
CE103 Algorithms and Programming I

Week-3

Introduction to Source Code Version Management Systems

Download DOC, SLIDE, PPTX

CE103 Algorithms and Programming I

 RTEU CE103 Week-3

file:///C:/Users/ugur.coruh/Desktop/ce103-algorithms-and-programming-I/docs/week-3-git/ce103-week-3-git.en.md_doc.pdf
file:///C:/Users/ugur.coruh/Desktop/ce103-algorithms-and-programming-I/docs/week-3-git/ce103-week-3-git.en.md_slide.pdf
file:///C:/Users/ugur.coruh/Desktop/ce103-algorithms-and-programming-I/docs/week-3-git/ce103-week-3-git.en.md_slide.pptx

Outline

Introduction to Source Code Version Management Systems

Features of Source Code Management Systems

Why Do We Need Source Code Management Systems

Centralized/Distrubuted Version Control Systems
Introduction to Git

Git Installation and Configuration

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 2

Outline

Git Init Repository

Git Add Files

Git Commit Changes
Git Pull/Fetch Changes from Remote Repo

Git Push Local Changes to Remote Repo

Git Branching

Git Merging and Conflict Solving
Git Rebasing

Git Reset

Git Logs and Monitoring

Git Decision Tree
Git Visualize Logs

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 3

Introduction to Source Code Version Management Systems

Git, Github, Gitlab, Bitbucket, Maven, SVN, TFS

Source code management (SCM) is used to track modifications to a source code
repository. SCM tracks a running history of changes to a code base and helps resolve
conflicts when merging updates from multiple contributors. SCM is also synonymous
with Version control.
As software projects grow in lines of code and contributor head count, the costs of
communication overhead and management complexity also grow. SCM is a critical tool
to alleviate the organizational strain of growing development costs.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 4

Features of Source Code Management Systems

Authenticated access for commits

Revision history on files

Atomic commits of multiple files

Versioning/Tagging

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 5

Why Do We Need Source Code Management Systems? (1)

We can save the file with a different name if it’s our school project or one-time papers but for a well-
equipped software development? Not a chance.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 6

Why Do We Need Source Code Management Systems? (2)

Big projects need a version control system to track the changes and avoid misunderstanding. A good
SCM does the following:

Backup and Restore

Synchronization
Short-Term Undo

Long-Term Undo

Track Changes

Ownership
Branching and Merging

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 7

Why Do We Need Source Code Management Systems? (3)

Backup and Restore – Files can be saved at any moment and can be restored from the last saved.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 8

Why Do We Need Source Code Management Systems? (4)

Synchronization – Programmers can get the latest code and fetch the up-to-date codes from the
repository.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 9

Why Do We Need Source Code Management Systems? (5)

Short-Term Undo – Working with a file and messed it up. We can do a short-term undo to the last
known version.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 10

Why Do We Need Source Code Management Systems? (6)

Long-Term Undo – It helps when we have to make a release version rollback. Something like going to
the last version which was created a year

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 11

Why Do We Need Source Code Management Systems? (7)

Track Changes– We can track the changes as when anyone is making any change, he can leave a
commit message as for why the change was done.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 12

Why Do We Need Source Code Management Systems? (8)

Ownership– With every commit made to the master branch, it will ask the owner permission to merge
it.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 13

Why Do We Need Source Code Management Systems? (9)

Branching and Merging – You can create a branch of your source code and create the changes. Once
the changes are approved, you can merge it with the master branch.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 14

Why Do We Need Source Code Management Systems? (10)

Types of Version Control Systems

Centralized Version Control (TFS, Subversion)

Distributed Version Control (Git and Mercurial)

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 15

Centralized Version Control (TFS, Subversion) (1)

The main concept of Centralized Version Control is that it works in a client and server relationship.
The repository is located in one place and allows access to multiple clients.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 16

Centralized Version Control (TFS, Subversion) (2)

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 17

Centralized Version Control (TFS, Subversion) (3)

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 18

Centralized Version Control (TFS, Subversion) (4)

It’s very similar to FTP where you have FTP clients which connect to FTP server. Here all the user
changes and commits have to pass through the central server. For Ex: Subversion.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 19

Centralized Version Control (TFS, Subversion) (5)

The benefits of centralized version control are:

It’s easy to understand.

There are more GUI and IDE clients.

You have more control over the users and access.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 20

Centralized Version Control (TFS, Subversion) (6)

We do have drawbacks also:

It is dependent on the access to the server.

It can be slower because every command from the client has to pass the server.

Branching and merging strategies are difficult to use.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 21

Distributed Version Control (Git and Mercurial) (1)

These systems are newer to use. In Distributed Version Control, each user has their own copy of the
entire repository as well as the files and history. For Ex: Git and Mercurial

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 22

Distributed Version Control (Git and Mercurial) (2)

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 23

Distributed Version Control (Git and Mercurial) (3)

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 24

Distributed Version Control (Git and Mercurial) (4)

The benefits of distributed version control are:

More powerful and easy change tracking.

No need of a centralized server. Most of the functionalities work in offline mode also apart from
sharing the repositories.

Branching and Merging strategies are more easy and reliable.

It’s faster than the other one.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 25

List of Source Code Version Management Tools (1)

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 26

List of Source Code Version Management Tools (2)

Github

GitLab

BitBucket

SourceForge

Beanstalk

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 27

List of Source Code Version Management Tools (3)

Apache Allura

AWS CodeCommit

Launchpad

Phabricator

GitBucket

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 28

GIT (Distributed Source Code Management) (1)

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 29

GIT (Distributed Source Code Management) (2)

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 30

GIT (Distributed Source Code Management) (3)

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 31

GIT (Distributed Source Code Management) (4)

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 32

GIT (Distributed Source Code Management) (5)

A Basic Overview of How Git Works (1)

Create a "repository" (project) with a git hosting tool (like Bitbucket)

Copy (or clone) the repository to your local machine

Add a file to your local repo and “commit” (save) the changes

“Push” your changes to your master branch

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 33

GIT (Distributed Source Code Management) (6)

A Basic Overview of How Git Works (2)

Make a change to your file with a git hosting tool and commit

“Pull” the changes to your local machine

Create a “branch” (version), make a change, commit the change

Open a “pull request”.

“Merge” your branch to the master branch

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 34

GIT (Distributed Source Code Management) (7)

Some of The Basic Operations in GIT are

Initialize

Add

Commit

Pull

Push

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 35

GIT (Distributed Source Code Management) (8)

Some of The Basic Operations in GIT are

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 36

GIT (Distributed Source Code Management) (9)

Some of The Basic Operations in GIT are

Branching

Merging

Rebasing

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 37

GIT (Distributed Source Code Management) (10)

Some of The Basic Operations in GIT are

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 38

GIT (Distributed Source Code Management) (8)

A brief idea about how these operations work with the Git repositories (1)

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 39

GIT (Distributed Source Code Management) (9)

A brief idea about how these operations work with the Git repositories (2)

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 40

GIT (Distributed Source Code Management) (10)

A brief idea about how these operations work with the Git repositories (3)

For more detailed cheetsheat please check the following interactive map

NDP Software :: Git Cheatsheet

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 41

https://www.ndpsoftware.com/git-cheatsheet.html

Installation of GIT (1)

Check Installation Already Completed

git --version

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 42

Installation of GIT (2)

If your console gives error about git command follow the steps in the link

Install Git | Atlassian Git Tutorial

In this link you will should download following setup according to your operating system

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 43

https://www.atlassian.com/git/tutorials/install-git#windows

Installation of GIT (3)

GIT Setup Files

Download git for OSX

Download git for Windows
Download git for Linux

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 44

http://git-scm.com/download/mac
http://msysgit.github.io/
http://git-scm.com/book/en/Getting-Started-Installing-Git

Installation of GIT (4)

Download and install GIT from the following links (both have same github release path)

Git - Downloads

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 45

https://git-scm.com/downloads

Installation of GIT (5)

After running setup follow the steps below

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 46

Installation of GIT (6)

Select the following configurations

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 47

Installation of GIT (7)

You can select to use git from Git Bash Only, Also you can use it from command-line by selecting
second option. Third option override some Windows executable so your operating system can be
affected from this selection.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 48

Installation of GIT (8)

Git Credential Manager will be use to configure your remote connection.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 49

Installation of GIT (9)

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 50

Installation of GIT (10)

MSYS2 MinTTY provide better visual and colorful console outputs

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 51

Installation of GIT Extension (Windows) (1)

Git user interface can be installed by the following applications

You can install Git GUI from https://git-scm.com/downloads/guis

I prefer to use git extension https://gitextensions.github.io/

and https://tortoisegit.org/ together

Also Download KDiff3 KDiff3 - Browse Files at SourceForge.net

These extensions provide GUI for git operations to make process easier.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 52

https://git-scm.com/downloads/guis
https://gitextensions.github.io/
https://tortoisegit.org/
https://sourceforge.net/projects/kdiff3/files/

Enter GIT Extension Configurations

Right click to any where on right click menu you will see git extension settings as follow

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 53

Configuration of GIT Extension (Windows) (1)

Git extension provides you missing setups or wrong configurations. If everyting is green that
mean everything should work perfectly.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 54

Configuration of GIT Extension (Windows) (2)

If you install git everything should be green and this configuration is stored on .gitconfig on your
home C:/Windows/Users/<user>/.gitconfig

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 55

Configuration of GIT Extension (Windows) (3)

You can use the following template and fix your settings. Git GUI edit this settings. But you can
also edit them manually.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 56

Configuration of GIT Extension (Windows) (3)

C:/Windows/Users//.gitconfig

[core]
 editor = \"C:/Program Files (x86)/GitExtensions/GitExtensions.exe\" fileeditor
 autocrlf = true
 quotePath = false
 commitGraph = true
 longpaths = true
[user]
 email = xxxxxxx@gmail.com
 name = xxxx xxxxxx
[filter "lfs"]
 clean = git-lfs clean -- %f
 smudge = git-lfs smudge -- %f
 process = git-lfs filter-process
 required = true
[pull]
 rebase = false
[fetch]
 prune = false
[rebase]
 autoStash = false
[credential]
 helper = manager
[diff]
 guitool = kdiff3
[difftool "kdiff3"]
 path = C:/Program Files/KDiff3/kdiff3.exe
 cmd = \"C:/Program Files/KDiff3/kdiff3.exe\" \"$LOCAL\" \"$REMOTE\"
[merge]
 guitool = tortoisemerge
[mergetool "tortoisemerge"]
 path = C:/Program Files/TortoiseGit/bin/TortoiseGitMerge.exe
 cmd = \"C:/Program Files/TortoiseGit/bin/TortoiseGitMerge.exe\" -base:\"$BASE\" -mine:\"$LOCAL\" -theirs:\"$REMOTE\" -merged:\"$MERGED\"
[receive]
 advertisePushOptions = true
[gc]
 writeCommitGraph = true

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 57

Configuration of GIT Extension (Windows) (4)

Also in extension you can see similar settings

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 58

Configuration of GIT Extension (Windows) (5)

Samples

MergeTool

tortoisemerge

Path to mergetool

C:/Program Files/TortoiseGit/bin/TortoiseGitMerge.exe

Mergetool command

"C:/Program Files/TortoiseGit/bin/TortoiseGitMerge.exe" -base:"$BASE" -mine:"$LOCAL" -theirs:"$REMOTE" -merged:"$MERGED"

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 59

Configuration of GIT Extension (Windows) (6)

Difftool

kdiff3

Path to difftool

C:/Program Files/KDiff3/kdiff3.exe

Difftool command

"C:/Program Files/KDiff3/kdiff3.exe" "$LOCAL" "$REMOTE"

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 60

Configuration of GIT Extension (Windows) (7)

If you see something as merge and diff tool is not configured, follow the similar settings above
on your computer. If you installed kdiff3, tortoisegit and extension you will have same diff and
merge tools

This topic also help you

Git: How can I configure KDiff3 as a merge tool and diff tool? - Stack Overflow

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 61

https://stackoverflow.com/questions/33308482/git-how-can-i-configure-kdiff3-as-a-merge-tool-and-diff-tool

Configuration of GIT Extension (Windows) (8)

Merge, Diff and Shell Tool Configuration Missing.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 62

Configuration of GIT Extension (Windows) (9)

Open Git->Config, in your settings you will see path to mergetool and difftool will be empty fill
settings like that below find executables in your computer and copy paths to here.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 63

Configuration of GIT Extension (Windows) (10)

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 64

Configuration of GIT Extension (Windows) (11)

Also if we want to change and use different diff and merge tool then we can do this with gitbash
console as below

C:\Program Files\TortoiseGit\bin

Find TortoiseGitIDiff.exe and TortoiseGitMerge.exe

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 65

Configuration of GIT Extension (Windows) (12)

Copy path of this applications

C:\Program Files\TortoiseGit\bin\TortoiseGitMerge.exe
C:\Program Files\TortoiseGit\bin\TortoiseGitIDiff.exe

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 66

Configuration of GIT Extension (Windows) (13)

Open a gitbash console and run following commands

git config --global merge.tool TortoiseGitMerge
git config --global mergetool.TortoiseGitMerge.path "C:/Program Files/TortoiseGit/bin/TortoiseGitMerge.exe"
git config --global mergetool.TortoiseGitMerge.trustExitCode false

git config --global diff.guitool TortoiseGitIDiff
git config --global difftool.TortoiseGitIDiff.path "C:/Program Files/TortoiseGit/bin/TortoiseGitIDiff.exe"
git config --global difftool.TortoiseGitIDiff.trustExitCode false

This updates will be stored on .gitconfig

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 67

Using the GIT Extension (1)

right click in the git folder and use Git Extension menu for operations.

for sample commit click "Commit"

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 68

Using the GIT Extension (1)

from opening window first stage related files and then write a good commit message

finally click commit to local. You can also commit&push it to remote repository.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 69

GIT Installation Completed..

