CE103 Algorithms and Programming |

CE103 Algorithms and Programming |

Week-3

Introduction to Source Code Version Management Systems

Download DOC, SLIDE, PPTX

#esth) RTEU CE103 Week-3

file:///C:/Users/ugur.coruh/Desktop/ce103-algorithms-and-programming-I/docs/week-3-git/ce103-week-3-git.en.md_doc.pdf
file:///C:/Users/ugur.coruh/Desktop/ce103-algorithms-and-programming-I/docs/week-3-git/ce103-week-3-git.en.md_slide.pdf
file:///C:/Users/ugur.coruh/Desktop/ce103-algorithms-and-programming-I/docs/week-3-git/ce103-week-3-git.en.md_slide.pptx

CE103 Algorithms and Programming |

Outline

* Introduction to Source Code Version Management Systems
® Features of Source Code Management Systems
e Why Do We Need Source Code Management Systems

® Centralized/Distrubuted Version Control Systems

Introduction to Git

Git Installation and Configuration

% RTEU CE103 Week-3

CE103 Algorithms and Programming |

Outline

Git Init Repository

Git Add Files

Git Commit Changes

Git Pull/Fetch Changes from Remote Repo
Git Push Local Changes to Remote Repo
Git Branching

Git Merging and Conflict Solving

Git Rebasing

Git Reset

Git Logs and Monitoring

Git Decision Tree

Git Visualize Logs

% RTEU CE103 Week-3

CE103 Algorithms and Programming |

Introduction to Source Code Version Management Systems

Git, Github, Gitlab, Bitbucket, Maven, SVN, TFS

Source code management (SCM) is used to track modifications to a source code
repository. SCM tracks a running history of changes to a code base and helps resolve
conflicts when merging updates from multiple contributors. SCM is also synonymous
with Version control.

As software projects grow in lines of code and contributor head count, the costs of
communication overhead and management complexity also grow. SCM is a critical tool
to alleviate the organizational strain of growing development costs.

{ RTEU CE103 Week-3

CE103 Algorithms and Programming |

Features of Source Code Management Systems

e Authenticated access for commits
® Revision history on files
e Atomic commits of multiple files

* Versioning/Tagging

% RTEU CE103 Week-3

CE103 Algorithms and Programming |

Why Do We Need Source Code Management Systems? (1)

We can save the file with a different name if it's our school project or one-time papers but for a well-
equipped software development? Not a chance.

% RTEU CE103 Week-3

CE103 Algorithms and Programming |

Why Do We Need Source Code Management Systems? (2)

Big projects need a version control system to track the changes and avoid misunderstanding. A good
SCM does the following:

® Backup and Restore
® Synchronization

® Short-Term Undo

® Long-Term Undo

® Track Changes

* Ownership

* Branching and Merging

% RTEU CE103 Week-3

CE103 Algorithms and Programming |

Why Do We Need Source Code Management Systems? (3)

Backup and Restore — Files can be saved at any moment and can be restored from the last saved.

% RTEU CE103 Week-3

CE103 Algorithms and Programming |

Why Do We Need Source Code Management Systems? (4)

Synchronization — Programmers can get the latest code and fetch the up-to-date codes from the
repository.

% RTEU CE103 Week-3

CE103 Algorithms and Programming |

Why Do We Need Source Code Management Systems? (5)

Short-Term Undo — Working with a file and messed it up. We can do a short-term undo to the last
known version.

% RTEU CE103 Week-3

10

CE103 Algorithms and Programming |

Why Do We Need Source Code Management Systems? (6)

Long-Term Undo - It helps when we have to make a release version rollback. Something like going to
the last version which was created a year

% RTEU CE103 Week-3

11

CE103 Algorithms and Programming |

Why Do We Need Source Code Management Systems? (7)

Track Changes— We can track the changes as when anyone is making any change, he can leave a
commit message as for why the change was done.

% RTEU CE103 Week-3

12

CE103 Algorithms and Programming |

Why Do We Need Source Code Management Systems? (8)

Ownership— With every commit made to the master branch, it will ask the owner permission to merge
it.

% RTEU CE103 Week-3

13

CE103 Algorithms and Programming |

Why Do We Need Source Code Management Systems? (9)

Branching and Merging — You can create a branch of your source code and create the changes. Once
the changes are approved, you can merge it with the master branch.

% RTEU CE103 Week-3

14

CE103 Algorithms and Programming |

Why Do We Need Source Code Management Systems? (10)

Types of Version Control Systems

e Centralized Version Control (TFS, Subversion)

e Distributed Version Control (Git and Mercurial)

% RTEU CE103 Week-3

15

CE103 Algorithms and Programming |

Centralized Version Control (TFS, Subversion) (1)

The main concept of Centralized Version Control is that it works in a client and server relationship.
The repository is located in one place and allows access to multiple clients.

% RTEU CE103 Week-3

16

CE103 Algorithms and Programming |

Centralized Version Control (TFS, Subversion) (2)

Centralized version control system

Repository

Workstation/PC #1 Workstation/PC #2 Workstation/PC #3

#esth) RTEU CE103 Week-3

CE103 Algorithms and Programming |

Centralized Version Control (TFS, Subversion) (3)

A

 RTEU CE103 Week-3

18

CE103 Algorithms and Programming |

Centralized Version Control (TFS, Subversion) (4)

It's very similar to FTP where you have FTP clients which connect to FTP server. Here all the user
changes and commits have to pass through the central server. For Ex: Subversion.

% RTEU CE103 Week-3

19

CE103 Algorithms and Programming |

Centralized Version Control (TFS, Subversion) (5)

The benefits of centralized version control are:

® |t's easy to understand.
® There are more GUI and IDE clients.

®* You have more control over the users and access.

% RTEU CE103 Week-3

20

CE103 Algorithms and Programming |

Centralized Version Control (TFS, Subversion) (6)

We do have drawbacks also:

® |t is dependent on the access to the server.
* |t can be slower because every command from the client has to pass the server.

* Branching and merging strategies are difficult to use.

% RTEU CE103 Week-3

21

CE103 Algorithms and Programming |

Distributed Version Control (Git and Mercurial) (1)

These systems are newer to use. In Distributed Version Control, each user has their own copy of the
entire repository as well as the files and history. For Ex: Git and Mercurial

% RTEU CE103 Week-3

22

CE103 Algorithms and Programming |

Distributed Version Control (Git and Mercurial) (2)

Distributed version control system

Repository

Repository Repository Repository

commit

Working copy

Workstation/PC #1 Workstation/PC #2 Workstation/PC #3

Working copy Working copy

#esth) RTEU CE103 Week-3

CE103 Algorithms and Programming |

Distributed Version Control (Git and Mercurial) (3)

A

 RTEU CE103 Week-3

24

CE103 Algorithms and Programming |

Distributed Version Control (Git and Mercurial) (4)

The benefits of distributed version control are:

* More powerful and easy change tracking.

* No need of a centralized server. Most of the functionalities work in offline mode also apart from
sharing the repositories.

® Branching and Merging strategies are more easy and reliable.

¢ |t's faster than the other one.

% RTEU CE103 Week-3

25

CE103 Algorithms and Programming |

List of Source Code Version Management Tools (1)

#esth) RTEU CE103 Week-3

26

CE103 Algorithms and Programming |

List of Source Code Version Management Tools (2)

e Github
e GitLab

BitBucket
® SourceForge

e Beanstalk

RTEU CE103 Week-3

CE103 Algorithms and Programming |

List of Source Code Version Management Tools (3)

Apache Allura

AWS CodeCommit
® Launchpad
e Phabricator

e GitBucket

| RTEU CE103 Week-3

28

CE103 Algorithms and Programming |

GIT (Distributed Source Code Management) (1)

o1t

iedthi| RTEU CE103 Week-3

CE103 Algorithms and Programming |

GIT (Distributed Source Code Management) (2)

Distributed Version Control

¢

d Main Repository)

¥

PULL PULL
c
m wl IF %
= = =2
oo oo o
Developer 1 Developer 2
A
%
=
=l I8
=l |=
O
o
J Working Copy | Working Copy |
Developer 1 Developer 2 Developer 3

iedthi| RTEU CE103 Week-3

CE103 Algorithms and Programming |

GIT (Distributed Source Code Management) (3)

GitHub Q |

& & @

- - -

 RTEU CE103 Week-3

31

CE103 Algorithms and Programming |

GIT (Distributed Source Code Management) (4)

++ ++
| ot

CT LR}

] el |
$gan= 4= -
L |
--- H—

iedthi| RTEU CE103 Week-3

CE103 Algorithms and Programming |

GIT (Distributed Source Code Management) (5)

A Basic Overview of How Git Works (1)

® Create a "repository" (project) with a git hosting tool (like Bitbucket)
® Copy (or clone) the repository to your local machine
e Add a file to your local repo and “commit” (save) the changes

® “Push” your changes to your master branch

% RTEU CE103 Week-3

33

CE103 Algorithms and Programming |

GIT (Distributed Source Code Management) (6)

A Basic Overview of How Git Works (2)

* Make a change to your file with a git hosting tool and commit
® “Pull” the changes to your local machine
® Create a "branch” (version), make a change, commit the change

® Open a “pull request”.

* “Merge” your branch to the master branch

% RTEU CE103 Week-3

34

CE103 Algorithms and Programming |

GIT (Distributed Source Code Management) (7)

Some of The Basic Operations in GIT are

® |nitialize
e Add
e Commit
e Pull

e Push

RTEU CE103 Week-3

35

CE103 Algorithms and Programming |

GIT (Distributed Source Code Management) (8)

Some of The Basic Operations in GIT are

#esth) RTEU CE103 Week-3

36

CE103 Algorithms and Programming |

GIT (Distributed Source Code Management) (9)

Some of The Basic Operations in GIT are
® Branching
* Merging

® Rebasing

% RTEU CE103 Week-3

37

CE103 Algorithms and Programming |

GIT (Distributed Source Code Management) (10)

Some of The Basic Operations in GIT are

Rebasing

#esth) RTEU CE103 Week-3

38

CE103 Algorithms and Programming |

GIT (Distributed Source Code Management) (8)

A brief idea about how these operations work with the Git repositories (1)

Local Remote

working staging localrepo
directory area

P

remote
repo

#ie8%| RTEU CE103 Week-3

CE103 Algorithms and Programming |

GIT (Distributed Source Code Management) (9)

A brief idea about how these operations work with the Git repositories (2)

Git Data Transport Commands

hetp://fosteale. com

[commit -a :>
| add (-u) > commit :>
push

- - —
worksooce local remote
P repository repository

pull or rebase

g

fetch

7N

checkout HEAD

revert
T OO O\

checkout |
E diff HEAD
B
g | diff |
—
R
fiveest| RTEU CE103 Week-3

40

CE10GPP(Distributed Source Code Management) (10)

A brief idea about how these operations work with the Git repositories (3)
For more detailed cheetsheat please check the following interactive map

NDP Software :: Git Cheatsheet

reset HEAD <file(s)...
reset ——soft H 2
diff ——cacl hed

t

RECEP TAYYiP
““““““ RTEU CE1

https://www.ndpsoftware.com/git-cheatsheet.html

Installation of GIT (1)

Check Installation Already Completed
git --version

B CAWINDOWSsystemn3dermd.exe

1Crasort Windows [Verston 10,0, 14901, 57 &

{e) 2020 M3 .'_r'-'_'u-_...'_:.F t Corporation. All rights reserved.

C:\Usersyugur . coruh n1 ¥ VErS10n
git version 2.28.0.windows .]

i yUsersugur coruh -

42

CE103 Algorithms and Programming |

Installation of GIT (2)

If your console gives error about git command follow the steps in the link
Install Git | Atlassian Git Tutorial

In this link you will should download following setup according to your operating system

 RTEU CE103 Week-3

43

https://www.atlassian.com/git/tutorials/install-git#windows

CE103 Algorithms and Programming |

Installation of GIT (3)

GIT Setup Files
®* Download git for OSX

* Download git for Windows

* Download git for Linux

iedthi| RTEU CE103 Week-3

44

http://git-scm.com/download/mac
http://msysgit.github.io/
http://git-scm.com/book/en/Getting-Started-Installing-Git

CE103 Algorithms and Programming |

Installation of GIT (4)

® Download and install GIT from the following links (both have same github release path)

Git - Downloads

A

 RTEU CE103 Week-3

45

https://git-scm.com/downloads

CE103 Algorithms and Programming |

Installation of GIT (5)

e After running setup follow the steps below

Open File - Securty Warreng
U yoau ward 1o nun this file 7
e i
EI Pliderer

Trpe: Apphication
Fram: CollsedsiRechmai DomrilosdsGe-2 1007 £4 -t (1 _

(An) cwea |

irae A s e e Ci Be wsalul | el Te & Ci
ot s dialy' o pour compiler Ondy aun software from pubdsheny
o . WMt e ik T

#ie8%| RTEU CE103 Week-3

CE103 Algorithms and Programming |

Installation of GIT (6)

e Select the following configurations

Select Components

Whech components shaukd be nstaled?

Select e (ompinerits vou wanl 55 rital; dear the oomponenits you da ot want i
mstal, Chck heatt when you are ready o tontrus,

|| Addinonal ikors
1| I e Qi Liwrsch
1] On e Deskiop
[+ Wirsiows Exploner ntegration
|+] Gt Bagh Here
[+ Gt GLi Here
[Amsociate g™ configuration fles with the default bext editer
[+ Aspociate .gh fes by be run with Bash
| Ume 8 TrueType forrt n al cormole wirdows

Current selecbon negunes A least 15256 MB of desk space,

o | <Back |[mest> | [conca |

#esth) RTEU CE103 Week-3

CE103 Algorithms and Programming |
Installation of GIT (7)

® You can select to use git from Git Bash Only, Also you can use it from command-line by selecting
second option. Third option override some Windows executable so your operating system can be
affected from this selection.

Gt 210 Setup e @ (]
#ul puslinag yoaur PATH ervvircsnmeent i_‘i'_.-
Hez b oo e 12 wse 01 o Bhe oorrreand ne? {::' L

2 Pse Gt Eroam Gt Bash canly
This i Hhe safest chodoe aa your PATH will naot be modified gt all. You will ondy be
e ko e e 8 command line Scoll Fros GIE Bash,
e Gl Brons thee % madbioees © ominadd Proaapl

T expfiens m Sordeientd fafe o it ofly Skl porne rresal Gt el 1o o
PATH =5 awosd GUTIEreeg o 7y OFFrer™ with ooonal LiFee Doods, Tou will be
pbde o use Gt from bath G Besh snd S Wiradomws: Comenand Promotk

1P fait s optional nis beols fream the Wissdoss Comemand Promgt

Bk G and the apboral Uni: bools wil Be sdded 8o your PATH,

Warnirge This will ererrels Windows Loolk bes “hnd™ and “soet ™. Only
e Ehim cpbesn f you underiand b e plea taos,

" - '
T T

iedthi| RTEU CE103 Week-3

CE103 Algorithms and Programming |

Installation of GIT (8)

e Git Credential Manager will be use to configure your remote connection.

m
Hmmu;-:'mﬂml:emuuﬂﬁ ‘H‘)

' Emable file system caching

File gyatem dats will be read in bulk and cached in memory for certan
ooerations [oone, fecache” = set o "o, This provides a sorificant
per formaancE boost.

/ Emabde Git Credential Hanager

The Git Credential Manaoer for Windows provades seore Gt oedential storage
for Window, moat notably mulli-factor uthenScation support for Visual Stude
Team Servioes and GitHub, (reguires MET framework v4.5, 1 of of later).

Lnabde symbolic bnks

Eruabde spmbolc brkz: (regures She SelresteSymboliclink pemessson],
Pleace node that exsiing repositones are unaffected by ths seting.

| <Back || mwtal | | cance

#ie8%| RTEU CE103 Week-3

CE103 Algorithms and Programming |

Installation of GIT (9)

Configuring the terminal emulator to use with Git Bash W)
Which terminal emulator do you want to use with your Git Bash? ‘ '-}

@ Use HinTTY (the default termanal of H5Y52)

Gt Bash will ige MATTY &2 termnasl amusion, which sports & neseable window,
non-rectangular selections and & Unicode font. Windows console programs (such
&% interactive Python) must be lasunched via “winpty ™ o work in MnTTY,

Gt vl Lme e default console window of Windows (Cosed, exe®), which works el
with 'Win3Z conscle procorams such a8 interackve Python or node.js, but ke a
wvery mibed default scrol-back, needs to be configured to use a Uriosde font in
arder o deplay mon-ASCT dharscters comectly, and prioe to Windows 10 its
window wad nof freely resizabls and it only alowed rectangulsr text sslecbons,

[-:h:l:llﬁuﬂ::- -l:-mnel]

ettt RTEU CE103 Week-3

CE103 Algorithms and Programming |

Installation of GIT (10)

e MSYS2 MiInTTY provide better visual and colorful console outputs

= &

Completing the Git Setup Wizard

Latup has finished nstaling &t on your computer. The
mmuwwmhm

Chck Frish b et Sehp.
'] Launch Git Bash
o eew ek Mates

#ie8%| RTEU CE103 Week-3

CE103 Algorithms and Programming |

Installation of GIT Extension (Windows) (1)

® Git user interface can be installed by the following applications

© You can install Git GUI from https://git-scm.com/downloads/guis
o | prefer to use git extension https://gitextensions.github.io/

o and https://tortoisegit.org/ together
e Also Download KDiff3 KDiff3 - Browse Files at SourceForge.net

® These extensions provide GUI for git operations to make process easier.

