 4: C++ Function Prototype

// using function definition after main() function
// function prototype is declared before main()

#include <iostream>

using namespace std;

// function prototype
int add(int, int);

int main() {
int sum;

// calling the function and storing
// the returned value in sum
sum = add(100, 78);

cout << "100 + 78 = " << sum << endl;

return 0;
}

// function definition
int add(int a, int b) {

return (a + b);
}

Run Code79

Output

100 + 78 = 178

The above program is nearly identical to Example 3. The only difference is that here, the function is
defined after the function call.

That’s why we have used a function prototype in this example.

14.1.10 Benefits of Using User-Defined Functions

• Functions make the code reusable. We can declare them once and use them multiple times.
79https://www.programiz.com/cpp-programming/online-compiler

74

https://www.programiz.com/cpp-programming/online-compiler

• Functions make the program easier as each small task is divided into a function.
• Functions increase readability.

14.2 C++ Library Functions
Library functions are the built-in functions in C++ programming.

Programmers can use library functions by invoking the functions directly; they don’t need to write the
functions themselves.

Some common library functions in C++ are sqrt(), abs(), isdigit(), etc.

In order to use library functions, we usually need to include the header file in which these library functions
are defined.

For instance, in order to use mathematical functions such as sqrt() and abs(), we need to include the
header file cmath.

14.2.1 Example 5: C++ Program to Find the Square Root of a Number

#include <iostream>
#include <cmath>
using namespace std;

int main() {
double number, squareRoot;

number = 25.0;

// sqrt() is a library function to calculate the square root
squareRoot = sqrt(number);

cout << "Square root of " << number << " = " << squareRoot;

return 0;
}

Run Code80

Output

Square root of 25 = 5

In this program, the sqrt() library function is used to calculate the square root of a number.

The function declaration of sqrt() is defined in the cmath header file. That’s why we need to use the
code #include <cmath> to use the sqrt() function.

To learn more, visit C++ Standard Library functions81.

80https://www.programiz.com/cpp-programming/online-compiler
81https://www.programiz.com/cpp-programming/library-function

75

https://www.programiz.com/cpp-programming/online-compiler
https://www.programiz.com/cpp-programming/library-function

15 C++ User-defined Function Types
In this tutorial, you will learn about different approaches you can take to solve a single problem using
functions.

For better understanding of arguments and return in functions, user-defined functions can be categorised as:

• Function with no argument and no return value82

• Function with no argument but return value83

• Function with argument but no return value84

• Function with argument and return value85

Consider a situation in which you have to check prime number. This problem is solved below by making
user-defined function in 4 different ways as mentioned above.

15.1 Example 1: No arguments passed and no return value
include <iostream>
using namespace std;

void prime();

int main()
{

// No argument is passed to prime()
prime();
return 0;

}

// Return type of function is void because value is not returned.
void prime()
{

int num, i, flag = 0;

cout << "Enter a positive integer enter to check: ";
cin >> num;

for(i = 2; i <= num/2; ++i)
{

if(num % i == 0)
{

flag = 1;
break;

}
}

if (flag == 1)
{

cout << num << " is not a prime number.";
}
else

82https://www.programiz.com/cpp-programming/user-defined-function-types#no_argument_no_return
83https://www.programiz.com/cpp-programming/user-defined-function-types#no_argument_yes_return
84https://www.programiz.com/cpp-programming/user-defined-function-types#yes_argument_no_return
85https://www.programiz.com/cpp-programming/user-defined-function-types#yes_argument_yes_return

76

https://www.programiz.com/cpp-programming/user-defined-function-types#no_argument_no_return
https://www.programiz.com/cpp-programming/user-defined-function-types#no_argument_yes_return
https://www.programiz.com/cpp-programming/user-defined-function-types#yes_argument_no_return
https://www.programiz.com/cpp-programming/user-defined-function-types#yes_argument_yes_return

{
cout << num << " is a prime number.";

}
}

In the above program, prime() is called from the main() with no arguments.

prime() takes the positive number from the user and checks whether the number is a prime number or not.

Since, return type of prime() is void, no value is returned from the function.

15.2 Example 2: No arguments passed but a return value
#include <iostream>
using namespace std;

int prime();

int main()
{

int num, i, flag = 0;

// No argument is passed to prime()
num = prime();
for (i = 2; i <= num/2; ++i)
{

if (num%i == 0)
{

flag = 1;
break;

}
}

if (flag == 1)
{

cout<<num<<" is not a prime number.";
}
else
{

cout<<num<<" is a prime number.";
}
return 0;

}

// Return type of function is int
int prime()
{

int n;

printf("Enter a positive integer to check: ");
cin >> n;

return n;
}

77

In the above program, prime() function is called from the main() with no arguments.

prime() takes a positive integer from the user. Since, return type of the function is an int, it returns the
inputted number from the user back to the calling main() function.

Then, whether the number is prime or not is checked in the main() itself and printed onto the screen.

15.3 Example 3: Arguments passed but no return value
#include <iostream>
using namespace std;

void prime(int n);

int main()
{

int num;
cout << "Enter a positive integer to check: ";
cin >> num;

// Argument num is passed to the function prime()
prime(num);
return 0;

}

// There is no return value to calling function. Hence, return type of function is void. */
void prime(int n)
{

int i, flag = 0;
for (i = 2; i <= n/2; ++i)
{

if (n%i == 0)
{

flag = 1;
break;

}
}

if (flag == 1)
{

cout << n << " is not a prime number.";
}
else {

cout << n << " is a prime number.";
}

}

In the above program, positive number is first asked from the user which is stored in the variable num.

Then, num is passed to the prime() function where, whether the number is prime or not is checked and
printed.

Since, the return type of prime() is a void, no value is returned from the function.

78

15.4 Example 4: Arguments passed and a return value.
#include <iostream>
using namespace std;

int prime(int n);

int main()
{

int num, flag = 0;
cout << "Enter positive integer to check: ";
cin >> num;

// Argument num is passed to check() function
flag = prime(num);

if(flag == 1)
cout << num << " is not a prime number.";

else
cout<< num << " is a prime number.";

return 0;
}

/* This function returns integer value. */
int prime(int n)
{

int i;
for(i = 2; i <= n/2; ++i)
{

if(n % i == 0)
return 1;

}

return 0;
}

In the above program, a positive integer is asked from the user and stored in the variable num.

Then, num is passed to the function prime() where, whether the number is prime or not is checked.

Since, the return type of prime() is an int, 1 or 0 is returned to the main() calling function. If the number
is a prime number, 1 is returned. If not, 0 is returned.

Back in the main() function, the returned 1 or 0 is stored in the variable flag, and the corresponding text is
printed onto the screen.

15.5 Which method is better?
All four programs above gives the same output and all are technically correct program.

There is no hard and fast rule on which method should be chosen.

The particular method is chosen depending upon the situation and how you want to solve a problem.

79

16 C++ Function Overloading
In this tutorial, we will learn about the function overloading in C++ with examples.

In C++, two functions can have the same name if the number and/or type of arguments passed is different.

These functions having the same name but different arguments are known as overloaded functions. For
example:

// same name different arguments
int test() { }
int test(int a) { }
float test(double a) { }
int test(int a, double b) { }

Here, all 4 functions are overloaded functions.

Notice that the return types of all these 4 functions are not the same. Overloaded functions may or may not
have different return types but they must have different arguments. For example,

// Error code
int test(int a) { }
double test(int b){ }

Here, both functions have the same name, the same type, and the same number of arguments. Hence, the
compiler will throw an error.

16.1 Example 1: Overloading Using Different Types of Parameter
// Program to compute absolute value
// Works for both int and float

#include <iostream>
using namespace std;

// function with float type parameter
float absolute(float var){

if (var < 0.0)
var = -var;

return var;
}

// function with int type parameter
int absolute(int var) {

if (var < 0)
var = -var;

return var;
}

int main() {

// call function with int type parameter
cout << "Absolute value of -5 = " << absolute(-5) << endl;

// call function with float type parameter
cout << "Absolute value of 5.5 = " << absolute(5.5f) << endl;
return 0;

}

80

Run Code86

Output

Absolute value of -5 = 5
Absolute value of 5.5 = 5.5

Working of overloading for the absolute() function

In this program, we overload the absolute() function. Based on the type of parameter passed during the
function call, the corresponding function is called.

16.2 Example 2: Overloading Using Different Number of Parameters
#include <iostream>
using namespace std;

86https://www.programiz.com/cpp-programming/online-compiler

81

https://www.programiz.com/cpp-programming/online-compiler

// function with 2 parameters
void display(int var1, double var2) {

cout << "Integer number: " << var1;
cout << " and double number: " << var2 << endl;

}

// function with double type single parameter
void display(double var) {

cout << "Double number: " << var << endl;
}

// function with int type single parameter
void display(int var) {

cout << "Integer number: " << var << endl;
}

int main() {

int a = 5;
double b = 5.5;

// call function with int type parameter
display(a);

// call function with double type parameter
display(b);

// call function with 2 parameters
display(a, b);

return 0;
}

Run Code87

Output

Integer number: 5
Float number: 5.5
Integer number: 5 and double number: 5.5

Here, the display() function is called three times with different arguments. Depending on the number and
type of arguments passed, the corresponding display() function is called.

87https://www.programiz.com/cpp-programming/online-compiler

82

https://www.programiz.com/cpp-programming/online-compiler

Working of overloading for the display() function

The return type of all these functions is the same but that need not be the case for function overloading.

Note: In C++, many standard library functions are overloaded. For example, the sqrt() function can
take double, float, int, etc. as parameters. This is possible because the sqrt() function is overloaded in
C++.

83

17 C++ Programming Default Arguments (Parameters)
In this tutorial, we will learn C++ default arguments and their working with the help of examples.

In C++ programming, we can provide default values for function88 parameters.

If a function with default arguments is called without passing arguments, then the default parameters are
used.

However, if arguments are passed while calling the function, the default arguments are ignored.

17.1 Working of default arguments

How default arguments work in C++

We can understand the working of default arguments from the image above:

1. When temp() is called, both the default parameters are used by the function.
88https://www.programiz.com/cpp-programming/function

84

https://www.programiz.com/cpp-programming/function

2. When temp(6) is called, the first argument becomes 6 while the default value is used for the second
parameter.

3. When temp(6, -2.3) is called, both the default parameters are overridden, resulting in i = 6 and f
= -2.3.

4. When temp(3.4) is passed, the function behaves in an undesired way because the second argument
cannot be passed without passing the first argument.

Therefore, 3.4 is passed as the first argument. Since the first argument has been defined as int, the
value that is actually passed is 3.

17.2 Example: Default Argument
#include <iostream>
using namespace std;

// defining the default arguments
void display(char = '*', int = 3);

int main() {
int count = 5;

cout << "No argument passed: ";
// *, 3 will be parameters
display();

cout << "First argument passed: ";
// #, 3 will be parameters

display('#');

cout << "Both arguments passed: ";
// $, 5 will be parameters
display('$', count);

return 0;
}

void display(char c, int count) {
for(int i = 1; i <= count; ++i)
{

cout << c;
}
cout << endl;

}

Run Code89

Output

No argument passed: ***
First argument passed: ###
Both arguments passed: $$$$$

89https://www.programiz.com/cpp-programming/online-compiler

85

https://www.programiz.com/cpp-programming/online-compiler

Here is how this program works:

1. display() is called without passing any arguments. In this case, display() uses both the default
parameters c = '*' and n = 1.

2. display('#') is called with only one argument. In this case, the first becomes '#'. The second default
parameter n = 1 is retained.

3. display('#', count) is called with both arguments. In this case, default arguments are not used.

We can also define the default parameters in the function definition itself. The program below is equivalent
to the one above.

#include <iostream>
using namespace std;

// defining the default arguments
void display(char c = '*', int count = 3) {

for(int i = 1; i <= count; ++i) {
cout << c;

}
cout << endl;

}

int main() {
int count = 5;

cout << "No argument passed: ";
// *, 3 will be parameters
display();

cout << "First argument passed: ";
// #, 3 will be parameters

display('#');

cout << "Both argument passed: ";
// $, 5 will be parameters
display('$', count);

return 0;
}

Run Code90

17.3 Things to Remember

1. Once we provide a default value for a parameter, all subsequent parameters must also have default
values. For example,

// Invalid
void add(int a, int b = 3, int c, int d);

// Invalid
void add(int a, int b = 3, int c, int d = 4);

90https://www.programiz.com/cpp-programming/online-compiler

86

https://www.programiz.com/cpp-programming/online-compiler

// Valid
void add(int a, int c, int b = 3, int d = 4);

2. If we are defining the default arguments in the function definition instead of the function prototype,
then the function must be defined before the function call.

// Invalid code

int main() {
// function call
display();

}

void display(char c = '*', int count = 5) {
// code

}

18 C++ Storage Class
In this article, you’ll learn about different storage classes in C++. Namely: local, global, static local, register
and thread local.

Every variable in C++ has two features: type and storage class.

Type specifies the type of data that can be stored in a variable. For example: int, float, char etc.

And, storage class controls two different properties of a variable: lifetime (determines how long a variable
can exist) and scope (determines which part of the program can access it).

Depending upon the storage class of a variable, it can be divided into 4 major types:

• Local variable91

• Global variable92

• Static local variable93

• Register Variable94

• Thread Local Storage95

18.1 Local Variable
A variable defined inside a function (defined inside function96 body between braces) is called a local variable
or automatic variable.

Its scope is only limited to the function where it is defined. In simple terms, local variable exists and can be
accessed only inside a function.

The life of a local variable ends (It is destroyed) when the function exits.

91https://www.programiz.com/cpp-programming/storage-class#local_variable
92https://www.programiz.com/cpp-programming/storage-class#global_variable
93https://www.programiz.com/cpp-programming/storage-class#static_variable
94https://www.programiz.com/cpp-programming/storage-class#register%20variable
95https://www.programiz.com/cpp-programming/storage-class#thread_local_storage
96https://www.programiz.com/cpp-programming/function

87

https://www.programiz.com/cpp-programming/storage-class#local_variable
https://www.programiz.com/cpp-programming/storage-class#global_variable
https://www.programiz.com/cpp-programming/storage-class#static_variable
https://www.programiz.com/cpp-programming/storage-class#register%20variable
https://www.programiz.com/cpp-programming/storage-class#thread_local_storage
https://www.programiz.com/cpp-programming/function

18.1.1 Example 1: Local variable

#include <iostream>
using namespace std;

void test();

int main()
{

// local variable to main()
int var = 5;

test();

// illegal: var1 not declared inside main()
var1 = 9;

}

void test()
{

// local variable to test()
int var1;
var1 = 6;

// illegal: var not declared inside test()
cout << var;

}

The variable var cannot be used inside test() and var1 cannot be used inside main() function.

Keyword auto was also used for defining local variables before as: auto int var;

But, after C++11 auto97 has a different meaning and should not be used for defining local variables.

18.2 Global Variable
If a variable is defined outside all functions, then it is called a global variable.

The scope of a global variable is the whole program. This means, It can be used and changed at any part of
the program after its declaration.

Likewise, its life ends only when the program ends.

18.2.1 Example 2: Global variable

#include <iostream>
using namespace std;

// Global variable declaration
int c = 12;

void test();

int main()
97http://en.cppreference.com/w/cpp/language/auto

88

http://en.cppreference.com/w/cpp/language/auto

{
++c;

// Outputs 13
cout << c <<endl;
test();

return 0;
}

void test()
{

++c;

// Outputs 14
cout << c;

}

Output

13
14

In the above program, c is a global variable.

This variable is visible to both functions main() and test() in the above program.

18.2.2 Static Local variable

Keyword static is used for specifying a static variable. For example:

...
int main()
{

static float a;
...

}

A static local variable exists only inside a function where it is declared (similar to a local variable) but its
lifetime starts when the function is called and ends only when the program ends.

The main difference between local variable and static variable is that, the value of static variable persists
the end of the program.

18.2.3 Example 3: Static local variable

#include <iostream>
using namespace std;

void test()
{

// var is a static variable
static int var = 0;
++var;

89

cout << var << endl;
}

int main()
{

test();
test();

return 0;
}

Output

1
2

In the above program, test() function is invoked 2 times.

During the first call, variable var is declared as static variable and initialized to 0. Then 1 is added
to var which is displayed in the screen.

When the function test() returns, variable var still exists because it is a static variable.

During second function call, no new variable var is created. The same var is increased by 1 and then displayed
to the screen.

Output of above program if var was not specified as static variable

1
1

18.3 Register Variable (Deprecated in C++11)
Keyword register is used for specifying register variables.

Register variables are similar to automatic variables and exists inside a particular function only. It is supposed
to be faster than the local variables.

If a program encounters a register variable, it stores the variable in processor’s register rather than memory
if available. This makes it faster than the local variables.

However, this keyword was deprecated in C++11 and should not be used.

18.4 Thread Local Storage
Thread-local storage is a mechanism by which variables are allocated such that there is one instance of the
variable per extant thread.

Keyword thread_local is used for this purpose.

Learn more about thread local storage98.

98http://www.codeproject.com/Articles/8113/Thread-Local-Storage-The-C-Way

90

http://www.codeproject.com/Articles/8113/Thread-Local-Storage-The-C-Way

19 C++ Recursion
In this tutorial, we will learn about recursive function in C++ and its working with the help of examples.

A function99 that calls itself is known as a recursive function. And, this technique is known as recursion.

19.1 Working of Recursion in C++
void recurse()
{

...
recurse();
...

}

int main()
{

...
recurse();
...

}

The figure below shows how recursion works by calling itself over and over again.

How recursion works in C++ programming

The recursion continues until some condition is met.
99https://www.programiz.com/cpp-programming/function

91

https://www.programiz.com/cpp-programming/function

To prevent infinite recursion, if…else statement100 (or similar approach) can be used where one branch makes
the recursive call and the other doesn’t.