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 70

Installation of gig (git ignore creator) (1)

Requirements

Python >= 3.6

Internet connection

https://github.com/sloria/gig

pip install -U gig

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 71

https://github.com/sloria/gig

Installation of gig (git ignore creator) (2)

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 72

Installation of gig (git ignore creator) (3)

gig --version

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 73

Usage of gig (1)

List all gitignore templates

gig list
gig list -global

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 74

Usage of gig (2)

Sample gitignore for C Java and Visual Studio

gig C Java VisualStudio > .gitignore

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 75

Usage of gig (3)

There is a portal for this also by Toptal

•gitignore.io - Create Useful .gitignore Files For Your Project

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 76

https://www.toptal.com/developers/gitignore

Usage of gig (4)

for samples you can check the following links.

https://github.com/github/gitignore

https://dev.to/shihanng/gig-a-gitignore-generator-opc

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 77

https://github.com/github/gitignore
https://dev.to/shihanng/gig-a-gitignore-generator-opc

Configuration of GIT (1)

It is important to configure your Git because any commits that you
make are associated with your configuration details.

configuring Git with your username and email. In order to do that, type the following commands in
your Git Bash:

git config - - global user.name "<your name>"

git config - - global user.email "<your email>"

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 78

Configuration of GIT (2)

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 79

Configuration of GIT (3)

git configuration files are located on the user folder

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 80

Configuration of GIT (4)

If you want to view all your configuration details, use the command below

git config --list

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 81

Using .gitignore files with git-extension (1)

with gitignore file

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 82

Using .gitignore files with git-extension (2)

without gitignore file (just move to another location)

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 83

Github Create Repo

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 84

Initilization of Repo (not existing in github)

git init

In order to do that, we use the command git init.

git init creates an empty Git repository or re-initializes an existing one. It basically creates a .git
directory with sub directories and template files. Running a git init in an existing repository will
not overwrite things that are already there. It rather picks up the newly added templates.

git init

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 85

git init

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 86

Adding Initiated Repo Remote Upstream Repo (Link with Github Repo) (1)

If you enter following command in the git folder you will see nothing

git remote -v

That mean this repository do not have a remote upstream repository such as a github or
bitbucket repo.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 87

Adding Initiated Repo Remote Upstream Repo (Link with Github Repo) (2)

Open the github and bitbucket repository and copy project path from

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 88

Adding Initiated Repo Remote Upstream Repo (Link with Github Repo) (3)

you will see the following sample from github code button

https://github.com/ucoruh/ce103-sample-text.git

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 89

Adding Initiated Repo Remote Upstream Repo (Link with Github Repo) (4)

Copy link and use with following command

git remote add origin https://github.com/ucoruh/ce103-sample-text.git

Then verify that you correctly updated remote repository setting with the following command

git remote -v

You should see similar outputs

origin https://github.com/ucoruh/ce103-sample-text.git (fetch)
origin https://github.com/ucoruh/ce103-sample-text.git (push)

You can check the following sample
How to Add a New Remote to your Git Repo | Assembla Help Center

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 90

https://articles.assembla.com/en/articles/1136998-how-to-add-a-new-remote-to-your-git-repo

Now you can push your local changes to remote repository

If you see a repository on Github then you can download with following operation

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 91

Checkout a Repository (1)

create a working copy of a local repository by running the command

git clone /path/to/repository

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 92

Checkout a Repository (2)

Sample clone command

git clone https://github.com/ucoruh/ce103-sample-text.git

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 93

Checkout a Repository (3)

when using a remote server, your command will be

git clone username@host:/path/to/repository

Checking Repository Status (1)

git status

The git status command lists all the modified files which are ready to be added to the local repository.

git status

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 94

Checking Repository Status (2)

git status

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 95

Adding Files to Index (1)

git add

This command updates the index using the current content found in the working tree
and then prepares the content in the staging area for the next commit.

git add <directory>
git add <file>
git add *

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 96

Adding Files to Index (1)

git add

Created two more files edureka3.txt and edureka4.txt. Let us add the files using the command git add
-A. This command will add all the files to the index which are in the directory but not updated in the
index yet.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 97

Commit Changes (1)

git commit

It refers to recording snapshots of the repository at a given time. Committed
snapshots will never change unless done explicitly.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 98

Commit Changes (2)

git commit

Let me explain how commit works with the diagram below

Here, C1 is the initial commit, i.e. the snapshot of the first change from which
another snapshot is created with changes named C2. Note that the master points
to the latest commit. Now, when I commit again, another snapshot C3 is created and now the
master points to C3 instead of C2.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 99

Commit Changes (3)

git commit

Commands:

git commit -m "<message>"

Now, if you want to commit a snapshot of all the changes in the working directory at
once, you can use the command below

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 100

Commit Changes (4)

git commit

Please check writing good commit messages article below
How to write a good commit message - DEV Community

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 101

https://dev.to/chrissiemhrk/git-commit-message-5e21

Writing Good Commit Messages (1)

type: subject

body (optional)

footer (optional)

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 102

Writing Good Commit Messages (2)

1. Type

feat - a new feature

fix - a bug fix

docs - changes in documentation
style - everything related to styling

refactor - code changes that neither fixes a bug or adds a feature

test - everything related to testing

chore - updating build tasks, package manager configs, etc

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 103

Writing Good Commit Messages (3)

2. Subject

This contains a short description of the changes made. It shouldn't be greater than 50 characters,
should begin with a capital letter and written in the imperative eg. Add instead of Added or Adds.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 104

Writing Good Commit Messages (4)

3. Body

The body is used to explain what changes you made and why you made them. Not all commits are
complex enough that they need a body, especially if you are working on a personal project alone, and
as such writing a body is optional.

A blank line between the body and the subject is required and each line should have no more than 72
characters.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 105

Writing Good Commit Messages (5)

4.Footer

The footer is also optional and mainly used when you are using an issue tracker to reference the issue
ID.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 106

Writing Good Commit Messages (6)

Example Commit Message

feat: Summarize changes in around 50 characters or less

More detailed explanatory text, if necessary. Wrap it to about 72
characters or so. In some contexts, the first line is treated as the
subject of the commit and the rest of the text as the body. The
blank line separating the summary from the body is critical (unless
you omit the body entirely); various tools like `log`, `shortlog`
and `rebase` can get confused if you run the two together.

Explain the problem that this commit is solving. Focus on why you
are making this change as opposed to how (the code explains that).
Are there side effects or other unintuitive consequences of this
change? Here's the place to explain them.

Further paragraphs come after blank lines.

 - Bullet points are okay, too

 - Typically a hyphen or asterisk is used for the bullet, preceded
 by a single space, with blank lines in between, but conventions
 vary here

If you use an issue tracker, put references to them at the bottom,
like this:

Resolves: #123
See also: #456, #789

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 107

Writing Good Commit Messages (7)

You can edit last commit with the following command

git commit -a -m "New commit message"

git commit --amend -m "New commit message"

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 108

Writing Good Commit Messages (7)

Edit last commit output

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 109

Add Files to Index (1)

I have created two more text files in my working directory viz. edureka5.txt and edureka6.txt but they
are not added to the index yet.

I am adding edureka5.txt using the command

git add edureka5.txt

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 110

Add Files to Index (2)

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 111

Add Files to Index (3)

I have added edureka5.txt to the index explicitly but not edureka6.txt and made changes in the
previous files. I want to commit all changes in the directory at once.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 112

Add Files to Index (4)

This command will commit a snapshot of all changes in the working directory but only includes
modifications to tracked files i.e. the files that have been added with git add at some point in
their history. Hence, edureka6.txt was not committed because it was not added to the index yet.
But changes in all previous files present in the repository were committed, i.e. edureka1.txt,
edureka2.txt, edureka3.txt, edureka4.txt and edureka5.txt. Now I have made my desired commits
in my local repository

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 113

Add Files to Index (5)

your local repository consists of three "trees" maintained by git. the first one is your Working
Directory which holds the actual files. the second one is the Index which acts as a staging area and
finally the HEAD which points to the last commit you've made

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 114

Add Files to Index (6)

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 115

Update local repo before sending (1)

Fetching

If we have a remote Git branch, for example a branch on Github, it can happen that the remote
branch has commits that the current branch doesn't have! Maybe another branch got merged, your
colleague pushed a quick fix, and so on.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 116

Update local repo before sending (2)

Fetching

We can get these changes locally, by performing a git fetch on the remote branch! It doesn't affect
your local branch in any way: a fetch simply downloads new data.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 117

Update local repo before sending (3)

Fetching

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 118

Update local repo before sending (4)

Fetching

We can now see all the changes that have been made since we last pushed! We can decide what we
want to do with the new data now that we have it locally.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 119

Update local repo before sending (5)

Pulling

Although a git fetch is very useful in order to get the remote information of a branch, we can also
perform a git pull . A git pull is actually two commands in one: a git fetch , and a git merge .
When we're pulling changes from the origin, we're first fetching all the data like we did with a git
fetch , after which the latest changes are automatically merged into the local branch

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 120

Update local repo before sending (6)

Pulling

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 121

Update local repo before sending (7)

Pulling

Awesome, we're now perfectly in sync with the remote branch and have all the latest changes!

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 122

Update local repo before sending (8)

Pulling

git pull

Note that before you affect changes to the central repository you should always pull
changes from the central repository to your local repository to get updated with the work of all the
collaborators that have been contributing in the central repository. For that we will use the pull
command.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 123

Update local repo before sending (9)

Pulling

git pull

But first, you need to set your central repository as origin using the command

git remote add origin <link of your central repository>

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 124

Update local repo before sending (10)

Pulling / git pull

Now that my origin is set

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 125

Update local repo before sending (11)

Pulling / git pull

let us extract files from the origin using pull. For that use the command

git pull origin master

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 126

Update local repo before sending (12)

Pulling / git pull

This command will copy all the files from the master branch of remote repository to your local
repository.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 127

Update local repo before sending (13)

Pulling / git pull

Since my local repository was already updated with files from master branch, hence the message
is Already up-to-date. Refer to the screen shot above

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 128

Update local repo before sending (14)

Pulling / git pull

One can also try pulling files from a different branch using the following command:

git pull origin <branch-name>

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 129

Update local repo before sending (15)

Pulling / git pull

Your local Git repository is now updated with all the recent changes. It is time you make changes
in the central repository by using the push command.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 130

Send Changes to Remote Repo (1)

git push

This command transfers commits from your local repository to your remote repository. It is the
opposite of pull operation.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 131

Send Changes to Remote Repo (2)

git push

Pulling imports commits to local repositories whereas pushing exports commits to the remote
repositories

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 132

Send Changes to Remote Repo (3)

git push

The use of git push is to publish your local changes to a central repository. After you’ve
accumulated several local commits and are ready to share them with the rest of the team,

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 133

Send Changes to Remote Repo (4)

git push

you can then push them to the central repository by using the following command

git push <remote>

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 134

Send Changes to Remote Repo (5)

git push

This remote refers to the remote repository which had been set before using the pull command.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 135

Send Changes to Remote Repo (6)

git push

This pushes the changes from the local repository to the remote repository along with all the
necessary commits and internal objects. This creates a local branch in the destination repository

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 136

Send Changes to Remote Repo (7)

git push

The below files are the files which we have already committed previously in the commit section and
they are all “push-ready“.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 137

Send Changes to Remote Repo (8)

git push

I will use the command git push origin master to reflect these files in the master branch of my
central repository.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 138

Send Changes to Remote Repo (9)

git push

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 139

Send Changes to Remote Repo (10)

git push

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 140

Send Changes to Remote Repo (11)

git push

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 141

Send Changes to Remote Repo (12)

git push

To prevent overwriting, Git does not allow push when it results in a non-fast forward merge in
the
destination repository.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 142

Send Changes to Remote Repo (13)

git push

A non-fast forward merge means an upstream merge i.e. merging with ancestor or parent
branches from a child branch
To enable such merge, use the command below

git push <remote> -force

The above command forces the push operation even if it results in a non-fast
forward merge

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 143

Branching (1)

git branch

Branches in Git are nothing but pointers to a specific commit. Git generally prefers to keep its
branches as lightweight as possible.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 144

Branching (2)

git branch

There are basically two types of branches viz.

local branches

remote tracking branches.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 145

Branching (3)

git branch

A local branch is just another path of your working tree. On the other hand, remote tracking branches
have special purposes. Some of them are:

They link your work from the local repository to the work on central repository.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 146