 RTEU CE103 Week-3

52

https://git-scm.com/downloads/guis
https://gitextensions.github.io/
https://tortoisegit.org/
https://sourceforge.net/projects/kdiff3/files/

RECEP TAYYIP
ERDOGAN

Enter GIT Extension Configurations

Right click to any where on right click menu you will see git extension settings as follow

E Clone..

Create new repository...

Settings

View
Sort by
Refresh

Undo Move

Visual Studio ile ag

Open as Brackets project

Git GUI Here

Git Bash Here

Open Folder as Intelli) IDEA Community Edition Project
Open with Code

Git Extensions

Intel® Graphics Settings
NVIDIA Control Panel

| Git Clone...

' Git Create repository here...

* TortoiseGit

=
il

Mew

Display settings

Personalize

53

CE103 Algorithms and Programming |

Configuration of GIT Extension (Windows) (1)

* Git extension provides you missing setups or wrong configurations. If everyting is green that
mean everything should work perfectly.

M Settings - Chechdist =

l | Setlingd source: (8 Global Tad sll fepsristand
w3 Git Extensions

5 Genesl
= dppearsnce
A Rrvitaten links The checldist below validstes the basic seftings needed for Git Extensions to work progsery.
& Build senver integration Gt 2200 i found on yeur compuber.
B Senpts
[} Hotieys A weinarme snd an el sddress sre condiguied.
H Shell extension
Advanced heere i 8 mergetool configuied tortonemge
Detailed
ﬁHa Theere is & difftocd configuned: kil
-
A Git Shell extensions regitered properly.
- F'ugrq,

Lini: fecds (sh) found on your computir,

Gat Extenaions is propery regi
Urikngwen 558 client configaared: CPogram Files\Gitusr bin'sshoeve.

The configured langusge is English.
[check sestings at startup (dsables sutomatically if all settings are coe ect]
Sarwe and resc
Changes on tha pelected page will be faved ntantly.
Therefoee the Cancel buttan does NOT revert sy changes masde. i L Y

iedthi| RTEU CE103 Week-3

CE103 Algorithms and Programming |

Configuration of GIT Extension (Windows) (2)

e |f you install git everything should be green and this configuration is stored on .gitconfig on your
home C:/Windows/Users/<user>/.gitconfig

% RTEU CE103 Week-3

55

CE103 Algorithms and Programming |

Configuration of GIT Extension (Windows) (3)

® You can use the following template and fix your settings. Git GUI edit this settings. But you can
also edit them manually.

% RTEU CE103 Week-3

56

10 CORtigUTration of GiT°Extension (Windows) (3)
C:/Windows/Users//.gitconfig

[core]
editor = \"C:/Program Files (x86)/GitExtensions/GitExtensions.exe\" fileeditor
autocrlf = true
quotePath = false
commitGraph = true
longpaths = true
[user]
email = xxxxxxx@gmail.com
name = XXXX XXXXXX
[filter "1fs"]
clean = git-1fs clean -- %f
smudge = git-1fs smudge -- %f
process = git-1fs filter-process
required = true
[pull]
rebase = false
[fetch]
prune = false
[rebase]
autoStash = false
[credential]
helper = manager
[diff]
guitool = kdiff3
[difftool "kdiff3"]
path = C:/Program Files/KDiff3/kdiff3.exe
cmd = \"C:/Program Files/KDiff3/kdiff3.exe\" \"$LOCAL\" \"$REMOTE\"
[merge]
guitool = tortoisemerge
[mergetool "tortoisemerge"]
path = C:/Program Files/TortoiseGit/bin/TortoiseGitMerge.exe
cmd = \"C:/Program Files/TortoiseGit/bin/TortoiseGitMerge.exe\" -base:\"$BASE\" -mine:\"$LOCAL\" -theirs:\"$REMOTE\" -merged:\"$MERGED\"
[receive]
advertisePushOptions = true

= [gc]

writeCommitGraph = true

R
et RTEU CE103 Week-3

CE103 Algorithms and Programming |

Configuration of GIT Extension (Windows) (4)

® Also in extension you can see similar settings

3¢ Settings - Config

| € fo find Settings source: (@) Effective << (O Local for current repository << (C) Global for all repositories
I Appearance User name |Ugur Coruh |
03 Revision links -
27 Build server integration | User email |ugur.coruh.tr@gmall.com |
-l Scripts Editer |"C:,"Program Files (x88)/GitExtensions/GitExtensions.exe” fileeditor “ ‘
1) Hotkeys
.. 8 Shell extension Mergetool |tor‘tmsemerge v|
g 4 ’;::‘:L:Ed Path to mergetool |C:f’ngram Files/TortoiseGit/bin/TortoiseGitMerge.exe ‘ Browse
o dP SSH Mergetool command |"C:/Program Files/TortoiseGit/bin/TortoiseGitMerge.exe” -base:"SBASE" -mine"SLOC Suggest
v AP Git
" Paths Difftool |keifr3 v
~fy Config Path to difftool [C:/Program Files/KDitf3/kdiff3.exe \ ez
A% Advanced
i Plugins Difftool command |"C:,"Program Files/KDiff3/kdiff3.exe” "SLOCAL" "SREMOTE" ‘ Suggest
Path to commit template | ‘ Browse
Line endings
(® Checkout Windows-style, commit Unix-style line endings (" core.autocrif is set to “true”)
(C) Checkout as-is, commit Unix-style line endings ("core.autocrlf” is set to "input”)
sty 5 p!
() Checkout as-is, cornmit as-is ("core.autocrlf” is set to "false")
() Mot set
Files content encoding ~ Configure
0K Cancel Apply

 —

R
ettt RTEU CE103 Week-3

CE103 Algorithms and Programming |

Configuration of GIT Extension (Windows) (5)

Samples

MergeTool

tortoisemerge

Path to mergetool

C:/Program Files/TortoiseGit/bin/TortoiseGitMerge.exe

Mergetool command

"C:/Program Files/TortoiseGit/bin/TortoiseGitMerge.exe" -base:"$BASE" -mine:"$LOCAL" -theirs:"$REMOTE" -merged:"$MERGED"

RTEU CE103 Week-3

59

CE103 Algorithms and Programming |

Configuration of GIT Extension (Windows) (6)
Difftool

kdiff3

Path to difftool

C:/Program Files/KDiff3/kdiff3.exe

Difftool command

"C:/Program Files/KDiff3/kdiff3.exe" "$LOCAL" "$REMOTE"

RTEU CE103 Week-3

60

CE103 Algorithms and Programming |

Configuration of GIT Extension (Windows) (7)

* |f you see something as merge and diff tool is not configured, follow the similar settings above
on your computer. If you installed kdiff3, tortoisegit and extension you will have same diff and

merge tools

® This topic also help you

o @Git: How can | configure KDiff3 as a merge tool and diff tool? - Stack Overflow

 RTEU CE103 Week-3

61

https://stackoverflow.com/questions/33308482/git-how-can-i-configure-kdiff3-as-a-merge-tool-and-diff-tool

CE103 Algorithms and Programming |

Configuration of GIT Extension (Windows) (8)
e Merge, Diff and Shell Tool Configuration Missing.

X

Type to find Settings source: (@ Global for all repositories

v ¥ Git Extensions
£y General
Appearance

The checklist below validates the basic settings needed for Git Extensions to work properly.
@ Revision links

¢' Build server integration Git 2.33.1 is found on your computer.

B Scripts

E) Hotkeys A username and an email address are configured.

X Shell extension

I\ Advanced You need to configure merge tool in order to solve merge conflicts. Repair

Detailed

& SsH You should configure a diff tool to show file diff in external program Repair
® Git
@ Plugins Shell extensions registered properly.

Linux tools (sh) not found. To solve this problem you can set the correct path in settings. Repair

Git Extensions is properly registered.
Default SSH client, OpenSSH, will be used. (commandline window will appear on pull, push and clone operations)
The configured language is English.

[¥] Check settings at startup (disables automatically if all settings are correct)

Save and rescan

Changes on the selected page will be saved instantly.

0K Cancel Appl
Therefore the Cancel button does NOT revert any changes made. PRl

ettt RTEU CE103 Week-3

CE103 Algorithms and Programming |

Configuration of GIT Extension (Windows) (9)

® Open Git->Config, in your settings you will see path to mergetool and difftool will be empty fill
settings like that below find executables in your computer and copy paths to here.

% RTEU CE103 Week-3

63

CE103 Algorithms and Programming |

Configuration of GIT Extension (Windows) (10)

3 Settings - Config

e to find

v--x Git Extensions

@ General

7% Appearance

c-? Revision links

+" Build server integration
B Scripts

B Hotkeys

..} Shell extension
{ﬁ? Advanced

, Detailed

L. P s5H

v 4P Git

. Paths

4 Config

A Advanced

Plugins

Settings source: (@) Effective << (O Local for current repository << (C) Global for all repositories

RTEU CE103 Week-3

User name |Ugur Coruh |
User email |ugur.(oruh.tr@gmall.(om |
Editor |"C:;"Program Files (x86)/GitExtensions/GitExtensions.exe” fileeditor e ‘
Mergetool |tor‘tmsem erge ~ |
Path to mergetool |C:megram Files/TortoiseGit/bin/TortoiseGitMerge.exe ‘
Mergetool command |"C:,"Program Files/TortoiseGit/bin/TortoiseGitMerge.exe” -base:"SBASE" -mine"SLOC
Difftool [kaifr3 v
Path to difftool |C:/ngram Files/KDiff3/kdiff3.exe ‘
Difftool command |"C:fProgram Files/KDiff3/kdiff3.exe" "SLOCAL" "SREMOTE" ‘
Path to commit template | ‘
Line endings
(® Checkout Windows-style, commit Unix-style line endings (" core.autocrif" is set to "true")
() Checkout as-is, commit Unix-style line endings ("core.autocrlf is set to "input"”)
() Checkout as-is, cormmit as-is (" core.autocrlf" is set to "false")
(O Mot set
Files content encoding ~

oK Cancel

Browse

Suggest

Browse
Suggest

Browse

Configure

Apply

64

CE103 Algorithms and Programming |

Configuration of GIT Extension (Windows) (11)
e Also if we want to change and use different diff and merge tool then we can do this with gitbash

console as below

C:\Program Files\TortoiseGit\bin

* Find TortoiseGitIDiff.exe and TortoiseGitMerge.exe

i TUTLUSEILDIIITIE, EXE

7 TortoiseGitlDiff.exe

’j/i TertoiseGitMerge.exe
BB TrrtniceRitDlink eve

% RTEU CE103 Week-3

65

CE103 Algorithms and Programming |

Configuration of GIT Extension (Windows) (12)

e Copy path of this applications

C:\Program Files\TortoiseGit\bin\TortoiseGitMerge.exe
C:\Program Files\TortoiseGit\bin\TortoiseGitIDiff.exe

% RTEU CE103 Week-3

66

CE103 Algorithms and Programming |

Configuration of GIT Extension (Windows) (13)

® Open a gitbash console and run following commands

git
git
git
git
git
git

config
config
config

config
config
config

--global
--global
--global

--global
--global
--global

merge.tool TortoiseGitMerge
mergetool.TortoiseGitMerge.path "C:/Program Files/TortoiseGit/bin/TortoiseGitMerge.exe"
mergetool.TortoiseGitMerge.trustExitCode false

diff.guitool TortoiseGitIDiff
difftool.TortoiseGitIDiff.path "C:/Program Files/TortoiseGit/bin/TortoiseGitIDiff.exe"
difftool.TortoiseGitIDiff.trustExitCode false

This updates will be stored on .gitconfig

% RTEU CE103 Week-3

6/

Using the GIT Extension (1)
right click in the git folder and use Git Extension menu for operations.

for sample commit click "Commit"

CRAAKE VA

v w |
CMAEE MvA —
Sort by >
EPSOMN EasyPhoto Print = (3 Photo Print Growp by >
d Refresh
Quik sccess
B Desia grt Customize this folder [
Deskto
P 0 ChakeFiles
& Downloads al x4
s Documents . .
ALL_EUILID
t B Undo Delete Ctrl=Z
= Pictures & ALL_BUILIDw
- Wisual Studia'da ag
0 CMAKE lava & omake_instal
- P Git GUI Here
CSE103- Algarith . ChlakeCachy ot Bash
Her
SAGA Sunum & Chlakelistst etz
SAGA - ~
Sellas s HelloWorld %] Open with Code
*atus & HeloWerdji W Git Extenssons M| Open repositony
& OneDrrve 3 HelloWordds Give s0cess to b Comamit...
HellaWeild v il
A This PC t 1 Git Yync
& HelloWerld v i Puth
W 3D Objects — ¢ Git Commil -> “rmaster”... S s
& MAMIFESTM ¢ View shas
i . & Tortoietel &
B Desktop & ZERO_CHECH X View changes
Vaciaments & ZERC_CHECH Hgwa b
e o Iy Checkout branch...

& Downloads

J‘ Mgt

n .
Propemies ¢ Checkout nevisicn...

by, Create beanch
¢ Open with difftocl
Foe Fustary
s Reset file changes
= Add files

o Apply patch..,

—

— Lettings

RECEP TAYYIP
ERDOGAN

CE103 Algorithms and Programming |

Using the GIT Extension (1)
from opening window first stage related files and then write a good commit message

finally click commit to local. You can also commit&push it to remote repository.

| % Comemit - m % |

Ud | = Werking dwectory changes - ckage com.Hella;

pa
public class Hellokiorld
i

i CMakeFiles TargetDinect ories tet L

public static vold min{itrinsf] args)
= Chiskelists.tut {
| o HelloWorld.jar Systesm.out.println“Hello World...");
H

= HelloWerld,java

= HelleWorld.gin ¥
E's HelloWerld.vexproj
HelloWorld vexproj filters
= MANIFESTMF
L] ALL_BUILDVALL_BUIL Durecipe
4 aid BUILD/ALL_BUILD.tlog ALL_BUILD.asthuildstate
+ wid 4 BUILDtlog/ CustomBuild.cormmand. 1.t v
£ ¥
ﬁ ‘ﬁ‘ Unstage 3 Stage ﬁ
o ChlskeFiles 3190 re 1/ CMakeC Compiler.omaloe
= - .
& Commit L Commit message Diptions
W Commit & puth
[Amend Commit
#. FResetall changes
+; Reset unstaged changes
Committer Ugur Coruh <ugur.coruh.ti@gmail.com> b master Staged 177 Ln O Cal 0

 RTEU CE103 Week-3

69

GIT Installation Completed..

PR e P et

70

CE103 Algorithms and Programming |

Installation of gig (git ignore creator) (1)

Requirements

® Python >= 3.6

® |nternet connection

https://github.com/sloria/gig

pip install -U gig

A

 RTEU CE103 Week-3

71

https://github.com/sloria/gig

Installation of gig (git ignore creator) (2)

[= - = —

11croso Windows [Version 10.0.13041.5/72
(c) 2020 Microsoft Corporation. All rights reserved.

C:\Users\ugur.coruh>pip install -U gig
ting gig
own loading gig-1.1.0-py2.py3-none-any.whl (4.5 kB)
"ollecting docopt
Dnrn]nad1ng docopt-0.6.2.tar.gz (
xequirement already satisfied, k" ~ade: requests in c:\programdata\anaconda3‘lib\site-packages (from gig) (2.24
.0)
equirement already satisfied, Shipping upgrade: chardet<4,>=3.0.2 in c:\programdata'anaconda3\lib\site-packages (from r
equests->gig) (3.0.4)
~vqmrumvnt a]ae ady satisfied, skipping upgrade: idna<3,>=2.5 in c:\programdata\anaconda3\lib'\site-packages (from reques
Fs->gig) (2.10
~Equ$rement already satisfied, Jl1pp1nq upqrade: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in c:\programdata‘\anaconda3\lib
\s1te-packages {frﬂm reque&tﬁ—-1 (1.25.9)
rirement alr satisfied,] de: certifi>=2017.4.17 in c:\users\ugur.coruh\appdata‘roaming\python'python
ite- pa:kaL a5 om rquFJt'—*q1qW)
ding wt s for IHH tFrl paJa:
Building rhee] for) -P '
Created wheel f ot : F ename= ducwpf 0.6.2-pyZ2.py3-none-any.whl size=13709 sha256=51e63df3a050dc6d409f1b854eb4bb7

cache\wheels\56%ea\ 58\ ead137b087d%e326852a851351d1debf4adas
1ucéessfu115
[nstalling collected p
successfully installed

\ugur.coruh>gig --v

RECEP TAYYIP
ERDOGAN

CE103 Algorithms and Programming |

Installation of gig (git ignore creator) (3)

gig --version

 RTEU CE103 Week-3

/3

CE103 Algorithms and Programming |

Usage of gig (1)

List all gitignore templates

gig list
gig list -global

 RTEU CE103 Week-3

74

CE103 Algorithms and Programming |

Usage of gig (2)

Sample gitignore for C Java and Visual Studio

gig C Java VisualStudio > .gitignore

A

 RTEU CE103 Week-3

75

CE103 Algorithms and Programming |

Usage of gig (3)
There is a portal for this also by Toptal

egitignore.io - Create Useful .gitignore Files For Your Project

,gitignore. i0

iedthi| RTEU CE103 Week-3

76

https://www.toptal.com/developers/gitignore

CE103 Algorithms and Programming |

Usage of gig (4)
for samples you can check the following links.
https://github.com/github/gitignore

https://dev.to/shihanng/gig-a-gitignore-generator-opc

iedthi| RTEU CE103 Week-3

77

https://github.com/github/gitignore
https://dev.to/shihanng/gig-a-gitignore-generator-opc

CE103 Algorithms and Programming |

Configuration of GIT (1)

It is important to configure your Git because any commits that you
make are associated with your configuration details.

configuring Git with your username and email. In order to do that, type the following commands in
your Git Bash:

git config - - global user.name "<your name>"

git config - - global user.email "<your email>"

% RTEU CE103 Week-3

/8

Configuration of GIT (2)

A - " harsy R ke

79

CE103 Algorithms and Programming |

B
Eg%

205

=1

Configuration of GIT (3)

git configuration files are located on the user folder

€ -

» This PC ¢ ‘Windows (5] » Usen » ugurcoruh @

EPSON Easy Prota Pret « (D) Photo Pret

& Downdosds # *

H Documents #
= Pactures W
CMAKE v
CSE103-Algesith
SAGA Sunum
Syllabwus
& OneDreve
B Ths PC
B 3D Objects
Bl Deskiop

- [] | | i

| RTEU CE103 Week-3

Blare
LT T

#F Saved Garnes
- Semiches
hurdd
B videos
| badh_history
.| «cardpecilog
| cendare

Dt s dued

iR ISR 25 A
EM02030 1117 M
SFTOF20E 11200 P
A0 28 AM
MOS0 1148 F
1016/ 2020 426 AM
SO0 1045 M
SR 1151 PMA
W20 10 PM
EO142020 10:00 PM
E42020 953 PM
EAN52020 %56 PM
EANAF202059 PM
STAN0 Sudd PR

L
FidE FOIOET

File folder

Filé Poldsi

Fule Pl

Filé Folder
BASH_HISTORY File
Tt Desfarmend
CORARL File
QAMTTFROIECT File
it Conbg Source ...
EACKLIP File
GIT-FOR-WINDO..
KDFFIRC Fie
MNODE_FEPL_HIST...