19.2 Example 1: Factorial of a Number Using Recursion
// Factorial of n = 1*2*3*...*n

#include <iostream>
using namespace std;

int factorial(int);

int main() {
int n, result;

cout << "Enter a non-negative number: ";
cin >> n;

result = factorial(n);
cout << "Factorial of " << n << " = " << result;
return 0;

}

int factorial(int n) {
if (n > 1) {

return n * factorial(n - 1);
} else {

return 1;
}

}

Run Code101

Output

Enter a non-negative number: 4
Factorial of 4 = 24

100https://www.programiz.com/cpp-programming/if-else
101https://www.programiz.com/cpp-programming/online-compiler

92

https://www.programiz.com/cpp-programming/if-else
https://www.programiz.com/cpp-programming/online-compiler

19.2.1 Working of Factorial Program

93

How this C++ recursion program works

As we can see, the factorial() function is calling itself. However, during each call, we have decreased the
value of n by 1. When n is less than 1, the factorial() function ultimately returns the output.

19.3 Advantages and Disadvantages of Recursion
Below are the pros and cons of using recursion in C++.

19.3.1 Advantages of C++ Recursion

• It makes our code shorter and cleaner.
• Recursion is required in problems concerning data structures and advanced algorithms, such as Graph

and Tree Traversal.

19.3.2 Disadvantages of C++ Recursion

• It takes a lot of stack space compared to an iterative program.
• It uses more processor time.
• It can be more difficult to debug compared to an equivalent iterative program.

20 C++ Return by Reference
In this article, you’ll learn how to return a value by reference in a function and use it efficiently in your
program.

In C++ Programming, not only can you pass values by reference to a function102 but you can also return a
value by reference.

To understand this feature, you should have the knowledge of:

• Global variables103

20.1 Example: Return by Reference
#include <iostream>
using namespace std;

// global variable
int num;

// function declaration
int& test();

int main() {

102https://www.programiz.com/cpp-programming/function
103https://www.programiz.com/cpp-programming/storage-class#global_variable

94

https://www.programiz.com/cpp-programming/function
https://www.programiz.com/cpp-programming/storage-class#global_variable

 // assign 5 to num variable
 // equivalent to num = 5;
test() = 5;

cout << num;

return 0;
}

// function definition
// returns the address of num variable
int& test() {

return num;
}

Output

5

In program above, the return type of function test() is int&. Hence, this function returns a reference of
the variable num.

The return statement is return num;. Unlike return by value, this statement doesn’t return value of num,
instead it returns the variable itself (address).

So, when the variable is returned, it can be assigned a value as done in test() = 5;

This stores 5 to the variable num, which is displayed onto the screen.

20.1.1 Important Things to Remember When Returning by Reference.

• Ordinary function returns value but this function doesn’t. Hence, you cannot return a constant from
the function.

int& test() {

return 2;

}

• You cannot return a local variable from this function.

int& test() {

int n = 2;
return n;

}

20.1.2 C++ Arrays & String

95

21 C++ Arrays
In this tutorial, we will learn to work with arrays. We will learn to declare, initialize, and access array
elements in C++ programming with the help of examples.

In C++, an array is a variable that can store multiple values of the same type. For example,

Suppose a class has 27 students, and we need to store the grades of all of them. Instead of creating 27
separate variables, we can simply create an array:

double grade[27];

Here, grade is an array that can hold a maximum of 27 elements of double type.

In C++, the size and type of arrays cannot be changed after its declaration.

21.1 C++ Array Declaration
dataType arrayName[arraySize];

For example,

int x[6];

Here,

• int - type of element to be stored
• x - name of the array
• 6 - size of the array

21.2 Access Elements in C++ Array
In C++, each element in an array is associated with a number. The number is known as an array index. We
can access elements of an array by using those indices.

// syntax to access array elements
array[index];

Consider the array x we have seen above.

Elements of an array in C++

21.2.1 Few Things to Remember:

• The array indices start with 0. Meaning x[0] is the first element stored at index 0.

96

• If the size of an array is n, the last element is stored at index (n-1). In this example, x[5] is the last
element.

• Elements of an array have consecutive addresses. For example, suppose the starting address
of x[0] is 2120.

Then, the address of the next element x[1] will be 2124, the address of x[2] will be 2128, and so on.

Here, the size of each element is increased by 4. This is because the size of int is 4 bytes.

21.3 C++ Array Initialization
In C++, it’s possible to initialize an array during declaration. For example,

// declare and initialize and array
int x[6] = {19, 10, 8, 17, 9, 15};

C++ Array elements and their data

Another method to initialize array during declaration:

// declare and initialize an array
int x[] = {19, 10, 8, 17, 9, 15};

Here, we have not mentioned the size of the array. In such cases, the compiler automatically computes the
size.

21.3.1 C++ Array With Empty Members

In C++, if an array has a size n, we can store upto n number of elements in the array. However, what will
happen if we store less than n number of elements.

For example,

// store only 3 elements in the array
int x[6] = {19, 10, 8};

Here, the array x has a size of 6. However, we have initialized it with only 3 elements.

In such cases, the compiler assigns random values to the remaining places. Oftentimes, this random value is
simply 0.

97

Empty array members are automatically assigned the value 0

21.4 How to insert and print array elements?
int mark[5] = {19, 10, 8, 17, 9}

// change 4th element to 9
mark[3] = 9;

// take input from the user
// store the value at third position
cin >> mark[2];

// take input from the user
// insert at ith position
cin >> mark[i-1];

// print first element of the array
cout << mark[0];

// print ith element of the array
cout >> mark[i-1];

21.5 Example 1: Displaying Array Elements
#include <iostream>
using namespace std;

int main() {

int numbers[5] = {7, 5, 6, 12, 35};

cout << "The numbers are: ";

// Printing array elements
// using range based for loop
for (const int &n : numbers) {

98

cout << n << " ";
}

cout << "\nThe numbers are: ";

// Printing array elements
// using traditional for loop
for (int i = 0; i < 5; ++i) {
cout << numbers[i] << " ";

}

return 0;
}

Run Code104

Output

The numbers are: 7 5 6 12 35
The numbers are: 7 5 6 12 35

Here, we have used a for loop to iterate from i = 0 to i = 4. In each iteration, we have printed numbers[i].

We again used a range-based for loop to print out the elements of the array. To learn more about this loop,
check C++ Ranged for Loop105.

Note: In our range-based loop, we have used the code const int &n instead of int n as the range decla-
ration. However, the const int &n is more preferred because:

1. Using int n simply copies the array elements to the variable n during each iteration. This is not
memory-efficient.

&n, however, uses the memory address of the array elements to access their data without copying them
to a new variable. This is memory-efficient.

2. We are simply printing the array elements, not modifying them. Therefore, we use const so as not to
accidentally change the values of the array.

21.6 Example 2: Take Inputs from User and Store Them in an Array
#include <iostream>
using namespace std;

int main() {

int numbers[5];

cout << "Enter 5 numbers: " << endl;

// store input from user to array
for (int i = 0; i < 5; ++i) {
cin >> numbers[i];

}
104https://www.programiz.com/cpp-programming/online-compiler
105https://www.programiz.com/cpp-programming/ranged-for-loop

99

https://www.programiz.com/cpp-programming/online-compiler
https://www.programiz.com/cpp-programming/ranged-for-loop

cout << "The numbers are: ";

// print array elements
for (int n = 0; n < 5; ++n) {
cout << numbers[n] << " ";

}

return 0;
}

Run Code106

Output

Enter 5 numbers:
11
12
13
14
15
The numbers are: 11 12 13 14 15

Once again, we have used a for loop to iterate from i = 0 to i = 4. In each iteration, we took an input
from the user and stored it in numbers[i].

Then, we used another for loop to print all the array elements.

21.7 Example 3: Display Sum and Average of Array Elements Using for Loop
#include <iostream>
using namespace std;

int main() {

// initialize an array without specifying size
double numbers[] = {7, 5, 6, 12, 35, 27};

double sum = 0;
double count = 0;
double average;

cout << "The numbers are: ";

// print array elements
// use of range-based for loop
for (const double &n : numbers) {
cout << n << " ";

// calculate the sum
sum += n;

106https://www.programiz.com/cpp-programming/online-compiler

100

https://www.programiz.com/cpp-programming/online-compiler

// count the no. of array elements
++count;

}

// print the sum
cout << "\nTheir Sum = " << sum << endl;

// find the average
average = sum / count;
cout << "Their Average = " << average << endl;

return 0;
}

Run Code107

Output

The numbers are: 7 5 6 12 35 27
Their Sum = 92
Their Average = 15.3333

In this program:

1. We have initialized a double array named numbers but without specifying its size. We also declared
three double variables sum, count, and average.

Here, sum =0 and count = 0.

2. Then we used a range-based for loop to print the array elements. In each iteration of the loop, we
add the current array element to sum.

3. We also increase the value of count by 1 in each iteration, so that we can get the size of the array by
the end of the for loop.

4. After printing all the elements, we print the sum and the average of all the numbers. The average of
the numbers is given by average = sum / count;

Note: We used a ranged for loop instead of a normal for loop.

A normal for loop requires us to specify the number of iterations, which is given by the size of the array.

But a ranged for loop does not require such specifications.

21.8 C++ Array Out of Bounds
If we declare an array of size 10, then the array will contain elements from index 0 to 9.

However, if we try to access the element at index 10 or more than 10, it will result in Undefined Behaviour.

22 C++ Multidimensional Arrays
In this tutorial, we’ll learn about multi-dimensional arrays in C++. More specifically, how to declare them,
access them, and use them efficiently in our program.
107https://www.programiz.com/cpp-programming/online-compiler

101

https://www.programiz.com/cpp-programming/online-compiler

In C++, we can create an array108 of an array, known as a multidimensional array. For example:

int x[3][4];

Here, x is a two-dimensional array. It can hold a maximum of 12 elements.

We can think of this array as a table with 3 rows and each row has 4 columns as shown below.

Elements in two-dimensional array in C++ Programming

Three-dimensional arrays also work in a similar way. For example:

float x[2][4][3];

This array x can hold a maximum of 24 elements.

We can find out the total number of elements in the array simply by multiplying its dimensions:

2 x 4 x 3 = 24

22.1 Multidimensional Array Initialization
Like a normal array, we can initialize a multidimensional array in more than one way.

22.1.1 1. Initialization of two-dimensional array

int test[2][3] = {2, 4, 5, 9, 0, 19};

The above method is not preferred. A better way to initialize this array with the same array elements is
given below:

int test[2][3] = { {2, 4, 5}, {9, 0, 19}};

This array has 2 rows and 3 columns, which is why we have two rows of elements with 3 elements each.
108https://www.programiz.com/cpp-programming/arrays

102

https://www.programiz.com/cpp-programming/arrays

Initializing a two-dimensional array in C++

22.1.2 2. Initialization of three-dimensional array

int test[2][3][4] = {3, 4, 2, 3, 0, -3, 9, 11, 23, 12, 23,
2, 13, 4, 56, 3, 5, 9, 3, 5, 5, 1, 4, 9};

This is not a good way of initializing a three-dimensional array. A better way to initialize this array is:

int test[2][3][4] = {
{ {3, 4, 2, 3}, {0, -3, 9, 11}, {23, 12, 23, 2} },
{ {13, 4, 56, 3}, {5, 9, 3, 5}, {5, 1, 4, 9} }

};

Notice the dimensions of this three-dimensional array.

The first dimension has the value 2. So, the two elements comprising the first dimension are:

Element 1 = { {3, 4, 2, 3}, {0, -3, 9, 11}, {23, 12, 23, 2} }
Element 2 = { {13, 4, 56, 3}, {5, 9, 3, 5}, {5, 1, 4, 9} }

The second dimension has the value 3. Notice that each of the elements of the first dimension has three
elements each:

{3, 4, 2, 3}, {0, -3, 9, 11} and {23, 12, 23, 2} for Element 1.
{13, 4, 56, 3}, {5, 9, 3, 5} and {5, 1, 4, 9} for Element 2.

Finally, there are four int numbers inside each of the elements of the second dimension:

{3, 4, 2, 3}
{0, -3, 9, 11}
...
...

103

22.2 Example 1: Two Dimensional Array
// C++ Program to display all elements
// of an initialised two dimensional array

#include <iostream>
using namespace std;

int main() {
int test[3][2] = {{2, -5},

{4, 0},
{9, 1}};

// use of nested for loop
// access rows of the array
for (int i = 0; i < 3; ++i) {

// access columns of the array
for (int j = 0; j < 2; ++j) {

cout << "test[" << i << "][" << j << "] = " << test[i][j] << endl;
}

}

return 0;
}

Run Code109

Output

test[0][0] = 2
test[0][1] = -5
test[1][0] = 4
test[1][1] = 0
test[2][0] = 9
test[2][1] = 1

In the above example, we have initialized a two-dimensional int array named test that has 3 “rows” and 2
“columns”.

Here, we have used the nested for loop to display the array elements.

• the outer loop from i == 0 to i == 2 access the rows of the array
• the inner loop from j == 0 to j == 1 access the columns of the array

Finally, we print the array elements in each iteration.

22.3 Example 2: Taking Input for Two Dimensional Array
#include <iostream>
using namespace std;

int main() {
109https://www.programiz.com/cpp-programming/online-compiler

104

https://www.programiz.com/cpp-programming/online-compiler

int numbers[2][3];

cout << "Enter 6 numbers: " << endl;

// Storing user input in the array
for (int i = 0; i < 2; ++i) {

for (int j = 0; j < 3; ++j) {
cin >> numbers[i][j];

}
}

cout << "The numbers are: " << endl;

// Printing array elements
for (int i = 0; i < 2; ++i) {

for (int j = 0; j < 3; ++j) {
cout << "numbers[" << i << "][" << j << "]: " << numbers[i][j] << endl;

}
}

return 0;
}

Run Code110

Output

Enter 6 numbers:
1
2
3
4
5
6
The numbers are:
numbers[0][0]: 1
numbers[0][1]: 2
numbers[0][2]: 3
numbers[1][0]: 4
numbers[1][1]: 5
numbers[1][2]: 6

Here, we have used a nested for loop to take the input of the 2d array. Once all the input has been taken,
we have used another nested for loop to print the array members.

22.4 Example 3: Three Dimensional Array
// C++ Program to Store value entered by user in
// three dimensional array and display it.

#include <iostream>
using namespace std;

110https://www.programiz.com/cpp-programming/online-compiler

105

https://www.programiz.com/cpp-programming/online-compiler

int main() {
// This array can store upto 12 elements (2x3x2)
int test[2][3][2] = {

{
{1, 2},
{3, 4},
{5, 6}

},
{

{7, 8},
{9, 10},
{11, 12}

}
};

// Displaying the values with proper index.
for (int i = 0; i < 2; ++i) {

for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 2; ++k) {

cout << "test[" << i << "][" << j << "][" << k << "] = " << test[i][j][k] << endl;
}

}
}

return 0;
}

Run Code111

Output

test[0][0][0] = 1
test[0][0][1] = 2
test[0][1][0] = 3
test[0][1][1] = 4
test[0][2][0] = 5
test[0][2][1] = 6
test[1][0][0] = 7
test[1][0][1] = 8
test[1][1][0] = 9
test[1][1][1] = 10
test[1][2][0] = 11
test[1][2][1] = 12

The basic concept of printing elements of a 3d array is similar to that of a 2d array.

However, since we are manipulating 3 dimensions, we use a nested for loop with 3 total loops instead of just
2:

• the outer loop from i == 0 to i == 1 accesses the first dimension of the array
• the middle loop from j == 0 to j == 2 accesses the second dimension of the array
• the innermost loop from k == 0 to k == 1 accesses the third dimension of the array

As we can see, the complexity of the array increases exponentially with the increase in dimensions.
111https://www.programiz.com/cpp-programming/online-compiler

106

https://www.programiz.com/cpp-programming/online-compiler

23 Passing Array to a Function in C++ Programming
In this tutorial, we will learn how to pass a single-dimensional and multidimensional array as a function
parameter in C++ with the help of examples.

In C++, we can pass arrays as an argument to a function. And, also we can return arrays from a function.

Before you learn about passing arrays as a function argument, make sure you know about C++ Ar-
rays112 and C++ Functions113.

23.1 Syntax for Passing Arrays as Function Parameters
The syntax for passing an array to a function is:

returnType functionName(dataType arrayName[arraySize]) {
// code

}

Let’s see an example,

int total(int marks[5]) {
// code

}

Here, we have passed an int type array named marks to the function total(). The size of the array is 5.

23.1.1 Example 1: Passing One-dimensional Array to a Function

// C++ Program to display marks of 5 students

#include <iostream>
using namespace std;

// declare function to display marks
// take a 1d array as parameter
void display(int m[5]) {

cout << "Displaying marks: " << endl;

// display array elements
for (int i = 0; i < 5; ++i) {

cout << "Student " << i + 1 << ": " << m[i] << endl;
}

}

int main() {

// declare and initialize an array
int marks[5] = {88, 76, 90, 61, 69};

// call display function
// pass array as argument
display(marks);

112https://www.programiz.com/cpp-programming/arrays
113https://www.programiz.com/cpp-programming/function

107

https://www.programiz.com/cpp-programming/arrays
https://www.programiz.com/cpp-programming/function

return 0;
}

Run Code114

Output

Displaying marks:
Student 1: 88
Student 2: 76
Student 3: 90
Student 4: 61
Student 5: 69

Here,

1. When we call a function by passing an array as the argument, only the name of the array is used.

display(marks);

Here, the argument marks represent the memory address of the first element of array marks[5].

2. However, notice the parameter of the display() function.

void display(int m[5])

Here, we use the full declaration of the array in the function parameter, including the square braces [].

3. The function parameter int m[5] converts to int* m;. This points to the same address pointed by
the array marks. This means that when we manipulate m[5] in the function body, we are actually
manipulating the original array marks.

C++ handles passing an array to a function in this way to save memory and time.

23.1.2 Passing Multidimensional Array to a Function

We can also pass Multidimensional arrays115 as an argument to the function. For example,

23.1.3 Example 2: Passing Multidimensional Array to a Function

// C++ Program to display the elements of two
// dimensional array by passing it to a function

#include <iostream>
using namespace std;

// define a function
// pass a 2d array as a parameter
void display(int n[][2]) {

cout << "Displaying Values: " << endl;
114https://www.programiz.com/cpp-programming/online-compiler
115https://www.programiz.com/cpp-programming/multidimensional-arrays

108

https://www.programiz.com/cpp-programming/online-compiler
https://www.programiz.com/cpp-programming/multidimensional-arrays

for (int i = 0; i < 3; ++i) {
for (int j = 0; j < 2; ++j) {

cout << "num[" << i << "][" << j << "]: " << n[i][j] << endl;
}

}
}

int main() {

// initialize 2d array
int num[3][2] = {

{3, 4},
{9, 5},
{7, 1}

};

// call the function
// pass a 2d array as an argument
display(num);

return 0;
}

Run Code116

Output

Displaying Values:
num[0][0]: 3
num[0][1]: 4
num[1][0]: 9
num[1][1]: 5
num[2][0]: 7
num[2][1]: 1

In the above program, we have defined a function named display(). The function takes a two dimensional
array, int n[][2] as its argument and prints the elements of the array.