Branching (4)

git branch

They automatically detect which remote branches to get changes from, when you use git pull.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 147

Branching (5)

Learn current branch

You can check what your current branch is by using the command

git branch

The one mantra that you should always be chanting while branching is “branch early, and branch
often”

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 148

Branching (6)

List Local Branches

git branch -l

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 149

Branching (7)

List Remote Branches

git branch -r

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 150

Branching (8)

List All Local and Remote Branches

git branch -a

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 151

Branching (9)

Removing merged git branches

(after pull-request action in github)

If you merged your branch to base branch in github and delete it on github your local branch list will
not be updated by it self. You have to use the following command to update local and remote branch
lists. Use the following command to syncronize your repository with remote upstream repo.

git remote update --prune

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 152

https://splice.com/blog/cleaning-git-branches/

Branching (10)

Create Branch

To create a new branch we use the following command

git branch <branch-name>

The diagram below shows the workflow when a new branch is created. When we create a new branch
it originates from the master branch itself.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 153

Branching (11)

Create Branch

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 154

Branching (12)

Create Branch

Since there is no storage/memory overhead with making many branches, it is easier to
logically divide up your work rather than have big chunky branches

You can create and change branch with following command, create a new branch named "feature_x"
and switch to it using

git checkout -b feature_x

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 155

Branching (13)

Change Branch

git checkout <branch-name>

Example:

git checkout master

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 156

Branching (14)

Change Branch

Branching includes the work of a particular commit along with all parent commits. As you can
see in the diagram above, the newBranch has detached itself from the master and hence will
create a different path

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 157

Branching (15)

Delete Local Branch

and delete the branch again, before doing this switch to main or master branches.

git branch -d feature_x

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 158

Branching (16)

Delete Remote Branch

and delete the branch again, before doing this switch to main or master branches.

git push origin --delete feature_x

How to delete remote branches in Git

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 159

https://www.educative.io/edpresso/how-to-delete-remote-branches-in-git

Branching (17)

Push Specific Branch to Remote

A branch is not available to others unless you push the branch to your remote
repository

git push origin <branch>

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 160

Branching (18)

Update & Merge (Conflicts)

to update your local repository to the newest commit, execute

git pull

in your working directory to fetch and merge remote changes.

to merge another branch into your active branch (e.g. master), use

git merge <branch>

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 161

Branching (19)

Update & Merge (Conflicts)

in both cases git tries to auto-merge changes. Unfortunately, this is not always possible and results in
conflicts. You are responsible to merge those conflicts manually by editing the files shown by git. After
changing, you need to mark them as merged with

git add <filename>

before merging changes, you can also preview them by using

git diff <source_branch> <target_branch>

Git merge conflicts | Atlassian Git Tutorial

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 162

https://www.atlassian.com/git/tutorials/using-branches/merge-conflicts

Branching (20)

Update & Merge (Conflicts)

There are two types of merges Git can perform: a fast-forward, or a no-fast-forward

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 163

Branching (21)

Update & Merge (Conflicts)

Fast-forward (--ff)

A fast-forward merge can happen when the current branch has no extra commits compared to the
branch we’re merging. Git is... lazy and will first try to perform the easiest option: the fast-forward!
This type of merge doesn’t create a new commit, but rather merges the commit(s) on the branch
we’re merging right in the current branch

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 164

Branching (22)

Update & Merge (Conflicts)

Fast-forward (--ff)

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 165

Branching (23)

Update & Merge (Conflicts)

Perfect! We now have all the changes that were made on the dev branch available on the master
branch. So, what's the no-fast-forward all about?

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 166

Branching (24)

Update & Merge (Conflicts)

No-fast-foward (--no-ff)

It's great if your current branch doesn't have any extra commits compared to the branch that you
want to merge, but unfortunately that's rarely the case! If we committed changes on the current
branch that the branch we want to merge doesn't have, git will perform a no-fast-forward merge.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 167

Branching (25)

Update & Merge (Conflicts)

No-fast-foward (--no-ff)

With a no-fast-forward merge, Git creates a new merging commit on the active branch. The commit's
parent commits point to both the active branch and the branch that we want to merge!

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 168

Branching (26)

Update & Merge (Conflicts)

No-fast-foward (--no-ff)

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 169

Branching (27)

Update & Merge (Conflicts)

No-fast-foward (--no-ff)

No big deal, a perfect merge! The master branch now contains all the changes that we've made on
the dev branch.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 170

Branching (28)

Merge Conflicts

Although Git is good at deciding how to merge branches and add changes to files, it cannot always
make this decision all by itself This can happen when the two branches we're trying to merge have
changes on the same line in the same file, or if one branch deleted a file that another branch
modified, and so on.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 171

Branching (29)

Merge Conflicts

In that case, Git will ask you to help decide which of the two options we want to keep! Let's say that
on both branches, we edited the first line in the README.md .

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 172

Branching (30)

Merge Conflicts

If we want to merge dev into master , this will end up in a merge conflict: would you like the title to
be Hello! or Hey! ?

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 173

Branching (31)

Merge Conflicts

When trying to merge the branches, Git will show you where the conflict happens. We can manually
remove the changes we don't want to keep, save the changes, add the changed file again, and
commit the changes

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 174

Branching (32)

Merge Conflicts

Although merge conflicts are often quite annoying, it makes total sense: Git shouldn't just assume
which change we want to keep

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 175

Branching (33)

Sample Conflict -1

participants.txt

(I added a hyphen before each name)

Finance team
 Charles
 Lisa
 John
 Stacy
 Alexander

git init

git add .

git commit –m 'Initial list for finance team'

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 176

Branching (34)

Sample Conflict -1

Create a new branch called marketing using the following syntax

git checkout –b marketing

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 177

Branching (35)

Sample Conflict -1

Now open the participants.txt file and start entering the names for the marketing department
below the finance team list, as follows: (I added a hyphen before each name)

Marketing team
 Collins
 Linda
 Patricia
 Morgan

git add .

git commit –m 'Unfinished list of marketing team'

git checkout master

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 178

Branching (36)

Sample Conflict -1

Open the file and delete the names Alexander and Stacy, save, close, add the changes, and commit
with the commit message Final list from Finance team

git add .

git commit –m "Final list from Finance team"

git checkout marketing

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 179

Branching (37)

Sample Conflict -1

Open the file and add the fifth name, Amanda, for the marketing team, save, add, and commit

git add .

git commit –m "Initial list of marketing team"

names entered for marketing have been confirmed; now we need to merge these two lists, which can
be done by the following command

git merge master

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 180

Branching (38)

Sample Conflict -1

Auto-merging participants.txt
CONFLICT (content): Merge conflict in participants.txt
Automatic merge failed; fix conflicts and then commit the result.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 181

Branching (39)

Sample Conflict -1

Finance team
-Charles
-Lisa
-John
<<<<<<< HEAD
-Stacy
-Alexander

Marketing team
- Collins
- Linda
- Patricia
- Morgan
- Amanda
=======
>>>>>>> master

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 182

Branching (40)

Sample Conflict -1

<<<<<<<
Changes made on the branch that is being merged into. In most cases,
this is the branch that I have currently checked out (i.e. HEAD).
|||||||
The common ancestor version.
=======
Changes made on the branch that is being merged in. This is often a
feature/topic branch.
>>>>>>>

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 183

Branching (41)

Sample Conflict -1

remove them

keep the lines you want to see in the final version of the file

add and commit

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 184

Branching (42)

Sample Conflict -1

If we want to save all to our version

git checkout --ours . # checkout our local version of all files

git add -u # mark all conflicted files as merged

git commit # commit the merge

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 185

Branching (43)

Sample Conflict -1

If we want to discard all our revision

git checkout --theirs . # checkout remote version of all files

git add -u # mark all conflicted files as merged

git commit # commit the merge

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 186

Branching (44)

Sample Conflict -2

You're going to pull some changes, but oops, you're not up to date:

git fetch origin

git pull origin master

Output

From ssh://gitosis@example.com:22/projectname
 * branch master -> FETCH_HEAD
Updating a030c3a..ee25213
error: Entry 'filename.c' not uptodate. Cannot merge.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 187

Branching (45)

Sample Conflict -2

So you get up-to-date and try again, but have a conflict:

git add filename.c

git commit -m "made some wild and crazy changes"

git pull origin master

Output

From ssh://gitosis@example.com:22/projectname
 * branch master -> FETCH_HEAD
Auto-merging filename.c
CONFLICT (content): Merge conflict in filename.c
Automatic merge failed; fix conflicts and then commit the result.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 188

Branching (46)

Sample Conflict -2

So you decide to take a look at the changes:

git mergetool

Oh my, oh my, upstream changed some things, but just to use my changes...no...their changes...

git checkout --ours filename.c

git checkout --theirs filename.c

git add filename.c

git commit -m "using theirs"

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 189

Branching (47)

Sample Conflict -2

And then we try a final time

git pull origin master

Output

From ssh://gitosis@example.com:22/projectname
 * branch master -> FETCH_HEAD
Already up-to-date.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 190

Tagging

it's recommended to create tags for software releases. this is a known concept,
which also exists in SVN. You can create a new tag named 1.0.0 by executing

git tag 1.0.0 1b2e1d63ff

the 1b2e1d63ff stands for the first 10 characters of the commit id you want to
reference with your tag. You can get the commit id by looking at the...

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 191

Log (1)

in its simplest form, you can study repository history using.. git log

You can add a lot of parameters to make the log look like what you want. To see
only the commits of a certain author:

git log --author=bob

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 192

Log (2)

To see a very compressed log where each commit is one line:

git log --pretty=oneline

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 193

Log (3)

Or maybe you want to see an ASCII art tree of all the branches, decorated with the names of tags and
branches:

git log --graph --oneline --decorate --all

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 194

Log (4)

See only which files have changed:

git log --name-status

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 195

Log (5)

git log --pretty=format:"%h%x09%an%x09%ad%x09%s"

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 196

Log (6)

These are just a few of the possible parameters you can use. For more, see

git log --help

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 197

Replace Local Changes (1)

In case you did something wrong, which for sure never happens ;), you can replace
local changes using the command

git checkout -- <filename>

this replaces the changes in your working tree with the last content in HEAD.
Changes already added to the index, as well as new files, will be kept.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 198

Replace Local Changes (2)

if you use dot (.) then all local changes will be rollbacked.

 git checkout -- .

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 199

Replace Local Changes (3)

If you instead want to drop all your local changes and commits, fetch the latest
history from the server and point your local master branch at it like this

git fetch origin

git reset --hard origin/master

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 200

Reflog (1)

Everyone makes mistakes, and that's totally okay! Sometimes it may feel like you've corrupt your git
repo so badly that you just want to delete it entirely.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 201

Reflog (2)

git reflog is a very useful command in order to show a log of all the actions that have been taken!
This includes merges, resets, reverts: basically any alteration to your branch.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 202

Reflog (3)

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 203

Reflog (4)

If you made a mistake, you can easily redo this by resetting HEAD based on the information that
reflog gives us!

Say that we actually didn't want to merge the origin branch. When we execute the git reflog
command, we see that the state of the repo before the merge is at HEAD@{1} . Let's perform a git
reset to point HEAD back to where it was on HEAD@{1} !

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 204

Reflog (5)

We can see that the latest action has been pushed to the reflog

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 205

Resetting (1)

It can happen that we committed changes that we didn't want later on. Maybe it's a WIP commit, or
maybe a commit that introduced bugs! In that case, we can perform a git reset .

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 206

Resetting (2)

A git reset gets rid of all the current staged files and gives us control over where HEAD should
point to.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 207

Soft Reset (1)

A soft reset moves HEAD to the specified commit (or the index of the commit compared to HEAD),
without getting rid of the changes that were introduced on the commits afterward!

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 208

Soft Reset (2)

Let's say that we don't want to keep the commit 9e78i which added a style.css file, and we also
don't want to keep the commit 035cc which added an index.js file. However, we do want to keep
the newly added style.css and index.js file! A perfect use case for a soft reset.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 209

Soft Reset (3)

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 210

Soft Reset (2)

When typing git status , you'll see that we still have access to all the changes that were made on
the previous commits. This is great, as this means that we can fix the contents of these files and
commit them again later on!

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 211

Hard reset (1)

Sometimes, we don't want to keep the changes that were introduced by certain commits. Unlike a soft
reset, we shouldn't need to have access to them any more. Git should simply reset its state back to
where it was on the specified commit: this even includes the changes in your working directory and
staged files!

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 212

Hard reset (2)

Git has discarded the changes that were introduced on 9e78i and 035cc , and reset its state to
where it was on commit ec5be .

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 213

Reverting (1)

Another way of undoing changes is by performing a git revert . By reverting a certain commit, we
create a new commit that contains the reverted changes!

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 214

Reverting (2)

Let's say that ec5be added an index.js file. Later on, we actually realize we didn't want this change
introduced by this commit anymore! Let's revert the ec5be commit.