Lare

4 K8
i KB
1K8
» KB
1kB
1kB
1KB
3 KB
QKB

Search ugur.coruh

80

Configuration of GIT (4)

If you want to view all your configuration details, use the command below

git config --list

PTGV L s T i s

Reshma/AppData/Local /Programs/Git/mi ngwe4 'ss1/certs/ca

JNv=astexXtpliain

"::-lf‘ .

I.-r

81

RECEP TAYYIP
ERDOGAN

Using .gitignore files with git-extension (1)

with gitignore file

CMAKE 1AVA

-

EPSON Easy Photo Pring = Q Photo Fring

s Chsick pcoess
I Desktop
4 Downleads
Documenits
= Pictures
0 CMAKE LA
CSE103-Algarith
S8R Sunum
Sullabus
@ OneDirie
B Thas PC
B 30 Obpects
I Desktop
Documents
& Downleads
B Music

Titemns

git

O CMekeFdes

0 x5

%y ALL BUILD vexproj

LD vorpegy filters

crnake_install.crnake
CMakeCache bt
CMakelists ot

& HelloWodd jar
HelleWedld jova

B HelloWedtd.sln

% HelleWedld venprey

1 Hellewe i woapeoy filters
FAANIFESTMF

sl ZERD_CHECK.vooproj

5] ZERD_CHECK.voxproj
Jgragnore

ifters

W Camemd

Waorking directory changes -

= .gitigrore

= HalloW,

= MANIFE
& ZERO_ CHECK.vexpre)
= ZERD_CHECK woxproifilters

@ | % Unstage

Cemmitter Ugur Corub <ugur.comuh.tr@ gmml.coms

¥ Stage

i

1 EEpEEREREE Generated by gip sesssssssgs
2

3 28 [=38

4

5 E Prerequisites
3 ®.d

7

& & Object files
5 See

18 ".ko

1 ".ehj

E) *.elf

13

14 # Linker output
15 =.ilk

16 *.map

17 " .enp

18

19 # Precompiled Headers
28 =.gch

21 *.pch

22

23 & Libraries

24 = 1lib

25 ".8

Commit Commit message -

Commit & push

[] &mend Comemat
s Resetall changes

& Reset unstaged changes

b master

Haged 011

82

Using .gitignore files with git-extension (2)

without gitignore file (just move to another location)

CRAAKE 1Ay

* Commit

EPS0OM Esy Photo Print = L} Fheto Print o Wadang drectory changel «

o Chaick secess o ALL_BUILDuwcxproj -
B Desictop _;II = ALL_BUILD. wexproy Silters
& Downloads B Hlaloofiles o crmsks_ingtallcmake

;-. o Q. & = ChiakeCache tat

Bocuments %l ALL_BULDwexprey -+ M CMakel Compiler.omake
= Pictures =1 ALL_BURLD o= R CMakel 0 ompder.crnake
@ CBRAKE LA ki_sfi - i CMakeletermmelompilen&Bl_C.ban

el ncie. et s MakeDetermmnelompileraBl_CI bin

CSE103-Algorith

ik

TEEL

SAGA Sunum .

i g HelloWorld.jar yitemn. cmake

Syllabus ., = Chiak CMakel Compilerid.c
HelloWeeld, jorva

- CompileridCene
i Orelrree _ _
- i CompilerkdCovexproj
1 This BC eldveRpy & CMsi CMakeC Compdernd ok |
)] HelloWorkd.vo proj. filters + CaenedertdC & 6.1 I ' " -
35y ! h crnpderdl fxe.e: nfdgurationsReld thiebInfo/ Configurat
B 30 Objects VAAMIFESTMF - Lo C iguration»Relil thDebInfoc/C igura
% TERD_CHECK vouproj = Chisi Clre [—
T ZERD_ CHECK wonprojfiters . L Clawn
- L Comy
o sk hke | *
w d 1 ik
. r : Brin Commat ot medtage =

il -+ Chlai bk
o= Chisi CMleke OO0 ompileridicpp Comma & puth
-+ i Compilerdd 0L ee "

[&mend Commat
{.-' W Unastsge - S'.age -!g' &3 Frevet g:l.;h.,ng“.
& Reset unstaged changes
T o

Committer Ugur Condh <ugur.coruhtrigmail. com> F master Staged ln O

—

RECEP TAYYIP
ERDOGAN

CE103 Algorithms and Programming |

Github Create Repo

ettt RTEU CE103 Week-3

Create a new repository
A Fepodntory contiard all progect Ml nchudeng the eadasn histary. Already hive § pidject repodatany eliewkens?
IPpDrT & repOEany.

Chiries * Ripaditary name *
8 sorvh- [rbeu_ceng o103 '
Great repaository names are short and memorable. Need inspiration? How about sturdy-spoon?

Drescription (egtional)

® [[] Pubkc
Wl Areereret o B inbEMEt Can B hs reposiinn. Vou choose whio GEn Dot
™ £ Private

Vo choode who Can 3o e Comiet B0 thes PepOSADTyY.

Initialize this repository with:
Skip this step if you're imposting an existing repositony.

B Add a README file

This i whene you Can weite & long description Tor your project. Leasm more

[Add .gitigrone

Choope whichs Fles not & teack fom 8 gt of templater. Lesm mane

Ll Choose a license
A leierie Leds otherd shal By L5 B L8218 with pod £0de. Leaim mang,

Thits will set B mats as the default branch. Change the default name in your settings.

84

CE103 Algorithms and Programming |

Initilization of Repo (not existing in github)
git init

® |n order to do that, we use the command git init.

® git init creates an empty Git repository or re-initializes an existing one. It basically creates a .git
directory with sub directories and template files. Running a git init in an existing repository will
not overwrite things that are already there. It rather picks up the newly added templates.

git init

% RTEU CE103 Week-3

85

git init

MINGWL c/reyshima repo

2 /c/reyshma_repo (master)
§ g1t It

Imtialized empty Gt repository in C:/reyshma_repo/.q1t/

[¢/reyshma_repo (master)

86

CE103 Algorithms and Programming |

Adding Initiated Repo Remote Upstream Repo (Link with Github Repo) (1)

e If you enter following command in the git folder you will see nothing

git remote -v

® That mean this repository do not have a remote upstream repository such as a github or
bitbucket repo.

% RTEU CE103 Week-3

87

Adding Initiated Repo Remote Upstream Repo (Link with Github Repo) (2)

Open the github and bitbucket repository and copy project path from

& C & github.com/ucoruh/ce103-sample-text # B 0 % e

3 Uygulamalar CERN Open Datz P... @ sentinelcustomersa... ‘ Paletton - The Colo.. [@) C# - DataGridView... @ Modamob Akill Mo.. @ LED series parallel a.. #% Inline Digital Hydro. @ SESSIZ JENERATOR... Androic

o Search or jump to... ! Pull requests Issues Marketplace Explore

@ ucoruh / ce103-sample-text ' Public

<> Code Issues Pull requests Actions Projects Security Insights

¥ main ~ P 3 branches > 0tags Go to file Add file ~ About

ce103-sample-
@ ucoruh Initial commit (3 Clone N
HTTPS SSH GitHub CLI OJ Readme
D READMEmd Inttps://github. com/ucoruh/cel@3-sample-te: \i:‘
Use Git or checkout with SVN using the web URL Releases
README.md

[,‘,] Open with GitHub Desktop

ce103-sample-text

Open with Visual Studio

Packages
ce’103-sample-text
) Download ZIP

RECEP TAYYIP
ERDOGAN

CE103 Algorithms and Programming |

Adding Initiated Repo Remote Upstream Repo (Link with Github Repo) (3)

you will see the following sample from github code button

https://github.com/ucoruh/cel@3-sample-text.git

% RTEU CE103 Week-3

89

CE103 Algorithms and Programming |

Adding Initiated Repo Remote Upstream Repo (Link with Github Repo) (4)

® Copy link and use with following command

git remote add origin https://github.com/ucoruh/cel@3-sample-text.git

® Then verify that you correctly updated remote repository setting with the following command

git remote -v

® You should see similar outputs

origin https://github.com/ucoruh/cel@3-sample-text.git (fetch)
origin https://github.com/ucoruh/cel@3-sample-text.git (push)

You can check the following sample
How to Add a New Remote to your Git Repo | Assembla Help Center

% RTEU CE103 Week-3

90

https://articles.assembla.com/en/articles/1136998-how-to-add-a-new-remote-to-your-git-repo

CE103 Algorithms and Programming |

Now you can push your local changes to remote repository

If you see a repository on Github then you can download with following operation

% RTEU CE103 Week-3

91

CE103 Algorithms and Programming |

Checkout a Repository (1)

create a working copy of a local repository by running the command

git clone /path/to/repository

 RTEU CE103 Week-3

92

CE103 Algorithms and Programming |

Checkout a Repository (2)

Sample clone command

git clone https://github.com/ucoruh/cel@3-sample-text.git

A

 RTEU CE103 Week-3

93

CE103 Algorithms and Programming |

Checkout a Repository (3)

when using a remote server, your command will be

git clone username@host:/path/to/repository

Checking Repository Status (1)

git status

The git status command lists all the modified files which are ready to be added to the local repository.

git status

% RTEU CE103 Week-3

94

Checking Repository Status (2)

git status
AR ek pE
| Jc/reyshma_repo (ma
» 01T status
on branch master
Initial commit

untracked files: |)
(use "git add <file>..." to include in what will be committed)

nothing added to commit but untracked files present (use "git add™ to track)

/jc/reyshma_repo (master)

CE103 Algorithms and Programming |

Adding Files to Index (1)

git add

This command updates the index using the current content found in the working tree
and then prepares the content in the staging area for the next commit.

git add <directory>
git add <file>
git add *

% RTEU CE103 Week-3

96

Adding Eiles.to.Index (1)

git add

Created two more files edureka3.txt and edureka4.txt. Let us add the files using the command git add
-A. This command will add all the files to the index which are in the directory but not updated in the
index yet.

BAIMNGWE: cfreyshma_repo

/c/reyshma_repo (master)

§ git add -A

TMa@E(Jc/reyshma_repo (master)
$ g1t status
On branch master

Initial commit

Cchanges to be committed:
Cuse "git rm --cached <file>...

L]

to unstage)

/c/reyshma_repo (master)

CE103 Algorithms and Programming |

Commit Changes (1)

git commit

* |t refers to recording snapshots of the repository at a given time. Committed
snapshots will never change unless done explicitly.

% RTEU CE103 Week-3

98

CE103 Algorithms and Programming |

Commit Changes (2)

git commit

® |et me explain how commit works with the diagram below

Commit

;

git commit > ®

D =

o

| B

® Here, C1 is the initial commit, i.e. the snapshot of the first change from which
another snapshot is created with changes named C2. Note that the master points
to the latest commit. Now, when | commit again, another snapshot C3 is created and now the

master points to C3 instead of C2.

% RTEU CE103 Week-3

99

Commit Changes (3)

git commit

e Commands:

git commit -m "<message>"

MINGWE/e/reyshma_repo

: ; \ } yshma_repo (master)
2 git commit -m"Adding f files"))
[master (root-commit) f 94] adding four files

Committer: Reshma_<Reshr B)
Your name and email address were configured automatically based

on your username and hostname. Please check that they are accurate.
You can suppress this message by setting them explicitly:

git config --global user.name "vour Name”
git config --global user.email you@example.com

after doing this, you may fix the identity used for this commit with:

git commit --amend --reset-author

4 files changed, 0 insertions(+), 0 deletions(-)
reate mode 100644 edurekal.txt

1 edureka
l644 ;
create mode 100644 edurekad.txt

Jc/reyshma_r

* Now, if you want to commit a snapshot of all the changes in the working directory at

once, you can use the command below 100

RECEP TAYYIP
ERDOGAN

CE103 Algorithms and Programming |

Commit Changes (4)

git commit

® Please check writing good commit messages article below
© How to write a good commit message - DEV Community

i RTEU CE103 Week-3 101

https://dev.to/chrissiemhrk/git-commit-message-5e21

CE103 Algorithms and Programming |

Writing Good Commit Messages (1)

type: subject
body (optional)

footer (optional)

A

i RTEU CE103 Week-3 102

CE103 Algorithms and Programming |

Writing Good Commit Messages (2)

1. Type

* feat - a new feature

* fix - a bug fix

® docs - changes in documentation

e style - everything related to styling

* refactor - code changes that neither fixes a bug or adds a feature
* test - everything related to testing

* chore - updating build tasks, package manager configs, etc

Y RTEU CE103 Week-3 103

CE103 Algorithms and Programming |

Writing Good Commit Messages (3)

2. Subject

This contains a short description of the changes made. It shouldn't be greater than 50 characters,
should begin with a capital letter and written in the imperative eg. Add instead of Added or Adds.

il RTEU CE103 Week-3 104

CE103 Algorithms and Programming |

Writing Good Commit Messages (4)

3. Body

The body is used to explain what changes you made and why you made them. Not all commits are

complex enough that they need a body, especially if you are working on a personal project alone, and
as such writing a body is optional.

A blank line between the body and the subject is required and each line should have no more than 72
characters.

RTEU CE103 Week-3 105

CE103 Algorithms and Programming |

Writing Good Commit Messages (5)

4 Footer

The footer is also optional and mainly used when you are using an issue tracker to reference the issue
ID.

RTEU CE103 Week-3 106

CET03Witing Good ‘Ceminit Miessages (6)

Example Commit Message

feat: Summarize changes in around 50 characters or less

More detailed explanatory text, if necessary. Wrap it to about 72
characters or so. In some contexts, the first line is treated as the
subject of the commit and the rest of the text as the body. The
blank line separating the summary from the body is critical (unless
you omit the body entirely); various tools like “log , “shortlog"
and "rebase’ can get confused if you run the two together.

Explain the problem that this commit is solving. Focus on why you
are making this change as opposed to how (the code explains that).
Are there side effects or other unintuitive consequences of this
change? Here's the place to explain them.