While calling the function, we only pass the name of the two dimensional array as the function argu-
ment display(num).

Note: It is not mandatory to specify the number of rows in the array. However, the number of columns
should always be specified. This is why we have used int n[][2].

We can also pass arrays with more than 2 dimensions as a function argument.

23.2 C++ Returning an Array From a Function
We can also return an array from the function. However, the actual array is not returned. Instead the
address of the first element of the array is returned with the help of pointers117.

We will learn about returning arrays from a function in the coming tutorials.
116https://www.programiz.com/cpp-programming/online-compiler
117https://www.programiz.com/cpp-programming/pointers

109

https://www.programiz.com/cpp-programming/online-compiler
https://www.programiz.com/cpp-programming/pointers

24 C++ Strings
In this tutorial, you’ll learn to handle strings in C++. You’ll learn to declare them, initialize them and use
them for various input/output operations.

String is a collection of characters. There are two types of strings commonly used in C++ programming
language:

• Strings that are objects of string class (The Standard C++ Library string class)
• C-strings (C-style Strings)

24.1 C-strings
In C programming, the collection of characters is stored in the form of arrays. This is also supported in C++
programming. Hence it’s called C-strings.

C-strings are arrays of type char terminated with null character, that is, \0 (ASCII value of null character
is 0).

24.1.1 How to define a C-string?

char str[] = "C++";

In the above code, str is a string and it holds 4 characters.

Although, “C++” has 3 character, the null character \0 is added to the end of the string automatically.

24.1.2 Alternative ways of defining a string

char str[4] = "C++";

char str[] = {'C','+','+','\0'};
char str[4] = {'C','+','+','\0'};

Like arrays, it is not necessary to use all the space allocated for the string. For example:

char str[100] = "C++";

24.1.3 Example 1: C++ String to read a word

C++ program to display a string entered by user.

#include <iostream>
using namespace std;

int main()
{

char str[100];

cout << "Enter a string: ";
cin >> str;
cout << "You entered: " << str << endl;

110

cout << "\nEnter another string: ";
cin >> str;
cout << "You entered: "<<str<<endl;

return 0;
}

Output

Enter a string: C++
You entered: C++
Enter another string: Programming is fun.
You entered: Programming

Notice that, in the second example only “Programming” is displayed instead of “Programming is fun”.

This is because the extraction operator » works as scanf() in C and considers a space ” ” has a terminating
character.

24.1.4 Example 2: C++ String to read a line of text

C++ program to read and display an entire line entered by user.

#include <iostream>
using namespace std;

int main()
{

char str[100];
cout << "Enter a string: ";
cin.get(str, 100);

cout << "You entered: " << str << endl;
return 0;

}

Output

Enter a string: Programming is fun.
You entered: Programming is fun.

To read the text containing blank space, cin.get function can be used. This function takes two arguments.

First argument is the name of the string (address of first element of string) and second argument is the
maximum size of the array.

In the above program, str is the name of the string and 100 is the maximum size of the array.

24.2 string Object
In C++, you can also create a string object for holding strings.

Unlike using char arrays, string objects has no fixed length, and can be extended as per your requirement.

111

24.2.1 Example 3: C++ string using string data type

#include <iostream>
using namespace std;

int main()
{

// Declaring a string object
string str;
cout << "Enter a string: ";
getline(cin, str);

cout << "You entered: " << str << endl;
return 0;

}

Output

Enter a string: Programming is fun.
You entered: Programming is fun.

In this program, a string str is declared. Then the string is asked from the user.

Instead of using cin>> or cin.get() function, you can get the entered line of text using getline().

getline() function takes the input stream as the first parameter which is cin and str as the location of
the line to be stored.

24.3 Passing String to a Function
Strings are passed to a function in a similar way arrays are passed to a function118.

#include <iostream>

using namespace std;

void display(char *);
void display(string);

int main()
{

string str1;
char str[100];

cout << "Enter a string: ";
getline(cin, str1);

cout << "Enter another string: ";
cin.get(str, 100, '\n');

display(str1);
display(str);
return 0;

}
118https://www.programiz.com/cpp-programming/passing-arrays-function

112

https://www.programiz.com/cpp-programming/passing-arrays-function

void display(char s[])
{

cout << "Entered char array is: " << s << endl;
}

void display(string s)
{

cout << "Entered string is: " << s << endl;
}

Output

Enter a string: Programming is fun.
Enter another string: Really?
Entered string is: Programming is fun.
Entered char array is: Really?

In the
above
pro-
gram,
two
strings
are
asked
to
enter.
These
are
stored
in str and str1 re-
spec-
tively,
where
str is
a char ar-
ray
and
str1 is
a string ob-
ject.
Then,
we
have
two
func-
tions display() that
out-
puts
the
string
onto
the
string.

113

The
only
differ-
ence
be-
tween
the
two
func-
tions
is the
para-
meter.
The
first display() func-
tion
takes
char
array
as a
para-
me-
ter,
while
the
sec-
ond
takes
string
as a
para-
me-
ter.
This
process
is
known
as
func-
tion
over-
load-
ing.
Learn
more
about Func-
tion
Over-
load-
ing119.

24.3.1 C++ Structures

119https://www.programiz.com/cpp-programming/function-overloading

114

https://www.programiz.com/cpp-programming/function-overloading

25 C++ Structures
In this article, you’ll learn about structures in C++ programming; what is it, how to define it and use it in
your program.

Structure is a collection of variables of different data types under a single name. It is similar to a class120 in
that, both holds a collecion of data of different data types.

For example: You want to store some information about a person: his/her name, citizenship number and
salary. You can easily create different variables name, citNo, salary to store these information separately.

However, in the future, you would want to store information about multiple persons. Now, you’d need to
create different variables for each information per person: name1, citNo1, salary1, name2, citNo2, salary2

You can easily visualize how big and messy the code would look. Also, since no relation between the variables
(information) would exist, it’s going to be a daunting task.

A better approach will be to have a collection of all related information under a single name Person, and
use it for every person. Now, the code looks much cleaner, readable and efficient as well.

This collection of all related information under a single name Person is a structure.

25.1 How to declare a structure in C++ programming?
The struct keyword defines a structure type followed by an identifier (name of the structure).

Then inside the curly braces, you can declare one or more members (declare variables inside curly braces) of
that structure. For example:

struct Person
{

char name[50];
int age;
float salary;

};

Here a structure person is defined which has three members: name, age and salary.

When a structure is created, no memory is allocated.

The structure definition is only the blueprint for the creating of variables. You can imagine it as a datatype.
When you define an integer as below:

int foo;

The int specifies that, variable foo can hold integer element only. Similarly, structure definition only specifies
that, what property a structure variable holds when it is defined.

Note: Remember to end the declaration with a semicolon (;)

120https://www.programiz.com/cpp-programming/object-class

115

https://www.programiz.com/cpp-programming/object-class

25.2 How to define a structure variable?
Once you declare a structure person as above. You can define a structure variable as:

Person bill;

Here, a structure variable bill is defined which is of type structure Person.

When structure variable is defined, only then the required memory is allocated by the compiler.

Considering you have either 32-bit or 64-bit system, the memory of float is 4 bytes, memory of int is 4
bytes and memory of char is 1 byte.

Hence, 58 bytes of memory is allocated for structure variable bill.

25.3 How to access members of a structure?
The members of structure variable is accessed using a dot (.) operator.

Suppose, you want to access age of structure variable bill and assign it 50 to it. You can perform this task
by using following code below:

bill.age = 50;

25.4 Example: C++ Structure
C++ Program to assign data to members of a structure variable and display it.

#include <iostream>
using namespace std;

struct Person
{

char name[50];
int age;
float salary;

};

int main()
{

Person p1;

cout << "Enter Full name: ";
cin.get(p1.name, 50);
cout << "Enter age: ";
cin >> p1.age;
cout << "Enter salary: ";
cin >> p1.salary;

cout << "\nDisplaying Information." << endl;
cout << "Name: " << p1.name << endl;
cout <<"Age: " << p1.age << endl;
cout << "Salary: " << p1.salary;

return 0;
}

Output

116

Enter Full name: Magdalena Dankova
Enter age: 27
Enter salary: 1024.4
Displaying Information.
Name: Magdalena Dankova
Age: 27
Salary: 1024.4

Here a structure Person is declared which has three members name, age and salary.

Inside main() function121, a structure variable p1 is defined. Then, the user is asked to enter information
and data entered by user is displayed.

You should also check out these structure related tutorials:

• How to pass structures to functions?122

• How to use pointers with structures?123

26 C++ Structure and Function
In this article, you’ll find relevant examples to pass structures as an argument to a function, and use them
in your program.

Structure124 variables can be passed to a function125 and returned in a similar way as normal arguments.

26.1 Passing structure to function in C++
A structure variable can be passed to a function in similar way as normal argument. Consider this example:

26.1.1 Example 1: C++ Structure and Function

#include <iostream>
using namespace std;

struct Person {
char name[50];
int age;
float salary;

};

void displayData(Person); // Function declaration

int main() {
Person p;

cout << "Enter Full name: ";
cin.get(p.name, 50);

121https://www.programiz.com/cpp-programming/function
122https://www.programiz.com/cpp-programming/structure-function
123https://www.programiz.com/cpp-programming/structure-pointer
124https://www.programiz.com/cpp-programming/structure
125https://www.programiz.com/cpp-programming/function

117

https://www.programiz.com/cpp-programming/function
https://www.programiz.com/cpp-programming/structure-function
https://www.programiz.com/cpp-programming/structure-pointer
https://www.programiz.com/cpp-programming/structure
https://www.programiz.com/cpp-programming/function

cout << "Enter age: ";
cin >> p.age;
cout << "Enter salary: ";
cin >> p.salary;

// Function call with structure variable as an argument
displayData(p);

return 0;
}

void displayData(Person p) {
cout << "\nDisplaying Information." << endl;
cout << "Name: " << p.name << endl;
cout <<"Age: " << p.age << endl;
cout << "Salary: " << p.salary;

}

Output

Enter Full name: Bill Jobs
Enter age: 55
Enter salary: 34233.4
Displaying Information.
Name: Bill Jobs
Age: 55
Salary: 34233.4

In this program, user is asked to enter the name, age and salary of a Person inside main() function.

Then, the structure variable p is to passed to a function using.

displayData(p);

The return type of displayData() is void and a single argument of type structure Person is passed.

Then the members of structure p is displayed from this function.

26.1.2 Example 2: Returning structure from function in C++

#include <iostream>
using namespace std;

struct Person {
char name[50];
int age;
float salary;

};

Person getData(Person);
void displayData(Person);

int main() {

Person p, temp;

118

temp = getData(p);
 p = temp;

displayData(p);

return 0;
}

Person getData(Person p) {

cout << "Enter Full name: ";
cin.get(p.name, 50);

cout << "Enter age: ";
cin >> p.age;

cout << "Enter salary: ";
cin >> p.salary;

return p;
}

void displayData(Person p) {
cout << "\nDisplaying Information." << endl;
cout << "Name: " << p.name << endl;
cout <<"Age: " << p.age << endl;
cout << "Salary: " << p.salary;

}

The output of this program is the same as the program above.

In this program, we have created two structure variables p and temp of type Person under the main() func-
tion.

The structure variable p is passed to getData() function which takes input from the user which is then
stored in the temp variable.

temp = getData(p);

We then assign the value of temp to p.

p = temp;

Then the structure variable p is passed to displayData() function, which displays the information.

Note: We don’t really need to use the temp variable for most compilers and C++ versions. Instead, we can
simply use the following code:

p = getData(p);

27 C++ Pointers to Structure
In this article, you’ll find relevant examples that will help you to work with pointers to access data within a
structure.

A pointer126 variable can be created not only for native types like (int, float, double etc.) but they can
126https://www.programiz.com/cpp-programming/pointers

119

https://www.programiz.com/cpp-programming/pointers

also be created for user defined types like structure127.

If you do not know what pointers are, visit C++ pointers128.

Here is how you can create pointer for structures:

#include <iostream>
using namespace std;

struct temp {
int i;
float f;

};

int main() {
temp *ptr;
return 0;

}

This program creates a pointer ptr of type structure temp.

27.1 Example: Pointers to Structure
#include <iostream>
using namespace std;

struct Distance {
int feet;
float inch;

};

int main() {
Distance *ptr, d;

ptr = &d;

cout << "Enter feet: ";
cin >> (*ptr).feet;
cout << "Enter inch: ";
cin >> (*ptr).inch;

cout << "Displaying information." << endl;
cout << "Distance = " << (*ptr).feet << " feet " << (*ptr).inch << " inches";

return 0;
}

Output

Enter feet: 4
Enter inch: 3.5
Displaying information.
Distance = 4 feet 3.5 inches
127https://www.programiz.com/cpp-programming/structure
128https://www.programiz.com/cpp-programming/pointers

120

https://www.programiz.com/cpp-programming/structure
https://www.programiz.com/cpp-programming/pointers

In this program, a pointer variable ptr and normal variable d of type structure Distance is defined.

The address of variable d is stored to pointer variable, that is, ptr is pointing to variable d. Then, the member
function of variable d is accessed using pointer.

Notes:

• Since pointer ptr is pointing to variable d in this program, (*ptr).inch and d.inch are equivalent.
Similarly, (*ptr).feet and d.feet are equivalent.

• However, if we are using pointers, it is far more preferable to access struct members using the -> op-
erator, since the . operator has a higher precedence than the * operator.

Hence, we enclose *ptr in brackets when using (*ptr).inch. Because of this, it is easier to make
mistakes if both operators are used together in a single code.

ptr->feet is same as (*ptr).feet
ptr->inch is same as (*ptr).inc

28 C++ Enumeration
In this article, you will learn to work with enumeration (enum). Also, you will learn where enums are
commonly used in C++ programming.

An enumeration is a user-defined data type that consists of integral constants. To define an enumeration,
keyword enum is used.

enum season { spring, summer, autumn, winter };

Here, the name of the enumeration is season.

And, spring, summer and winter are values of type season.

By default, spring is 0, summer is 1 and so on. You can change the default value of an enum element during
declaration (if necessary).

enum season
{ spring = 0,

summer = 4,
autumn = 8,
winter = 12

};

28.1 Enumerated Type Declaration
When you create an enumerated type, only blueprint for the variable is created. Here’s how you can create
variables of enum type.

enum boolean { false, true };
// inside function
enum boolean check;

Here, a variable check of type enum boolean is created.

Here is another way to declare same check variable using different syntax.

121

enum boolean
{

false, true
} check;

28.1.1 Example 1: Enumeration Type

#include <iostream>
using namespace std;

enum week { Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday };

int main()
{

week today;
today = Wednesday;
cout << "Day " << today+1;
return 0;

}

Output

Day 4

28.1.2 Example2: Changing Default Value of Enums

#include <iostream>
using namespace std;

enum seasons { spring = 34, summer = 4, autumn = 9, winter = 32};

int main() {

seasons s;

s = summer;
cout << "Summer = " << s << endl;

return 0;
}

Output

Summer = 4

28.2 Why enums are used in C++ programming?
An enum variable takes only one value out of many possible values. Example to demonstrate it,

#include <iostream>
using namespace std;

enum suit {

122

club = 0,
diamonds = 10,
hearts = 20,
spades = 3

} card;

int main()
{

card = club;
cout << "Size of enum variable " << sizeof(card) << " bytes.";
return 0;

}

Output

Size of enum variable 4 bytes.

It’s because the size of an integer is 4 bytes.;

This makes enum a good choice to work with flags.

You can accomplish the same task using C++ structures129. However, working with enums gives you
efficiency along with flexibility.

28.2.1 How to use enums for flags?

Let us take an example,

enum designFlags {
ITALICS = 1,
BOLD = 2,
UNDERLINE = 4

} button;

Suppose you are designing a button for Windows application. You can set flags ITALICS, BOLD and UN-
DERLINE to work with text.

There is a reason why all the integral constants are power of 2 in above pseudocode.

// In binary
ITALICS = 00000001
BOLD = 00000010
UNDERLINE = 00000100

Since, the integral constants are power of 2, you can combine two or more flags at once without overlapping
using bitwise OR | operator. This allows you to choose two or more flags at once. For example,

#include <iostream>
using namespace std;

enum designFlags {
BOLD = 1,

129https://www.programiz.com/cpp-programming/structure

123

https://www.programiz.com/cpp-programming/structure

ITALICS = 2,
UNDERLINE = 4

};

int main()
{

int myDesign = BOLD | UNDERLINE;

// 00000001
// | 00000100
// ___________
// 00000101

cout << myDesign;

return 0;
}

Output

5

When the output is 5, you always know that bold and underline is used.

Also, you can add flag to your requirements.

if (myDesign & ITALICS) {
// code for italics

}

Here, we have added italics to our design. Note, only code for italics is written inside the if statement130.

You can accomplish almost anything in C++ programming without using enumerations. However, they can
be pretty handy in certain situations. That’s what differentiates good programmers from great programmers.

29 C++ Classes and Objects
In this tutorial, we will learn about objects and classes and how to use them in C++ with the help of
examples.

In previous tutorials, we learned about functions and variables. Sometimes it’s desirable to put related
functions and data in one place so that it’s logical and easier to work with.

Suppose, we need to store the length, breadth, and height of a rectangular room and calculate its area and
volume.

To handle this task, we can create three variables, say, length, breadth, and height along with the func-
tions calculateArea() and calculateVolume().

However, in C++, rather than creating separate variables and functions, we can also wrap these related
data and functions in a single place (by creating objects). This programming paradigm is known as object-
oriented programming.
130https://www.programiz.com/cpp-programming/if-else

124

https://www.programiz.com/cpp-programming/if-else

But before we can create objects and use them in C++, we first need to learn about classes.