Perfect! Commit 9e78i reverted the changes that were introduced by the ec5be commit.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 215

Reverting (3)

Performing a git revert is very useful in order to undo a certain commit, without modifying the
history of the branch.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 216

Cherry-picking (1)

When a certain branch contains a commit that introduced changes we need on our active branch, we
can cherry-pick that command! By cherry-pick ing a commit, we create a new commit on our
active branch that contains the changes that were introduced by the cherry-pick ed commit.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 217

Cherry-picking (1)

Say that commit 76d12 on the dev branch added a change to the index.js file that we want in our
master branch. We don't want the entire we just care about this one single commit!

Cool, the master branch now contains the changes that 76d12 introduced

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 218

Rebasing (1)

We just saw how we could apply changes from one branch to another by performing a git merge .
Another way of adding changes from one branch to another is by performing a git rebase .

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 219

Rebasing (2)

A git rebase copies the commits from the current branch, and puts these copied commits on top of
the specified branch.

Perfect, we now have all the changes that were made on the master branch available on the dev
branch!

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 220

Rebasing (3)

A big difference compared to merging, is that Git won't try to find out which files to keep and not
keep. The branch that we're rebasing always has the latest changes that we want to keep! You won't
run into any merging conflicts this way, and keeps a nice linear Git history.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 221

Rebasing (4)

This example shows rebasing on the master branch. In bigger projects, however, you usually don't
want to do that. A git rebase changes the history of the project as new hashes are created for the
copied commits!

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 222

Rebasing (5)

Rebasing is great whenever you're working on a feature branch, and the master branch has been
updated. You can get all the updates on your branch, which would prevent future merging conflicts!

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 223

Interactive Rebase (1)

Before rebasing the commits, we can modify them! We can do so with an interactive rebase. An
interactive rebase can also be useful on the branch you're currently working on, and want to modify
some commits.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 224

Interactive Rebase (2)

There are 6 actions we can perform on the commits we're rebasing:

reword : Change the commit message

edit : Amend this commit

squash : Meld commit into the previous commit

fixup : Meld commit into the previous commit, without keeping the commit's log message

exec : Run a command on each commit we want to rebase

drop : Remove the commit

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 225

Interactive Rebase (3)

Awesome! This way, we can have full control over our commits. If we want to remove a commit, we
can just drop it.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 226

Interactive Rebase (4)

Or if we want to squash multiple commits together to get a cleaner history, no problem!

Interactive rebasing gives you a lot of control over the commits you're trying to rebase, even on
the current active branch

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 227

Useful Hints (1)

built-in git GUI

gitk

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 228

Useful Hints (2)

use colorful git output

git config color.ui true

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 229

Useful Hints (3)

show log on just one line per commit

git config format.pretty oneline

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 230

Useful Hints (4)

use interactive adding

git add -i

HEAD~2 // previous two commits fro head
HEAD~~ // previous two commits from head
HEAD@{2} // reflog order
18fe5 // previous commit hash

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 231

GIT Flow

A successful Git branching model » nvie.com

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 232

https://nvie.com/posts/a-successful-git-branching-model/

Hotfix

Reference:
-OneFlow – a Git branching model and workflow | End of Line Blog

a simple git branching model · GitHub

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 233

https://www.endoflineblog.com/oneflow-a-git-branching-model-and-workflow
https://gist.github.com/jbenet/ee6c9ac48068889b0912

GIT Decision Tree

reference url

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 234

http://justinhileman.info/article/git-pretty/git-pretty.png

GIT in action (1)
CE103 Algorithms and Programming I

 RTEU CE103 Week-3 235

GIT in action (2)
CE103 Algorithms and Programming I

 RTEU CE103 Week-3 236

GIT in action (3)
CE103 Algorithms and Programming I

 RTEU CE103 Week-3 237

GIT in action (4)
CE103 Algorithms and Programming I

 RTEU CE103 Week-3 238

GIT in action (5)
CE103 Algorithms and Programming I

 RTEU CE103 Week-3 239

GIT in action (6)
CE103 Algorithms and Programming I

 RTEU CE103 Week-3 240

GIT in action (7)

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 241

Gource

https://gource.io/

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 242

https://gource.io/

Review GIT with GitMagic Standford Notes

Visit : https://crypto.stanford.edu/~blynn/gitmagic/book.html

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 243

https://crypto.stanford.edu/~blynn/gitmagic/book.html

Basic Tricks

Rather than diving into a sea of Git commands, use these elementary examples to get your feet wet.
Despite their simplicity, each of them are useful. Indeed, in my first months with Git I never ventured
beyond the material in this chapter.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 244

Saving State

About to attempt something drastic? Before you do, take a snapshot of all files in the current
directory with:

git init

git add .

git commit -m "My first backup"

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 245

Now if your new edits go awry, restore the pristine version:

git reset --hard

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 246

To save the state again:

git commit -a -m "Another backup"

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 247

Add, Delete, Rename

The above only keeps track of the files that were present when you first ran git add. If you add new
files or subdirectories, you’ll have to tell Git:

git add readme.txt Documentation

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 248

Similarly, if you want Git to forget about certain files:

git rm kludge.h obsolete.c

git rm -r incriminating/evidence/

Git deletes these files for you if you haven’t already.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 249

Renaming a file is the same as removing the old name and adding the new name. There’s also the
shortcut git mv which has the same syntax as the mv command. For example:

git mv bug.c feature.c

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 250

Sometimes you just want to go back and forget about every change past a certain point because
they’re all wrong. Then:

git log

shows you a list of recent commits, and their SHA1 hashes:

commit 766f9881690d240ba334153047649b8b8f11c664
Author: Bob <bob@example.com>
Date: Tue Mar 14 01:59:26 2000 -0800

 Replace printf() with write().

commit 82f5ea346a2e651544956a8653c0f58dc151275c
Author: Alice <alice@example.com>
Date: Thu Jan 1 00:00:00 1970 +0000

 Initial commit.

The first few characters of the hash are enough to specify the commit; alternatively, copy and paste
the entire hash. Type:

git reset --hard 766f

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 251

Other times you want to hop to an old state briefly. In this case, type:

git checkout 82f5

This takes you back in time, while preserving newer commits. However, like time travel in a science-
fiction movie, if you now edit and commit, you will be in an alternate reality, because your actions are
different to what they were the first time around.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 252

This alternate reality is called a branch, For now, just remember that

git checkout master

will take you back to the present. Also, to stop Git complaining, always commit or reset your changes
before running checkout.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 253

To take the computer game analogy again:

git reset --hard : load an old save and delete all saved games newer than the one just loaded.

git checkout : load an old game, but if you play on, the game state will deviate from the newer
saves you made the first time around. Any saved games you make now will end up in a separate
branch representing the alternate reality you have entered.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 254

You can choose only to restore particular files and subdirectories by appending them after the
command:

git checkout 82f5 some.file another.file

Take care, as this form of checkout can silently overwrite files. To prevent accidents, commit before
running any checkout command, especially when first learning Git.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 255

In general, whenever you feel unsure about any operation, Git command or not, first run git commit -
a.

Don’t like cutting and pasting hashes? Then use:

git checkout :/"My first b"

to jump to the commit that starts with a given message.

You can also ask for the 5th-last saved state:

git checkout master~5

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 256

Reverting

In a court of law, events can be stricken from the record. Likewise, you can pick specific commits to
undo.

git commit -a

git revert 1b6d

will undo just the commit with the given hash. The revert is recorded as a new commit, which you can
confirm by running git log.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 257

Changelog Generation

Some projects require a changelog. Generate one by typing:

git log > ChangeLog

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 258

http://en.wikipedia.org/wiki/Changelog

Downloading Files

Get a copy of a project managed with Git by typing:

git clone git://server/path/to/files

For example, to get all the files I used to create this site:

git clone git://git.or.cz/gitmagic.git

We’ll have much to say about the clone command soon.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 259

The Bleeding Edge

If you’ve already downloaded a copy of a project using git clone, you can upgrade to the latest
version with:

git pull

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 260

Instant Publishing

Suppose you’ve written a script you’d like to share with others. You could just tell them to download
from your computer, but if they do so while you’re improving the script or making experimental
changes, they could wind up in trouble. Of course, this is why release cycles exist. Developers may
work on a project frequently, but they only make the code available when they feel it is presentable.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 261

To do this with Git, in the directory where your script resides:

git init

git add .

git commit -m "First release"

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 262

Then tell your users to run:

git clone your.computer:/path/to/script

to download your script.

This assumes they have ssh access. If not, run git daemon and tell your users to instead run:

git clone git://your.computer/path/to/script

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 263

From now on, every time your script is ready for release, execute:

git commit -a -m "Next release"

and your users can upgrade their version by changing to the directory containing your script and
typing:

git pull

Your users will never end up with a version of your script you don’t want them to see.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 264

What Have I Done?

Find out what changes you’ve made since the last commit with:

git diff

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 265

Or since yesterday:

git diff "@{yesterday}"

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 266

Or between a particular version and 2 versions ago:

git diff 1b6d "master~2"

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 267

In each case the output is a patch that can be applied with git apply. Try also:

git whatchanged --since="2 weeks ago"

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 268

Often I’ll browse history with qgit instead, due to its slick photogenic interface, or tig, a text-mode
interface that works well over slow connections. Alternatively, install a web server, run git
instaweb and fire up any web browser.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 269

http://sourceforge.net/projects/qgit
http://jonas.nitro.dk/tig/

Exercise

Let A, B, C, D be four successive commits where B is the same as A except some files have been
removed. We want to add the files back at D. How can we do this?

There are at least three solutions. Assuming we are at D:

1. The difference between A and B are the removed files. We can create a patch representing this
difference and apply it:

git diff B A | git apply

2. Since we saved the files back at A, we can retrieve them:

git checkout A foo.c bar.h

3. We can view going from A to B as a change we want to undo:

git revert B

Which choice is best? Whichever you prefer most. It is easy to get what you want with Git, and often
there are many ways to get it.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 270

Cloning Around

In older version control systems, checkout is the standard operation to get files. You retrieve a bunch
of files in a particular saved state.

In Git and other distributed version control systems, cloning is the standard operation. To get files,
you create a clone of the entire repository. In other words, you practically mirror the central server.
Anything the main repository can do, you can do.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 271

Sync Computers

I can tolerate making tarballs or using rsync for backups and basic syncing. But sometimes I edit on
my laptop, other times on my desktop, and the two may not have talked to each other in between.

Initialize a Git repository and commit your files on one machine. Then on the other:

git clone other.computer:/path/to/files

to create a second copy of the files and Git repository. From now on,

git commit -a

git pull other.computer:/path/to/files HEAD

will pull in the state of the files on the other computer into the one you’re working on. If you’ve
recently made conflicting edits in the same file, Git will let you know and you should commit again
after resolving them.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 272

Classic Source Control

Initialize a Git repository for your files:

git init

git add .

git commit -m "Initial commit"

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 273

On the central server, initialize a bare repository in some directory:

mkdir proj.git

cd proj.git

git --bare init

touch proj.git/git-daemon-export-ok

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 274

Start the Git daemon if necessary:

git daemon --detach # it may already be running

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 275

For Git hosting services, follow the instructions to setup the initially empty Git repository. Typically
one fills in a form on a webpage.

Push your project to the central server with:

git push central.server/path/to/proj.git HEAD

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 276

To check out the source, a developer types:

git clone central.server/path/to/proj.git

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 277

After making changes, the developer saves changes locally:

git commit -a

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 278

To update to the latest version:

git pull

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 279

Any merge conflicts should be resolved then committed:

git commit -a

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 280

To check in local changes into the central repository:

git push

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 281

If the main server has new changes due to activity by other developers, the push fails, and the
developer should pull the latest version, resolve any merge conflicts, then try again.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 282

Developers must have SSH access for the above pull and push commands. However, anyone can see
the source by typing:

git clone git://central.server/path/to/proj.git

The native git protocol is like HTTP: there is no authentication, so anyone can retrieve the project.
Accordingly, by default, pushing is forbidden via the git protocol.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 283

Secret Source

For a closed-source project, omit the touch command, and ensure you never create a file named git-
daemon-export-ok . The repository can no longer be retrieved via the git protocol; only those with SSH
access can see it. If all your repos are closed, running the git daemon is unnecessary because all
communication occurs via SSH.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 284

Bare repositories

A bare repository is so named because it has no working directory; it only contains files that are
normally hidden away in the .git subdirectory. In other words, it maintains the history of a project,
and never holds a snapshot of any given version.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 285

A bare repository plays a role similar to that of the main server in a centralized version control system:
the home of your project. Developers clone your project from it, and push the latest official changes
to it. Typically it resides on a server that does little else but disseminate data. Development occurs in
the clones, so the home repository can do without a working directory.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 286

Many Git commands fail on bare repositories unless the GIT_DIR environment variable is set to the
repository path, or the --bare option is supplied.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 287

Push versus Pull

Why did we introduce the push command, rather than rely on the familiar pull command? Firstly,
pulling fails on bare repositories: instead you must fetch, a command we later discuss.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 288

But even if we kept a normal repository on the central server, pulling into it would still be
cumbersome. We would have to login to the server first, and give the pull command the network
address of the machine we’re pulling from. Firewalls may interfere, and what if we have no shell access
to the server in the first place?

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 289

However, apart from this case, we discourage pushing into a repository, because confusion can ensue
when the destination has a working directory.