Further paragraphs come after blank lines.
- Bullet points are okay, too
- Typically a hyphen or asterisk is used for the bullet, preceded
by a single space, with blank lines in between, but conventions

vary here

If you use an issue tracker, put references to them at the bottom,
like this:

= Resolves: #123
iﬁ: See also: #456, #789
18| RTEU CE103 Week-3 107

CE103 Algorithms and Programming |

Writing Good Commit Messages (7)

® You can edit last commit with the following command

git commit -a -m "New commit message"

git commit --amend -m "New commit message"”

Y RTEU CE103 Week-3 108

Writing Good Commit Messages (7)

e Edit last commit output

T ey shems_iepe

- fc/reyshma_repo
% g1t add edureka$s.txt

fc/reyshma_repo
% g1t commit -a -m Adding more files”
Imaster 20b4t4d]| Adding more T1les
committer: Reshma <Reshma:

Your name and email a configured automatically basec
on your username and ame. Please check that they are
You can suppress this message b

¢ setting them explicitly:

{

onfig --global user.name "Your Name"

¢ al user.email youRexample.com

after doing this, you may fix the identity used for this commit with:

g1t commit --amend --reset-author

5 files changed, 4 insertions(+)
create mode 100644 edurekaS.txt

fc/reyshma_repo

109

CE103 Algorithms and Programming |

Add Files to Index (1)

| have created two more text files in my working directory viz. edureka5.txt and edureka6.txt but they
are not added to the index yet.

| am adding edurekab5.txt using the command

git add edureka5.txt

RTEU CE103 Week-3

110

Add Files to Index (2)

RGN ey el _rept

. fc/reyshma_repo
o1t add edureka5.txt

| fe/reyshma_repo
5 g1t commit -a -m Adding more ftiles”
[master 20b4t4d] Adding more T1les
Committer: Reshma <Reshma>
vour name and email address were configured automatically based
on your username and hostname. Please check that they are accurate.
You can suppress this message by setting them explicitly:
git config --gl "
git config --gl

obal user.name
2MAa

. _ _ i
our MName
L

i Y O
obal user.email youBexample.com

2r doing this, you may fix the identity used for this commit with:
git commit --amend --reset-author

changed, 4 insertions(+)
mode 100644 edurekas.txt

/fc/reyshma_repo

111

CE103 Algorithms and Programming |

Add Files to Index (3)

| have added edureka5.txt to the index explicitly but not edurekab6.txt and made changes in the
previous files. | want to commit all changes in the directory at once.

il RTEU CE103 Week-3 112

CE103 Algorithms and Programming |

Add Files to Index (4)

This command will commit a snapshot of all changes in the working directory but only includes
modifications to tracked files i.e. the files that have been added with git add at some point in
their history. Hence, edureka6.txt was not committed because it was not added to the index yet.
But changes in all previous files present in the repository were committed, i.e. edurekal.txt,

edureka?2.txt, edureka3.txt, edureka4.txt and edureka5.txt. Now | have made my desired commits
in my local repository

5598 RTEU CE103 Week-3 113

CE103 Algorithms and Programming |

Add Files to Index (5)

your local repository consists of three "trees" maintained by git. the first one is your Working
Directory which holds the actual files. the second one is the Index which acts as a staging area and
finally the HEAD which points to the last commit you've made

il RTEU CE103 Week-3 114

ammin

Add Files to Index (6)

feett| RTEU CE103 Week-3

CE103 Algorithms and Programming |

Update local repo before sending (1)

Fetching

If we have a remote Git branch, for example a branch on Github, it can happen that the remote
branch has commits that the current branch doesn't have! Maybe another branch got merged, your
colleague pushed a quick fix, and so on.

il RTEU CE103 Week-3 116

CE103 Algorithms and Programming |

Update local repo before sending (2)

Fetching

We can get these changes locally, by performing a git fetch on the remote branch! It doesn't affect

your local branch in any way: a fetch simply downloads new data.

?\‘ 117

Hesttt| RTEU CE103 Week-3

Update local repo before sending (3)

Fetching

Git | Fetching

Downloads content from a remote branch or
repository without modifying the local state.

118

CE103 Algorithms and Programming |

Update local repo before sending (4)

Fetching

We can now see all the changes that have been made since we last pushed! We can decide what we

want to do with the new data now that we have it locally.

?\- 119

Hesttt| RTEU CE103 Week-3

CE103 Algorithms and Programming |

Update local repo before sending (5)

Pulling

Although a git fetch is very useful in order to get the remote information of a branch, we can also
performa git pull . A git pull is actually two commands in one:a git fetch,and a git merge .
When we're pulling changes from the origin, we're first fetching all the data like we did with a git
fetch , after which the latest changes are automatically merged into the local branch

w
1% RTEU CE103 Week-3 10

Update local repo before sending (6)

Pulling

Git | Pulling

Downloads content from a remote branch/
repository like git fetch would do, and
automatically merges the new changes.

121

CE103 Algorithms and Programming |

Update local repo before sending (7)

Pulling

Awesome, we're now perfectly in sync with the remote branch and have all the latest changes!

il RTEU CE103 Week-3 122

CE103 Algorithms and Programming |

Update local repo before sending (8)

Pulling

git pull

Note that before you affect changes to the central repository you should always pull

changes from the central repository to your local repository to get updated with the work of all the
collaborators that have been contributing in the central repository. For that we will use the pull
command.

w
1% RTEU CE103 Week-3 e

CE103 Algorithms and Programming |

Update local repo before sending (9)

Pulling

git pull

But first, you need to set your central repository as origin using the command

git remote add origin <link of your central repository>

il RTEU CE103 Week-3 124

Update local repo before sending (10)

Pulling / git pull

. ' ' /c/reyshma_repo (master)
3 git remote add origin "https://github.com/reyshma/edureka-02.git"

/c/reyshma_repo (master)

Now that my origin is set

125

CE103 Algorithms and Programming |

Update local repo before sending (11)

Pulling / git pull

let us extract files from the origin using pull. For that use the command

git pull origin master

il RTEU CE103 Week-3 126

Update local repo before sending (12)

Pulling / git pull

MINGWEL. '/ reyshma reps itk E

[c/reyshma_repo (master)
5 g1t pull or1gin master
From httrﬂ:ffﬂtthub.cﬂmfreyshmafedureha-ﬂi
1

* branc master => FETCH_HEAD

Already up-to-date.

/c/reyshma_repo (master)

This command will copy all the files from the master branch of remote repository to your local
repository.

127

CE103 Algorithms and Programming |

Update local repo before sending (13)

Pulling / git pull

Since my local repository was already updated with files from master branch, hence the message
is Already up-to-date. Refer to the screen shot above

5598 RTEU CE103 Week-3 128

CE103 Algorithms and Programming |

Update local repo before sending (14)

Pulling / git pull

One can also try pulling files from a different branch using the following command:

git pull origin <branch-name>

il RTEU CE103 Week-3 129

CE103 Algorithms and Programming |

Update local repo before sending (15)

Pulling / git pull

Your local Git repository is now updated with all the recent changes. It is time you make changes
In the central repository by using the push command.

5598 RTEU CE103 Week-3 130

CE103 Algorithms and Programming |

Send Changes to Remote Repo (1)

git push

® This command transfers commits from your local repository to your remote repository. It is the
opposite of pull operation.

il RTEU CE103 Week-3 131

CE103 Algorithms and Programming |

Send Changes to Remote Repo (2)

git push

® Pulling imports commits to local repositories whereas pushing exports commits to the remote
repositories

il RTEU CE103 Week-3 132

CE103 Algorithms and Programming |

Send Changes to Remote Repo (3)

git push

® The use of git push is to publish your local changes to a central repository. After you've
accumulated several local commits and are ready to share them with the rest of the team,

Y RTEU CE103 Week-3 133

CE103 Algorithms and Programming |

Send Changes to Remote Repo (4)

git push

you can then push them to the central repository by using the following command

git push <remote>

il RTEU CE103 Week-3 134

CE103 Algorithms and Programming |

Send Changes to Remote Repo (5)

git push

This remote refers to the remote repository which had been set before using the pull command.

5598 RTEU CE103 Week-3 135

CE103 Algorithms and Programming |

Send Changes to Remote Repo (6)

git push

® This pushes the changes from the local repository to the remote repository along with all the
necessary commits and internal objects. This creates a local branch in the destination repository

Y RTEU CE103 Week-3 136

CE103 Algorithms and Programming |

Send Changes to Remote Repo (7)

git push

The below files are the files which we have already committed previously in the commit section and

they are all “push-ready”.

w
2 RTEU CE103 Week-3 o

CE103 Algorithms and Programming |

Send Changes to Remote Repo (8)

git push

| will use the command git push origin master to reflect these files in the master branch of my
central repository.

Y RTEU CE103 Week-3 138

CE103 Algorithms and Programming |

Send Changes to Remote Repo (9)

git push

Mame Date modified Type Size
it 10/28/2016 7:05 PM File folder

| | edul 10/28/2016 6:36 PM File 1KB
[| eduZ 10/28/2016 6:36 PM File 1KE
|| edurekal 10/28/2016 5:28 PM Text Document 1KE
|| edureka? 10/28/2016 5:28 PM Text Document 1 KB
| | edureka3 10/28/2016 5:28 PM Text Document 1KE
|| edurekad 10/28/2016 5:29 PM Text Document 1KE
|| edureka5 10/28/2016 5:29 PM Text Document 0 KB
| | edurekad 10/28/2016 6:57 PM Text Document O KE
|| README.md 10/28/2016 6:36 PM MDD File 1KB

ettt RTEU CE103 Week-3 159

Send Changes to Remote Repo (10)

git push

MINGWEL: e/ reyshma_repa

/c/reyshma_repo (master)

$ g1t push origin master
Username for "https://github.com’: reyshma
Counting objects: 11, done.

Delta compression using up to 4 threads.
Compressing objects: 100% (6/6), done.

Nriting ﬂbjectE: 100% (11/11), 881 bytes | 0 bytes/s, done.
otal 11 (delta 1), reused 0 (delta 0)
remote: Resolving deltas: 100% (1/1), done.
o https://github.com/reyshma/edureka-02.git
1fe7e2d. .fddf90a master -> master

/c/reyshma_repo (master)

140

CE103 Algorithms and Programming |

Send Changes to Remote Repo (11)

git push

hasts g
T 6 commit 1 bra 0 rebea 18 1 contribater
J e Hew pull request Create mew fle Uplosd files Finad file w
—_ st Braneh ‘masher of bt O P ey - — FrIil S ol N &
B README.md
edureka-02

559 RTEU CE103 Week-3 141

CE103 Algorithms and Programming |

Send Changes to Remote Repo (12)

git push

To prevent overwriting, Git does not allow push when it results in a non-fast forward merge in
the
destination repository.

559 RTEU CE103 Week-3 142

CE103 Algorithms and Programming |

Send Changes to Remote Repo (13)

git push

A non-fast forward merge means an upstream merge i.e. merging with ancestor or parent
branches from a child branch
To enable such merge, use the command below

git push <remote> -force

The above command forces the push operation even if it results in a non-fast
forward merge

i RTEU CE103 Week-3 143

CE103 Algorithms and Programming |

Branching (1)

git branch

Branches in Git are nothing but pointers to a specific commit. Git generally prefers to keep its
branches as lightweight as possible.

il RTEU CE103 Week-3 144

CE103 Algorithms and Programming |

Branching (2)

git branch

There are basically two types of branches viz.

® |ocal branches

® remote tracking branches.

i RTEU CE103 Week-3 145

CE103 Algorithms and Programming |

Branching (3)

git branch

A local branch is just another path of your working tree. On the other hand, remote tracking branches

have special purposes. Some of them are:

They link your work from the local repository to the work on central repository.

w
witH| RTEU CE103 Week-3 10

Branching (4)

git branch

They automatically detect which remote branches to get changes from, when you use git pull.

147

CE103 Algorithms and Programming |

Branching (5)

Learn current branch

You can check what your current branch is by using the command

git branch

The one mantra that you should always be chanting while branching is “branch early, and branch

often”

w
witH| RTEU CE103 Week-3 1

CE103 Algorithms and Programming |

Branching (6)

List Local Branches

git branch -1

 RTEU CE103 Week-3

149

CE103 Algorithms and Programming |

Branching (7)

List Remote Branches

git branch -r

 RTEU CE103 Week-3

150

CE103 Algorithms and Programming |

Branching (8)

List All Local and Remote Branches

git branch -a

i RTEU CE103 Week-3 151

CE103 Algorithms and Programming |

Branching (9)
Removing merged git branches
(after pull-request action in github)

If you merged your branch to base branch in github and delete it on github your local branch list will
not be updated by it self. You have to use the following command to update local and remote branch
lists. Use the following command to syncronize your repository with remote upstream repo.

git remote update --prune

il RTEU CE103 Week-3 152

https://splice.com/blog/cleaning-git-branches/

CE103 Algorithms and Programming |

Branching (10)

Create Branch

To create a new branch we use the following command

git branch <branch-name>

The diagram below shows the workflow when a new branch is created. When we create a new branch

it originates from the master branch itself.

w
witH| RTEU CE103 Week-3 o

CE103 Algorithms and Programming |

Branching (11)

Create Branch

git branch
newBranch

Master

> newBranch

H5% RTEU CE103 Week-3 154

CE103 Algorithms and Programming |

Branching (12)

Create Branch

Since there is no storage/memory overhead with making many branches, it is easier to
logically divide up your work rather than have big chunky branches

You can create and change branch with following command, create a new branch named "feature_x"
and switch to it using

git checkout -b feature_x

?\- 155

feett| RTEU CE103 Week-3

CE103 Algorithms and Programming |

Branching (13)

Change Branch

git checkout <branch-name>

Example:

git checkout master

A

5 RTEU CE103 Week-3 156

CE103 Algorithms and Programming |

Branching (14)

Change Branch

Mﬂster git checkout newBranch ; git commit *

newBranch

newBranch

Branching includes the work of a particular commit along with all parent commits. As you can
see in the diagram above, the newBranch has detached itself from the master and hence will

create a different path

H5% RTEU CE103 Week-3 157

CE103 Algorithms and Programming |

Branching (15)

Delete Local Branch

and delete the branch again, before doing this switch to main or master branches.

git branch -d feature_x

Y RTEU CE103 Week-3 158

CE103 Algorithms and Programming |

Branching (16)

Delete Remote Branch

and delete the branch again, before doing this switch to main or master branches.

git push origin --delete feature x

How to delete remote branches in Git

5 RTEU CE103 Week-3 159

https://www.educative.io/edpresso/how-to-delete-remote-branches-in-git

CE103 Algorithms and Programming |

Branching (17)

Push Specific Branch to Remote

A branch is not available to others unless you push the branch to your remote
repository

git push origin <branch>

Y RTEU CE103 Week-3 160

CE103 Algorithms and Programming |

Branching (18)

Update & Merge (Conflicts)

to update your local repository to the newest commit, execute
git pull

in your working directory to fetch and merge remote changes.

to merge another branch into your active branch (e.g. master), use

git merge <branch>

?\- 161

Hesttt| RTEU CE103 Week-3

CE103 Algorithms and Programming |

Branching (19)

Update & Merge (Conflicts)

in both cases git tries to auto-merge changes. Unfortunately, this is not always possible and results in
conflicts. You are responsible to merge those conflicts manually by editing the files shown by git. After

changing, you need to mark them as merged with

git add <filename>

before merging changes, you can also preview them by using

git diff <source_branch> <target branch>

Git merge conflicts | Atlassian Git Tutorial

w
witH| RTEU CE103 Week-3 102

https://www.atlassian.com/git/tutorials/using-branches/merge-conflicts

CE103 Algorithms and Programming |

Branching (20)

Update & Merge (Conflicts)

There are two types of merges Git can perform: a fast-forward, or a no-fast-forward

Y RTEU CE103 Week-3 163

CE103 Algorithms and Programming |

Branching (21)
Update & Merge (Conflicts)

Fast-forward (--ff)

A fast-forward merge can happen when the current branch has no extra commits compared to the
branch we're merging. Git is... lazy and will first try to perform the easiest option: the fast-forward!
This type of merge doesn't create a new commit, but rather merges the commit(s) on the branch

we're merging right in the current branch

w
1% RTEU CE103 Week-3 14

Branching (22)

Update & Merge (Conflicts)

Fast-forward (--ff)

Git | Merging (fast-forward)

Default behavior when the merging branch has all
of the current branch’s commits

Doesn't create a new commit, thus doesn’t modify
existing branches

165

CE103 Algorithms and Programming |

Branching (23)

Update & Merge (Conflicts)

Perfect! We now have all the changes that were made on the dev branch available on the master
branch. So, what's the no-fast-forward all about?

Y RTEU CE103 Week-3 166

CE103 Algorithms and Programming |

Branching (24)
Update & Merge (Conflicts)

No-fast-foward (--no-ff)

It's great if your current branch doesn't have any extra commits compared to the branch that you
want to merge, but unfortunately that's rarely the case! If we committed changes on the current
branch that the branch we want to merge doesn't have, git will perform a no-fast-forward merge.

il RTEU CE103 Week-3 167

CE103 Algorithms and Programming |

Branching (25)
Update & Merge (Conflicts)

No-fast-foward (--no-ff)

With a no-fast-forward merge, Git creates a new merging commit on the active branch. The commit's
parent commits point to both the active branch and the branch that we want to merge!

w
1% RTEU CE103 Week-3 108

Branching (26)

Update & Merge (Conflicts)

No-fast-foward (--no-ff)

Git | Merging (no-fast-forward)

Default behavior when current branch contains
commits that the merging branch doesn't have

Creates a new commit which merges

two branches together without modifying existing
branches

169

CE103 Algorithms and Programming |

Branching (27)
Update & Merge (Conflicts)

No-fast-foward (--no-ff)

No big deal, a perfect merge! The master branch now contains all the changes that we've made on
the dev branch.

w
2 RTEU CE103 Week-3 1o

CE103 Algorithms and Programming |

Branching (28)

Merge Conflicts

Although Git is good at deciding how to merge branches and add changes to files, it cannot always
make this decision all by itself This can happen when the two branches we're trying to merge have
changes on the same line in the same file, or if one branch deleted a file that another branch

modified, and so on.

?\- 171

feett| RTEU CE103 Week-3

CE103 Algorithms and Programming |

Branching (29)

Merge Conflicts

In that case, Git will ask you to help decide which of the two options we want to keep! Let's say that
on both branches, we edited the first line in the README.md .

w
2 RTEU CE103 Week-3 e

CE103 Algorithms and Programming |

Branching (30)

Merge Conflicts

1 # Hey! # Hello!

2

3 Welcome to the README of Welcome to the README of

4 this amazing project 4 this amazing project

If we want to merge dev into master , this will end up in a merge conflict: would you like the title to

& be Hello! oOr Hey! ?
fees| RTEU CE103 Week-3 173

Branching (31)

Merge Conflicts

When trying to merge the branches, Git will show you where the conflict happens. We can manually
remove the changes we don't want to keep, save the changes, add the changed file again, and

commit the changes

HEAD >>

README . md
1. # Hey!

174

CE103 Algorithms and Programming |

Branching (32)

Merge Conflicts

Although merge conflicts are often quite annoying, it makes total sense: Git shouldn't just assume

which change we want to keep

w
2 RTEU CE103 Week-3 '

CE103 Algorithms and Programming |

Branching (33)

Sample Conflict -1
participants.txt

(I added a hyphen before each name)

Finance team
Charles
Lisa
John
Stacy
Alexander

git init

git add .