29.1 C++ Class
A class is a blueprint for the object.

We can think of a class as a sketch (prototype) of a house. It contains all the details about the floors, doors,
windows, etc. Based on these descriptions we build the house. House is the object.

29.1.1 Create a Class

A class is defined in C++ using keyword class followed by the name of the class.

The body of the class is defined inside the curly brackets and terminated by a semicolon at the end.

class className {
// some data
// some functions

};

For example,

class Room {
public:

double length;
double breadth;
double height;

double calculateArea(){
return length * breadth;

}

double calculateVolume(){
return length * breadth * height;

}

};

Here, we defined a class named Room.

The variables length, breadth, and height declared inside the class are known as data members. And, the
functions calculateArea() and calculateVolume() are known as member functions of a class.

29.2 C++ Objects
When a class is defined, only the specification for the object is defined; no memory or storage is allocated.

To use the data and access functions defined in the class, we need to create objects.

29.2.1 Syntax to Define Object in C++

className objectVariableName;

We can create objects of Room class (defined in the above example) as follows:

125

// sample function
void sampleFunction() {

// create objects
Room room1, room2;

}

int main(){
// create objects
Room room3, room4;

}

Here, two objects room1 and room2 of the Room class are created in sampleFunction(). Similarly, the
objects room3 and room4 are created in main().

As we can see, we can create objects of a class in any function of the program. We can also create objects
of a class within the class itself, or in other classes.

Also, we can create as many objects as we want from a single class.

29.2.2 C++ Access Data Members and Member Functions

We can access the data members and member functions of a class by using a . (dot) operator. For example,

room2.calculateArea();

This will call the calculateArea() function inside the Room class for object room2.

Similarly, the data members can be accessed as:

room1.length = 5.5;

In this case, it initializes the length variable of room1 to 5.5.

29.2.3 Example 1: Object and Class in C++ Programming

// Program to illustrate the working of
// objects and class in C++ Programming

#include <iostream>
using namespace std;

// create a class
class Room {

public:
double length;
double breadth;
double height;

double calculateArea() {
return length * breadth;

}

double calculateVolume() {
return length * breadth * height;

}
};

126

int main() {

// create object of Room class
Room room1;

// assign values to data members
room1.length = 42.5;
room1.breadth = 30.8;
room1.height = 19.2;

// calculate and display the area and volume of the room
cout << "Area of Room = " << room1.calculateArea() << endl;
cout << "Volume of Room = " << room1.calculateVolume() << endl;

return 0;
}

Run Code131

Output

Area of Room = 1309
Volume of Room = 25132.8

In this program, we have used the Room class and its object room1 to calculate the area and volume of a
room.

In main(), we assigned the values of length, breadth, and height with the code:

room1.length = 42.5;
room1.breadth = 30.8;
room1.height = 19.2;

We then called the functions calculateArea() and calculateVolume() to perform the necessary calcula-
tions.

Note the use of the keyword public in the program. This means the members are public and can be accessed
anywhere from the program.

As per our needs, we can also create private members using the private keyword. The private members of
a class can only be accessed from within the class. For example,

class Test {

private:
int a;
void function1() { }

public:
int b;
void function2() { }

}
131https://www.programiz.com/cpp-programming/online-compiler

127

https://www.programiz.com/cpp-programming/online-compiler

Here, a and function1() are private. Thus they cannot be accessed from outside the class.

On the other hand, b and function2() are accessible from everywhere in the program.

To learn more about public and private keywords, please visit our C++ Class Access Modifiers132 tutorial.

29.2.4 Example 2: Using public and private in C++ Class

// Program to illustrate the working of
// public and private in C++ Class

#include <iostream>
using namespace std;

class Room {

private:
double length;
double breadth;
double height;

public:

// function to initialize private variables
void initData(double len, double brth, double hgt) {

length = len;
breadth = brth;
height = hgt;

}

double calculateArea() {
return length * breadth;

}

double calculateVolume() {
return length * breadth * height;

}
};

int main() {

// create object of Room class
Room room1;

// pass the values of private variables as arguments
room1.initData(42.5, 30.8, 19.2);

cout << "Area of Room = " << room1.calculateArea() << endl;
cout << "Volume of Room = " << room1.calculateVolume() << endl;

return 0;
}

Run Code133

132https://www.programiz.com/cpp-programming/access-modifiers
133https://www.programiz.com/cpp-programming/online-compiler

128

https://www.programiz.com/cpp-programming/access-modifiers
https://www.programiz.com/cpp-programming/online-compiler

Output

Area of Room = 1309
Volume of Room = 25132.8

The above example is nearly identical to the first example, except that the class variables are now private.

Since the variables are now private, we cannot access them directly from main(). Hence, using the following
code would be invalid:

// invalid code
obj.length = 42.5;
obj.breadth = 30.8;
obj.height = 19.2;

Instead, we use the public function initData() to initialize the private variables via the function parame-
ters double len, double brth, and double hgt.

To learn more on objects and classes, visit these topics:

• C++ Constructors134

• How to pass and return an object from a function?135

30 C++ Constructors
In this tutorial, we will learn about the C++ constructor and its type with the help examples.

A constructor is a special type of member function that is called automatically when an object is created.

In C++, a constructor has the same name as that of the class and it does not have a return type. For
example,

class Wall {
public:
// create a constructor
Wall() {

// code
}

};

Here, the function Wall() is a constructor of the class Wall. Notice that the constructor

• has the same name as the class,
• does not have a return type, and
• is public

30.1 C++ Default Constructor
A constructor with no parameters is known as a default constructor. In the example above, Wall() is a
default constructor.

134https://www.programiz.com/cpp-programming/constructors
135https://www.programiz.com/cpp-programming/pass-return-object-function

129

https://www.programiz.com/cpp-programming/constructors
https://www.programiz.com/cpp-programming/pass-return-object-function

30.1.1 Example 1: C++ Default Constructor

// C++ program to demonstrate the use of default constructor

#include <iostream>
using namespace std;

// declare a class
class Wall {

private:
double length;

public:
// default constructor to initialize variable
Wall() {

length = 5.5;
cout << "Creating a wall." << endl;
cout << "Length = " << length << endl;

}
};

int main() {
Wall wall1;
return 0;

}

Run Code136

Output

Creating a Wall
Length = 5.5

Here, when the wall1 object is created, the Wall() constructor is called. This sets the length variable of the
object to 5.5.

Note: If we have not defined a constructor in our class, then the C++ compiler will automatically create a
default constructor with an empty code and no parameters.

30.2 C++ Parameterized Constructor
In C++, a constructor with parameters is known as a parameterized constructor. This is the preferred
method to initialize member data.

30.2.1 Example 2: C++ Parameterized Constructor

// C++ program to calculate the area of a wall

#include <iostream>
using namespace std;

136https://www.programiz.com/cpp-programming/online-compiler

130

https://www.programiz.com/cpp-programming/online-compiler

// declare a class
class Wall {

private:
double length;
double height;

public:
// parameterized constructor to initialize variables
Wall(double len, double hgt) {

length = len;
height = hgt;

}

double calculateArea() {
return length * height;

}
};

int main() {
// create object and initialize data members
Wall wall1(10.5, 8.6);
Wall wall2(8.5, 6.3);

cout << "Area of Wall 1: " << wall1.calculateArea() << endl;
cout << "Area of Wall 2: " << wall2.calculateArea();

return 0;
}

Run Code137

Output

Area of Wall 1: 90.3
Area of Wall 2: 53.55

Here, we have created a parameterized constructor Wall() that has 2 parameters: double len and double
hgt. The values contained in these parameters are used to initialize the member variables length and height.

When we create an object of the Wall class, we pass the values for the member variables as arguments. The
code for this is:

Wall wall1(10.5, 8.6);
Wall wall2(8.5, 6.3);

With the member variables thus initialized, we can now calculate the area of the wall with the calculateArea() func-
tion.

30.3 C++ Copy Constructor
The copy constructor in C++ is used to copy data of one object to another.

137https://www.programiz.com/cpp-programming/online-compiler

131

https://www.programiz.com/cpp-programming/online-compiler

30.3.1 Example 3: C++ Copy Constructor

#include <iostream>
using namespace std;

// declare a class
class Wall {

private:
double length;
double height;

public:

// initialize variables with parameterized constructor
Wall(double len, double hgt) {

length = len;
height = hgt;

}

// copy constructor with a Wall object as parameter
// copies data of the obj parameter
Wall(Wall &obj) {

length = obj.length;
height = obj.height;

}

double calculateArea() {
return length * height;

}
};

int main() {
// create an object of Wall class
Wall wall1(10.5, 8.6);

// copy contents of wall1 to wall2
Wall wall2 = wall1;

// print areas of wall1 and wall2
cout << "Area of Wall 1: " << wall1.calculateArea() << endl;
cout << "Area of Wall 2: " << wall2.calculateArea();

return 0;
}

Run Code138

Output

Area of Wall 1: 90.3
Area of Wall 2: 90.3

In this program, we have used a copy constructor to copy the contents of one object of the Wall class to
138https://www.programiz.com/cpp-programming/online-compiler

132

https://www.programiz.com/cpp-programming/online-compiler

another. The code of the copy constructor is:

Wall(Wall &obj) {
length = obj.length;
height = obj.height;

}

Notice that the parameter of this constructor has the address of an object of the Wall class.

We then assign the values of the variables of the obj object to the corresponding variables of the object
calling the copy constructor. This is how the contents of the object are copied.

In main(), we then create two objects wall1 and wall2 and then copy the contents of wall1 to wall2:

// copy contents of wall1 to wall2
Wall wall2 = wall1;

Here, the wall2 object calls its copy constructor by passing the address of the wall1 object as its argument
i.e. &obj = &wall1.

Note: A constructor is primarily used to initialize objects. They are also used to run a default code when
an object is created.

31 How to pass and return object from C++ Functions?
In this tutorial, we will learn to pass objects to a function and return an object from a function in C++
programming.

In C++ programming, we can pass objects to a function in a similar manner as passing regular arguments.

31.1 Example 1: C++ Pass Objects to Function
// C++ program to calculate the average marks of two students

#include <iostream>
using namespace std;

class Student {

public:
double marks;

// constructor to initialize marks
Student(double m) {

marks = m;
}

};

// function that has objects as parameters
void calculateAverage(Student s1, Student s2) {

// calculate the average of marks of s1 and s2
double average = (s1.marks + s2.marks) / 2;

133

cout << "Average Marks = " << average << endl;

}

int main() {
Student student1(88.0), student2(56.0);

// pass the objects as arguments
calculateAverage(student1, student2);

return 0;
}

Run Code139

Output

Average Marks = 72

Here, we have passed two Student objects student1 and student2 as arguments to the calculateAverage() func-
tion.

Pass objects to function in C++
139https://www.programiz.com/cpp-programming/online-compiler

134

https://www.programiz.com/cpp-programming/online-compiler

31.2 Example 2: C++ Return Object from a Function
#include <iostream>
using namespace std;

class Student {
public:
double marks1, marks2;

};

// function that returns object of Student
Student createStudent() {

Student student;

// Initialize member variables of Student
student.marks1 = 96.5;
student.marks2 = 75.0;

// print member variables of Student
cout << "Marks 1 = " << student.marks1 << endl;
cout << "Marks 2 = " << student.marks2 << endl;

return student;
}

int main() {
Student student1;

// Call function
student1 = createStudent();

return 0;
}

Run Code140

Output

Marks1 = 96.5
Marks2 = 75

140https://www.programiz.com/cpp-programming/online-compiler

135

https://www.programiz.com/cpp-programming/online-compiler

Return object from function in C++

In this program, we have created a function createStudent() that returns an object of Student class.

We have called createStudent() from the main() method.

// Call function
student1 = createStudent();

Here, we are storing the object returned by the createStudent() method in the student1.

32 C++ Operator Overloading
In this tutorial, we will learn about operator overloading with the help of examples.

In C++, we can change the way operators work for user-defined types like objects and structures. This is
known as operator overloading. For example,

Suppose we have created three objects c1, c2 and result from a class named Complex that represents complex
numbers.

Since operator overloading allows us to change how operators work, we can redefine how the + operator
works and use it to add the complex numbers of c1 and c2 by writing the following code:

result = c1 + c2;

instead of something like

136

result = c1.addNumbers(c2);

This makes our code intuitive and easy to understand.

Note: We cannot use operator overloading for fundamental data types like int, float, char and so on.

32.1 Syntax for C++ Operator Overloading
To overload an operator, we use a special operator function. We define the function inside the class or
structure whose objects/variables we want the overloaded operator to work with.

class className {
...
public

returnType operator symbol (arguments) {
...

}
...

};

Here,

• returnType is the return type of the function.
• operator is a keyword.
• symbol is the operator we want to overload. Like: +, <, -, ++, etc.
• arguments is the arguments passed to the function.

32.2 Operator Overloading in Unary Operators
Unary operators operate on only one operand. The increment operator ++ and decrement operator -- are
examples of unary operators.

32.2.1 Example1: ++ Operator (Unary Operator) Overloading

// Overload ++ when used as prefix

#include <iostream>
using namespace std;

class Count {
private:
int value;

public:

// Constructor to initialize count to 5
Count() : value(5) {}

// Overload ++ when used as prefix
void operator ++ () {

++value;
}

137

void display() {
cout << "Count: " << value << endl;

}
};

int main() {
Count count1;

// Call the "void operator ++ ()" function
++count1;

count1.display();
return 0;

}

Run Code141

Output

Count: 6

Here, when we use ++count1;, the void operator ++ () is called. This increases the value attribute for
the object count1 by 1.

Note: When we overload operators, we can use it to work in any way we like. For example, we could have
used ++ to increase value by 100.

However, this makes our code confusing and difficult to understand. It’s our job as a programmer to use
operator overloading properly and in a consistent and intuitive way.

The above example works only when ++ is used as a prefix. To make ++ work as a postfix we use this syntax.

void operator ++ (int) {
// code

}

Notice the int inside the parentheses. It’s the syntax used for using unary operators as postfix; it’s not a
function parameter.

32.2.2 Example 2: ++ Operator (Unary Operator) Overloading

// Overload ++ when used as prefix and postfix

#include <iostream>
using namespace std;

class Count {
private:
int value;

141https://www.programiz.com/cpp-programming/online-compiler

138

https://www.programiz.com/cpp-programming/online-compiler

public:

// Constructor to initialize count to 5
Count() : value(5) {}

// Overload ++ when used as prefix
void operator ++ () {

++value;
}

// Overload ++ when used as postfix
void operator ++ (int) {

value++;
}

void display() {
cout << "Count: " << value << endl;

}
};

int main() {
Count count1;

// Call the "void operator ++ (int)" function
count1++;
count1.display();

// Call the "void operator ++ ()" function
++count1;

count1.display();
return 0;

}

Run Code142

Output

Count: 6
Count: 7

The Example 2 works when ++ is used as both prefix and postfix. However, it doesn’t work if we try to do
something like this:

Count count1, result;

// Error
result = ++count1;

142https://www.programiz.com/cpp-programming/online-compiler

139

https://www.programiz.com/cpp-programming/online-compiler

This is because the return type of our operator function is void. We can solve this problem by mak-
ing Count as the return type of the operator function.

// return Count when ++ used as prefix

Count operator ++ () {
// code

}

// return Count when ++ used as postfix

Count operator ++ (int) {
// code

}

32.2.3 Example 3: Return Value from Operator Function (++ Operator)

#include <iostream>
using namespace std;

class Count {
private:
int value;

public
:

// Constructor to initialize count to 5
Count() : value(5) {}

// Overload ++ when used as prefix
Count operator ++ () {

Count temp;

// Here, value is the value attribute of the calling object
temp.value = ++value;

return temp;
}

// Overload ++ when used as postfix
Count operator ++ (int) {

Count temp;

// Here, value is the value attribute of the calling object
temp.value = value++;

return temp;
}

void display() {
cout << "Count: " << value << endl;

}
};

int main() {
Count count1, result;

140

// Call the "Count operator ++ ()" function
result = ++count1;
result.display();

// Call the "Count operator ++ (int)" function
result = count1++;
result.display();

return 0;
}

Run Code143

Output

Count: 6
Count: 6

Here, we have used the following code for prefix operator overloading:

// Overload ++ when used as prefix
Count operator ++ () {

Count temp;

// Here, value is the value attribute of the calling object
temp.value = ++value;

return temp;
}

The code for the postfix operator overloading is also similar. Notice that we have created an object temp and
returned its value to the operator function.

Also, notice the code

temp.value = ++value;

The variable value belongs to the count1 object in main() because count1 is calling the function,
while temp.value belongs to the temp object.

32.3 Operator Overloading in Binary Operators
Binary operators work on two operands. For example,

result = num + 9;

Here, + is a binary operator that works on the operands num and 9.

When we overload the binary operator for user-defined types by using the code:

obj3 = obj1 + obj2;

The operator function is called using the obj1 object and obj2 is passed as an argument to the function.

143https://www.programiz.com/cpp-programming/online-compiler

141

https://www.programiz.com/cpp-programming/online-compiler

32.3.1 Example 4: C++ Binary Operator Overloading

// C++ program to overload the binary operator +
// This program adds two complex numbers

#include <iostream>
using namespace std;

class Complex {
private:
float real;
float imag;

public:
// Constructor to initialize real and imag to 0
Complex() : real(0), imag(0) {}

void input() {
cout << "Enter real and imaginary parts respectively: ";
cin >> real;
cin >> imag;

}

// Overload the + operator
Complex operator + (const Complex& obj) {

Complex temp;
temp.real = real + obj.real;
temp.imag = imag + obj.imag;
return temp;

}

void output() {
if (imag < 0)

cout << "Output Complex number: " << real << imag << "i";
else

cout << "Output Complex number: " << real << "+" << imag << "i";
}

};

int main() {
Complex complex1, complex2, result;

cout << "Enter first complex number:\n";
complex1.input();

cout << "Enter second complex number:\n";
complex2.input();

// complex1 calls the operator function
// complex2 is passed as an argument to the function
result = complex1 + complex2;
result.output();

return 0;
}

142

Run Code144

Output

Enter first complex number:
Enter real and imaginary parts respectively: 9 5
Enter second complex number:
Enter real and imaginary parts respectively: 7 6
Output Complex number: 16+11i

In this program, the operator function is:

Complex operator + (const Complex& obj) {
// code

}

Instead of this, we also could have written this function like:

Complex operator + (Complex obj) {
// code

}

However,

• using & makes our code efficient by referencing the complex2 object instead of making a duplicate
object inside the operator function.