In short, while learning Git, only push when the target is a bare repository; otherwise pull.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 290

Forking a Project

Sick of the way a project is being run? Think you could do a better job? Then on your server:

git clone git://main.server/path/to/files

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 291

Next, tell everyone about your fork of the project at your server.

At any later time, you can merge in the changes from the original project with:

git pull

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 292

Ultimate Backups

Want numerous tamper-proof geographically diverse redundant archives? If your project has many
developers, don’t do anything! Every clone of your code is effectively a backup. Not just of the current
state, but of your project’s entire history. Thanks to cryptographic hashing, if anyone’s clone becomes
corrupted, it will be spotted as soon as they try to communicate with others.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 293

If your project is not so popular, find as many servers as you can to host clones.

The truly paranoid should always write down the latest 20-byte SHA1 hash of the HEAD somewhere
safe. It has to be safe, not private. For example, publishing it in a newspaper would work well, because
it’s hard for an attacker to alter every copy of a newspaper.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 294

Light-Speed Multitask

Say you want to work on several features in parallel. Then commit your project and run:

git clone . /some/new/directory

Thanks to hardlinking, local clones require less time and space than a plain backup.

You can now work on two independent features simultaneously.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 295

http://en.wikipedia.org/wiki/Hard_link

For example, you can edit one clone while the other is compiling. At any time, you can commit and
pull changes from the other clone:

git pull /the/other/clone HEAD

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 296

Guerilla Version Control

Are you working on a project that uses some other version control system, and you sorely miss Git?
Then initialize a Git repository in your working directory:

git init

git add .

git commit -m "Initial commit"

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 297

then clone it:

git clone . /some/new/directory

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 298

Now go to the new directory and work here instead, using Git to your heart’s content. Once in a while,
you’ll want to sync with everyone else, in which case go to the original directory, sync using the other
version control system, and type:

git add .

git commit -m "Sync with everyone else"

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 299

Then go to the new directory and run:

git commit -a -m "Description of my changes"

git pull

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 300

The procedure for giving your changes to everyone else depends on the other version control system.
The new directory contains the files with your changes. Run whatever commands of the other version
control system are needed to upload them to the central repository.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 301

Subversion, perhaps the best centralized version control system, is used by countless projects. The git
svn command automates the above for Subversion repositories, and can also be used to export a Git
project to a Subversion repository.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 302

http://google-opensource.blogspot.com/2008/05/export-git-project-to-google-code.html

Mercurial

Mercurial is a similar version control system that can almost seamlessly work in tandem with Git. With
the hg-git plugin, a Mercurial user can losslessly push to and pull from a Git repository.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 303

Obtain the hg-git plugin with Git:

git clone git://github.com/schacon/hg-git.git

or Mercurial:

hg clone http://bitbucket.org/durin42/hg-git/

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 304

Sadly, I am unaware of an analogous plugin for Git. For this reason, I advocate Git over Mercurial for
the main repository, even if you prefer Mercurial.

With a Mercurial project, usually a volunteer maintains a parallel Git repository to accommodate Git
users, whereas thanks to the hg-git plugin, a Git project automatically accommodates Mercurial
users.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 305

Although the plugin can convert a Mercurial repository to a Git repository by pushing to an empty
repository, this job is easier with the hg-fast-export.sh script, available from:

git clone git://repo.or.cz/fast-export.git

To convert, in an empty directory:

git init

hg-fast-export.sh -r /hg/repo

after adding the script to your $PATH .

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 306

Bazaar

We briefly mention Bazaar because it is the most popular free distributed version control system after
Git and Mercurial.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 307

Bazaar has the advantage of hindsight, as it is relatively young; its designers could learn from mistakes
of the past, and sidestep minor historical warts.

Additionally, its developers are mindful of portability and interoperation with other version control
systems.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 308

A bzr-git plugin lets Bazaar users work with Git repositories to some extent.

The tailor program converts Bazaar repositories to Git repositories, and can do so incrementally,
while bzr-fast-export is well-suited for one-shot conversions.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 309

Branch Wizardry

Instant branching and merging are the most lethal of Git’s killer features.

Problem: External factors inevitably necessitate context switching. A severe bug manifests in the
released version without warning. The deadline for a certain feature is moved closer. A developer
whose help you need for a key section of the project is about to leave. In all cases, you must abruptly
drop what you are doing and focus on a completely different task.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 310

Interrupting your train of thought can be detrimental to your productivity, and the more cumbersome
it is to switch contexts, the greater the loss. With centralized version control we must download a
fresh working copy from the central server. Distributed systems fare better, as we can clone the
desired version locally.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 311

But cloning still entails copying the whole working directory as well as the entire history up to the
given point. Even though Git reduces the cost of this with file sharing and hard links, the project files
themselves must be recreated in their entirety in the new working directory.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 312

Solution: Git has a better tool for these situations that is much faster and more space-efficient than
cloning: git branch.

With this magic word, the files in your directory suddenly shapeshift from one version to another. This
transformation can do more than merely go back or forward in history. Your files can morph from the
last release to the experimental version to the current development version to your friend’s version
and so on.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 313

The Boss Key

Ever played one of those games where at the push of a button (“the boss key”), the screen would
instantly display a spreadsheet or something? So if the boss walked in the office while you were
playing the game you could quickly hide it away?

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 314

In some directory:

echo "I'm smarter than my boss" > myfile.txt

git init

git add .

git commit -m "Initial commit"

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 315

We have created a Git repository that tracks one text file containing a certain message. Now type:

git checkout -b boss # nothing seems to change after this

echo "My boss is smarter than me" > myfile.txt

git commit -a -m "Another commit"

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 316

It looks like we’ve just overwritten our file and committed it. But it’s an illusion. Type:

git checkout master # switch to original version of the file

and hey presto! The text file is restored. And if the boss decides to snoop around this directory, type:

git checkout boss # switch to version suitable for boss' eyes

You can switch between the two versions of the file as much as you like, and commit to each
independently.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 317

Dirty Work

Say you’re working on some feature, and for some reason, you need to go back three versions and
temporarily put in a few print statements to see how something works. Then:

git commit -a

git checkout HEAD~3

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 318

Now you can add ugly temporary code all over the place. You can even commit these changes. When
you’re done,

git checkout master

to return to your original work. Observe that any uncommitted changes are carried over.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 319

What if you wanted to save the temporary changes after all? Easy:

git checkout -b dirty

and commit before switching back to the master branch. Whenever you want to return to the dirty
changes, simply type:

git checkout dirty

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 320

We touched upon this command in an earlier chapter, when discussing loading old states. At last we
can tell the whole story: the files change to the requested state, but we must leave the master branch.
Any commits made from now on take your files down a different road, which can be named later.

In other words, after checking out an old state, Git automatically puts you in a new, unnamed branch,
which can be named and saved with git checkout -b.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 321

Quick Fixes

You’re in the middle of something when you are told to drop everything and fix a newly discovered
bug in commit 1b6d... :

git commit -a

git checkout -b fixes 1b6d

Then once you’ve fixed the bug:

git commit -a -m "Bug fixed"

git checkout master

and resume work on your original task. You can even merge in the freshly baked bugfix:

git merge fixes

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 322

Merging

With some version control systems, creating branches is easy but merging them back together is
tough. With Git, merging is so trivial that you might be unaware of it happening.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 323

We actually encountered merging long ago. The pull command in fact fetches commits and then
merges them into your current branch. If you have no local changes, then the merge is a fast forward,
a degenerate case akin to fetching the latest version in a centralized version control system. But if you
do have local changes, Git will automatically merge, and report any conflicts.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 324

Ordinarily, a commit has exactly one parent commit, namely, the previous commit. Merging branches
together produces a commit with at least two parents. This begs the question: what commit
does HEAD~10 really refer to? A commit could have multiple parents, so which one do we follow?

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 325

It turns out this notation chooses the first parent every time. This is desirable because the current
branch becomes the first parent during a merge; frequently you’re only concerned with the changes
you made in the current branch, as opposed to changes merged in from other branches.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 326

You can refer to a specific parent with a caret. For example, to show the logs from the second parent:

git log HEAD^2

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 327

You may omit the number for the first parent. For example, to show the differences with the first
parent:

git diff HEAD^

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 328

You can combine this notation with other types. For example:

git checkout 1b6d^^2~10 -b ancient

starts a new branch “ancient” representing the state 10 commits back from the second parent of the
first parent of the commit starting with 1b6d.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 329

Uninterrupted Workflow

Often in hardware projects, the second step of a plan must await the completion of the first step. A
car undergoing repairs might sit idly in a garage until a particular part arrives from the factory. A
prototype might wait for a chip to be fabricated before construction can continue.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 330

Software projects can be similar. The second part of a new feature may have to wait until the first part
has been released and tested. Some projects require your code to be reviewed before accepting it, so
you might wait until the first part is approved before starting the second part.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 331

Thanks to painless branching and merging, we can bend the rules and work on Part II before Part I is
officially ready. Suppose you have committed Part I and sent it for review. Let’s say you’re in
the master branch. Then branch off:

git checkout -b part2

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 332

Next, work on Part II, committing your changes along the way. To err is human, and often you’ll want
to go back and fix something in Part I. If you’re lucky, or very good, you can skip these lines.

git checkout master # Go back to Part I.

fix_problem

git commit -a # Commit the fixes.

git checkout part2 # Go back to Part II.

git merge master # Merge in those fixes.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 333

Eventually, Part I is approved:

git checkout master # Go back to Part I.

submit files # Release to the world!

git merge part2 # Merge in Part II.

git branch -d part2 # Delete "part2" branch.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 334

Now you’re in the master branch again, with Part II in the working directory.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 335

It’s easy to extend this trick for any number of parts. It’s also easy to branch off retroactively: suppose
you belatedly realize you should have created a branch 7 commits ago. Then type:

git branch -m master part2 # Rename "master" branch to "part2".

git branch master HEAD~7 # Create new "master", 7 commits upstream.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 336

The master branch now contains just Part I, and the part2 branch contains the rest. We are in the
latter branch; we created master without switching to it, because we want to continue work
on part2 . This is unusual. Until now, we’ve been switching to branches immediately after creation, as
in:

git checkout HEAD~7 -b master # Create a branch, and switch to it.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 337

Reorganizing a Medley

Perhaps you like to work on all aspects of a project in the same branch. You want to keep works-in-
progress to yourself and want others to see your commits only when they have been neatly
organized. Start a couple of branches:

git branch sanitized # Create a branch for sanitized commits.

git checkout -b medley # Create and switch to a branch to work in.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 338

Next, work on anything: fix bugs, add features, add temporary code, and so forth, committing often
along the way. Then:

git checkout sanitized

git cherry-pick medley^^

applies the grandparent of the head commit of the “medley” branch to the “sanitized” branch. With
appropriate cherry-picks you can construct a branch that contains only permanent code, and has
related commits grouped together.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 339

Managing Branches

List all branches by typing:

git branch

By default, you start in a branch named “master”. Some advocate leaving the “master” branch
untouched and creating new branches for your own edits.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 340

The -d and -m options allow you to delete and move (rename) branches. See git help branch.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 341

The “master” branch is a useful custom. Others may assume that your repository has a branch with
this name, and that it contains the official version of your project. Although you can rename or
obliterate the “master” branch, you might as well respect this convention.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 342

Temporary Branches

After a while you may realize you are creating short-lived branches frequently for similar reasons:
every other branch merely serves to save the current state so you can briefly hop back to an older
state to fix a high-priority bug or something.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 343

It’s analogous to changing the TV channel temporarily to see what else is on.

But instead of pushing a couple of buttons, you have to create, check out, merge, and delete
temporary branches. Luckily, Git has a shortcut that is as convenient as a TV remote control:

git stash

This saves the current state in a temporary location (a stash) and restores the previous state.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 344

Your working directory appears exactly as it was before you started editing, and you can fix bugs, pull
in upstream changes, and so on. When you want to go back to the stashed state, type:

git stash apply # You may need to resolve some conflicts.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 345

You can have multiple stashes, and manipulate them in various ways. See git help stash. As you may
have guessed, Git maintains branches behind the scenes to perform this magic trick.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 346

Work How You Want

You might wonder if branches are worth the bother. After all, clones are almost as fast, and you can
switch between them with cd instead of esoteric Git commands.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 347

Consider web browsers. Why support multiple tabs as well as multiple windows? Because allowing
both accommodates a wide variety of styles. Some users like to keep only one browser window open,
and use tabs for multiple webpages. Others might insist on the other extreme: multiple windows with
no tabs anywhere. Others still prefer something in between.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 348

Branching is like tabs for your working directory, and cloning is like opening a new browser window.
These operations are fast and local, so why not experiment to find the combination that best suits
you? Git lets you work exactly how you want.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 349

Lessons of History
A consequence of Git’s distributed nature is that history can be edited easily. But if you tamper with
the past, take care: only rewrite that part of history which you alone possess. Just as nations forever
argue over who committed what atrocity, if someone else has a clone whose version of history differs
to yours, you will have trouble reconciling when your trees interact.