~| git commit -m 'Initial list for finance team’

X
i RTEU CE103 Week-3 1o

CE103 Algorithms and Programming |

Branching (34)

Sample Conflict -1

Create a new branch called marketing using the following syntax

git checkout -b marketing

i RTEU CE103 Week-3 177

CE103 Algorithms and Programming |

Branching (35)

Sample Conflict -1

Now open the participants.txt file and start entering the names for the marketing department
below the finance team list, as follows: (I added a hyphen before each name)

Marketing team
Collins
Linda
Patricia
Morgan

git add .

git commit -m 'Unfinished list of marketing team'

git checkout master

RTEU CE103 Week-3 178

CE103 Algorithms and Programming |

Branching (36)

Sample Conflict -1

Open the file and delete the names Alexander and Stacy, save, close, add the changes, and commit
with the commit message Final list from Finance team

git add .

git commit -m "Final list from Finance team"

git checkout marketing

w
witH| RTEU CE103 Week-3 '

CE103 Algorithms and Programming |

Branching (37)

Sample Conflict -1

Open the file and add the fifth name, Amanda, for the marketing team, save, add, and commit

git add .

git commit -m "Initial 1list of marketing team"

names entered for marketing have been confirmed; now we need to merge these two lists, which can
be done by the following command

git merge master

Y RTEU CE103 Week-3 180

CE103 Algorithms and Programming |

Branching (38)

Sample Conflict -1

Auto-merging participants.txt
CONFLICT (content): Merge conflict in participants.txt
Automatic merge failed; fix conflicts and then commit the result.

i RTEU CE103 Week-3 181

CE103 Algorithms and Programming |

Branching (39)

Sample Conflict -1

Finance team
-Charles
-Lisa

-John
<<<<<<< HEAD
-Stacy
-Alexander

Marketing team
- Collins

- Linda

- Patricia

- Morgan

- Amanda

>>>>>>> master

 RTEU CE103 Week-3

182

CE103 Algorithms and Programming |

Branching (40)

Sample Conflict -1

<K<K
Changes made on the branch that is being merged into. In most cases,
this is the branch that I have currently checked out (i.e. HEAD).

The common ancestor version.

Changes made on the branch that is being merged in. This is often a
feature/topic branch.
>O555>>

Y RTEU CE103 Week-3 183

CE103 Algorithms and Programming |

Branching (41)

Sample Conflict -1

* remove them
® keep the lines you want to see in the final version of the file

¢ add and commit

il RTEU CE103 Week-3 184

CE103 Algorithms and Programming |

Branching (42)

Sample Conflict -1

If we want to save all to our version

git checkout --ours . # checkout our local version of all files
git add -u # mark all conflicted files as merged

git commit # commit the merge

5598 RTEU CE103 Week-3 185

CE103 Algorithms and Programming |

Branching (43)

Sample Conflict -1

If we want to discard all our revision

git checkout --theirs . # checkout remote version of all files
git add -u # mark all conflicted files as merged

git commit # commit the merge

5598 RTEU CE103 Week-3 186

CE103 Algorithms and Programming |

Branching (44)

Sample Conflict -2

You're going to pull some changes, but oops, you're not up to date:

git fetch origin

git pull origin master

Output

From ssh://gitosis@example.com:22/projectname
* branch master -> FETCH_HEAD

Updating a@30c3a..ee25213
error: Entry 'filename.c' not uptodate. Cannot merge.

w
witH| RTEU CE103 Week-3 o

CE103 Algorithms and Programming |

Branching (45)

Sample Conflict -2

So you get up-to-date and try again, but have a conflict:

git add filename.c

git commit -m "made some wild and crazy changes"”

git pull origin master

Output

From ssh://gitosis@example.com:22/projectname
* branch master -> FETCH_HEAD

Auto-merging filename.c
CONFLICT (content): Merge conflict in filename.c
Automatic merge failed; fix conflicts and then commit the result.

w
witH| RTEU CE103 Week-3 108

CE103 Algorithms and Programming |

Branching (46)

Sample Conflict -2

So you decide to take a look at the changes:

git mergetool

Oh my, oh my, upstream changed some things, but just to use my changes...no...their changes...

git checkout --ours filename.c
git checkout --theirs filename.c
git add filename.c

git commit -m "using theirs"

Y RTEU CE103 Week-3 189

CE103 Algorithms and Programming |

Branching (47)

Sample Conflict -2

And then we try a final time

git pull origin master

Output

From ssh://gitosis@example.com:22/projectname
* branch master -> FETCH_HEAD

Already up-to-date.

X
i RTEU CE103 Week-3 0

CE103 Algorithms and Programming |

Tagging

it's recommended to create tags for software releases. this is a known concept,
which also exists in SVN. You can create a new tag named 1.0.0 by executing

git tag 1.0.0 1b2eld63ff

the 1b2e1d63ff stands for the first 10 characters of the commit id you want to
reference with your tag. You can get the commit id by looking at the...

il RTEU CE103 Week-3 191

CE103 Algorithms and Programming |

Log (1)

in its simplest form, you can study repository history using.. git log

You can add a lot of parameters to make the log look like what you want. To see

only the commits of a certain author:

git log --author=bob

w
2 RTEU CE103 Week-3 e

CE103 Algorithms and Programming |

Log (2)

To see a very compressed log where each commit is one line:

git log --pretty=oneline

5 RTEU CE103 Week-3 193

CE103 Algorithms and Programming |

Log (3)

Or maybe you want to see an ASCII art tree of all the branches, decorated with the names of tags and
branches:

git log --graph --oneline --decorate --all

i RTEU CE103 Week-3 194

CE103 Algorithms and Programming |

Log (4)

See only which files have changed:

git log --name-status

5 RTEU CE103 Week-3 195

CE103 Algorithms and Programming |

Log (5)

git log --pretty=format:"%h%x09%an%x09%ad%x09%s"

5 RTEU CE103 Week-3 196

CE103 Algorithms and Programming |

Log (6)

These are just a few of the possible parameters you can use. For more, see

git log --help

i RTEU CE103 Week-3 197

CE103 Algorithms and Programming |

Replace Local Changes (1)

In case you did something wrong, which for sure never happens ;), you can replace
local changes using the command

git checkout -- <filename>

this replaces the changes in your working tree with the last content in HEAD.
Changes already added to the index, as well as new files, will be kept.

w
1% RTEU CE103 Week-3 198

CE103 Algorithms and Programming |

Replace Local Changes (2)

if you use dot (.) then all local changes will be rollbacked.

git checkout -- .

A

5 RTEU CE103 Week-3 199

CE103 Algorithms and Programming |

Replace Local Changes (3)

If you instead want to drop all your local changes and commits, fetch the latest
history from the server and point your local master branch at it like this

git fetch origin

git reset --hard origin/master

Y RTEU CE103 Week-3 200

CE103 Algorithms and Programming |

Reflog (1)

Everyone makes mistakes, and that's totally okay! Sometimes it may feel like you've corrupt your git
repo so badly that you just want to delete it entirely.

il RTEU CE103 Week-3 201

CE103 Algorithms and Programming |

Reflog (2)

git reflog Is a very useful command in order to show a log of all the actions that have been taken!
This includes merges, resets, reverts: basically any alteration to your branch.

il RTEU CE103 Week-3 202

Reflog (3)

200 bash

masters$

Git | Reflog

Shows the history of actions in the repo.

With this information, you can easily undo
changes that have been made to a repository
with git reset

203

CE103 Algorithms and Programming |

Reflog (4)

If you made a mistake, you can easily redo this by resetting HEAD based on the information that

reflog gives us!

Say that we actually didn't want to merge the origin branch. When we execute the git reflog
command, we see that the state of the repo before the merge is at HEAD@{1} . Let's perform a git
reset to point HEAD back to where it was on HEAD@{1} !

w
1% RTEU CE103 Week-3 -0

Reflog (5)

N N bash

ister$ git reflog

84e55 HEAD@{0}: commit(merge)

1 commit
et moving to head~1

) }: commit{initial)

We can see that the latest action has been pushed to the reflog

205

CE103 Algorithms and Programming |

Resetting (1)

It can happen that we committed changes that we didn't want later on. Maybe it'sa WIP commit, or
maybe a commit that introduced bugs! In that case, we can perform a git reset .

Y RTEU CE103 Week-3 206

CE103 Algorithms and Programming |

Resetting (2)

A git reset gets rid of all the current staged files and gives us control over where HEAD should
point to.

i RTEU CE103 Week-3 207

CE103 Algorithms and Programming |

Soft Reset (1)

A soft reset moves HEAD to the specified commit (or the index of the commit compared to HEAD),
without getting rid of the changes that were introduced on the commits afterward!

Y RTEU CE103 Week-3 208

CE103 Algorithms and Programming |

Soft Reset (2)

Let's say that we don't want to keep the commit 9e78i which added a style.css file, and we also
don't want to keep the commit @35cc which added an index.js file. However, we do want to keep
the newly added style.css and index.js file! A perfect use case for a soft reset.

w
witH| RTEU CE103 Week-3 7

Soft Reset (3)

bash

Git | Soft reset

Points HEAD to the specified commit

Keeps changes that have been made
since the new commit that HEAD points to, and
keeps the modifications in the working directory

210

CE103 Algorithms and Programming |

Soft Reset (2)

When typing git status, you'll see that we still have access to all the changes that were made on
the previous commits. This is great, as this means that we can fix the contents of these files and

commit them again later on!

?\- 211

Hesttt| RTEU CE103 Week-3

CE103 Algorithms and Programming |

Hard reset (1)

Sometimes, we don't want to keep the changes that were introduced by certain commits. Unlike a soft
reset, we shouldn't need to have access to them any more. Git should simply reset its state back to
where it was on the specified commit: this even includes the changes in your working directory and

staged files!

w
1% RTEU CE103 Week-3 ol

Hard reset (2)

Git has discarded the changes that were introduced on 9e78i and @35cc, and reset its state to

where it was on commit ec5be .

Git | Hard reset

Points HEAD to the specified commit

Discards changes that have been made
since the new commit that HEAD points to,
and deletes changes in working directory

213

CE103 Algorithms and Programming |

Reverting (1)

Another way of undoing changes is by performing a git revert . By reverting a certain commit, we
create a new commit that contains the reverted changes!

il RTEU CE103 Week-3 214

Reverting (2)

Let's say that ec5be added an index.js file. Later on, we actually realize we didn't want this change
introduced by this commit anymore! Let's revert the ec5be commit.

Perfect! Commit 9e78i reverted the changes that were introduced by the ecsbe commit.

Git | Reverting

Reverts the changes that commits introduce.
Creates a new commit with the reverted changes.

215

CE103 Algorithms and Programming |

Reverting (3)

Performing a git revert is very useful in order to undo a certain commit, without modifying the
history of the branch.

i RTEU CE103 Week-3 216

CE103 Algorithms and Programming |

Cherry-picking (1)

When a certain branch contains a commit that introduced changes we need on our active branch, we
can cherry-pick that command! By cherry-pick ing a commit, we create a new commit on our
active branch that contains the changes that were introduced by the cherry-pick ed commit.

il RTEU CE103 Week-3 217

Cherry-picking (1)

Say that commit 76d12 on the dev branch added a change to the index.js file that we want in our
master branch. We don't want the entire we just care about this one single commit!

master$

+ index.js

Git | Cherry-picking

Creates a new commit with the changes that
the cherry-picked commit introduced.

By default, Git will only apply the changes if
the current branch does not have these
changes in order to prevent an empty commit.

Cool, the master branch now contains the changes that 76d12 introduced

218

CE103 Algorithms and Programming |

Rebasing (1)

We just saw how we could apply changes from one branch to another by performing a git merge .
Another way of adding changes from one branch to another is by performing a git rebase .

il RTEU CE103 Week-3 219

Rebasing(2)
A git rebase copies the commits from the current branch, and puts these copied commits on top of

the specified branch.

Git | Rebasing

Copies commits on top of another branch
without creating a commit, which keeps a linear history

Changes the history as new hashes are created
for the copied commits

Perfect, we now have all the changes that were made on the master branch available on the dev

| Horanchl!

220

CE103 Algorithms and Programming |

Rebasing (3)

A big difference compared to merging, is that Git won't try to find out which files to keep and not
keep. The branch that we're rebasing always has the latest changes that we want to keep! You won't
run into any merging conflicts this way, and keeps a nice linear Git history.

w
1% RTEU CE103 Week-3 -

CE103 Algorithms and Programming |

Rebasing (4)

This example shows rebasing on the master branch. In bigger projects, however, you usually don't
want to do that. A git rebase changes the history of the project as new hashes are created for the

copied commits!

—
R
witH| RTEU CE103 Week-3 wee

CE103 Algorithms and Programming |

Rebasing (5)

Rebasing is great whenever you're working on a feature branch, and the master branch has been
updated. You can get all the updates on your branch, which would prevent future merging conflicts!

il RTEU CE103 Week-3 223

CE103 Algorithms and Programming |

Interactive Rebase (1)

Before rebasing the commits, we can modify them! We can do so with an interactive rebase. An
interactive rebase can also be useful on the branch you're currently working on, and want to modify

some commits.

w
witH| RTEU CE103 Week-3 e

CE103 Algorithms and Programming |

Interactive Rebase (2)

There are 6 actions we can perform on the commits we're rebasing:

* reword : Change the commit message

® edit : Amend this commit

® squash : Meld commit into the previous commit

® fixup : Meld commit into the previous commit, without keeping the commit's log message
® exec : Run a command on each commit we want to rebase

® drop : Remove the commit

il RTEU CE103 Week-3 225

Interactive Rebase (3)

Awesome! This way, we can have full control over our commits. If we want to remove a commit, we

can just drop It.

ER

< HEAD

Git | Interactive Rebase

Makes it possible to edit commits before rebasing

Creates new commits for the edited commits/
commits which history has been changed

Options: reword | edit | squash | fixup | exec |drop

226

Interactive Rebase (4)

e Or if we want to squash multiple commits together to get a cleaner history, no problem!

* Interactive rebasing gives you a lot of control over the commits you're trying to rebase, even on

the current active branch

Git | Interactive Rebase - Squash

Squashes previous commit into one commit
before rebasing.

master

227

CE103 Algorithms and Programming |

Useful Hints (1)
built-in git GUI

gitk

5598 RTEU CE103 Week-3 228

CE103 Algorithms and Programming |

Useful Hints (2)

use colorful git output

git config color.ui true

 RTEU CE103 Week-3

229

CE103 Algorithms and Programming |

Useful Hints (3)

show log on just one line per commit

git config format.pretty oneline

5 RTEU CE103 Week-3 230

CE103 Algorithms and Programming |

Useful Hints (4)

use interactive adding

git add -1

HEAD~2 // previous two commits fro head
HEAD~~ // previous two commits from head
HEAD@{ 2} // reflog order

18fe5 // previous commit hash

RTEU CE103 Week-3 231

CE103 Algorithms and Programming |

GIT Flow

Example diagram for a workflow similar to "Git-flow" :

Each tag represents a
production release

—» Tag: 1.0.0 Tag: 1.0.1 Tag: 1.1.0 Tag: 1.2.0

main

The main branch

Feel free to add notes here
about the process of merging
into the release branch.

1.1.0-releazse ————mm» .
The release branch

v

develop
The development or sprint branch Feel free to add notes here
about the process of merging

into the release branch.

JIRA-35-——examnple feature
Your feature branch

Feel free to add notes here about the process of merging feature branches.

A successful Git branching model » nvie.com

% RTEU CE103 Week-3

232

https://nvie.com/posts/a-successful-git-branching-model/

CE103 Algorithms and Programming |

Hotfix
Tag: 1.0.0 Tag: 1.1.0 Tag: 1.2.0

main

The main branch

JIRA-35--example-feature

Your feature branch Hotfix Commit

Reference:
-OneFlow — a Git branching model and workflow | End of Line Blog

* asimple git branching model - GitHub

Y RTEU CE103 Week-3 233

https://www.endoflineblog.com/oneflow-a-git-branching-model-and-workflow
https://gist.github.com/jbenet/ee6c9ac48068889b0912

CE103 Algorithms and Programming |

GIT Decision Tree

reference url

iedthi| RTEU CE103 Week-3

(T

[' So you have a mess)

\ on your hands

Yep

Spilit off a logical chunk

Do you care Looks lik k
What sort of An uncommitted enough about v oo hs LoD from your mess, stage it,
mess? mess your mess to es caught this i and commit it with a
keep it? intime good message.
I accidentally

committed something

My Git history
is ygly

git reset --hard

Has anyone
else seen
ir?

git revert {COMMITISH}

(I do not think it means what you think it means.)

What would
make this
better?

I forgot to.
add a file

How long Last
ago? commit

add {myfile}

Is it already
on GitHub?

It seems like

forever ago A better message.

commit --amend

Should we
remove
merge

commits?

Just throw the
last commit awa

git reset --hard HEADM

No, | need to

change history rebase origin/{branch}

Take a
mulligan?

We'll reset and
commit from
scratch

reset {COMMITISH}

Is anyone
down
stream?

We're going to
do an interactive
rebase!

Yes

Enough to git rebase -i {COMMITISH}

form a lynch
mob?

Do you hate
them?

DangerZone™

git push --force origin {branch}

Send them a note, let
‘em know you're
changing history.

It's safest to let it
stay ugly then

Still have a
mess?