• using const is considered a good practice because it prevents the operator function from modifying com-
plex2.

144https://www.programiz.com/cpp-programming/online-compiler

143

https://www.programiz.com/cpp-programming/online-compiler

Overloading binary operators in C++

32.4 Things to Remember in C++ Operator Overloading
1. Two operators = and & are already overloaded by default in C++. For example, to copy objects of the

same class145, we can directly use the = operator. We do not need to create an operator function.
2. Operator overloading cannot change the precedence and associativity of operators146. However, if we

want to change the order of evaluation, parentheses should be used.
3. There are 4 operators that cannot be overloaded in C++. They are:

1. :: (scope resolution)
2. . (member selection)
3. .* (member selection through pointer to function)
4. ?: (ternary operator)

Visit these pages to learn more on:

• How to overload increment operator in right way?147

• How to overload binary operator - to subtract complex numbers?148

145https://www.programiz.com/cpp-programming/constructors#copy-constructor
146https://www.programiz.com/cpp-programming/operators-precedence-associativity
147https://www.programiz.com/cpp-programming/increment-decrement-operator-overloading
148https://www.programiz.com/cpp-programming/operator-overloading/binary-operator-overloading

144

https://www.programiz.com/cpp-programming/constructors#copy-constructor
https://www.programiz.com/cpp-programming/operators-precedence-associativity
https://www.programiz.com/cpp-programming/increment-decrement-operator-overloading
https://www.programiz.com/cpp-programming/operator-overloading/binary-operator-overloading

33 C++ Pointers

34 C++ Pointers
In this tutorial, we will learn about pointers in C++ and their working with the help of examples.

In C++, pointers are variables that store the memory addresses of other variables.

34.1 Address in C++
If we have a variable var in our program, &var will give us its address in the memory. For example,

34.1.1 Example 1: Printing Variable Addresses in C++

#include <iostream>
using namespace std;

int main()
{

// declare variables
int var1 = 3;
int var2 = 24;
int var3 = 17;

// print address of var1
cout << "Address of var1: "<< &var1 << endl;

// print address of var2
cout << "Address of var2: " << &var2 << endl;

// print address of var3
cout << "Address of var3: " << &var3 << endl;

}

Run Code149

Output

Address of var1: 0x7fff5fbff8ac
Address of var2: 0x7fff5fbff8a8
Address of var3: 0x7fff5fbff8a4

Here, 0x at the beginning represents the address is in the hexadecimal form.

Notice that the first address differs from the second by 4 bytes and the second address differs from the third
by 4 bytes.
149https://www.programiz.com/cpp-programming/online-compiler

145

https://www.programiz.com/cpp-programming/online-compiler

This is because the size of an int variable is 4 bytes in a 64-bit system.

Note: You may not get the same results when you run the program.

34.2 C++ Pointers
As mentioned above, pointers are used to store addresses rather than values.

Here is how we can declare pointers.

int *pointVar;

Here, we have declared a pointer pointVar of the int type.

We can also declare pointers in the following way.

int* pointVar; // preferred syntax

Let’s take another example of declaring pointers.

int* pointVar, p;

Here, we have declared a pointer pointVar and a normal variable p.

Note: The * operator is used after the data type to declare pointers.

34.2.1 Assigning Addresses to Pointers

Here is how we can assign addresses to pointers:

int* pointVar, var;
var = 5;

// assign address of var to pointVar pointer
pointVar = &var;

Here, 5 is assigned to the variable var. And, the address of var is assigned to the pointVar pointer with the
code pointVar = &var.

34.2.2 Get the Value from the Address Using Pointers

To get the value pointed by a pointer, we use the * operator. For example:

int* pointVar, var;
var = 5;

// assign address of var to pointVar
pointVar = &var;

// access value pointed by pointVar
cout << *pointVar << endl; // Output: 5

In the above code, the address of var is assigned to pointVar. We have used the *pointVar to get the value
stored in that address.

When * is used with pointers, it’s called the dereference operator. It operates on a pointer and gives the
value pointed by the address stored in the pointer. That is, *pointVar = var.

146

Note: In C++, pointVar and *pointVar is completely different. We cannot do something like *pointVar
= &var;

34.2.3 Example 2: Working of C++ Pointers

#include <iostream>
using namespace std;
int main() {

int var = 5;

// declare pointer variable
int* pointVar;

// store address of var
pointVar = &var;

// print value of var
cout << "var = " << var << endl;

// print address of var
cout << "Address of var (&var) = " << &var << endl

<< endl;

// print pointer pointVar
cout << "pointVar = " << pointVar << endl;

// print the content of the address pointVar points to
cout << "Content of the address pointed to by pointVar (*pointVar) = " << *pointVar << endl;

return 0;
}

Run Code150

Output

var = 5
Address of var (&var) = 0x61ff08
pointVar = 0x61ff08
Content of the address pointed to by pointVar (*pointVar) = 5

150https://www.programiz.com/cpp-programming/online-compiler

147

https://www.programiz.com/cpp-programming/online-compiler

Working of C++ pointers

34.2.4 Changing Value Pointed by Pointers

If pointVar points to the address of var, we can change the value of var by using *pointVar.

For example,

int var = 5;
int* pointVar;

// assign address of var
pointVar = &var;

// change value at address pointVar
*pointVar = 1;

cout << var << endl; // Output: 1

Here, pointVar and &var have the same address, the value of var will also be changed when *pointVar is
changed.

34.2.5 Example 3: Changing Value Pointed by Pointers

#include <iostream>
using namespace std;
int main() {

int var = 5;
int* pointVar;

// store address of var
pointVar = &var;

// print var

148

cout << "var = " << var << endl;

// print *pointVar
cout << "*pointVar = " << *pointVar << endl

<< endl;

cout << "Changing value of var to 7:" << endl;

// change value of var to 7
var = 7;

// print var
cout << "var = " << var << endl;

// print *pointVar
cout << "*pointVar = " << *pointVar << endl

<< endl;

cout << "Changing value of *pointVar to 16:" << endl;

// change value of var to 16
*pointVar = 16;

// print var
cout << "var = " << var << endl;

// print *pointVar
cout << "*pointVar = " << *pointVar << endl;
return 0;

}

Run Code151

Output

var = 5
*pointVar = 5
Changing value of var to 7:
var = 7
*pointVar = 7
Changing value of *pointVar to 16:
var = 16
*pointVar = 16

34.3 Common mistakes when working with pointers
Suppose, we want a pointer varPoint to point to the address of var. Then,

int var, *varPoint;

// Wrong!
// varPoint is an address but var is not
varPoint = var;
151https://www.programiz.com/cpp-programming/online-compiler

149

https://www.programiz.com/cpp-programming/online-compiler

// Wrong!
// &var is an address
// *varPoint is the value stored in &var
*varPoint = &var;

// Correct!
// varPoint is an address and so is &var
varPoint = &var;

// Correct!
// both *varPoint and var are values
*varPoint = var;

Recommended Readings:

• How to use generic data type pointers using a void pointer?152

• How to represent an array using a pointer?153

• How to use pointers with functions?154

• How to use pointers with structures?155

35 C++ Pointers and Arrays
In this tutorial, we will learn about the relation between arrays and pointers with the help of examples.

In C++, Pointers156 are variables that hold addresses of other variables. Not only can a pointer store the
address of a single variable, it can also store the address of cells of an array157.

Consider this example:

int *ptr;
int arr[5];

// store the address of the first
// element of arr in ptr
ptr = arr;

Here, ptr is a pointer variable while arr is an int array. The code ptr = arr; stores the address of the first
element of the array in variable ptr.

Notice that we have used arr instead of &arr[0]. This is because both are the same. So, the code below is
the same as the code above.

int *ptr;
int arr[5];
ptr = &arr[0];

The addresses for the rest of the array elements are given by &arr[1], &arr[2], &arr[3], and &arr[4].

152https://www.programiz.com/cpp-programming/pointer-void
153https://www.programiz.com/cpp-programming/pointers-arrays
154https://www.programiz.com/cpp-programming/pointers-function
155https://www.programiz.com/cpp-programming/structure-pointer
156https://www.programiz.com/cpp-programming/pointers
157https://www.programiz.com/cpp-programming/arrays

150

https://www.programiz.com/cpp-programming/pointer-void
https://www.programiz.com/cpp-programming/pointers-arrays
https://www.programiz.com/cpp-programming/pointers-function
https://www.programiz.com/cpp-programming/structure-pointer
https://www.programiz.com/cpp-programming/pointers
https://www.programiz.com/cpp-programming/arrays

35.1 Point to Every Array Elements
Suppose we need to point to the fourth element of the array using the same pointer ptr.

Here, if ptr points to the first element in the above example then ptr + 3 will point to the fourth element.
For example,

int *ptr;
int arr[5];
ptr = arr;

ptr + 1 is equivalent to &arr[1];
ptr + 2 is equivalent to &arr[2];
ptr + 3 is equivalent to &arr[3];
ptr + 4 is equivalent to &arr[4];

Similarly, we can access the elements using the single pointer. For example,

// use dereference operator
*ptr == arr[0];
*(ptr + 1) is equivalent to arr[1];
*(ptr + 2) is equivalent to arr[2];
*(ptr + 3) is equivalent to arr[3];
*(ptr + 4) is equivalent to arr[4];

Suppose if we have initialized ptr = &arr[2]; then

ptr - 2 is equivalent to &arr[0];
ptr - 1 is equivalent to &arr[1];
ptr + 1 is equivalent to &arr[3];
ptr + 2 is equivalent to &arr[4];

Working of C++ Pointers with Arrays

151

Note: The address between ptr and ptr + 1 differs by 4 bytes. It is because ptr is a pointer to an int data.
And, the size of int is 4 bytes in a 64-bit operating system.

Similarly, if pointer ptr is pointing to char type data, then the address between ptr and ptr + 1 is 1 byte.
It is because the size of a character is 1 byte.

35.2 Example 1: C++ Pointers and Arrays
// C++ Program to display address of each element of an array

#include <iostream>
using namespace std;

int main()
{

float arr[3];

// declare pointer variable
float *ptr;

cout << "Displaying address using arrays: " << endl;

// use for loop to print addresses of all array elements
for (int i = 0; i < 3; ++i)
{

cout << "&arr[" << i << "] = " << &arr[i] << endl;
}

// ptr = &arr[0]
ptr = arr;

cout<<"\nDisplaying address using pointers: "<< endl;

// use for loop to print addresses of all array elements
// using pointer notation
for (int i = 0; i < 3; ++i)
{

cout << "ptr + " << i << " = "<< ptr + i << endl;
}

return 0;
}

Run Code158

Output

Displaying address using arrays:
&arr[0] = 0x61fef0
&arr[1] = 0x61fef4
&arr[2] = 0x61fef8
Displaying address using pointers:
158https://www.programiz.com/cpp-programming/online-compiler

152

https://www.programiz.com/cpp-programming/online-compiler

ptr + 0 = 0x61fef0
ptr + 1 = 0x61fef4
ptr + 2 = 0x61fef8

In the above program, we first simply printed the addresses of the array elements without using the pointer
variable ptr.

Then, we used the pointer ptr to point to the address of a[0], ptr + 1 to point to the address of a[1], and
so on.

In most contexts, array names decay to pointers. In simple words, array names are converted to pointers.
That’s the reason why we can use pointers to access elements of arrays.

However, we should remember that pointers and arrays are not the same.

There are a few cases where array names don’t decay to pointers. To learn more, visit: When does array
name doesn’t decay into a pointer?159

35.3 Example 2: Array name used as pointer
// C++ Program to insert and display data entered by using pointer notation.

#include <iostream>
using namespace std;

int main() {
float arr[5];

// Insert data using pointer notation
cout << "Enter 5 numbers: ";
for (int i = 0; i < 5; ++i) {

// store input number in arr[i]
cin >> *(arr + i) ;

}

// Display data using pointer notation
cout << "Displaying data: " << endl;
for (int i = 0; i < 5; ++i) {

// display value of arr[i]
cout << *(arr + i) << endl ;

}

return 0;
}

Run Code160

159https://stackoverflow.com/questions/17752978/exceptions-to-array-decaying-into-a-pointer
160https://www.programiz.com/cpp-programming/online-compiler

153

https://stackoverflow.com/questions/17752978/exceptions-to-array-decaying-into-a-pointer
https://www.programiz.com/cpp-programming/online-compiler

Output

Enter 5 numbers: 2.5
3.5
4.5
5
2
Displaying data:
2.5
3.5
4.5
5
2

Here,

1. We first used the pointer notation to store the numbers entered by the user into the array arr.

cin >> *(arr + i) ;

This code is equivalent to the code below:

cin >> arr[i];

Notice that we haven’t declared a separate pointer variable, but rather we are using the array
name arr for the pointer notation.

As we already know, the array name arr points to the first element of the array. So, we can think
of arr as acting like a pointer.

2. Similarly, we then used for loop to display the values of arr using pointer notation.

cout << *(arr + i) << endl ;

This code is equivalent to

cout << arr[i] << endl ;

36 C++ Call by Reference: Using pointers
In this tutorial, we will learn about C++ call by reference to pass pointers as an argument to the function
with the help of examples.

In the C++ Functions161 tutorial, we learned about passing arguments to a function. This method used is
called passing by value because the actual value is passed.

However, there is another way of passing arguments to a function where the actual values of arguments are
not passed. Instead, the reference to values is passed.

For example,

// function that takes value as parameter

void func1(int numVal) {
// code

}

161https://www.programiz.com/cpp-programming/function

154

https://www.programiz.com/cpp-programming/function

// function that takes reference as parameter
// notice the & before the parameter
void func2(int &numRef) {

// code
}

int main() {
int num = 5;

// pass by value
func1(num);

// pass by reference
func2(num);

return 0;
}

Run Code162

Notice the & in void func2(int &numRef). This denotes that we are using the address of the variable as
our parameter.

So, when we call the func2() function in main() by passing the variable num as an argument, we are actually
passing the address of num variable instead of the value 5.

162https://www.programiz.com/cpp-programming/online-compiler

155

https://www.programiz.com/cpp-programming/online-compiler

C++ Pass by Value vs. Pass by Reference

36.1 Example 1: Passing by reference without pointers
#include <iostream>
using namespace std;

// function definition to swap values
void swap(int &n1, int &n2) {

int temp;
temp = n1;
n1 = n2;
n2 = temp;

}

int main()

156

{

// initialize variables
int a = 1, b = 2;

cout << "Before swapping" << endl;
cout << "a = " << a << endl;
cout << "b = " << b << endl;

// call function to swap numbers
swap(a, b);

cout << "\nAfter swapping" << endl;
cout << "a = " << a << endl;
cout << "b = " << b << endl;

return 0;
}

Run Code163

Output

Before swapping
a = 1
b = 2
After swapping
a = 2
b = 1

In this program, we passed the variables a and b to the swap() function. Notice the function definition,

void swap(int &n1, int &n2)

Here, we are using & to denote that the function will accept addresses as its parameters.

Hence, the compiler can identify that instead of actual values, the reference of the variables is passed to
function parameters.

In the swap() function, the function parameters n1 and n2 are pointing to the same value as the vari-
ables a and b respectively. Hence the swapping takes place on actual value.

The same task can be done using the pointers. To learn about pointers, visit C++ Pointers164.

36.2 Example 2: Passing by reference using pointers
#include <iostream>
using namespace std;

// function prototype with pointer as parameters
void swap(int*, int*);

163https://www.programiz.com/cpp-programming/online-compiler
164https://www.programiz.com/cpp-programming/pointers

157

https://www.programiz.com/cpp-programming/online-compiler
https://www.programiz.com/cpp-programming/pointers

int main()
{

// initialize variables
int a = 1, b = 2;

cout << "Before swapping" << endl;
cout << "a = " << a << endl;
cout << "b = " << b << endl;

// call function by passing variable addresses
swap(&a, &b);

cout << "\nAfter swapping" << endl;
cout << "a = " << a << endl;
cout << "b = " << b << endl;
return 0;

}

// function definition to swap numbers
void swap(int* n1, int* n2) {

int temp;
temp = *n1;
*n1 = *n2;
*n2 = temp;

}

Run Code165

Output

Before swapping
a = 1
b = 2
After swapping
a = 2
b = 1

Here, we can see the output is the same as the previous example. Notice the line,

// &a is address of a
// &b is address of b
swap(&a, &b);

Here, the address of the variable is passed during the function call rather than the variable.

Since the address is passed instead of value, a dereference operator * must be used to access the value stored
in that address.

temp = *n1;
*n1 = *n2;
*n2 = temp;
165https://www.programiz.com/cpp-programming/online-compiler

158

https://www.programiz.com/cpp-programming/online-compiler

*n1 and *n2 gives the value stored at address n1 and n2 respectively.

Since n1 and n2 contain the addresses of a and b, anything is done to *n1 and *n2 will change the actual
values of a and b.

Hence, when we print the values of a and b in the main() function, the values are changed.

37 C++ Memory Management: new and delete
In this tutorial, we will learn to manage memory effectively in C++ using new and delete operations with
the help of examples.

C++ allows us to allocate the memory of a variable or an array in run time. This is known as dynamic
memory allocation.

In other programming languages such as Java and Python, the compiler automatically manages the memories
allocated to variables. But this is not the case in C++.

In C++, we need to deallocate the dynamically allocated memory manually after we have no use for the
variable.

We can allocate and then deallocate memory dynamically using the new and delete operators respectively.

37.1 C++ new Operator
The new operator allocates memory to a variable. For example,

// declare an int pointer
int* pointVar;

// dynamically allocate memory
// using the new keyword
pointVar = new int;

// assign value to allocated memory
*pointVar = 45;

Here, we have dynamically allocated memory for an int variable using the new operator.

Notice that we have used the pointer pointVar to allocate the memory dynamically. This is because
the new operator returns the address of the memory location.

In the case of an array, the new operator returns the address of the first element of the array.