Some developers strongly feel history should be immutable, warts and all. Others feel trees should be
made presentable before they are unleashed in public. Git accommodates both viewpoints. Like
cloning, branching, and merging, rewriting history is simply another power Git gives you. It is up to
you to use it wisely.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 350

I Stand Corrected

Did you just commit, but wish you had typed a different message? Then run:

git commit --amend

to change the last message. Realized you forgot to add a file? Run git add to add it, and then run the
above command.

--

Want to include a few more edits in that last commit? Then make those edits and run:

git commit --amend -a

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 351

… And Then Some

Suppose the previous problem is ten times worse. After a lengthy session you’ve made a bunch of
commits. But you’re not quite happy with the way they’re organized, and some of those commit
messages could use rewording. Then type:

git rebase -i HEAD~10

and the last 10 commits will appear in your favourite $EDITOR. A sample excerpt:

pick 5c6eb73 Added repo.or.cz link

pick a311a64 Reordered analogies in "Work How You Want"

pick 100834f Added push target to Makefile

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 352

Older commits precede newer commits in this list, unlike the log command. Here, 5c6eb73 is the
oldest commit, and 100834f is the newest. Then:

Remove commits by deleting lines. Like the revert command, but off the record: it will be as if the
commit never existed.

Reorder commits by reordering lines.

Replace pick with:

edit to mark a commit for amending.

reword to change the log message.

squash to merge a commit with the previous one.

fixup to merge a commit with the previous one and discard the log message.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 353

For example, we might replace the second pick with squash :

pick 5c6eb73 Added repo.or.cz link

squash a311a64 Reordered analogies in "Work How You Want"

pick 100834f Added push target to Makefile

After we save and quit, Git merges a311a64 into 5c6eb73. Thus squash merges into the next commit
up: think “squash up”.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 354

Git then combines their log messages and presents them for editing. The command fixup skips this
step; the squashed log message is simply discarded.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 355

If you marked a commit with edit, Git returns you to the past, to the oldest such commit. You can
amend the old commit as described in the previous section, and even create new commits that
belong here. Once you’re pleased with the “retcon”, go forward in time by running:

git rebase --continue

Git replays commits until the next edit, or to the present if none remain.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 356

You can also abandon the rebase with:

git rebase --abort

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 357

So commit early and commit often: you can tidy up later with rebase.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 358

Local Changes Last

You’re working on an active project. You make some local commits over time, and then you sync with
the official tree with a merge. This cycle repeats itself a few times before you’re ready to push to the
central tree.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 359

But now the history in your local Git clone is a messy jumble of your changes and the official changes.
You’d prefer to see all your changes in one contiguous section, and after all the official changes.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 360

This is a job for git rebase as described above. In many cases you can use the --onto flag and avoid
interaction.

Also see git help rebase for detailed examples of this amazing command. You can split commits. You
can even rearrange branches of a tree.

Take care: rebase is a powerful command. For complicated rebases, first make a backup with git clone.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 361

Rewriting History

Occasionally, you need the source control equivalent of airbrushing people out of official photos,
erasing them from history in a Stalinesque fashion. For example, suppose we intend to release a
project, but it involves a file that should be kept private for some reason. Perhaps I left my credit card
number in a text file and accidentally added it to the project. Deleting the file is insufficient, for the
file can be accessed from older commits.

We must remove the file from all commits:

git filter-branch --tree-filter 'rm top/secret/file' HEAD

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 362

See git help filter-branch, which discusses this example and gives a faster method. In general, filter-
branch lets you alter large sections of history with a single command.

Afterwards, the .git/refs/original directory describes the state of affairs before the operation.
Check the filter-branch command did what you wanted, then delete this directory if you wish to run
more filter-branch commands.

Lastly, replace clones of your project with your revised version if you want to interact with them later.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 363

Making History

Want to migrate a project to Git? If it’s managed with one of the more well-known systems, then
chances are someone has already written a script to export the whole history to Git.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 364

Otherwise, look up git fast-import, which reads text input in a specific format to create Git history
from scratch. Typically a script using this command is hastily cobbled together and run once,
migrating the project in a single shot.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 365

As an example, paste the following listing into temporary file, such as /tmp/history :

commit refs/heads/master
committer Alice <alice@example.com> Thu, 01 Jan 1970 00:00:00 +0000
data <<EOT
Initial commit.
EOT

M 100644 inline hello.c
data <<EOT
#include <stdio.h>

int main() {
 printf("Hello, world!\n");
 return 0;
}
EOT

commit refs/heads/master
committer Bob <bob@example.com> Tue, 14 Mar 2000 01:59:26 -0800
data <<EOT
Replace printf() with write().
EOT

M 100644 inline hello.c
data <<EOT
#include <unistd.h>

int main() {
 write(1, "Hello, world!\n", 14);
 return 0;
}
EOT

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 366

Then create a Git repository from this temporary file by typing:

mkdir project; cd project; git init

git fast-import --date-format=rfc2822 < /tmp/history

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 367

You can checkout the latest version of the project with:

git checkout master .

The git fast-export command converts any repository to the git fast-import format, whose output
you can study for writing exporters, and also to transport repositories in a human-readable format.
Indeed, these commands can send repositories of text files over text-only channels.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 368

Where Did It All Go Wrong?

You’ve just discovered a broken feature in your program which you know for sure was working a few
months ago. Argh! Where did this bug come from? If only you had been testing the feature as you
developed.

It’s too late for that now. However, provided you’ve been committing often, Git can pinpoint the
problem:

git bisect start

git bisect bad HEAD

git bisect good 1b6d

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 369

Git checks out a state halfway in between. Test the feature, and if it’s still broken:

git bisect bad

If not, replace "bad" with "good". Git again transports you to a state halfway between the known
good and bad versions, narrowing down the possibilities.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 370

After a few iterations, this binary search will lead you to the commit that caused the trouble. Once
you’ve finished your investigation, return to your original state by typing:

git bisect reset

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 371

Instead of testing every change by hand, automate the search by running:

git bisect run my_script

Git uses the return value of the given command, typically a one-off script, to decide whether a change
is good or bad: the command should exit with code 0 when good, 125 when the change should be
skipped, and anything else between 1 and 127 if it is bad. A negative return value aborts the bisect.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 372

You can do much more: the help page explains how to visualize bisects, examine or replay the bisect
log, and eliminate known innocent changes for a speedier search.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 373

Who Made It All Go Wrong?

Like many other version control systems, Git has a blame command:

git blame bug.c

which annotates every line in the given file showing who last changed it, and when. Unlike many
other version control systems, this operation works offline, reading only from local disk.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 374

Multiplayer Git

Initially I used Git on a private project where I was the sole developer. Amongst the commands related
to Git’s distributed nature, I needed only pull and clone so could I keep the same project in different
places.

Later I wanted to publish my code with Git, and include changes from contributors. I had to learn how
to manage projects with multiple developers from all over the world. Fortunately, this is Git’s forte,
and arguably its raison d’être.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 375

Who Am I?

Every commit has an author name and email, which is shown by git log. By default, Git uses system
settings to populate these fields. To set them explicitly, type:

git config --global user.name "John Doe"

git config --global user.email johndoe@example.com

Omit the global flag to set these options only for the current repository.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 376

Git Over SSH, HTTP

Suppose you have SSH access to a web server, but Git is not installed. Though less efficient than its
native protocol, Git can communicate over HTTP.

Download, compile and install Git in your account, and create a repository in your web directory:

GIT_DIR=proj.git git init

cd proj.git

git --bare update-server-info

cp hooks/post-update.sample hooks/post-update

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 377

For older versions of Git, the copy command fails and you should run:

chmod a+x hooks/post-update

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 378

Now you can publish your latest edits via SSH from any clone:

git push web.server:/path/to/proj.git master

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 379

and anybody can get your project with:

git clone http://web.server/proj.git

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 380

Git Over Anything

Want to synchronize repositories without servers, or even a network connection? Need to improvise
during an emergency? We’ve seen git fast-export and git fast-import can convert repositories to a
single file and back. We could shuttle such files back and forth to transport git repositories over any
medium, but a more efficient tool is git bundle.

The sender creates a bundle:

git bundle create somefile HEAD

then transports the bundle, somefile , to the other party somehow: email, thumb drive,
an xxd printout and an OCR scanner, reading bits over the phone, smoke signals, etc.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 381

https://crypto.stanford.edu/~blynn/gitmagic/book.html#makinghistory

The receiver retrieves commits from the bundle by typing:

git pull somefile

The receiver can even do this from an empty repository. Despite its size, somefile contains the entire
original git repository.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 382

In larger projects, eliminate waste by bundling only changes the other repository lacks. For example,
suppose the commit “1b6d…” is the most recent commit shared by both parties:

git bundle create somefile HEAD ^1b6d

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 383

If done frequently, one could easily forget which commit was last sent. The help page suggests using
tags to solve this. Namely, after you send a bundle, type:

git tag -f lastbundle HEAD

and create new refresher bundles with:

git bundle create newbundle HEAD ^lastbundle

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 384

Patches: The Global Currency

Patches are text representations of your changes that can be easily understood by computers and
humans alike. This gives them universal appeal. You can email a patch to developers no matter what
version control system they’re using. As long as your audience can read their email, they can see your
edits. Similarly, on your side, all you require is an email account: there’s no need to setup an online Git
repository.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 385

Recall from the first chapter:

git diff 1b6d > my.patch

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 386

outputs a patch which can be pasted into an email for discussion. In a Git repository, type:

git apply < my.patch

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 387

to apply the patch.

In more formal settings, when author names and perhaps signatures should be recorded, generate
the corresponding patches past a certain point by typing:

git format-patch 1b6d

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 388

The resulting files can be given to git-send-email, or sent by hand. You can also specify a range of
commits:

git format-patch 1b6d..HEAD^^

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 389

On the receiving end, save an email to a file, then type:

git am < email.txt

This applies the incoming patch and also creates a commit, including information such as the author.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 390

With a browser email client, you may need to click a button to see the email in its raw original form
before saving the patch to a file.

There are slight differences for mbox-based email clients, but if you use one of these, you’re probably
the sort of person who can figure them out easily without reading tutorials!

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 391

Sorry, We’ve Moved

After cloning a repository, running git push or git pull will automatically push to or pull from the
original URL. How does Git do this? The secret lies in config options created with the clone. Let’s take
a peek:

git config --list

The remote.origin.url option controls the source URL; “origin” is a nickname given to the source
repository. As with the “master” branch convention, we may change or delete this nickname but there
is usually no reason for doing so.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 392

If the original repository moves, we can update the URL via:

git config remote.origin.url git://new.url/proj.git

The branch.master.merge option specifies the default remote branch in a git pull. During the initial
clone, it is set to the current branch of the source repository, so even if the HEAD of the source
repository subsequently moves to a different branch, a later pull will faithfully follow the original
branch.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 393

This option only applies to the repository we first cloned from, which is recorded in the
option branch.master.remote . If we pull in from other repositories we must explicitly state which
branch we want:

git pull git://example.com/other.git master

The above explains why some of our earlier push and pull examples had no arguments.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 394

Remote Branches

When you clone a repository, you also clone all its branches. You may not have noticed this because
Git hides them away: you must ask for them specifically. This prevents branches in the remote
repository from interfering with your branches, and also makes Git easier for beginners.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 395

List the remote branches with:

git branch -r

You should see something like:

origin/HEAD
origin/master
origin/experimental

These represent branches and the HEAD of the remote repository, and can be used in regular Git
commands. For example, suppose you have made many commits, and wish to compare against the
last fetched version.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 396

You could search through the logs for the appropriate SHA1 hash, but it’s much easier to type:

git diff origin/HEAD

Or you can see what the “experimental” branch has been up to:

git log origin/experimental

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 397

Multiple Remotes

Suppose two other developers are working on our project, and we want to keep tabs on both. We can
follow more than one repository at a time with:

git remote add other git://example.com/some_repo.git

git pull other some_branch

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 398

Now we have merged in a branch from the second repository, and we have easy access to all
branches of all repositories:

git diff origin/experimental^ other/some_branch~5

But what if we just want to compare their changes without affecting our own work?

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 399

In other words, we want to examine their branches without having their changes invade our working
directory. Then rather than pull, run:

git fetch # Fetch from origin, the default.

git fetch other # Fetch from the second programmer.

This just fetches histories. Although the working directory remains untouched, we can refer to any
branch of any repository in a Git command because we now possess a local copy.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 400

Recall that behind the scenes, a pull is simply a fetch then merge. Usually we pull because we want to
merge the latest commit after a fetch; this situation is a notable exception.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 401

See git help remote for how to remove remote repositories, ignore certain branches, and more.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 402

Preferences

For my projects, I like contributors to prepare repositories from which I can pull. Some Git hosting
services let you host your own fork of a project with the click of a button.

After I fetch a tree, I run Git commands to navigate and examine the changes, which ideally are well-
organized and well-described. I merge my own changes, and perhaps make further edits. Once
satisfied, I push to the main repository.

Though I infrequently receive contributions, I believe this approach scales well. See this blog post by
Linus Torvalds.