No, we're
cool now

Everything is going
to be fine

234

http://justinhileman.info/article/git-pretty/git-pretty.png

CE103 Algorithms and Programming |

GIT in action (1)

—

GatHub GitHub
‘Yersion Control Vergion Contral .
= -D Cloud Jobs
Master f(]r‘:-u . D .
i
‘ QA Testing @ IrbErmE
Peer code
TENEWS
Pull down &
create local —_—
feature branch

& [@v0

Boa) Secinmy Paie

Load Balancer ‘
Load Balancer

.y ok atalyEn Budds User bug
Feature XYZ .
L‘\Lq\::'-:l) analysis Aulo Auto
o Pass ﬂb ﬂ'ﬁ-

Develop

0

GitHub
‘ersion Control Security

analysis
Create PR
Faul
Pul Request (§ @ i
aest ({3 S

—_—
Y
iedthi| RTEU CE103 Week-3 e3

CE103 Algorithms and Programming |

GIT in action (2)

Sprint -*."":':55}:5:3 w < 4] i
otart ' . 3 a End
: N —

Usar- Management Sprint-
Feadback Meaating Raviaw

0—0-0 >»O0—>0

. MNon-releasable build
O Releasable build

= Q Release
®

5598 RTEU CE103 Week-3 236

CE103 Algorithms and Programming |

GIT in action (3)

3 Cuslomer

3 Cuslomer

Program Management ™ oogam , Program
" Manager Manager
Cross-Project Project 1 Project 2 . Project n
i
2 Management Management Management
Program Project Project Project
Managers Leader i Leader T« Leader
% Program Team Team Team
Managers TY) Leader T} Leader \T}) Leader
Development Development Development
Release Release . Release . Release
Coordinator Manager Manager Manager
‘v, Developer v Developer v/, Developer
W AL . LY _i.-; . & _|_.‘. .
« -, Developer . Developer -, Developer
gl L _Lrl'l' & _I_-—I-

Ia Cusiorne

RTEU CE103 Week-3

237

CE103 Algorithms and Programming |

GIT in action (4)

o
0
m
5
m

Jenkins CODESHIP DATADOG

238

ettt RTEU CE103 Week-3

CE103 Algorithms and Programming |

GIT in action (5)

Manage Notify
T
3 Mooty
. — ahgnilal £
_— STV pager Ty
A e
e o . - e v Eaach
T
» ¥ Vicsortiom
- T — [- ST
Crwtr O i bmao 1 OpaGorsn
R 1R
] [R Ty) Poo Rocopanmgioy O a0 INETANA DMt
O Mewhelic. AFFDYNAMICS
spdunk - ETTTTEE
T T
o= OIS0
[B B % A S O s 4= slack
£ .) —
o e "y Terralorm Plossoos g)
- F S G L8GOWY ¥IRA R
A iam = e B m e e e [Eentss T (S)
- - s &- - L] At G Wb .
T -
e B e v | [— m
BT s TR ‘e
— bt o
O e @ @our 'm e e zendesk
- — s ‘:"‘_‘-‘ - —— B scaLve L
= | || e
Cz=m - — @ twitio
- witre = o aally

& harness

Contnuous Delivry As-A-Service
i b

Copyright © Hamess Inc. 2018

18 RTEU CE103 Week-3 239

CE103 Algorithms and Programming |
GIT in action (6)

PERIODIC TABLE OF DEVOPS TOOLS vz (vi)

Xebial 2bs

W Follow @xsbiniabs

240

]
?:
ettt RTEU CE103 Week-3

CE103 Algorithms and Programming |

" Event [; Time based release @ Event based release

N N N

Requirements
Elicitation
Analysis
Design
Implementation
Test
Project
Management

GIT in action (7)

-|.1
<
£
=1
)]
o
5
7]
—
[=
=
=13
o
=
[=
=
=8
o
o
~~
)
=
o
o
LLl
O
-
Ll
—
o

7

vYip

G

CE103 Algorithms and Programming |

Gource

https.//gource.io/

RTEU CE103 Week-3

T N
'.-.l

- &e
- l.'.i

...
...

B L

S
L]
LX)
L2
-
.-‘
.
'.-‘

-
200 ..'..]

242

https://gource.io/

CE103 Algorithms and Programming |

Review GIT with GitMagic Standford Notes
Visit : https://crypto.stanford.edu/~blynn/gitmagic/book.html

i RTEU CE103 Week-3 243

https://crypto.stanford.edu/~blynn/gitmagic/book.html

CE103 Algorithms and Programming |

Basic Tricks

Rather than diving into a sea of Git commands, use these elementary examples to get your feet wet.
Despite their simplicity, each of them are useful. Indeed, in my first months with Git | never ventured

beyond the material in this chapter.

w
witH| RTEU CE103 Week-3 e

CE103 Algorithms and Programming |

Saving State

About to attempt something drastic? Before you do, take a snapshot of all files in the current
directory with:

git init
git add .

git commit -m "My first backup"

il RTEU CE103 Week-3 245

CE103 Algorithms and Programming |

Now if your new edits go awry, restore the pristine version:

git reset --hard

i RTEU CE103 Week-3 246

CE103 Algorithms and Programming |

To save the state again:

git commit -a -m "Another backup"

iedthi| RTEU CE103 Week-3 4

CE103 Algorithms and Programming |

Add, Delete, Rename

The above only keeps track of the files that were present when you first ran git add. If you add new
files or subdirectories, you'll have to tell Git:

git add readme.txt Documentation

il RTEU CE103 Week-3 248

CE103 Algorithms and Programming |

Similarly, if you want Git to forget about certain files:

git rm kludge.h obsolete.c

git rm -r incriminating/evidence/

Git deletes these files for you if you haven't already.

i RTEU CE103 Week-3 249

CE103 Algorithms and Programming |

Renaming a file is the same as removing the old name and adding the new name. There's also the
shortcut git mv which has the same syntax as the mv command. For example:

git mv bug.c feature.c

Y RTEU CE103 Week-3 250

CE1033ometimesiyourjustiwant to go back and forget about every change past a certain point because
they're all wrong. Then:

git log

shows you a list of recent commits, and their SHA1 hashes:

commit 76619881690d240ba334153047649b8b8111c664
Author: Bob <bob@example.com>
Date: Tue Mar 14 01:59:26 2000 -0800

Replace printf() with write().
commit 82f5ea346a2e651544956a8653c0f58dc151275c¢
Author: Alice <alice@example.com>

Date: Thu Jan 1 00:00:00 1970 +0000

Initial commit.

The first few characters of the hash are enough to specify the commit; alternatively, copy and paste
the entire hash. Type:

V| gi .
| R IEE {03 Wer 3 NaNd 766% 251

CE103 Algorithms and Programming |

Other times you want to hop to an old state briefly. In this case, type:

git checkout 82f5

This takes you back in time, while preserving newer commits. However, like time travel in a science-
fiction movie, if you now edit and commit, you will be in an alternate reality, because your actions are
different to what they were the first time around.

w
1% RTEU CE103 Week-3 e

CE103 Algorithms and Programming |

This alternate reality is called a branch, For now, just remember that

git checkout master

will take you back to the present. Also, to stop Git complaining, always commit or reset your changes
before running checkout.

Y RTEU CE103 Week-3 253

CE103 Algorithms and Programming |

To take the computer game analogy again:

® git reset --hard :load an old save and delete all saved games newer than the one just loaded.

® git checkout : load an old game, but if you play on, the game state will deviate from the newer
saves you made the first time around. Any saved games you make now will end up in a separate
branch representing the alternate reality you have entered.

il RTEU CE103 Week-3 254

CE103 Algorithms and Programming |

You can choose only to restore particular files and subdirectories by appending them after the
command:

git checkout 82f5 some.file another.file

Take care, as this form of checkout can silently overwrite files. To prevent accidents, commit before
running any checkout command, especially when first learning Git.

RTEU CE103 Week-3 255

CE103 Algorithms and Programming |

In general, whenever you feel unsure about any operation, Git command or not, first run git commit -

a.

Don't like cutting and pasting hashes? Then use:

git checkout :/"My first b"

to jJump to the commit that starts with a given message.

You can also ask for the 5th-last saved state:

git checkout master~5

w
witH| RTEU CE103 Week-3 0

CE103 Algorithms and Programming |

Reverting

In a court of law, events can be stricken from the record. Likewise, you can pick specific commits to

undo.
git commit -a
git revert 1b6d

will undo just the commit with the given hash. The revert is recorded as a new commit, which you can

confirm by running git log.

w
witH| RTEU CE103 Week-3 >

CE103 Algorithms and Programming |

Changelog Generation

Some projects require a changelog. Generate one by typing:

git log > Changelog

5 RTEU CE103 Week-3 258

http://en.wikipedia.org/wiki/Changelog

CE103 Algorithms and Programming |

Downloading Files

Get a copy of a project managed with Git by typing:

git clone git://server/path/to/files
For example, to get all the files | used to create this site:
git clone git://git.or.cz/gitmagic.git

We'll have much to say about the clone command soon.

w
2 RTEU CE103 Week-3 =

CE103 Algorithms and Programming |

The Bleeding Edge

If you've already downloaded a copy of a project using git clone, you can upgrade to the latest
version with:

git pull

Y RTEU CE103 Week-3 2600

CE103 Algorithms and Programming |

Instant Publishing

Suppose you've written a script you'd like to share with others. You could just tell them to download
from your computer, but if they do so while you're improving the script or making experimental
changes, they could wind up in trouble. Of course, this is why release cycles exist. Developers may
work on a project frequently, but they only make the code available when they feel it is presentable.

w
1% RTEU CE103 Week-3 -0

CE103 Algorithms and Programming |

To do this with Git, in the directory where your script resides:

git init

git add

git commit -m "First release"

i RTEU CE103 Week-3 262

CE103 Algorithms and Programming |

Then tell your users to run:

git clone your.computer:/path/to/script

to download your script.

This assumes they have ssh access. If not, run git daemon and tell your users to instead run:

git clone git://your.computer/path/to/script

Y RTEU CE103 Week-3 2603

CE103 Algorithms and Programming |

From now on, every time your script is ready for release, execute:

git commit -a -m "Next release”

and your users can upgrade their version by changing to the directory containing your script and

typing:

git pull

Your users will never end up with a version of your script you don’t want them to see.

w
witH| RTEU CE103 Week-3 o

CE103 Algorithms and Programming |

What Have | Done?

Find out what changes you've made since the last commit with:

git diff

5 RTEU CE103 Week-3 265

CE103 Algorithms and Programming |

Or since yesterday:

git diff "@{yesterday}"

5598 RTEU CE103 Week-3 266

CE103 Algorithms and Programming |

Or between a particular version and 2 versions ago:

git diff 1b6d "master~2"

i RTEU CE103 Week-3 267

CE103 Algorithms and Programming |

In each case the output is a patch that can be applied with git apply. Try also:

git whatchanged --since="2 weeks ago"

A

5 RTEU CE103 Week-3 208

CE103 Algorithms and Programming |

Often I'll browse history with qgit instead, due to its slick photogenic interface, or tig, a text-mode
interface that works well over slow connections. Alternatively, install a web server, run git
instaweb and fire up any web browser.

Y RTEU CE103 Week-3 209

http://sourceforge.net/projects/qgit
http://jonas.nitro.dk/tig/

Exercise
CE103 Algorithms and Programming |

Let A, B, C, D be four successive commits where B is the same as A except some files have been
removed. We want to add the files back at D. How can we do this?

There are at least three solutions. Assuming we are at D:

1. The difference between A and B are the removed files. We can create a patch representing this
difference and apply it:

git diff B A | git apply
2. Since we saved the files back at A, we can retrieve them:

git checkout A foo.c bar.h

3. We can view going from A to B as a change we want to undo:

git revert B

ﬁ Which chaige;is best? Whichever you prefer most. It is easy to get what you want with Git, and often 57

there are manv wave to aet it

CE103 Algorithms and Programming |

Cloning Around

In older version control systems, checkout is the standard operation to get files. You retrieve a bunch

of files in a particular saved state.

In Git and other distributed version control systems, cloning is the standard operation. To get files,
you create a clone of the entire repository. In other words, you practically mirror the central server.
Anything the main repository can do, you can do.

w
1% RTEU CE103 Week-3 o/

CE103 Algorithms and Programming |

Sync Computers

| can tolerate making tarballs or using rsync for backups and basic syncing. But sometimes | edit on
my laptop, other times on my desktop, and the two may not have talked to each other in between.

Initialize a Git repository and commit your files on one machine. Then on the other:

git clone other.computer:/path/to/files

to create a second copy of the files and Git repository. From now on,
git commit -a
git pull other.computer:/path/to/files HEAD

will pull in the state of the files on the other computer into the one you're working on. If you've
recently made conflicting edits in the same file, Git will let you know and you should commit again
after resolving them.

il RTEU CE103 Week-3 272

CE103 Algorithms and Programming |

Classic Source Control
Initialize a Git repository for your files:
git init
git add .

git commit -m "Initial commit"

i RTEU CE103 Week-3 273

CE103 Algorithms and Programming |

On the central server, initialize a bare repository in some directory:

mkdir proj.git

cd proj.git

git --bare init

touch proj.git/git-daemon-export-ok

A

i RTEU CE103 Week-3 274

CE103 Algorithms and Programming |

Start the Git daemon if necessary:

git daemon --detach # it may already be running

5598 RTEU CE103 Week-3 275

CE103 Algorithms and Programming |

For Git hosting services, follow the instructions to setup the initially empty Git repository. Typically
one fills in a form on a webpage.

Push your project to the central server with:

git push central.server/path/to/proj.git HEAD

il RTEU CE103 Week-3 276

CE103 Algorithms and Programming |

To check out the source, a developer types:

git clone central.server/path/to/proj.git

i RTEU CE103 Week-3 277

CE103 Algorithms and Programming |

After making changes, the developer saves changes locally:

git commit -a

i RTEU CE103 Week-3 278

CE103 Algorithms and Programming |

To update to the latest version:

git pull

5598 RTEU CE103 Week-3 279

CE103 Algorithms and Programming |

Any merge conflicts should be resolved then committed:

git commit -a

5 RTEU CE103 Week-3 280

CE103 Algorithms and Programming |

To check in local changes into the central repository:

git push

i RTEU CE103 Week-3 281

CE103 Algorithms and Programming |

If the main server has new changes due to activity by other developers, the push fails, and the
developer should pull the latest version, resolve any merge conflicts, then try again.

il RTEU CE103 Week-3 282

CE103 Algorithms and Programming |

Developers must have SSH access for the above pull and push commands. However, anyone can see

the source by typing:

git clone git://central.server/path/to/proj.git

The native git protocol is like HTTP: there is no authentication, so anyone can retrieve the project.
Accordingly, by default, pushing is forbidden via the git protocol.

w
witH| RTEU CE103 Week-3 o

CE103 Algorithms and Programming |

Secret Source

For a closed-source project, omit the touch command, and ensure you never create a file named git-
daemon-export-ok . The repository can no longer be retrieved via the git protocol; only those with SSH
access can see it. If all your repos are closed, running the git daemon is unnecessary because all
communication occurs via SSH.

w
1% RTEU CE103 Week-3 =

CE103 Algorithms and Programming |

Bare repositories

A bare repository is so named because it has no working directory; it only contains files that are
normally hidden away in the .git subdirectory. In other words, it maintains the history of a project,

and never holds a snapshot of any given version.

w
witH| RTEU CE103 Week-3 e

CE103 Algorithms and Programming |

A bare repository plays a role similar to that of the main server in a centralized version control system:
the home of your project. Developers clone your project from it, and push the latest official changes
to it. Typically it resides on a server that does little else but disseminate data. Development occurs in
the clones, so the home repository can do without a working directory.

Y RTEU CE103 Week-3 286

CE103 Algorithms and Programming |

Many Git commands fail on bare repositories unless the GIT_DIR environment variable is set to the
repository path, or the --bare option is supplied.

i RTEU CE103 Week-3 287

CE103 Algorithms and Programming |

Push versus Pull

Why did we introduce the push command, rather than rely on the familiar pull command? Firstly,
pulling fails on bare repositories: instead you must fetch, a command we later discuss.

Y RTEU CE103 Week-3 288

CE103 Algorithms and Programming |

But even if we kept a normal repository on the central server, pulling into it would still be
cumbersome. We would have to login to the server first, and give the pull command the network
address of the machine we're pulling from. Firewalls may interfere, and what if we have no shell access

to the server in the first place?

w
1% RTEU CE103 Week-3 7

CE103 Algorithms and Programming |

However, apart from this case, we discourage pushing into a repository, because confusion can ensue
when the destination has a working directory.

In short, while learning Git, only push when the target is a bare repository; otherwise pull.

Y RTEU CE103 Week-3 290

CE103 Algorithms and Programming |

Forking a Project

Sick of the way a project is being run? Think you could do a better job? Then on your server:

git clone git://main.server/path/to/files

i RTEU CE103 Week-3 291

CE103 Algorithms and Programming |

Next, tell everyone about your fork of the project at your server.

At any later time, you can merge in the changes from the original project with:

git pull

i RTEU CE103 Week-3 292

CE103 Algorithms and Programming |

Ultimate Backups

Want numerous tamper-proof geographically diverse redundant archives? If your project has many
developers, don’t do anything! Every clone of your code is effectively a backup. Not just of the current
state, but of your project’s entire history. Thanks to cryptographic hashing, if anyone's clone becomes
corrupted, it will be spotted as soon as they try to communicate with others.

w
1% RTEU CE103 Week-3 e

CE103 Algorithms and Programming |

If your project is not so popular, find as many servers as you can to host clones.