From the example above, we can see that the syntax for using the new operator is

pointerVariable = new dataType;

37.2 delete Operator
Once we no longer need to use a variable that we have declared dynamically, we can deallocate the memory
occupied by the variable.

For this, the delete operator is used. It returns the memory to the operating system. This is known
as memory deallocation.

159

The syntax for this operator is

delete pointerVariable;

Consider the code:

// declare an int pointer
int* pointVar;

// dynamically allocate memory
// for an int variable
pointVar = new int;

// assign value to the variable memory
*pointVar = 45;

// print the value stored in memory
cout << *pointVar; // Output: 45

// deallocate the memory
delete pointVar;

Here, we have dynamically allocated memory for an int variable using the pointer pointVar.

After printing the contents of pointVar, we deallocated the memory using delete.

Note: If the program uses a large amount of unwanted memory using new, the system may crash because
there will be no memory available for the operating system. In this case, the delete operator can help the
system from crash.

37.3 Example 1: C++ Dynamic Memory Allocation
#include <iostream>
using namespace std;

int main() {

// declare an int pointer
int* pointInt;

// declare a float pointer
float* pointFloat;

// dynamically allocate memory
pointInt = new int;
pointFloat = new float;

// assigning value to the memory
*pointInt = 45;
*pointFloat = 45.45f;

cout << *pointInt << endl;
cout << *pointFloat << endl;

// deallocate the memory
delete pointInt;

160

delete pointFloat;

return 0;
}

Run Code166

Output

45
45.45

In this program, we dynamically allocated memory to two variables of int and float types. After assigning
values to them and printing them, we finally deallocate the memories using the code

delete pointInt;
delete pointFloat;

Note: Dynamic memory allocation can make memory management more efficient.

Especially for arrays, where a lot of the times we don’t know the size of the array until the run time.

37.4 Example 2: C++ new and delete Operator for Arrays
// C++ Program to store GPA of n number of students and display it
// where n is the number of students entered by the user

#include <iostream>
using namespace std;

int main() {

int num;
cout << "Enter total number of students: ";
cin >> num;
float* ptr;

// memory allocation of num number of floats
ptr = new float[num];

cout << "Enter GPA of students." << endl;
for (int i = 0; i < num; ++i) {
cout << "Student" << i + 1 << ": ";
cin >> *(ptr + i);

}

cout << "\nDisplaying GPA of students." << endl;
for (int i = 0; i < num; ++i) {
cout << "Student" << i + 1 << ": " << *(ptr + i) << endl;

}

// ptr memory is released
166https://www.programiz.com/cpp-programming/online-compiler

161

https://www.programiz.com/cpp-programming/online-compiler

delete[] ptr;

return 0;
}

Run Code167

Output

Enter total number of students: 4
Enter GPA of students.
Student1: 3.6
Student2: 3.1
Student3: 3.9
Student4: 2.9
Displaying GPA of students.
Student1: 3.6
Student2: 3.1
Student3: 3.9
Student4: 2.9

In this program, we have asked the user to enter the number of students and store it in the num variable.

Then, we have allocated the memory dynamically for the float array using new.

We enter data into the array (and later print them) using pointer notation.

After we no longer need the array, we deallocate the array memory using the code delete[] ptr;.

Notice the use of [] after delete. We use the square brackets [] in order to denote that the memory
deallocation is that of an array.

37.5 Example 3: C++ new and delete Operator for Objects
#include <iostream>
using namespace std;

class Student {
private:
int age;

public:

// constructor initializes age to 12
Student() : age(12) {}

void getAge() {
cout << "Age = " << age << endl;

}
};

int main() {

// dynamically declare Student object
167https://www.programiz.com/cpp-programming/online-compiler

162

https://www.programiz.com/cpp-programming/online-compiler

Student* ptr = new Student();

// call getAge() function
ptr->getAge();

// ptr memory is released
delete ptr;

return 0;
}

Run Code168

Output

Age = 12

In this program, we have created a Student class that has a private variable age.

We have initialized age to 12 in the default constructor Student() and print its value with the func-
tion getAge().

In main(), we have created a Student object using the new operator and use the pointer ptr to point to its
address.

The moment the object is created, the Student() constructor initializes age to 12.

We then call the getAge() function using the code:

ptr->getAge();

Notice the arrow operator ->. This operator is used to access class members using pointers.

38 C++ Inheritance
In this tutorial, we will learn about inheritance in C++ with the help of examples.

Inheritance is one of the key features of Object-oriented programming in C++. It allows us to create a
new class169 (derived class) from an existing class (base class).

The derived class inherits the features from the base class and can have additional features of its
own. For example,

class Animal {
// eat() function
// sleep() function

};

class Dog : public Animal {
// bark() function

};

Here, the Dog class is derived from the Animal class. Since Dog is derived from Animal, members of Animal are
accessible to Dog.
168https://www.programiz.com/cpp-programming/online-compiler
169https://www.programiz.com/cpp-programming/object-class

163

https://www.programiz.com/cpp-programming/online-compiler
https://www.programiz.com/cpp-programming/object-class

Inheritance in C++

Notice the use of the keyword public while inheriting Dog from Animal.

class Dog : public Animal {...};

We can also use the keywords private and protected instead of public. We will learn about the differences
between using private, public and protected later in this tutorial.

38.1 is-a relationship
Inheritance is an is-a relationship. We use inheritance only if an is-a relationship is present between the
two classes.

Here are some examples:

• A car is a vehicle.
• Orange is a fruit.
• A surgeon is a doctor.
• A dog is an animal.

164

38.2 Example 1: Simple Example of C++ Inheritance
// C++ program to demonstrate inheritance

#include <iostream>
using namespace std;

// base class
class Animal {

public:
void eat() {

cout << "I can eat!" << endl;
}

void sleep() {
cout << "I can sleep!" << endl;

}
};

// derived class
class Dog : public Animal {

public:
void bark() {

cout << "I can bark! Woof woof!!" << endl;
}

};

int main() {
// Create object of the Dog class
Dog dog1;

// Calling members of the base class
dog1.eat();
dog1.sleep();

// Calling member of the derived class
dog1.bark();

return 0;
}

Run Code170

Output

I can eat!
I can sleep!
I can bark! Woof woof!!

Here, dog1 (the object of derived class Dog) can access members of the base class Animal. It’s because Dog is
inherited from Animal.
170https://www.programiz.com/cpp-programming/online-compiler

165

https://www.programiz.com/cpp-programming/online-compiler

// Calling members of the Animal class
dog1.eat();
dog1.sleep();

38.3 C++ protected Members
The access modifier protected is especially relevant when it comes to C++ inheritance.

Like private members, protected members are inaccessible outside of the class. However, they can be
accessed by derived classes and friend classes/functions.

We need protected members if we want to hide the data of a class, but still want that data to be inherited
by its derived classes.

To learn more about protected, refer to our C++ Access Modifiers171 tutorial.

38.3.1 Example 2 : C++ protected Members

// C++ program to demonstrate protected members

#include <iostream>
#include <string>
using namespace std;

// base class
class Animal {

private:
string color;

protected:
string type;

public:
void eat() {

cout << "I can eat!" << endl;
}

void sleep() {
cout << "I can sleep!" << endl;

}

void setColor(string clr) {
color = clr;

}

string getColor() {
return color;

}
};

// derived class
class Dog : public Animal {

171https://www.programiz.com/cpp-programming/access-modifiers

166

https://www.programiz.com/cpp-programming/access-modifiers

public:
void setType(string tp) {

type = tp;
}

void displayInfo(string c) {
cout << "I am a " << type << endl;
cout << "My color is " << c << endl;

}

void bark() {
cout << "I can bark! Woof woof!!" << endl;

}
};

int main() {
// Create object of the Dog class
Dog dog1;

// Calling members of the base class
dog1.eat();
dog1.sleep();
dog1.setColor("black");

// Calling member of the derived class
dog1.bark();
dog1.setType("mammal");

// Using getColor() of dog1 as argument
// getColor() returns string data
dog1.displayInfo(dog1.getColor());

return 0;
}

Run Code172

Output

I can eat!
I can sleep!
I can bark! Woof woof!!
I am a mammal
My color is black

Here, the variable type is protected and is thus accessible from the derived class Dog. We can see this as
we have initialized type in the Dog class using the function setType().

On the other hand, the private variable color cannot be initialized in Dog.

class Dog : public Animal {

public:
172https://www.programiz.com/cpp-programming/online-compiler

167

https://www.programiz.com/cpp-programming/online-compiler

void setColor(string clr) {
// Error: member "Animal::color" is inaccessible
color = clr;

}
};

Also, since the protected keyword hides data, we cannot access type directly from an object
of Dog or Animal class.

// Error: member "Animal::type" is inaccessible
dog1.type = "mammal";

38.4 Access Modes in C++ Inheritance
In our previous tutorials, we have learned about C++ access specifiers such as public, private, and pro-
tected173.

So far, we have used the public keyword in order to inherit a class from a previously-existing base class.
However, we can also use the private and protected keywords to inherit classes. For example,

class Animal {
// code

};

class Dog : private Animal {
// code

};

class Cat : protected Animal {
// code

};

The various ways we can derive classes are known as access modes. These access modes have the following
effect:

1. public: If a derived class is declared in public mode, then the members of the base class are inherited
by the derived class just as they are.

2. private: In this case, all the members of the base class become private members in the derived class.
3. protected: The public members of the base class become protected members in the derived class.

The private members of the base class are always private in the derived class.

To learn more, visit our C++ public, private, protected inheritance174 tutorial.

38.5 Member Function Overriding in Inheritance
Suppose, base class and derived class have member functions with the same name and arguments.

If we create an object of the derived class and try to access that member function, the member function in
the derived class is invoked instead of the one in the base class.

The member function of derived class overrides the member function of base class.
173https://www.programiz.com/cpp-programming/public-protected-private-inheritance
174https://www.programiz.com/cpp-programming/public-protected-private-inheritance

168

https://www.programiz.com/cpp-programming/public-protected-private-inheritance
https://www.programiz.com/cpp-programming/public-protected-private-inheritance

Learn more about Function overriding in C++175.

39 C++ Public, Protected and Private Inheritance
In this tutorial, we will learn to use public, protected and private inheritance in C++ with the help of
examples.

In C++ inheritance176, we can derive a child class from the base class in different access modes. For example,

class Base {
....
};

class Derived : public Base {
....
};

Notice the keyword public in the code

class Derived : public Base

This means that we have created a derived class from the base class in public mode. Alternatively, we can
also derive classes in protected or private modes.

These 3 keywords (public, protected, and private) are known as access specifiers in C++ inheritance.

39.1 public, protected and private inheritance in C++
public, protected, and private inheritance have the following features:

• public inheritance makes public members of the base class public in the derived class, and
the protected members of the base class remain protected in the derived class.

• protected inheritance makes the public and protected members of the base class protected in
the derived class.

• private inheritance makes the public and protected members of the base class private in the
derived class.

Note: private members of the base class are inaccessible to the derived class.

class Base {
public:
int x;

protected:
int y;

private:
int z;

};

class PublicDerived: public Base {
// x is public
// y is protected

175https://www.programiz.com/cpp-programming/function-overriding
176https://www.programiz.com/cpp-programming/inheritance

169

https://www.programiz.com/cpp-programming/function-overriding
https://www.programiz.com/cpp-programming/inheritance

// z is not accessible from PublicDerived
};

class ProtectedDerived: protected Base {
// x is protected
// y is protected
// z is not accessible from ProtectedDerived

};

class PrivateDerived: private Base {
// x is private
// y is private
// z is not accessible from PrivateDerived

};

39.2 Example 1: C++ public Inheritance
// C++ program to demonstrate the working of public inheritance

#include <iostream>
using namespace std;

class Base {
private:
int pvt = 1;

protected:
int prot = 2;

public:
int pub = 3;

// function to access private member
int getPVT() {

return pvt;
}

};

class PublicDerived : public Base {
public:
// function to access protected member from Base
int getProt() {

return prot;
}

};

int main() {
PublicDerived object1;
cout << "Private = " << object1.getPVT() << endl;
cout << "Protected = " << object1.getProt() << endl;
cout << "Public = " << object1.pub << endl;
return 0;

}

170

Run Code177

Output

Private = 1
Protected = 2
Public = 3

Here, we have derived PublicDerived from Base in public mode.

As a result, in PublicDerived:

• prot is inherited as protected.
• pub and getPVT() are inherited as public.
• pvt is inaccessible since it is private in Base.

Since private and protected members are not accessible from main(), we need to create public func-
tions getPVT() and getProt() to access them:

// Error: member "Base::pvt" is inaccessible
cout << "Private = " << object1.pvt;

// Error: member "Base::prot" is inaccessible
cout << "Protected = " << object1.prot;

Notice that the getPVT() function has been defined inside Base. But the getProt() function has been
defined inside PublicDerived.

This is because pvt, which is private in Base, is inaccessible to PublicDerived.

However, prot is accessible to PublicDerived due to public inheritance. So, getProt() can access the
protected variable from within PublicDerived.

39.2.1 Accessibility in public Inheritance

Accessibility private members protected members public members
Base Class Yes Yes Yes
Derived Class No Yes Yes

39.3 Example 2: C++ protected Inheritance
// C++ program to demonstrate the working of protected inheritance

#include <iostream>
using namespace std;

class Base {
private:
int pvt = 1;

protected:
177https://www.programiz.com/cpp-programming/online-compiler

171

https://www.programiz.com/cpp-programming/online-compiler

int prot = 2;

public:
int pub = 3;

// function to access private member
int getPVT() {

return pvt;
}

};

class ProtectedDerived : protected Base {
public:
// function to access protected member from Base
int getProt() {

return prot;
}

// function to access public member from Base
int getPub() {

return pub;
}

};

int main() {
ProtectedDerived object1;
cout << "Private cannot be accessed." << endl;
cout << "Protected = " << object1.getProt() << endl;
cout << "Public = " << object1.getPub() << endl;
return 0;

}

Run Code178

Output

Private cannot be accessed.
Protected = 2
Public = 3

Here, we have derived ProtectedDerived from Base in protected mode.

As a result, in ProtectedDerived:

• prot, pub and getPVT() are inherited as protected.
• pvt is inaccessible since it is private in Base.

As we know, protected members cannot be directly accessed from outside the class. As a result, we cannot
use getPVT() from ProtectedDerived.

That is also why we need to create the getPub() function in ProtectedDerived in order to access
the pub variable.
178https://www.programiz.com/cpp-programming/online-compiler

172

https://www.programiz.com/cpp-programming/online-compiler

// Error: member "Base::getPVT()" is inaccessible
cout << "Private = " << object1.getPVT();

// Error: member "Base::pub" is inaccessible
cout << "Public = " << object1.pub;

39.3.1 Accessibility in protected Inheritance

Accessibility private members protected members public members
Base Class Yes Yes Yes
Derived Class No Yes Yes (inherited as protected variables)

39.4 Example 3: C++ private Inheritance
// C++ program to demonstrate the working of private inheritance

#include <iostream>
using namespace std;

class Base {
private:
int pvt = 1;

protected:
int prot = 2;

public:
int pub = 3;

// function to access private member
int getPVT() {

return pvt;
}

};

class PrivateDerived : private Base {
public:
// function to access protected member from Base
int getProt() {

return prot;
}

// function to access private member
int getPub() {

return pub;
}

};

int main() {
PrivateDerived object1;
cout << "Private cannot be accessed." << endl;
cout << "Protected = " << object1.getProt() << endl;
cout << "Public = " << object1.getPub() << endl;

173

return 0;
}

Run Code179

Output

Private cannot be accessed.
Protected = 2
Public = 3

Here, we have derived PrivateDerived from Base in private mode.

As a result, in PrivateDerived:

• prot, pub and getPVT() are inherited as private.
• pvt is inaccessible since it is private in Base.

As we know, private members cannot be directly accessed from outside the class. As a result, we cannot
use getPVT() from PrivateDerived.

That is also why we need to create the getPub() function in PrivateDerived in order to access the pub vari-
able.

// Error: member "Base::getPVT()" is inaccessible
cout << "Private = " << object1.getPVT();

// Error: member "Base::pub" is inaccessible
cout << "Public = " << object1.pub;

39.4.1 Accessibility in private Inheritance

Accessibility
private
members protected members public members

Base Class Yes Yes Yes
Derived
Class

No Yes (inherited as private variables) Yes (inherited as private variables)

40 C++ Function Overriding
In this tutorial, we will learn about function overriding in C++ with the help of examples.

As we know, inheritance180 is a feature of OOP that allows us to create derived classes from a base class.
The derived classes inherit features of the base class.

Suppose, the same function is defined in both the derived class and the based class. Now if we call this
function using the object of the derived class, the function of the derived class is executed.

This is known as function overriding in C++. The function in derived class overrides the function in base
class.
179https://www.programiz.com/cpp-programming/online-compiler
180https://www.programiz.com/cpp-programming/inheritance

174

https://www.programiz.com/cpp-programming/online-compiler
https://www.programiz.com/cpp-programming/inheritance

40.1 Example 1: C++ Function Overriding
// C++ program to demonstrate function overriding

#include <iostream>
using namespace std;

class Base {
public:
void print() {

cout << "Base Function" << endl;
}

};

class Derived : public Base {
public:
void print() {

cout << "Derived Function" << endl;
}

};

int main() {
Derived derived1;
derived1.print();
return 0;

}

Output

Derived Function

Here, the same function print() is defined in both Base and Derived classes.

So, when we call print() from the Derived object derived1, the print() from Derived is executed by
overriding the function in Base.

175

Working of function overriding in C++

As we can see, the function was overridden because we called the function from an object of the Derived class.

Had we called the print() function from an object of the Base class, the function would not have been
overridden.

// Call function of Base class
Base base1;
base1.print(); // Output: Base Function

40.2 Access Overridden Function in C++
To access the overridden function of the base class, we use the scope resolution operator ::.

We can also access the overridden function by using a pointer of the base class to point to an object of the
derived class and then calling the function from that pointer.