Staying in the Git world is slightly more convenient than patch files, as it saves me from converting
them to Git commits. Furthermore, Git handles details such as recording the author’s name and email
address, as well as the time and date, and asks the author to describe their own change.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 403

http://torvalds-family.blogspot.com/2009/06/happiness-is-warm-scm.html

Git Grandmastery

By now, you should be able to navigate the git help pages and understand almost everything.
However, pinpointing the exact command required to solve a given problem can be tedious. Perhaps I
can save you some time: below are some recipes I have needed in the past.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 404

Source Releases

For my projects, Git tracks exactly the files I’d like to archive and release to users. To create a tarball of
the source code, I run:

git archive --format=tar --prefix=proj-1.2.3/ HEAD

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 405

Commit What Changed

Telling Git when you’ve added, deleted and renamed files is troublesome for certain projects. Instead,
you can type:

git add .
git add -u

Git will look at the files in the current directory and work out the details by itself. Instead of the
second add command, run git commit -a if you also intend to commit at this time. See git help
ignore for how to specify files that should be ignored.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 406

You can perform the above in a single pass with:

git ls-files -d -m -o -z | xargs -0 git update-index --add --remove

The -z and -0 options prevent ill side-effects from filenames containing strange characters. As this
command adds ignored files, you may want to use the -x or -X option.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 407

My Commit Is Too Big!

Have you neglected to commit for too long? Been coding furiously and forgotten about source
control until now? Made a series of unrelated changes, because that’s your style?

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 408

No worries. Run:

git add -p

For each edit you made, Git will show you the hunk of code that was changed, and ask if it should be
part of the next commit. Answer with "y" or "n". You have other options, such as postponing the
decision; type "?" to learn more.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 409

Once you’re satisfied, type

git commit

to commit precisely the changes you selected (the staged changes). Make sure you omit the -a option,
otherwise Git will commit all the edits.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 410

What if you’ve edited many files in many places? Reviewing each change one by one becomes
frustratingly mind-numbing. In this case, use git add -i, whose interface is less straightforward, but
more flexible. With a few keystrokes, you can stage or unstage several files at a time, or review and
select changes in particular files only. Alternatively, run git commit --interactive which automatically
commits after you’re done.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 411

The Index: Git’s Staging Area

So far we have avoided Git’s famous index, but we must now confront it to explain the above. The
index is a temporary staging area. Git seldom shuttles data directly between your project and its
history. Rather, Git first writes data to the index, and then copies the data in the index to its final
destination.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 412

For example, commit -a is really a two-step process. The first step places a snapshot of the current
state of every tracked file into the index. The second step permanently records the snapshot now in
the index. Committing without the -a option only performs the second step, and only makes sense
after running commands that somehow change the index, such as git add.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 413

Usually we can ignore the index and pretend we are reading straight from and writing straight to the
history. On this occasion, we want finer control, so we manipulate the index. We place a snapshot of
some, but not all, of our changes into the index, and then permanently record this carefully rigged
snapshot.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 414

Don’t Lose Your HEAD

The HEAD tag is like a cursor that normally points at the latest commit, advancing with each new
commit. Some Git commands let you move it. For example:

git reset HEAD~3

will move the HEAD three commits back. Thus all Git commands now act as if you hadn’t made those
last three commits, while your files remain in the present. See the help page for some applications.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 415

But how can you go back to the future? The past commits know nothing of the future.

If you have the SHA1 of the original HEAD then:

git reset 1b6d

--

But suppose you never took it down? Don’t worry: for commands like these, Git saves the original
HEAD as a tag called ORIG_HEAD, and you can return safe and sound with:

git reset ORIG_HEAD

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 416

HEAD-hunting

Perhaps ORIG_HEAD isn’t enough. Perhaps you’ve just realized you made a monumental mistake and
you need to go back to an ancient commit in a long-forgotten branch.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 417

By default, Git keeps a commit for at least two weeks, even if you ordered Git to destroy the branch
containing it. The trouble is finding the appropriate hash. You could look at all the hash values
in .git/objects and use trial and error to find the one you want. But there’s a much easier way.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 418

Git records every hash of a commit it computes in .git/logs . The subdirectory refs contains the
history of all activity on all branches, while the file HEAD shows every hash value it has ever taken. The
latter can be used to find hashes of commits on branches that have been accidentally lopped off.

The reflog command provides a friendly interface to these log files. Try

git reflog

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 419

Instead of cutting and pasting hashes from the reflog, try:

git checkout "@{10 minutes ago}"

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 420

Or checkout the 5th-last visited commit via:

git checkout "@{5}"

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 421

See the “Specifying Revisions” section of git help rev-parse for more.

You may wish to configure a longer grace period for doomed commits. For example:

git config gc.pruneexpire "30 days"

means a deleted commit will only be permanently lost once 30 days have passed and git gc is run.

--

You may also wish to disable automatic invocations of git gc:

git config gc.auto 0

in which case commits will only be deleted when you run git gc manually.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 422

Building On Git

In true UNIX fashion, Git’s design allows it to be easily used as a low-level component of other
programs, such as GUI and web interfaces, alternative command-line interfaces, patch managements
tools, importing and conversion tools and so on. In fact, some Git commands are themselves scripts
standing on the shoulders of giants. With a little tinkering, you can customize Git to suit your
preferences.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 423

One easy trick is to use built-in Git aliases to shorten your most frequently used commands:

git config --global alias.co checkout

git config --global --get-regexp alias # display current aliases

alias.co checkout

git co foo # same as 'git checkout foo'

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 424

Another is to print the current branch in the prompt, or window title. Invoking

git symbolic-ref HEAD

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 425

shows the current branch name. In practice, you most likely want to remove the "refs/heads/" and
ignore errors:

git symbolic-ref HEAD 2> /dev/null | cut -b 12-

The contrib subdirectory is a treasure trove of tools built on Git. In time, some of them may be
promoted to official commands. On Debian and Ubuntu, this directory lives at /usr/share/doc/git-
core/contrib .

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 426

One popular resident is workdir/git-new-workdir . Via clever symlinking, this script creates a new
working directory whose history is shared with the original repository:

git-new-workdir an/existing/repo new/directory

The new directory and the files within can be thought of as a clone, except since the history is shared,
the two trees automatically stay in sync. There’s no need to merge, push, or pull.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 427

Daring Stunts

These days, Git makes it difficult for the user to accidentally destroy data. But if you know what you
are doing, you can override safeguards for common commands.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 428

Checkout: Uncommitted changes cause checkout to fail. To destroy your changes, and checkout a
given commit anyway, use the force flag:

git checkout -f HEAD^

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 429

On the other hand, if you specify particular paths for checkout, then there are no safety checks. The
supplied paths are quietly overwritten. Take care if you use checkout in this manner.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 430

Reset: Reset also fails in the presence of uncommitted changes. To force it through, run:

git reset --hard 1b6d

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 431

Branch: Deleting branches fails if this causes changes to be lost. To force a deletion, type:

git branch -D dead_branch # instead of -d

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 432

Similarly, attempting to overwrite a branch via a move fails if data loss would ensue. To force a branch
move, type:

git branch -M source target # instead of -m

Unlike checkout and reset, these two commands defer data destruction. The changes are still stored in
the .git subdirectory, and can be retrieved by recovering the appropriate hash from .git/logs (see
"HEAD-hunting" above). By default, they will be kept for at least two weeks.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 433

Clean: Some git commands refuse to proceed because they’re worried about clobbering untracked
files. If you’re certain that all untracked files and directories are expendable, then delete them
mercilessly with:

git clean -f -d

Next time, that pesky command will work!

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 434

Preventing Bad Commits

Stupid mistakes pollute my repositories. Most frightening are missing files due to a forgotten git add.

Lesser transgressions are trailing whitespace and unresolved merge conflicts: though harmless, I wish
these never appeared on the public record.

If only I had bought idiot insurance by using a hook to alert me about these problems:

cd .git/hooks

cp pre-commit.sample pre-commit # Older Git versions: chmod +x pre-commit

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 435

Now Git aborts a commit if useless whitespace or unresolved merge conflicts are detected.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 436

For this guide, I eventually added the following to the beginning of the pre-commit hook to guard
against absent-mindedness:

if git ls-files -o | grep '\.txt$'; then
 echo FAIL! Untracked .txt files.
 exit 1
fi

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 437

Several git operations support hooks; see git help hooks. We activated the sample post-update hook
earlier when discussing Git over HTTP. This runs whenever the head moves. The sample post-update
script updates files Git needs for communication over Git-agnostic transports such as HTTP.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 438

Secrets Revealed

We take a peek under the hood and explain how Git performs its miracles. I will skimp over details.
For in-depth descriptions refer to the user manual.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 439

http://schacon.github.com/git/user-manual.html

Invisibility

How can Git be so unobtrusive? Aside from occasional commits and merges, you can work as if you
were unaware that version control exists. That is, until you need it, and that’s when you’re glad Git was
watching over you the whole time.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 440

Other version control systems force you to constantly struggle with red tape and bureaucracy.
Permissions of files may be read-only unless you explicitly tell a central server which files you intend
to edit. The most basic commands may slow to a crawl as the number of users increases. Work grinds
to a halt when the network or the central server goes down.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 441

In contrast, Git simply keeps the history of your project in the .git directory in your working
directory. This is your own copy of the history, so you can stay offline until you want to communicate
with others. You have total control over the fate of your files because Git can easily recreate a saved
state from .git at any time.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 442

Integrity

Most people associate cryptography with keeping information secret, but another equally important
goal is keeping information safe. Proper use of cryptographic hash functions can prevent accidental
or malicious data corruption.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 443

A SHA1 hash can be thought of as a unique 160-bit ID number for every string of bytes you’ll
encounter in your life. Actually more than that: every string of bytes that any human will ever use over
many lifetimes.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 444

As a SHA1 hash is itself a string of bytes, we can hash strings of bytes containing other hashes. This
simple observation is surprisingly useful: look up hash chains. We’ll later see how Git uses it to
efficiently guarantee data integrity.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 445

Briefly, Git keeps your data in the .git/objects subdirectory, where instead of normal filenames,
you’ll find only IDs. By using IDs as filenames, as well as a few lockfiles and timestamping tricks, Git
transforms any humble filesystem into an efficient and robust database.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 446

Intelligence

How does Git know you renamed a file, even though you never mentioned the fact explicitly? Sure,
you may have run git mv, but that is exactly the same as a git rm followed by a git add.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 447

Git heuristically ferrets out renames and copies between successive versions. In fact, it can detect
chunks of code being moved or copied around between files! Though it cannot cover all cases, it does
a decent job, and this feature is always improving. If it fails to work for you, try options enabling more
expensive copy detection, and consider upgrading.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 448

Indexing

For every tracked file, Git records information such as its size, creation time and last modification time
in a file known as the index. To determine whether a file has changed, Git compares its current stats
with those cached in the index. If they match, then Git can skip reading the file again.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 449

Since stat calls are considerably faster than file reads, if you only edit a few files, Git can update its
state in almost no time.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 450

We stated earlier that the index is a staging area. Why is a bunch of file stats a staging area? Because
the add command puts files into Git’s database and updates these stats, while the commit command,
without options, creates a commit based only on these stats and the files already in the database.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 451

Git’s Origins

This Linux Kernel Mailing List post describes the chain of events that led to Git. The entire thread is a
fascinating archaeological site for Git historians.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 452

http://lkml.org/lkml/2005/4/6/121

The Object Database

Every version of your data is kept in the object database, which lives in the
subdirectory .git/objects ; the other residents of .git/ hold lesser data: the index, branch names,
tags, configuration options, logs, the current location of the head commit, and so on. The object
database is elementary yet elegant, and the source of Git’s power.

Each file within .git/objects is an object. There are 3 kinds of objects that concern
us: blob objects, tree objects, and commit objects.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 453

Blobs

First, a magic trick. Pick a filename, any filename. In an empty directory:

echo sweet > YOUR_FILENAME

git init

git add .

find .git/objects -type f

You’ll see .git/objects/aa/823728ea7d592acc69b36875a482cdf3fd5c8d .