The truly paranoid should always write down the latest 20-byte SHA1 hash of the HEAD somewhere
safe. It has to be safe, not private. For example, publishing it in a newspaper would work well, because
it's hard for an attacker to alter every copy of a newspaper.

il RTEU CE103 Week-3 294

CE103 Algorithms and Programming |

Light-Speed Multitask

Say you want to work on several features in parallel. Then commit your project and run:

git clone . /some/new/directory

Thanks to hardlinking, local clones require less time and space than a plain backup.

You can now work on two independent features simultaneously.

w
witH| RTEU CE103 Week-3 -

http://en.wikipedia.org/wiki/Hard_link

CE103 Algorithms and Programming |

For example, you can edit one clone while the other is compiling. At any time, you can commit and
pull changes from the other clone:

git pull /the/other/clone HEAD

5 RTEU CE103 Week-3 296

CE103 Algorithms and Programming |

Guerilla Version Control

Are you working on a project that uses some other version control system, and you sorely miss Git?
Then initialize a Git repository in your working directory:

git init

git add .

git commit -m "Initial commit”

il RTEU CE103 Week-3 297

CE103 Algorithms and Programming |

then clone it:

git clone . /some/new/directory

5598 RTEU CE103 Week-3 298

CE103 Algorithms and Programming |

Now go to the new directory and work here instead, using Git to your heart's content. Once in a while,
you'll want to sync with everyone else, in which case go to the original directory, sync using the other
version control system, and type:

git add

git commit -m "Sync with everyone else"

Y RTEU CE103 Week-3 299

CE103 Algorithms and Programming |

Then go to the new directory and run:

git commit -a -m "Description of my changes"”

git pull

5 RTEU CE103 Week-3 300

CE103 Algorithms and Programming |

The procedure for giving your changes to everyone else depends on the other version control system.
The new directory contains the files with your changes. Run whatever commands of the other version
control system are needed to upload them to the central repository.

Y RTEU CE103 Week-3 301

CE103 Algorithms and Programming |

Subversion, perhaps the best centralized version control system, is used by countless projects. The git
svn command automates the above for Subversion repositories, and can also be used to export a Git
project to a Subversion repository.

5 RTEU CE103 Week-3 302

http://google-opensource.blogspot.com/2008/05/export-git-project-to-google-code.html

CE103 Algorithms and Programming |

Mercurial

Mercurial is a similar version control system that can almost seamlessly work in tandem with Git. With
the hg-git plugin, a Mercurial user can losslessly push to and pull from a Git repository.

Y RTEU CE103 Week-3 303

CE103 Algorithms and Programming |

Obtain the hg-git plugin with Git:
git clone git://github.com/schacon/hg-git.git
or Mercurial:

hg clone http://bitbucket.org/durind42/hg-git/

A

5 RTEU CE103 Week-3 304

CE103 Algorithms and Programming |

Sadly, | am unaware of an analogous plugin for Git. For this reason, | advocate Git over Mercurial for
the main repository, even if you prefer Mercurial.

With a Mercurial project, usually a volunteer maintains a parallel Git repository to accommodate Git
users, whereas thanks to the hg-git plugin, a Git project automatically accommodates Mercurial
users.

Y RTEU CE103 Week-3 305

CE103 Algorithms and Programming |

Although the plugin can convert a Mercurial repository to a Git repository by pushing to an empty
repository, this job is easier with the hg-fast-export.sh script, available from:

git clone git://repo.or.cz/fast-export.git
To convert, in an empty directory:

git init

hg-fast-export.sh -r /hg/repo

after adding the script to your $PATH .

Y RTEU CE103 Week-3 306

CE103 Algorithms and Programming |

Bazaar

We briefly mention Bazaar because it is the most popular free distributed version control system after
Git and Mercurial.

5 RTEU CE103 Week-3 307

CE103 Algorithms and Programming |

Bazaar has the advantage of hindsight, as it is relatively young; its designers could learn from mistakes

of the past, and sidestep minor historical warts.
Additionally, its developers are mindful of portability and interoperation with other version control

systems.

w
witH| RTEU CE103 Week-3 08

CE103 Algorithms and Programming |

A bzr-git plugin lets Bazaar users work with Git repositories to some extent.

The tailor program converts Bazaar repositories to Git repositories, and can do so incrementally,
while bzr-fast-export is well-suited for one-shot conversions.

Y RTEU CE103 Week-3 309

CE103 Algorithms and Programming |

Branch Wizardry

Instant branching and merging are the most lethal of Git's killer features.

Problem: External factors inevitably necessitate context switching. A severe bug manifests in the
released version without warning. The deadline for a certain feature is moved closer. A developer

whose help you need for a key section of the project is about to leave. In all cases, you must abruptly
drop what you are doing and focus on a completely different task.

w
1% RTEU CE103 Week-3 21

CE103 Algorithms and Programming |

Interrupting your train of thought can be detrimental to your productivity, and the more cumbersome
it is to switch contexts, the greater the loss. With centralized version control we must download a
fresh working copy from the central server. Distributed systems fare better, as we can clone the

desired version locally.

?\- 311

Hesttt| RTEU CE103 Week-3

CE103 Algorithms and Programming |

But cloning still entails copying the whole working directory as well as the entire history up to the
given point. Even though Git reduces the cost of this with file sharing and hard links, the project files
themselves must be recreated in their entirety in the new working directory.

il RTEU CE103 Week-3 312

CE103 Algorithms and Programming |

Solution: Git has a better tool for these situations that is much faster and more space-efficient than
cloning: git branch.

With this magic word, the files in your directory suddenly shapeshift from one version to another. This
transformation can do more than merely go back or forward in history. Your files can morph from the
last release to the experimental version to the current development version to your friend’s version
and so on.

Y RTEU CE103 Week-3 313

CE103 Algorithms and Programming |

The Boss Key

Ever played one of those games where at the push of a button (“the boss key”), the screen would
instantly display a spreadsheet or something? So if the boss walked in the office while you were
playing the game you could quickly hide it away?

RTEU CE103 Week-3 314

CE103 Algorithms and Programming |

In some directory:

echo "I'm smarter than my boss" > myfile.txt

git init

git add

git commit -m "Initial commit”

5 RTEU CE103 Week-3 315

CE103 Algorithms and Programming |

We have created a Git repository that tracks one text file containing a certain message. Now type:

git checkout -b boss # nothing seems to change after this

echo "My boss is smarter than me" > myfile.txt

git commit -a -m "Another commit"”

A

5 RTEU CE103 Week-3 316

CE103 Algorithms and Programming |

It looks like we've just overwritten our file and committed it. But it's an illusion. Type:

git checkout master # switch to original version of the file

and hey presto! The text file is restored. And if the boss decides to snoop around this directory, type:

git checkout boss # switch to version suitable for boss' eyes

You can switch between the two versions of the file as much as you like, and commit to each

independently.

®
witH| RTEU CE103 Week-3 o

CE103 Algorithms and Programming |

Dirty Work

Say you're working on some feature, and for some reason, you need to go back three versions and
temporarily put in a few print statements to see how something works. Then:

git commit -a

git checkout HEAD~3

Y RTEU CE103 Week-3 318

CE103 Algorithms and Programming |

Now you can add ugly temporary code all over the place. You can even commit these changes. When
you're done,

git checkout master

to return to your original work. Observe that any uncommitted changes are carried over.

Y RTEU CE103 Week-3 319

CE103 Algorithms and Programming |

What if you wanted to save the temporary changes after all? Easy:

git checkout -b dirty

and commit before switching back to the master branch. Whenever you want to return to the dirty
changes, simply type:

git checkout dirty

Y RTEU CE103 Week-3 320

CE103 Algorithms and Programming |

We touched upon this command in an earlier chapter, when discussing loading old states. At last we
can tell the whole story: the files change to the requested state, but we must leave the master branch.
Any commits made from now on take your files down a different road, which can be named later.

In other words, after checking out an old state, Git automatically puts you in a new, unnamed branch,
which can be named and saved with git checkout -b.

il RTEU CE103 Week-3 321

CE103 Algorithms and Programming |
Quick Fixes

You're in the middle of something when you are told to drop everything and fix a newly discovered
bug in commit 1béd... :

git commit -a

git checkout -b fixes 1béd
Then once you've fixed the bug:

git commit -a -m "Bug fixed"

git checkout master

and resume work on your original task. You can even merge in the freshly baked bugfix:

git merge fixes

il RTEU CE103 Week-3 322

CE103 Algorithms and Programming |

Merging

With some version control systems, creating branches is easy but merging them back together is
tough. With Git, merging is so trivial that you might be unaware of it happening.

Y RTEU CE103 Week-3 323

CE103 Algorithms and Programming |

We actually encountered merging long ago. The pull command in fact fetches commits and then
merges them into your current branch. If you have no local changes, then the merge is a fast forward,
a degenerate case akin to fetching the latest version in a centralized version control system. But if you
do have local changes, Git will automatically merge, and report any conflicts.

il RTEU CE103 Week-3 324

CE103 Algorithms and Programming |

Ordinarily, a commit has exactly one parent commit, namely, the previous commit. Merging branches
together produces a commit with at least two parents. This begs the question: what commit
does HEAD~10 really refer to? A commit could have multiple parents, so which one do we follow?

Y RTEU CE103 Week-3 325

CE103 Algorithms and Programming |

It turns out this notation chooses the first parent every time. This is desirable because the current
branch becomes the first parent during a merge; frequently you're only concerned with the changes
you made in the current branch, as opposed to changes merged in from other branches.

Y RTEU CE103 Week-3 326

CE103 Algorithms and Programming |

You can refer to a specific parent with a caret. For example, to show the logs from the second parent:

git log HEAD"2

A

i RTEU CE103 Week-3 327

CE103 Algorithms and Programming |

You may omit the number for the first parent. For example, to show the differences with the first
parent:

git diff HEADA

A

5 RTEU CE103 Week-3 328

CE103 Algorithms and Programming |

You can combine this notation with other types. For example:

git checkout 1b6d""2~10 -b ancient

starts a new branch “ancient” representing the state 10 commits back from the second parent of the
first parent of the commit starting with 1b6d.

Y RTEU CE103 Week-3 329

CE103 Algorithms and Programming |

Uninterrupted Workflow

Often in hardware projects, the second step of a plan must await the completion of the first step. A
car undergoing repairs might sit idly in a garage until a particular part arrives from the factory. A
prototype might wait for a chip to be fabricated before construction can continue.

w
1% RTEU CE103 Week-3 0

CE103 Algorithms and Programming |

Software projects can be similar. The second part of a new feature may have to wait until the first part
has been released and tested. Some projects require your code to be reviewed before accepting it, so
you might wait until the first part is approved before starting the second part.

Y RTEU CE103 Week-3 331

CE103 Algorithms and Programming |

Thanks to painless branching and merging, we can bend the rules and work on Part Il before Part | is
officially ready. Suppose you have committed Part | and sent it for review. Let's say you're in
the master branch. Then branch off:

git checkout -b part2

Y RTEU CE103 Week-3 332

CE103 Algorithms and Programming |

Next, work on Part I, committing your changes along the way. To err is human, and often you'll want
to go back and fix something in Part I. If you're lucky, or very good, you can skip these lines.

git checkout master # Go back to Part I.
fix_problem

git commit -a # Commit the fixes.
git checkout part2 # Go back to Part II.

git merge master # Merge in those fixes.

A

5 RTEU CE103 Week-3 333

CE103 Algorithms and Programming |

Eventually, Part | is approved:

git checkout master # Go back to Part I.

submit files # Release to the world!

git merge part2 # Merge in Part II.

git branch -d part2 # Delete "part2" branch.

iedthi| RTEU CE103 Week-3

334

CE103 Algorithms and Programming |

Now you're in the master branch again, with Part Il in the working directory.

5 RTEU CE103 Week-3 335

CE103 Algorithms and Programming |

It's easy to extend this trick for any number of parts. It's also easy to branch off retroactively: suppose
you belatedly realize you should have created a branch 7 commits ago. Then type:

git branch -m master part2 # Rename "master™ branch to "part2".

git branch master HEAD~7 # Create new "master", 7 commits upstream.

A

5 RTEU CE103 Week-3 336

CE103 Algorithms and Programming |

The master branch now contains just Part |, and the part2 branch contains the rest. We are in the
latter branch; we created master without switching to it, because we want to continue work

on part2 . This is unusual. Until now, we've been switching to branches immediately after creation, as
In:

git checkout HEAD~7 -b master # Create a branch, and switch to it.

RTEU CE103 Week-3

337

CE103 Algorithms and Programming |

Reorganizing a Medley

Perhaps you like to work on all aspects of a project in the same branch. You want to keep works-in-
progress to yourself and want others to see your commits only when they have been neatly
organized. Start a couple of branches:

git branch sanitized # Create a branch for sanitized commits.

git checkout -b medley # Create and switch to a branch to work in.

®
witH| RTEU CE103 Week-3 e

CE103 Algorithms and Programming |

Next, work on anything: fix bugs, add features, add temporary code, and so forth, committing often

along the way. Then:

git checkout sanitized

git cherry-pick medley™”

applies the grandparent of the head commit of the “medley” branch to the “sanitized” branch. With
appropriate cherry-picks you can construct a branch that contains only permanent code, and has
related commits grouped together.

w
1% RTEU CE103 Week-3 7

CE103 Algorithms and Programming |

Managing Branches

List all branches by typing:

git branch

By default, you start in a branch named “master”. Some advocate leaving the “master” branch
untouched and creating new branches for your own edits.

w
2 RTEU CE103 Week-3 0

CE103 Algorithms and Programming |

The -d and -m options allow you to delete and move (rename) branches. See git help branch.

A

i RTEU CE103 Week-3 341

CE103 Algorithms and Programming |

The "master” branch is a useful custom. Others may assume that your repository has a branch with
this name, and that it contains the official version of your project. Although you can rename or
obliterate the “master” branch, you might as well respect this convention.

il RTEU CE103 Week-3 342

CE103 Algorithms and Programming |

Temporary Branches

After a while you may realize you are creating short-lived branches frequently for similar reasons:
every other branch merely serves to save the current state so you can briefly hop back to an older
state to fix a high-priority bug or something.

Y RTEU CE103 Week-3 343

CE103 Algorithms and Programming |

It's analogous to changing the TV channel temporarily to see what else is on.

But instead of pushing a couple of buttons, you have to create, check out, merge, and delete
temporary branches. Luckily, Git has a shortcut that is as convenient as a TV remote control:

git stash

This saves the current state in a temporary location (a stash) and restores the previous state.

w
1% RTEU CE103 Week-3 e

CE103 Algorithms and Programming |

Your working directory appears exactly as it was before you started editing, and you can fix bugs, pull
in upstream changes, and so on. When you want to go back to the stashed state, type:

git stash apply # You may need to resolve some conflicts.

A

5 RTEU CE103 Week-3 345

CE103 Algorithms and Programming |

You can have multiple stashes, and manipulate them in various ways. See git help stash. As you may
have guessed, Git maintains branches behind the scenes to perform this magic trick.

Y RTEU CE103 Week-3 346

CE103 Algorithms and Programming |

Work How You Want

You might wonder if branches are worth the bother. After all, clones are almost as fast, and you can
switch between them with cd instead of esoteric Git commands.

il RTEU CE103 Week-3 347

CE103 Algorithms and Programming |

Consider web browsers. Why support multiple tabs as well as multiple windows? Because allowing
both accommodates a wide variety of styles. Some users like to keep only one browser window open,
and use tabs for multiple webpages. Others might insist on the other extreme: multiple windows with
no tabs anywhere. Others still prefer something in between.

Y RTEU CE103 Week-3 348

CE103 Algorithms and Programming |

Branching is like tabs for your working directory, and cloning is like opening a new browser window.
These operations are fast and local, so why not experiment to find the combination that best suits
you? Git lets you work exactly how you want.

Y RTEU CE103 Week-3 349

CE103 Algorithms and Programming |

Lessons of History

A consequence of Git's distributed nature is that history can be edited easily. But if you tamper with
the past, take care: only rewrite that part of history which you alone possess. Just as nations forever
argue over who committed what atrocity, if someone else has a clone whose version of history differs
to yours, you will have trouble reconciling when your trees interact.

Some developers strongly feel history should be immutable, warts and all. Others feel trees should be
made presentable before they are unleashed in public. Git accommodates both viewpoints. Like
cloning, branching, and merging, rewriting history is simply another power Git gives you. It is up to
you to use it wisely.

RTEU CE103 Week-3 350

CE103 Algorithms and Programming |

| Stand Corrected
Did you just commit, but wish you had typed a different message? Then run:

git commit --amend

to change the last message. Realized you forgot to add a file? Run git add to add it, and then run the
above command.

Want to include a few more edits in that last commit? Then make those edits and run:

git commit --amend -a

RTEU CE103 Week-3

351

CE103 Algorithms and Programming |

... And Then Some

Suppose the previous problem is ten times worse. After a lengthy session you've made a bunch of
commits. But you're not quite happy with the way they're organized, and some of those commit
messages could use rewording. Then type:

git rebase -i HEAD~10

and the last 10 commits will appear in your favourite $EDITOR. A sample excerpt:

pick 5c6eb73 Added repo.or.cz link
pick a311la64 Reordered analogies in "Work How You Want"

pick 100834f Added push target to Makefile

Y RTEU CE103 Week-3 352

CE103 Algorithms and Programming |

Older commits precede newer commits in this list, unlike the 1og command. Here, 5c6eb73 is the
oldest commit, and 100834f is the newest. Then:

¢ Remove commits by deleting lines. Like the revert command, but off the record: it will be as if the
commit never existed.
® Reorder commits by reordering lines.
® Replace pick with:
© edit to mark a commit for amending.
o reword to change the log message.
© squash to merge a commit with the previous one.