176

40.2.1 Example 2: C++ Access Overridden Function to the Base Class

// C++ program to access overridden function
// in main() using the scope resolution operator ::

#include <iostream>
using namespace std;

class Base {
public:
void print() {

cout << "Base Function" << endl;
}

};

class Derived : public Base {
public:
void print() {

cout << "Derived Function" << endl;
}

};

int main() {
Derived derived1, derived2;
derived1.print();

// access print() function of the Base class
derived2.Base::print();

return 0;
}

Output

Derived Function
Base Function

Here, this statement

derived2.Base::print();

accesses the print() function of the Base class.

177

Access overridden function using object of derived class in C++

40.2.2 Example 3: C++ Call Overridden Function From Derived Class

// C++ program to call the overridden function
// from a member function of the derived class

#include <iostream>
using namespace std;

class Base {

178

public:
void print() {

cout << "Base Function" << endl;
}

};

class Derived : public Base {
public:
void print() {

cout << "Derived Function" << endl;

// call overridden function
Base::print();

}
};

int main() {
Derived derived1;
derived1.print();
return 0;

}

Output

Derived Function
Base Function

In this program, we have called the overridden function inside the Derived class itself.

class Derived : public Base {
public:
void print() {

cout << "Derived Function" << endl;
Base::print();

}
};

Notice the code Base::print();, which calls the overridden function inside the Derived class.

179

Access overridden function inside derived class in C++

40.2.3 Example 4: C++ Call Overridden Function Using Pointer

// C++ program to access overridden function using pointer
// of Base type that points to an object of Derived class

#include <iostream>
using namespace std;

class Base {
public:
void print() {

cout << "Base Function" << endl;
}

};

180

class Derived : public Base {
public:
void print() {

cout << "Derived Function" << endl;
}

};

int main() {
Derived derived1;

// pointer of Base type that points to derived1
Base* ptr = &derived1;

// call function of Base class using ptr
ptr->print();

return 0;
}

Output

Base Function

In this program, we have created a pointer of Base type named ptr. This pointer points to the Derived ob-
ject derived1.

// pointer of Base type that points to derived1
Base* ptr = &derived1;

When we call the print() function using ptr, it calls the overridden function from Base.

// call function of Base class using ptr
ptr->print();

This is because even though ptr points to a Derived object, it is actually of Base type. So, it calls the
member function of Base.

In order to override the Base function instead of accessing it, we need to use virtual functions181 in
the Base class.

41 C++ Multiple, Multilevel and Hierarchical Inheritance
In this tutorial, we will learn about different models of inheritance in C++ programming: Multiple, Multilevel
and Hierarchical inheritance with examples.

Inheritance182 is one of the core feature of an object-oriented programming language. It allows software
developers to derive a new class from the existing class. The derived class inherits the features of the base
class (existing class).

There are various models of inheritance in C++ programming.
181https://www.programiz.com/cpp-programming/virtual-functions
182https://www.programiz.com/cpp-programming/inheritance

181

https://www.programiz.com/cpp-programming/virtual-functions
https://www.programiz.com/cpp-programming/inheritance

41.1 C++ Multilevel Inheritance
In C++ programming, not only you can derive a class from the base class but you can also derive a class
from the derived class. This form of inheritance is known as multilevel inheritance.

class A {
...
};
class B: public A {
...
};
class C: public B {
...
};

Here, class B is derived from the base class A and the class C is derived from the derived class B.

41.1.1 Example 1: C++ Multilevel Inheritance

#include <iostream>
using namespace std;

class A {
public:

void display() {
cout<<"Base class content.";

}
};

class B : public A {};

class C : public B {};

int main() {
C obj;
obj.display();
return 0;

}

Output

Base class content.

In this program, class C is derived from class B (which is derived from base class A).

The obj object of class C is defined in the main() function.

When the display() function is called, display() in class A is executed. It’s because there is
no display() function in class C and class B.

The compiler first looks for the display() function in class C. Since the function doesn’t exist there, it looks
for the function in class B (as C is derived from B).

182

The function also doesn’t exist in class B, so the compiler looks for it in class A (as B is derived from A).

If display() function exists in C, the compiler overrides display() of class A (because of member function
overriding183).

41.2 C++ Multiple Inheritance
In C++ programming, a class can be derived from more than one parent. For example, A class Bat is
derived from base classes Mammal and WingedAnimal. It makes sense because bat is a mammal as well as
a winged animal.

Multiple Inheritance

41.2.1 Example 2: Multiple Inheritance in C++ Programming

#include <iostream>
using namespace std;

class Mammal {
public:
Mammal() {

cout << "Mammals can give direct birth." << endl;
}

};

class WingedAnimal {
public:
WingedAnimal() {

cout << "Winged animal can flap." << endl;
}

};

class Bat: public Mammal, public WingedAnimal {};

int main() {
183https://www.programiz.com/cpp-programming/function-overriding

183

https://www.programiz.com/cpp-programming/function-overriding

Bat b1;
return 0;

}

Output

Mammals can give direct birth.
Winged animal can flap.

41.2.2 Ambiguity in Multiple Inheritance

The most obvious problem with multiple inheritance occurs during function overriding.

Suppose, two base classes have a same function which is not overridden in derived class.

If you try to call the function using the object of the derived class, compiler shows error. It’s because compiler
doesn’t know which function to call. For example,

class base1 {
public:

void someFunction() {....}
};
class base2 {

void someFunction() {....}
};
class derived : public base1, public base2 {};

int main() {
derived obj;
obj.someFunction() // Error!

}

This problem can be solved using the scope resolution function to specify which function to class ei-
ther base1or base2

int main() {
obj.base1::someFunction(); // Function of base1 class is called
obj.base2::someFunction(); // Function of base2 class is called.

}

41.3 C++ Hierarchical Inheritance
If more than one class is inherited from the base class, it’s known as hierarchical inheritance184. In hierarchical
inheritance, all features that are common in child classes are included in the base class.

For example, Physics, Chemistry, Biology are derived from Science class. Similarly, Dog, Cat, Horse are
derived from Animal class.

41.3.1 Syntax of Hierarchical Inheritance

class base_class {
...

184http://www.programtopia.net/cplusplus/docs/hierarchical-inheritance-c-programming?utm_source=programiz&utm_c
ampaign=display

184

http://www.programtopia.net/cplusplus/docs/hierarchical-inheritance-c-programming?utm_source=programiz&utm_campaign=display
http://www.programtopia.net/cplusplus/docs/hierarchical-inheritance-c-programming?utm_source=programiz&utm_campaign=display

}
class first_derived_class: public base_class {

...
}
class second_derived_class: public base_class {

...
}
class third_derived_class: public base_class {

...
}

41.3.2 Example 3: Hierarchical Inheritance in C++ Programming

// C++ program to demonstrate hierarchical inheritance

#include <iostream>
using namespace std;

// base class
class Animal {

public:
void info() {

cout << "I am an animal." << endl;
}

};

// derived class 1
class Dog : public Animal {

public:
void bark() {

cout << "I am a Dog. Woof woof." << endl;
}

};

// derived class 2
class Cat : public Animal {

public:
void meow() {

cout << "I am a Cat. Meow." << endl;
}

};

int main() {
// Create object of Dog class
Dog dog1;
cout << "Dog Class:" << endl;
dog1.info(); // Parent Class function
dog1.bark();

// Create object of Cat class
Cat cat1;
cout << "\nCat Class:" << endl;
cat1.info(); // Parent Class function
cat1.meow();

return 0;

185

}

Run Code185

Output

Dog Class:
I am an animal.
I am a Dog. Woof woof.
Cat Class:
I am an animal.
I am a Cat. Meow.

Here, both the Dog and Cat classes are derived from the Animal class. As such, both the derived classes can
access the info() function belonging to the Animal class.

42 C++ friend Function and friend Classes
In this tutorial, we will learn to create friend functions and friend classes in C++ with the help of examples.

Data hiding is a fundamental concept of object-oriented programming. It restricts the access of private
members from outside of the class.

Similarly, protected members can only be accessed by derived classes and are inaccessible from outside. For
example,

class MyClass {
private:

int member1;
}

int main() {
MyClass obj;

// Error! Cannot access private members from here.
obj.member1 = 5;

}

However, there is a feature in C++ called friend functions that break this rule and allow us to access
member functions from outside the class.

Similarly, there is a friend class as well, which we will learn later in this tutorial.

42.1 friend Function in C++
A friend function can access the private and protected data of a class. We declare a friend function
using the friend keyword inside the body of the class.

class className {
...
friend returnType functionName(arguments);

185https://www.programiz.com/cpp-programming/online-compiler

186

https://www.programiz.com/cpp-programming/online-compiler

...
}

42.1.1 Example 1: Working of friend Function

// C++ program to demonstrate the working of friend function

#include <iostream>
using namespace std;

class Distance {
private:

int meter;

// friend function
friend int addFive(Distance);

public:
Distance() : meter(0) {}

};

// friend function definition
int addFive(Distance d) {

//accessing private members from the friend function
d.meter += 5;
return d.meter;

}

int main() {
Distance D;
cout << "Distance: " << addFive(D);
return 0;

}

Run Code186

Output

Distance: 5

Here, addFive() is a friend function that can access both private and public data members.

Though this example gives us an idea about the concept of a friend function, it doesn’t show any meaningful
use.

A more meaningful use would be operating on objects of two different classes. That’s when the friend function
can be very helpful.

186https://www.programiz.com/cpp-programming/online-compiler

187

https://www.programiz.com/cpp-programming/online-compiler

42.1.2 Example 2: Add Members of Two Different Classes

// Add members of two different classes using friend functions

#include <iostream>
using namespace std;

// forward declaration
class ClassB;

class ClassA {

public:
// constructor to initialize numA to 12
ClassA() : numA(12) {}

private:
int numA;

// friend function declaration
friend int add(ClassA, ClassB);

};

class ClassB {

public:
// constructor to initialize numB to 1
ClassB() : numB(1) {}

private:
int numB;

// friend function declaration
friend int add(ClassA, ClassB);

};

// access members of both classes
int add(ClassA objectA, ClassB objectB) {

return (objectA.numA + objectB.numB);
}

int main() {
ClassA objectA;
ClassB objectB;
cout << "Sum: " << add(objectA, objectB);
return 0;

}

Run Code187

Output

Sum: 13

187https://www.programiz.com/cpp-programming/online-compiler

188

https://www.programiz.com/cpp-programming/online-compiler

In this program, ClassA and ClassB have declared add() as a friend function. Thus, this function can
access private data of both classes.

One thing to notice here is the friend function inside ClassA is using the ClassB. However, we haven’t
defined ClassB at this point.

// inside classA
friend int add(ClassA, ClassB);

For this to work, we need a forward declaration of ClassB in our program.

// forward declaration
class ClassB;

42.2 friend Class in C++
We can also use a friend Class in C++ using the friend keyword. For example,

class ClassB;

class ClassA {
// ClassB is a friend class of ClassA
friend class ClassB;
...

}

class ClassB {
...

}

When a class is declared a friend class, all the member functions of the friend class become friend functions.

Since ClassB is a friend class, we can access all members of ClassA from inside ClassB.

However, we cannot access members of ClassB from inside ClassA. It is because friend relation in C++ is
only granted, not taken.

42.2.1 Example 3: C++ friend Class

// C++ program to demonstrate the working of friend class

#include <iostream>
using namespace std;

// forward declaration
class ClassB;

class ClassA {
private:

int numA;

// friend class declaration
friend class ClassB;

public:
// constructor to initialize numA to 12
ClassA() : numA(12) {}

189

};

class ClassB {
private:

int numB;

public:
// constructor to initialize numB to 1
ClassB() : numB(1) {}

// member function to add numA
// from ClassA and numB from ClassB
int add() {

ClassA objectA;
return objectA.numA + numB;

}
};

int main() {
ClassB objectB;
cout << "Sum: " << objectB.add();
return 0;

}

Run Code188

Output

Sum: 13

Here, ClassB is a friend class of ClassA. So, ClassB has access to the members of classA.

In ClassB, we have created a function add() that returns the sum of numA and numB.

Since ClassB is a friend class, we can create objects of ClassA inside of ClassB.

43 C++ Virtual Functions
In this tutorial, we will learn about C++ virtual function and its use with the help of examples.

A virtual function is a member function in the base class that we expect to redefine in derived classes.

Basically, a virtual function is used in the base class in order to ensure that the function is overridden.
This especially applies to cases where a pointer of base class points to an object of a derived class.

For example, consider the code below:

class Base {
public:
void print() {

// code
}

188https://www.programiz.com/cpp-programming/online-compiler

190

https://www.programiz.com/cpp-programming/online-compiler

};

class Derived : public Base {
public:
void print() {

// code
}

};

Later, if we create a pointer of Base type to point to an object of Derived class and call the print() function,
it calls the print() function of the Base class.

In other words, the member function of Base is not overridden.

int main() {
Derived derived1;
Base* base1 = &derived1;

// calls function of Base class
base1->print();

return 0;
}

In order to avoid this, we declare the print() function of the Base class as virtual by using the virtual key-
word.

class Base {
public:
virtual void print() {

// code
}

};

Virtual functions are an integral part of polymorphism in C++. To learn more, check our tutorial on C++
Polymorphism189.

43.1 Example 1: C++ virtual Function
#include <iostream>
using namespace std;

class Base {
public:
virtual void print() {

cout << "Base Function" << endl;
}

};

class Derived : public Base {
public:
void print() {

cout << "Derived Function" << endl;
189https://www.programiz.com/cpp-programming/polymorphism

191

https://www.programiz.com/cpp-programming/polymorphism

}
};

int main() {
Derived derived1;

// pointer of Base type that points to derived1
Base* base1 = &derived1;

// calls member function of Derived class
base1->print();

return 0;
}

Run Code190

Output

Derived Function

Here, we have declared the print() function of Base as virtual.

So, this function is overridden even when we use a pointer of Base type that points to the Derived object de-
rived1.

190https://www.programiz.com/cpp-programming/online-compiler

192

https://www.programiz.com/cpp-programming/online-compiler

Working of virtual functions in C++

43.2 C++ override Identifier
C++ 11 has given us a new identifier override that is very useful to avoid bugs while using virtual functions.

This identifier specifies the member functions of the derived classes that override the member function of
the base class.

For example,

class Base {
public:
virtual void print() {

193

// code
}

};

class Derived : public Base {
public:
void print() override {

// code
}

};

If we use a function prototype in Derived class and define that function outside of the class, then we use
the following code:

class Derived : public Base {
public:
// function prototype
void print() override;

};

// function definition
void Derived::print() {

// code
}

43.2.1 Use of C++ override

When using virtual functions, it is possible to make mistakes while declaring the member functions of the
derived classes.

Using the override identifier prompts the compiler to display error messages when these mistakes are made.

Otherwise, the program will simply compile but the virtual function will not be overridden.

Some of these possible mistakes are:

• Functions with incorrect names: For example, if the virtual function in the base class is
named print(), but we accidentally name the overriding function in the derived class as pint().

• Functions with different return types: If the virtual function is, say, of void type but the function
in the derived class is of int type.

• Functions with different parameters: If the parameters of the virtual function and the functions
in the derived classes don’t match.

• No virtual function is declared in the base class.

43.3 Use of C++ Virtual Functions
Suppose we have a base class Animal and derived classes Dog and Cat.

Suppose each class has a data member named type. Suppose these variables are initialized through their
respective constructors.

class Animal {
private:
string type;
...

194

public:
Animal(): type("Animal") {}

...
};

class Dog : public Animal {
private:
string type;
...
public:

Animal(): type("Dog") {}
...

};

class Cat : public Animal {
private:
string type;

...
public:

Animal(): type("Cat") {}
...

};

Now, let us suppose that our program requires us to create two public functions for each class:

1. getType() to return the value of type
2. print() to print the value of type

We could create both these functions in each class separately and override them, which will be long and
tedious.

Or we could make getType() virtual in the Animal class, then create a single, separate print() function
that accepts a pointer of Animal type as its argument. We can then use this single function to override the
virtual function.

class Animal {
...

public:
...
virtual string getType {...}

};

...

...

void print(Animal* ani) {
cout << "Animal: " << ani->getType() << endl;

}

This will make the code shorter, cleaner, and less repetitive.

43.4 Example 2: C++ virtual Function Demonstration
// C++ program to demonstrate the use of virtual function

#include <iostream>

195

#include <string>
using namespace std;

class Animal {
private:
string type;

public:
// constructor to initialize type
Animal() : type("Animal") {}

// declare virtual function
virtual string getType() {

return type;
}

};

class Dog : public Animal {
private:
string type;

public:
// constructor to initialize type
Dog() : type("Dog") {}

string getType() override {
return type;

}
};

class Cat : public Animal {
private:
string type;

public:
// constructor to initialize type
Cat() : type("Cat") {}

string getType() override {
return type;

}
};

void print(Animal* ani) {
cout << "Animal: " << ani->getType() << endl;

}

int main() {
Animal* animal1 = new Animal();
Animal* dog1 = new Dog();
Animal* cat1 = new Cat();

print(animal1);
print(dog1);
print(cat1);

return 0;

196

}

Run Code191

Output

Animal: Animal
Animal: Dog
Animal: Cat

Here, we have used the virtual function getType() and an Animal pointer ani in order to avoid repeating
the print() function in every class.

void print(Animal* ani) {
cout << "Animal: " << ani->getType() << endl;

}

In main(), we have created 3 Animal pointers to dynamically create objects of Animal, Dog and Cat classes.

// dynamically create objects using Animal pointers
Animal* animal1 = new Animal();
Animal* dog1 = new Dog();
Animal* cat1 = new Cat();

We then call the print() function using these pointers:

1. When print(animal1) is called, the pointer points to an Animal object. So, the virtual function
in Animal class is executed inside of print().

2. When print(dog1) is called, the pointer points to a Dog object. So, the virtual function is overridden
and the function of Dog is executed inside of print().

3. When print(cat1) is called, the pointer points to a Cat object. So, the virtual function is overridden
and the function of Cat is executed inside of print().

44 C++ Class Templates
In this tutorial, we will learn about class templates in C++ with the help of examples.

Templates are powerful features of C++ which allows us to write generic programs. There are two ways we
can implement templates:

• Function Templates192

• Class Templates

Similar to function templates, we can use class templates to create a single class to work with different data
types.

Class templates come in handy as they can make our code shorter and more manageable.