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 454

How do I know this without knowing the filename? It’s because the SHA1 hash of:

"blob" SP "6" NUL "sweet" LF

is aa823728ea7d592acc69b36875a482cdf3fd5c8d , where SP is a space, NUL is a zero byte and LF is a
linefeed. You can verify this by typing:

printf "blob 6\000sweet\n" | sha1sum

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 455

Git is content-addressable: files are not stored according to their filename, but rather by the hash of
the data they contain, in a file we call a blob object. We can think of the hash as a unique ID for a file’s
contents, so in a sense we are addressing files by their content. The initial blob 6 is merely a header
consisting of the object type and its length in bytes; it simplifies internal bookkeeping.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 456

Thus I could easily predict what you would see. The file’s name is irrelevant: only the data inside is
used to construct the blob object.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 457

You may be wondering what happens to identical files. Try adding copies of your file, with any
filenames whatsoever. The contents of .git/objects stay the same no matter how many you add. Git
only stores the data once.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 458

By the way, the files within .git/objects are compressed with zlib so you should not stare at them
directly. Filter them through zpipe -d, or type:

git cat-file -p aa823728ea7d592acc69b36875a482cdf3fd5c8d

which pretty-prints the given object.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 459

http://www.zlib.net/zpipe.c

Trees

But where are the filenames? They must be stored somewhere at some stage. Git gets around to the
filenames during a commit:

git commit # Type some message.

find .git/objects -type f

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 460

You should now see 3 objects. This time I cannot tell you what the 2 new files are, as it partly depends
on the filename you picked. We’ll proceed assuming you chose “rose”. If you didn’t, you can rewrite
history to make it look like you did:

git filter-branch --tree-filter 'mv YOUR_FILENAME rose'

find .git/objects -type f

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 461

Now you should see the file .git/objects/05/b217bb859794d08bb9e4f7f04cbda4b207fbe9 , because this
is the SHA1 hash of its contents:

"tree" SP "32" NUL "100644 rose" NUL 0xaa823728ea7d592acc69b36875a482cdf3fd5c8d

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 462

Check this file does indeed contain the above by typing:

echo 05b217bb859794d08bb9e4f7f04cbda4b207fbe9 | git cat-file --batch

With zpipe, it’s easy to verify the hash:

zpipe -d < .git/objects/05/b217bb859794d08bb9e4f7f04cbda4b207fbe9 | sha1sum

Hash verification is trickier via cat-file because its output contains more than the raw uncompressed
object file.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 463

This file is a tree object: a list of tuples consisting of a file type, a filename, and a hash. In our example,
the file type is 100644, which means ‘rose is a normal file, and the hash is the blob object that

contains the contents of rose’. Other possible file types are executables, symlinks or directories. In
the last case, the hash points to a tree object.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 464

If you ran filter-branch, you’ll have old objects you no longer need. Although they will be jettisoned
automatically once the grace period expires, we’ll delete them now to make our toy example easier to
follow:

rm -r .git/refs/original

git reflog expire --expire=now --all

git prune

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 465

For real projects you should typically avoid commands like this, as you are destroying backups. If you
want a clean repository, it is usually best to make a fresh clone. Also, take care when directly
manipulating .git : what if a Git command is running at the same time, or a sudden power outage
occurs? In general, refs should be deleted with git update-ref -d, though usually it’s safe to
remove refs/original by hand.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 466

Commits

We’ve explained 2 of the 3 objects. The third is a commit object. Its contents depend on the commit
message as well as the date and time it was created. To match what we have here, we’ll have to tweak
it a little:

git commit --amend -m Shakespeare # Change the commit message.

git filter-branch --env-filter 'export
 GIT_AUTHOR_DATE="Fri 13 Feb 2009 15:31:30 -0800"
 GIT_AUTHOR_NAME="Alice"
 GIT_AUTHOR_EMAIL="alice@example.com"
 GIT_COMMITTER_DATE="Fri, 13 Feb 2009 15:31:30 -0800"
 GIT_COMMITTER_NAME="Bob"
 GIT_COMMITTER_EMAIL="bob@example.com"' # Rig timestamps and authors.
find .git/objects -type f

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 467

You should now see .git/objects/49/993fe130c4b3bf24857a15d7969c396b7bc187 which is the SHA1
hash of its contents:

"commit 158" NUL
"tree 05b217bb859794d08bb9e4f7f04cbda4b207fbe9" LF
"author Alice <alice@example.com> 1234567890 -0800" LF
"committer Bob <bob@example.com> 1234567890 -0800" LF
LF
"Shakespeare" LF

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 468

As before, you can run zpipe or cat-file to see for yourself.

This is the first commit, so there are no parent commits, but later commits will always contain at least
one line identifying a parent commit.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 469

Indistinguishable From Magic

Git’s secrets seem too simple. It looks like you could mix together a few shell scripts and add a dash of
C code to cook it up in a matter of hours: a melange of basic filesystem operations and SHA1 hashing,
garnished with lock files and fsyncs for robustness. In fact, this accurately describes the earliest
versions of Git. Nonetheless, apart from ingenious packing tricks to save space, and ingenious
indexing tricks to save time, we now know how Git deftly changes a filesystem into a database perfect
for version control.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 470

For example, if any file within the object database is corrupted by a disk error, then its hash will no
longer match, alerting us to the problem. By hashing hashes of other objects, we maintain integrity at
all levels. Commits are atomic, that is, a commit can never only partially record changes: we can only
compute the hash of a commit and store it in the database after we already have stored all relevant
trees, blobs and parent commits. The object database is immune to unexpected interruptions such as
power outages.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 471

We defeat even the most devious adversaries. Suppose somebody attempts to stealthily modify the
contents of a file in an ancient version of a project. To keep the object database looking healthy, they
must also change the hash of the corresponding blob object since it’s now a different string of bytes.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 472

This means they’ll have to change the hash of any tree object referencing the file, and in turn change
the hash of all commit objects involving such a tree, in addition to the hashes of all the descendants
of these commits. This implies the hash of the official head differs to that of the bad repository.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 473

By following the trail of mismatching hashes we can pinpoint the mutilated file, as well as the commit
where it was first corrupted.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 474

In short, so long as the 20 bytes representing the last commit are safe, it’s impossible to tamper with a
Git repository.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 475

What about Git’s famous features? Branching? Merging? Tags? Mere details.

The current head is kept in the file .git/HEAD , which contains a hash of a commit object. The hash
gets updated during a commit as well as many other commands.

Branches are almost the same: they are files in .git/refs/heads . Tags too: they live
in .git/refs/tags but they are updated by a different set of commands.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 476

Git Shortcomings

There are some Git issues I’ve swept under the carpet. Some can be handled easily with scripts and
hooks, some require reorganizing or redefining the project, and for the few remaining annoyances,
one will just have to wait. Or better yet, pitch in and help!

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 477

SHA1 Weaknesses

As time passes, cryptographers discover more and more SHA1 weaknesses. Already, finding hash
collisions is feasible for well-funded organizations. Within years, perhaps even a typical PC will have
enough computing power to silently corrupt a Git repository.

Hopefully Git will migrate to a better hash function before further research destroys SHA1.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 478

Unrelated Files

If your project is very large and contains many unrelated files that are constantly being changed, Git
may be disadvantaged more than other systems because single files are not tracked. Git tracks
changes to the whole project, which is usually beneficial.

A solution is to break up your project into pieces, each consisting of related files. Use git
submodule if you still want to keep everything in a single repository.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 479

Who’s Editing What?

Some version control systems force you to explicitly mark a file in some way before editing. While this
is especially annoying when this involves talking to a central server, it does have two benefits:

1. Diffs are quick because only the marked files need be examined.

2. One can discover who else is working on the file by asking the central server who has marked it
for editing.

With appropriate scripting, you can achieve the same with Git. This requires cooperation from the
programmer, who should execute particular scripts when editing a file.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 480

File History

Since Git records project-wide changes, reconstructing the history of a single file requires more work
than in version control systems that track individual files.

The penalty is typically slight, and well worth having as other operations are incredibly efficient. For
example, git checkout is faster than cp -a , and project-wide deltas compress better than
collections of file-based deltas.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 481

Initial Clone

Creating a clone is more expensive than checking out code in other version control systems when
there is a lengthy history.

The initial cost is worth paying in the long run, as most future operations will then be fast and offline.
However, in some situations, it may be preferable to create a shallow clone with the --depth option.
This is much faster, but the resulting clone has reduced functionality.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 482

Volatile Projects

Git was written to be fast with respect to the size of the changes. Humans make small edits from
version to version. A one-liner bugfix here, a new feature there, emended comments, and so forth. But
if your files are radically different in successive revisions, then on each commit, your history
necessarily grows by the size of your whole project.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 483

There is nothing any version control system can do about this, but standard Git users will suffer more
since normally histories are cloned.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 484

The reasons why the changes are so great should be examined. Perhaps file formats should be
changed. Minor edits should only cause minor changes to at most a few files.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 485

Or perhaps a database or backup/archival solution is what is actually being sought, not a version
control system. For example, version control may be ill-suited for managing photos periodically taken
from a webcam.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 486

If the files really must be constantly morphing and they really must be versioned, a possibility is to use
Git in a centralized fashion. One can create shallow clones, which checks out little or no history of the
project. Of course, many Git tools will be unavailable, and fixes must be submitted as patches. This is
probably fine as it’s unclear why anyone would want the history of wildly unstable files.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 487

Another example is a project depending on firmware, which takes the form of a huge binary file. The
history of the firmware is uninteresting to users, and updates compress poorly, so firmware revisions
would unnecessarily blow up the size of the repository.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 488

In this case, the source code should be stored in a Git repository, and the binary file should be kept
separately. To make life easier, one could distribute a script that uses Git to clone the code, and rsync
or a Git shallow clone for the firmware.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 489

Global Counter

Some centralized version control systems maintain a positive integer that increases when a new
commit is accepted. Git refers to changes by their hash, which is better in many circumstances.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 490

But some people like having this integer around. Luckily, it’s easy to write scripts so that with every
update, the central Git repository increments an integer, perhaps in a tag, and associates it with the
hash of the latest commit.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 491

Every clone could maintain such a counter, but this would probably be useless, since only the central
repository and its counter matters to everyone.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 492

Empty Subdirectories

Empty subdirectories cannot be tracked. Create dummy files to work around this problem.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 493

The current implementation of Git, rather than its design, is to blame for this drawback. With luck,
once Git gains more traction, more users will clamour for this feature and it will be implemented.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 494

Initial Commit

A stereotypical computer scientist counts from 0, rather than 1. Unfortunately, with respect to
commits, git does not adhere to this convention. Many commands are unfriendly before the initial
commit. Additionally, some corner cases must be handled specially, such as rebasing a branch with a
different initial commit.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 495

Git would benefit from defining the zero commit: as soon as a repository is constructed, HEAD would
be set to the string consisting of 20 zero bytes. This special commit represents an empty tree, with no
parent, at some time predating all Git repositories.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 496

Then running git log, for example, would inform the user that no commits have been made yet,
instead of exiting with a fatal error. Similarly for other tools.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 497

Every initial commit is implicitly a descendant of this zero commit.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 498

However there are some problem cases unfortunately. If several branches with different initial
commits are merged together, then rebasing the result requires substantial manual intervention.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 499

Interface Quirks

For commits A and B, the meaning of the expressions "A..B" and "A…B" depends on whether the
command expects two endpoints or a range. See git help diff and git help rev-parse.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 500

References (1)

Source Code Management | Atlassian Git Tutorial.

What is Source Code Management or Version Control ? - The Linux Juggernaut

https://www.edureka.co/blog/how-to-use-github/

https://www.edureka.co/blog/git-tutorial/

https://www.edureka.co/blog/install-git/

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 501

https://www.atlassian.com/git/tutorials/source-code-management#:~:text=Source%20code%20management%20(SCM)%20is,also%20synonymous%20with%20Version%20control
https://www.linuxnix.com/what-is-source-code-management-or-version-control/
https://www.edureka.co/blog/how-to-use-github/
https://www.edureka.co/blog/git-tutorial/
https://www.edureka.co/blog/install-git/

References (2)

git - the simple guide - no deep shit!

GitHub - rogerdudler/git-guide: git - the simple guide

https://dev.to/lydiahallie/cs-visualized-useful-git-commands-37p1#merge

How to write a good commit message - DEV Community

https://blog.xebialabs.com/2016/06/14/periodic-table-devops-tools-v-2/

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 502

https://rogerdudler.github.io/git-guide/index.html
https://github.com/rogerdudler/git-guide
https://dev.to/lydiahallie/cs-visualized-useful-git-commands-37p1
https://dev.to/chrissiemhrk/git-commit-message-5e21
https://blog.xebialabs.com/2016/06/14/periodic-table-devops-tools-v-2/

References (3)

https://harness.io/2018/01/devops-tools-lifecycle-mesh-2018/

https://medium.com/swlh/how-to-become-an-devops-engineer-in-2020-80b8740d5a52

https://www.lucidchart.com/blog/devops-process-flow

https://www.researchgate.net/publication/262450962_Rugby_An_Agile_Process_Model_Based_on_Con
tinuous_Delivery

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 503

https://harness.io/2018/01/devops-tools-lifecycle-mesh-2018/
https://medium.com/swlh/how-to-become-an-devops-engineer-in-2020-80b8740d5a52
https://www.lucidchart.com/blog/devops-process-flow
https://www.researchgate.net/publication/262450962_Rugby_An_Agile_Process_Model_Based_on_Continuous_Delivery

References (4)

git - the simple guide - no deep shit!

Git Tutorial | Commands And Operations In Git | Edureka

How to write a good commit message - DEV Community

An Introduction to Git and GitHub by Brian Yu - YouTube

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 504

https://rogerdudler.github.io/git-guide/index.html
https://www.edureka.co/blog/git-tutorial/
https://dev.to/chrissiemhrk/git-commit-message-5e21
https://www.youtube.com/watch?v=MJUJ4wbFm_A&ab_channel=CS50

References (5)

https://education.github.com/git-cheat-sheet-education.pdf

NDP Software :: Git Cheatsheet;

Learn Git Branching

https://guides.github.com/introduction/git-handbook/

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 505

https://education.github.com/git-cheat-sheet-education.pdf
http://www.ndpsoftware.com/git-cheatsheet.html#loc=remote_repo
https://learngitbranching.js.org/
https://guides.github.com/introduction/git-handbook/

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 506