191https://www.programiz.com/cpp-programming/online-compiler
192https://programiz.com/cpp-programming/function-template

197

https://www.programiz.com/cpp-programming/online-compiler
https://programiz.com/cpp-programming/function-template

44.1 Class Template Declaration
A class template starts with the keyword template followed by template parameter(s) inside <> which is
followed by the class declaration.

template <class T>
class className {

private:
T var;
...

public:
T functionName(T arg);
...

};

In the above declaration, T is the template argument which is a placeholder for the data type used,
and class is a keyword.

Inside the class body, a member variable var and a member function functionName() are both of type T.

44.2 Creating a Class Template Object
Once we’ve declared and defined a class template, we can create its objects in other classes or functions (such
as the main() function) with the following syntax

className<dataType> classObject;

For example,

className<int> classObject;
className<float> classObject;
className<string> classObject;

44.3 Example 1: C++ Class Templates
// C++ program to demonstrate the use of class templates

#include <iostream>
using namespace std;

// Class template
template <class T>
class Number {

private:
// Variable of type T
T num;

public:
Number(T n) : num(n) {} // constructor

T getNum() {
return num;

}
};

int main() {

198

// create object with int type
Number<int> numberInt(7);

// create object with double type
Number<double> numberDouble(7.7);

cout << "int Number = " << numberInt.getNum() << endl;
cout << "double Number = " << numberDouble.getNum() << endl;

return 0;
}

Run Code193

Output

int Number = 7
double Number = 7.7

In this program. we have created a class template Number with the code

template <class T>
class Number {

private:
T num;

public:
Number(T n) : num(n) {}
T getNum() { return num; }

};

Notice that the variable num, the constructor argument n, and the function getNum() are of type T, or have
a return type T. That means that they can be of any type.

In main(), we have implemented the class template by creating its objects

Number<int> numberInt(7);
Number<double> numberDouble(7.7);

Notice the codes Number<int> and Number<double> in the code above.

This creates a class definition each for int and float, which are then used accordingly.

It is compulsory to specify the type when declaring objects of class templates. Otherwise, the compiler will
produce an error.

//Error
Number numberInt(7);
Number numberDouble(7.7);

193https://www.programiz.com/cpp-programming/online-compiler

199

https://www.programiz.com/cpp-programming/online-compiler

44.4 Defining a Class Member Outside the Class Template
Suppose we need to define a function outside of the class template. We can do this with the following code:

template <class T>
class ClassName {

...
// Function prototype
returnType functionName();

};

// Function definition
template <class T>
returnType ClassName<T>::functionName() {

// code
}

Notice that the code template <class T> is repeated while defining the function outside of the class. This
is necessary and is part of the syntax.

If we look at the code in Example 1, we have a function getNum() that is defined inside the class tem-
plate Number.

We can define getNum() outside of Number with the following code:

template <class T>
class Number {

...
// Function prototype
T getnum();

};

// Function definition
template <class T>
T Number<T>::getNum() {

return num;
}

44.5 Example 2: Simple Calculator Using Class Templates
This program uses a class template to perform addition, subtraction, multiplication and division of two
variables num1 and num2.

The variables can be of any type, though we have only used int and float types in this example.

#include <iostream>
using namespace std;

template <class T>
class Calculator {

private:
T num1, num2;

public:
Calculator(T n1, T n2) {

num1 = n1;

200

num2 = n2;
}

void displayResult() {
cout << "Numbers: " << num1 << " and " << num2 << "." << endl;
cout << num1 << " + " << num2 << " = " << add() << endl;
cout << num1 << " - " << num2 << " = " << subtract() << endl;
cout << num1 << " * " << num2 << " = " << multiply() << endl;
cout << num1 << " / " << num2 << " = " << divide() << endl;

}

T add() { return num1 + num2; }
T subtract() { return num1 - num2; }
T multiply() { return num1 * num2; }
T divide() { return num1 / num2; }

};

int main() {
Calculator<int> intCalc(2, 1);
Calculator<float> floatCalc(2.4, 1.2);

cout << "Int results:" << endl;
intCalc.displayResult();

cout << endl
<< "Float results:" << endl;

floatCalc.displayResult();

return 0;
}

Run Code194

Output

Int results:
Numbers: 2 and 1.
2 + 1 = 3
2 - 1 = 1
2 * 1 = 2
2 / 1 = 2
Float results:
Numbers: 2.4 and 1.2.
2.4 + 1.2 = 3.6
2.4 - 1.2 = 1.2
2.4 * 1.2 = 2.88
2.4 / 1.2 = 2

In the above program, we have declared a class template Calculator.

The class contains two private members of type T: num1 & num2, and a constructor to initialize the members.
194https://www.programiz.com/cpp-programming/online-compiler

201

https://www.programiz.com/cpp-programming/online-compiler

We also have add(), subtract(), multiply(), and divide() functions that have the return type T. We also
have a void function displayResult() that prints out the results of the other functions.

In main(), we have created two objects of Calculator: one for int data type and another for float data
type.

Calculator<int> intCalc(2, 1);
Calculator<float> floatCalc(2.4, 1.2);

This prompts the compiler to create two class definitions for the respective data types during compilation.

44.6 C++ Class Templates With Multiple Parameters
In C++, we can use multiple template parameters and even use default arguments for those parameters. For
example,

template <class T, class U, class V = int>
class ClassName {

private:
T member1;
U member2;
V member3;
...

public:
...

};

44.6.1 Example 3: C++ Templates With Multiple Parameters

#include <iostream>
using namespace std;

// Class template with multiple and default parameters
template <class T, class U, class V = char>
class ClassTemplate {

private:
T var1;
U var2;
V var3;

public:
ClassTemplate(T v1, U v2, V v3) : var1(v1), var2(v2), var3(v3) {} // constructor

void printVar() {
cout << "var1 = " << var1 << endl;
cout << "var2 = " << var2 << endl;
cout << "var3 = " << var3 << endl;

}
};

int main() {
// create object with int, double and char types
ClassTemplate<int, double> obj1(7, 7.7, 'c');
cout << "obj1 values: " << endl;
obj1.printVar();

202

// create object with int, double and bool types
ClassTemplate<double, char, bool> obj2(8.8, 'a', false);
cout << "\nobj2 values: " << endl;
obj2.printVar();

return 0;
}

Run Code195

Output

obj1 values:
var1 = 7
var2 = 7.7
var3 = c
obj2 values:
var1 = 8.8
var2 = a
var3 = 0

In this program, we have created a class template, named ClassTemplate, with three parameters, with one
of them being a default parameter.

template <class T, class U, class V = char>
class ClassTemplate {
// code

};

Notice the code class V = char. This means that V is a default parameter whose default type is char.

Inside ClassTemplate, we declare 3 variables var1, var2 and var3, each corresponding to one of the template
parameters.

class ClassTemplate {
private:
T var1;
U var2;
V var3;
...
...

};

In main(), we create two objects of ClassTemplate with the code

// create object with int, double and char types
ClassTemplate<int, double> obj1(7, 7.7, 'c');

// create object with double, char and bool types
ClassTemplate<double, char, bool> obj2(8, 8.8, false);
195https://www.programiz.com/cpp-programming/online-compiler

203

https://www.programiz.com/cpp-programming/online-compiler

Here,

Object T U V
obj1 int double char
obj2 double char bool

For obj1, T = int, U = double and V = char.

For obj2, T = double, U = char and V = bool.

44.6.2 References

• Learn C++ Programming196

• Introduction to C++ | C Plus Plus Programming Language Tutorials197

• The C and C++ programming tutorials, hands-on approach with program examples, code samples and
tons of output images using Visual C++, C++ Builder, Linux gcc and g++ compilers and IDE198

196https://www.programiz.com/cpp-programming
197http://www.btechsmartclass.com/cpp-programming/index.php
198https://www.tenouk.com/cncplusplustutorials.html

204

https://www.programiz.com/cpp-programming
http://www.btechsmartclass.com/cpp-programming/index.php
https://www.tenouk.com/cncplusplustutorials.html

	CE103 Algorithms and Programming I
	Week-6
	Books and Resources
	C++ Functional Console Programming
	C++ Introduction

	C++ Variables, Literals and Constants
	C++ Variables
	Rules for naming a variable

	C++ Literals
	1. Integers
	2. Floating-point Literals
	3. Characters
	4. Escape Sequences
	5. String Literals

	C++ Constants

	C++ Data Types
	C++ Fundamental Data Types
	1. C++ int
	2. C++ float and double
	3. C++ char
	4. C++ wchar_t
	5. C++ bool
	6. C++ void

	C++ Type Modifiers
	C++ Modified Data Types List

	Derived Data Types

	C++ Basic Input/Output
	C++ Output
	Example 1: String Output
	Example 2: Numbers and Characters Output

	C++ Input
	Example 3: Integer Input/Output

	C++ Taking Multiple Inputs

	C++ Type Conversion
	Implicit Type Conversion
	Example 1: Conversion From int to double
	Example 2: Automatic Conversion from double to int
	Data Loss During Conversion (Narrowing Conversion)

	C++ Explicit Conversion
	C-style Type Casting
	Function-style Casting
	Example 3: Type Casting
	Type Conversion Operators

	C++ Operators
	1. C++ Arithmetic Operators
	Example 1: Arithmetic Operators
	Increment and Decrement Operators
	Example 2: Increment and Decrement Operators

	2. C++ Assignment Operators
	Example 3: Assignment Operators

	3. C++ Relational Operators
	Example 4: Relational Operators

	4. C++ Logical Operators
	Example 5: Logical Operators

	5. C++ Bitwise Operators
	6. Other C++ Operators

	C++ Comments
	Single Line Comments
	Multi-line comments
	Using Comments for Debugging
	Why use Comments?
	C++ Flow Control

	C++ if, if…else and Nested if…else
	C++ if Statement
	Example 1: C++ if Statement

	C++ if…else
	Example 2: C++ if…else Statement

	C++ if…else…else if statement
	Example 3: C++ if…else…else if

	C++ Nested if…else
	Example 4: C++ Nested if

	Body of if…else With Only One Statement
	More on Decision Making

	C++ for Loop
	C++ for loop
	Flowchart of for Loop in C++
	Example 1: Printing Numbers From 1 to 5
	Example 2: Display a text 5 times
	Example 3: Find the sum of first n Natural Numbers

	Ranged Based for Loop
	Example 4: Range Based for Loop
	C++ Infinite for loop

	C++ while and do…while Loop
	C++ while Loop
	Flowchart of while Loop
	Example 1: Display Numbers from 1 to 5
	Example 2: Sum of Positive Numbers Only

	C++ do…while Loop
	Flowchart of do…while Loop
	Example 3: Display Numbers from 1 to 5
	Example 4: Sum of Positive Numbers Only

	Infinite while loop
	for vs while loops

	C++ break Statement
	Working of C++ break Statement
	Example 1: break with for loop
	Example 2: break with while loop
	break with Nested loop

	C++ continue Statement
	Working of C++ continue Statement
	Example 1: continue with for loop
	Example 2: continue with while loop
	continue with Nested loop

	C++ switch..case Statement
	Flowchart of switch Statement
	Example: Create a Calculator using the switch Statement

	C++ goto Statement
	Syntax of goto Statement
	Example: goto Statement
	Reason to Avoid goto Statement
	C++ Functions

	C++ Functions
	C++ User-defined Function
	C++ Function Declaration
	Calling a Function
	Example 1: Display a Text
	Function Parameters
	Example 2: Function with Parameters
	Return Statement
	Example 3: Add Two Numbers
	Function Prototype
	Example 4: C++ Function Prototype
	Benefits of Using User-Defined Functions

	C++ Library Functions
	Example 5: C++ Program to Find the Square Root of a Number

	C++ User-defined Function Types
	Example 1: No arguments passed and no return value
	Example 2: No arguments passed but a return value
	Example 3: Arguments passed but no return value
	Example 4: Arguments passed and a return value.
	Which method is better?

	C++ Function Overloading
	Example 1: Overloading Using Different Types of Parameter
	Example 2: Overloading Using Different Number of Parameters

	C++ Programming Default Arguments (Parameters)
	Working of default arguments
	Example: Default Argument
	Things to Remember

	C++ Storage Class
	Local Variable
	Example 1: Local variable

	Global Variable
	Example 2: Global variable
	Static Local variable
	Example 3: Static local variable

	Register Variable (Deprecated in C++11)
	Thread Local Storage

	C++ Recursion
	Working of Recursion in C++
	Example 1: Factorial of a Number Using Recursion
	Working of Factorial Program

	Advantages and Disadvantages of Recursion
	Advantages of C++ Recursion
	Disadvantages of C++ Recursion

	C++ Return by Reference
	Example: Return by Reference
	Important Things to Remember When Returning by Reference.
	C++ Arrays & String

	C++ Arrays
	C++ Array Declaration
	Access Elements in C++ Array
	Few Things to Remember:

	C++ Array Initialization
	C++ Array With Empty Members

	How to insert and print array elements?
	Example 1: Displaying Array Elements
	Example 2: Take Inputs from User and Store Them in an Array
	Example 3: Display Sum and Average of Array Elements Using for Loop
	C++ Array Out of Bounds

	C++ Multidimensional Arrays
	Multidimensional Array Initialization
	1. Initialization of two-dimensional array
	2. Initialization of three-dimensional array

	Example 1: Two Dimensional Array
	Example 2: Taking Input for Two Dimensional Array
	Example 3: Three Dimensional Array

	Passing Array to a Function in C++ Programming
	Syntax for Passing Arrays as Function Parameters
	Example 1: Passing One-dimensional Array to a Function
	Passing Multidimensional Array to a Function
	Example 2: Passing Multidimensional Array to a Function

	C++ Returning an Array From a Function

	C++ Strings
	C-strings
	How to define a C-string?
	Alternative ways of defining a string
	Example 1: C++ String to read a word
	Example 2: C++ String to read a line of text

	string Object
	Example 3: C++ string using string data type

	Passing String to a Function
	C++ Structures

	C++ Structures
	How to declare a structure in C++ programming?
	How to define a structure variable?
	How to access members of a structure?
	Example: C++ Structure

	C++ Structure and Function
	Passing structure to function in C++
	Example 1: C++ Structure and Function
	Example 2: Returning structure from function in C++

	C++ Pointers to Structure
	Example: Pointers to Structure

	C++ Enumeration
	Enumerated Type Declaration
	Example 1: Enumeration Type
	Example2: Changing Default Value of Enums

	Why enums are used in C++ programming?
	How to use enums for flags?

	C++ Classes and Objects
	C++ Class
	Create a Class

	C++ Objects
	Syntax to Define Object in C++
	C++ Access Data Members and Member Functions
	Example 1: Object and Class in C++ Programming
	Example 2: Using public and private in C++ Class

	C++ Constructors
	C++ Default Constructor
	Example 1: C++ Default Constructor

	C++ Parameterized Constructor
	Example 2: C++ Parameterized Constructor

	C++ Copy Constructor
	Example 3: C++ Copy Constructor

	How to pass and return object from C++ Functions?
	Example 1: C++ Pass Objects to Function
	Example 2: C++ Return Object from a Function

	C++ Operator Overloading
	Syntax for C++ Operator Overloading
	Operator Overloading in Unary Operators
	Example1: ++ Operator (Unary Operator) Overloading
	Example 2: ++ Operator (Unary Operator) Overloading
	Example 3: Return Value from Operator Function (++ Operator)

	Operator Overloading in Binary Operators
	Example 4: C++ Binary Operator Overloading

	Things to Remember in C++ Operator Overloading

	C++ Pointers
	C++ Pointers
	Address in C++
	Example 1: Printing Variable Addresses in C++

	C++ Pointers
	Assigning Addresses to Pointers
	Get the Value from the Address Using Pointers
	Example 2: Working of C++ Pointers
	Changing Value Pointed by Pointers
	Example 3: Changing Value Pointed by Pointers

	Common mistakes when working with pointers

	C++ Pointers and Arrays
	Point to Every Array Elements
	Example 1: C++ Pointers and Arrays
	Example 2: Array name used as pointer

	C++ Call by Reference: Using pointers
	Example 1: Passing by reference without pointers
	Example 2: Passing by reference using pointers

	C++ Memory Management: new and delete
	C++ new Operator
	delete Operator
	Example 1: C++ Dynamic Memory Allocation
	Example 2: C++ new and delete Operator for Arrays
	Example 3: C++ new and delete Operator for Objects

	C++ Inheritance
	is-a relationship
	Example 1: Simple Example of C++ Inheritance
	C++ protected Members
	Example 2 : C++ protected Members

	Access Modes in C++ Inheritance
	Member Function Overriding in Inheritance

	C++ Public, Protected and Private Inheritance
	public, protected and private inheritance in C++
	Example 1: C++ public Inheritance
	Accessibility in public Inheritance

	Example 2: C++ protected Inheritance
	Accessibility in protected Inheritance

	Example 3: C++ private Inheritance
	Accessibility in private Inheritance

	C++ Function Overriding
	Example 1: C++ Function Overriding
	Access Overridden Function in C++
	Example 2: C++ Access Overridden Function to the Base Class
	Example 3: C++ Call Overridden Function From Derived Class
	Example 4: C++ Call Overridden Function Using Pointer

	C++ Multiple, Multilevel and Hierarchical Inheritance
	C++ Multilevel Inheritance
	Example 1: C++ Multilevel Inheritance

	C++ Multiple Inheritance
	Example 2: Multiple Inheritance in C++ Programming
	Ambiguity in Multiple Inheritance

	C++ Hierarchical Inheritance
	Syntax of Hierarchical Inheritance
	Example 3: Hierarchical Inheritance in C++ Programming

	C++ friend Function and friend Classes
	friend Function in C++
	Example 1: Working of friend Function
	Example 2: Add Members of Two Different Classes

	friend Class in C++
	Example 3: C++ friend Class

	C++ Virtual Functions
	Example 1: C++ virtual Function
	C++ override Identifier
	Use of C++ override

	Use of C++ Virtual Functions
	Example 2: C++ virtual Function Demonstration

	C++ Class Templates
	Class Template Declaration
	Creating a Class Template Object
	Example 1: C++ Class Templates
	Defining a Class Member Outside the Class Template
	Example 2: Simple Calculator Using Class Templates
	C++ Class Templates With Multiple Parameters
	Example 3: C++ Templates With Multiple Parameters
	References