© fixup to merge a commit with the previous one and discard the log message.

Y RTEU CE103 Week-3 353

CE103 Algorithms and Programming |

For example, we might replace the second pick with squash :

pick 5c6eb73 Added repo.or.cz link

squash a311a64 Reordered analogies in "Work How You Want"

pick 100834f Added push target to Makefile

After we save and quit, Git merges a311a64 into 5c6eb73. Thus squash merges into the next commit
up: think “squash up”.

Y RTEU CE103 Week-3 354

CE103 Algorithms and Programming |

Git then combines their log messages and presents them for editing. The command fixup skips this
step; the squashed log message is simply discarded.

5 RTEU CE103 Week-3 355

CE103 Algorithms and Programming |

If you marked a commit with edit, Git returns you to the past, to the oldest such commit. You can
amend the old commit as described in the previous section, and even create new commits that

belong here. Once you're pleased with the “retcon”, go forward in time by running:

git rebase --continue

Git replays commits until the next edit, or to the present if none remain.

w
1% RTEU CE103 Week-3 e

CE103 Algorithms and Programming |

You can also abandon the rebase with:

git rebase --abort

iedthi| RTEU CE103 Week-3 3/

CE103 Algorithms and Programming |

So commit early and commit often: you can tidy up later with rebase.

5 RTEU CE103 Week-3 358

CE103 Algorithms and Programming |

Local Changes Last

You're working on an active project. You make some local commits over time, and then you sync with
the official tree with a merge. This cycle repeats itself a few times before you're ready to push to the

central tree.

w
witH| RTEU CE103 Week-3 7

CE103 Algorithms and Programming |

But now the history in your local Git clone is a messy jumble of your changes and the official changes.
You'd prefer to see all your changes in one contiguous section, and after all the official changes.

Y RTEU CE103 Week-3 360

CE103 Algorithms and Programming |

This is a job for git rebase as described above. In many cases you can use the --onto flag and avoid
Interaction.

Also see git help rebase for detailed examples of this amazing command. You can split commits. You
can even rearrange branches of a tree.

Take care: rebase is a powerful command. For complicated rebases, first make a backup with git clone.

Y RTEU CE103 Week-3 361

CE103 Algorithms and Programming |

% RTEU CE103 Week-3

Rewriting History

Occasionally, you need the source control equivalent of airbrushing people out of official photos,
erasing them from history in a Stalinesque fashion. For example, suppose we intend to release a
project, but it involves a file that should be kept private for some reason. Perhaps | left my credit card
number in a text file and accidentally added it to the project. Deleting the file is insufficient, for the

file can be accessed from older commits.

We must remove the file from all commits:

git filter-branch --tree-filter 'rm top/secret/file' HEAD

362

CE103 Algorithms and Programming |

See git help filter-branch, which discusses this example and gives a faster method. In general, filter-
branch lets you alter large sections of history with a single command.

Afterwards, the .git/refs/original directory describes the state of affairs before the operation.
Check the filter-branch command did what you wanted, then delete this directory if you wish to run
more filter-branch commands.

Lastly, replace clones of your project with your revised version if you want to interact with them later.

RTEU CE103 Week-3 363

CE103 Algorithms and Programming |

Making History

Want to migrate a project to Git? If it's managed with one of the more well-known systems, then
chances are someone has already written a script to export the whole history to Git.

Y RTEU CE103 Week-3 364

CE103 Algorithms and Programming |

Otherwise, look up git fast-import, which reads text input in a specific format to create Git history
from scratch. Typically a script using this command is hastily cobbled together and run once,
migrating the project in a single shot.

Y RTEU CE103 Week-3 365

CE103 Algorithms and Programming |
As an example, paste the following listing into temporary file, such as /tmp/history :

commit refs/heads/master

committer Alice <alice@example.com> Thu, 01 Jan 1970 00:00:00 +0000
data <<EOT

Initial commit.

EOT

M 100644 inline hello.c
data <<EOT
#tinclude <stdio.h>

int main() {
printf("Hello, world!\n");
return 0;

}
EOT

commit refs/heads/master

committer Bob <bob@example.com> Tue, 14 Mar 2000 01:59:26 -0800
data <<EOT

Replace printf() with write().

EOT

M 100644 inline hello.c
data <<EOT
#include <unistd.h>

int main() {
write(1, "Hello, world!\n", 14);
return 9;

¥

— EOT

Hestl RTEU CE103 Week-3 700

CE103 Algorithms and Programming |

Then create a Git repository from this temporary file by typing:

mkdir project; cd project; git init

git fast-import --date-format=rfc2822 < /tmp/history

A

5 RTEU CE103 Week-3 367

CE103 Algorithms and Programming |

You can checkout the latest version of the project with:

git checkout master .

The git fast-export command converts any repository to the git fast-import format, whose output
you can study for writing exporters, and also to transport repositories in a human-readable format.
Indeed, these commands can send repositories of text files over text-only channels.

Y RTEU CE103 Week-3 368

CE103 Algorithms and Programming |

Where Did It All Go Wrong?

You've just discovered a broken feature in your program which you know for sure was working a few

months ago. Argh! Where did this bug come from? If only you had been testing the feature as you
developed.

It's too late for that now. However, provided you've been committing often, Git can pinpoint the
problem:

git bisect start
git bisect bad HEAD

git bisect good 1béd

RTEU CE103 Week-3 369

CE103 Algorithms and Programming |

Git checks out a state halfway in between. Test the feature, and if it's still broken:

git bisect bad

If not, replace "bad" with "good". Git again transports you to a state halfway between the known
good and bad versions, narrowing down the possibilities.

Y RTEU CE103 Week-3 370

CE103 Algorithms and Programming |

After a few iterations, this binary search will lead you to the commit that caused the trouble. Once
you've finished your investigation, return to your original state by typing:

git bisect reset

il RTEU CE103 Week-3 371

CE103 Algorithms and Programming |

Instead of testing every change by hand, automate the search by running:

git bisect run my script

Git uses the return value of the given command, typically a one-off script, to decide whether a change
is good or bad: the command should exit with code 0 when good, 125 when the change should be
skipped, and anything else between 1 and 127 if it is bad. A negative return value aborts the bisect.

w
1% RTEU CE103 Week-3 o

CE103 Algorithms and Programming |

You can do much more: the help page explains how to visualize bisects, examine or replay the bisect
log, and eliminate known innocent changes for a speedier search.

Y RTEU CE103 Week-3 373

CE103 Algorithms and Programming |

Who Made It All Go Wrong?

Like many other version control systems, Git has a blame command:

git blame bug.c

which annotates every line in the given file showing who last changed it, and when. Unlike many
other version control systems, this operation works offline, reading only from local disk.

RTEU CE103 Week-3 374

CE103 Algorithms and Programming |

Multiplayer Git
Initially | used Git on a private project where | was the sole developer. Amongst the commands related

to Git's distributed nature, | needed only pull and clone so could | keep the same project in different

places.

Later | wanted to publish my code with Git, and include changes from contributors. | had to learn how
to manage projects with multiple developers from all over the world. Fortunately, this is Git's forte,
and arguably its raison d'étre.

Y RTEU CE103 Week-3 375

CE103 Algorithms and Programming |

Who Am I?

Every commit has an author name and email, which is shown by git log. By default, Git uses system
settings to populate these fields. To set them explicitly, type:

git config --global user.name "John Doe"

git config --global user.email johndoe@example.com

Omit the global flag to set these options only for the current repository.

Y RTEU CE103 Week-3 376

CE103 Algorithms and Programming |

Git Over SSH, HTTP

Suppose you have SSH access to a web server, but Git is not installed. Though less efficient than its
native protocol, Git can communicate over HTTP.

Download, compile and install Git in your account, and create a repository in your web directory:

GIT_DIR=proj.git git init
cd proj.git
git --bare update-server-info

cp hooks/post-update.sample hooks/post-update

RTEU CE103 Week-3 377

CE103 Algorithms and Programming |

For older versions of Git, the copy command fails and you should run:

chmod a+x hooks/post-update

5 RTEU CE103 Week-3 378

CE103 Algorithms and Programming |

Now you can publish your latest edits via SSH from any clone:

git push web.server:/path/to/proj.git master

5 RTEU CE103 Week-3 379

CE103 Algorithms and Programming |

and anybody can get your project with:

git clone http://web.server/proj.git

5 RTEU CE103 Week-3 380

CE103 Algorithms and Programming |

Git Over Anything

Want to synchronize repositories without servers, or even a network connection? Need to improvise
during an emergency? We've seen git fast-export and git fast-import can convert repositories to a
single file and back. We could shuttle such files back and forth to transport git repositories over any
medium, but a more efficient tool is git bundle.

The sender creates a bundle:

git bundle create somefile HEAD

then transports the bundle, somefile , to the other party somehow: email, thumb drive,
an xxd printout and an OCR scanner, reading bits over the phone, smoke signals, etc.

Y RTEU CE103 Week-3 381

https://crypto.stanford.edu/~blynn/gitmagic/book.html#makinghistory

CE103 Algorithms and Programming |

The receiver retrieves commits from the bundle by typing:

git pull somefile

The receiver can even do this from an empty repository. Despite its size, somefile contains the entire
original git repository.

Y RTEU CE103 Week-3 382

CE103 Algorithms and Programming |

In larger projects, eliminate waste by bundling only changes the other repository lacks. For example,
suppose the commit “1b6éd..." is the most recent commit shared by both parties:

git bundle create somefile HEAD ~1béd

Y RTEU CE103 Week-3 383

CE103 Algorithms and Programming |

If done frequently, one could easily forget which commit was last sent. The help page suggests using
tags to solve this. Namely, after you send a bundle, type:

git tag -f lastbundle HEAD

and create new refresher bundles with:

git bundle create newbundle HEAD ~lastbundle

Y RTEU CE103 Week-3 384

CE103 Algorithms and Programming |

Patches: The Global Currency

Patches are text representations of your changes that can be easily understood by computers and
humans alike. This gives them universal appeal. You can email a patch to developers no matter what
version control system they're using. As long as your audience can read their email, they can see your
edits. Similarly, on your side, all you require is an email account: there's no need to setup an online Git
repository.

Y RTEU CE103 Week-3 385

CE103 Algorithms and Programming |

Recall from the first chapter:

git diff 1bé6d > my.patch

5598 RTEU CE103 Week-3 386

CE103 Algorithms and Programming |

outputs a patch which can be pasted into an email for discussion. In a Git repository, type:

git apply < my.patch

A

5 RTEU CE103 Week-3 387

CE103 Algorithms and Programming |

to apply the patch.

In more formal settings, when author names and perhaps signatures should be recorded, generate
the corresponding patches past a certain point by typing:

git format-patch 1béd

Y RTEU CE103 Week-3 388

CE103 Algorithms and Programming |

The resulting files can be given to git-send-email, or sent by hand. You can also specify a range of
commits:

git format-patch 1béd..HEAD™"

5 RTEU CE103 Week-3 389

CE103 Algorithms and Programming |

On the receiving end, save an email to a file, then type:

git am < email.txt

This applies the incoming patch and also creates a commit, including information such as the author.

Y RTEU CE103 Week-3 390

CE103 Algorithms and Programming |

With a browser email client, you may need to click a button to see the email in its raw original form
before saving the patch to a file.

There are slight differences for mbox-based email clients, but if you use one of these, you're probably
the sort of person who can figure them out easily without reading tutorials!

Y RTEU CE103 Week-3 391

CE103 Algorithms and Programming |

Sorry, We've Moved

After cloning a repository, running git push or git pull will automatically push to or pull from the
original URL. How does Git do this? The secret lies in config options created with the clone. Let's take
a peek:

git config --list

The remote.origin.url option controls the source URL; “origin” is a nickname given to the source
repository. As with the “master” branch convention, we may change or delete this nickname but there
is usually no reason for doing so.

Y RTEU CE103 Week-3 392

CE103 Algorithms and Programming |

If the original repository moves, we can update the URL via:

git config remote.origin.url git://new.url/proj.git

The branch.master.merge option specifies the default remote branch in a git pull. During the initial
clone, it is set to the current branch of the source repository, so even if the HEAD of the source

repository subsequently moves to a different branch, a later pull will faithfully follow the original
branch.

RTEU CE103 Week-3 393

CE103 Algorithms and Programming |

This option only applies to the repository we first cloned from, which is recorded in the

option branch.master.remote . If we pull in from other repositories we must explicitly state which
branch we want:

git pull git://example.com/other.git master

The above explains why some of our earlier push and pull examples had no arguments.

RTEU CE103 Week-3

394

CE103 Algorithms and Programming |

Remote Branches

When you clone a repository, you also clone all its branches. You may not have noticed this because
Git hides them away: you must ask for them specifically. This prevents branches in the remote
repository from interfering with your branches, and also makes Git easier for beginners.

w
1% RTEU CE103 Week-3 7

CE103 Algorithms and Programming |

List the remote branches with:

git branch -r

You should see something like:

origin/HEAD
origin/master
origin/experimental

These represent branches and the HEAD of the remote repository, and can be used in regular Git
commands. For example, suppose you have made many commits, and wish to compare against the

last fetched version.

w
1% RTEU CE103 Week-3 e

CE103 Algorithms and Programming |

You could search through the logs for the appropriate SHA1 hash, but it's much easier to type:

git diff origin/HEAD

Or you can see what the “experimental” branch has been up to:

git log origin/experimental

Y RTEU CE103 Week-3 397

CE103 Algorithms and Programming |

Multiple Remotes

Suppose two other developers are working on our project, and we want to keep tabs on both. We can
follow more than one repository at a time with:

git remote add other git://example.com/some_repo.git

git pull other some_branch

Y RTEU CE103 Week-3 398

CE103 Algorithms and Programming |

Now we have merged in a branch from the second repository, and we have easy access to all
branches of all repositories:

git diff origin/experimental” other/some_branch~5

But what if we just want to compare their changes without affecting our own work?

Y RTEU CE103 Week-3 399

CE103 Algorithms and Programming |

In other words, we want to examine their branches without having their changes invade our working

directory. Then rather than pull, run:

git fetch # Fetch from origin, the default.

git fetch other # Fetch from the second programmer.

This just fetches histories. Although the working directory remains untouched, we can refer to any
branch of any repository in a Git command because we now possess a local copy.

®
witH| RTEU CE103 Week-3 o

CE103 Algorithms and Programming |

Recall that behind the scenes, a pull is simply a fetch then merge. Usually we pull because we want to
merge the latest commit after a fetch; this situation is a notable exception.

il RTEU CE103 Week-3 401

CE103 Algorithms and Programming |

See git help remote for how to remove remote repositories, ignore certain branches, and more.

A

i RTEU CE103 Week-3 402

CE103 Algorithms and Programming |

Preferences

For my projects, | like contributors to prepare repositories from which | can pull. Some Git hosting
services let you host your own fork of a project with the click of a button.

After | fetch a tree, | run Git commands to navigate and examine the changes, which ideally are well-
organized and well-described. | merge my own changes, and perhaps make further edits. Once

satisfied, | push to the main repository.

Though | infrequently receive contributions, | believe this approach scales well. See this blog post by

Linus Torvalds.

Staying in the Git world is slightly more convenient than patch files, as it saves me from converting
them to Git commits. Furthermore, Git handles details such as recording the author’s name and email
address, as well as the time and date, and asks the author to describe their own change.

w
1% RTEU CE103 Week-3 0

http://torvalds-family.blogspot.com/2009/06/happiness-is-warm-scm.html

CE103 Algorithms and Programming |

Git Grandmastery

By now, you should be able to navigate the git help pages and understand almost everything.
However, pinpointing the exact command required to solve a given problem can be tedious. Perhaps |
can save you some time: below are some recipes | have needed in the past.

il RTEU CE103 Week-3 404

CE103 Algorithms and Programming |

Source Releases

For my projects, Git tracks exactly the files I'd like to archive and release to users. To create a tarball of
the source code, | run:

git archive --format=tar --prefix=proj-1.2.3/ HEAD

Y RTEU CE103 Week-3 405

CE103 Algorithms and Programming |

Commit What Changed

Telling Git when you've added, deleted and renamed files is troublesome for certain projects. Instead,
you can type:

git add .
git add -u

Git will look at the files in the current directory and work out the details by itself. Instead of the
second add command, run git commit -a if you also intend to commit at this time. See git help
ignore for how to specify files that should be ignored.

Y RTEU CE103 Week-3 406

CE103 Algorithms and Programming |

You can perform the above in a single pass with:

git 1s-files -d -m -o -z | xargs -0 git update-index --add --remove

The -z and -0 options prevent ill side-effects from filenames containing strange characters. As this
command adds ignored files, you may want to use the -x or -x option.

il RTEU CE103 Week-3 407

CE103 Algorithms and Programming |

My Commit Is Too Big!

Have you neglected to commit for too long? Been coding furiously and forgotten about source
control until now? Made a series of unrelated changes, because that'’s your style?

Y RTEU CE103 Week-3 408

CE103 Algorithms and Programming |

No worries. Run:

git add -p

For each edit you made, Git will show you the hunk of code that was changed, and ask if it should be

part of the next commit. Answer with "y" or "n". You have other options, such as postponing the
decision; type "?" to learn more.

Y RTEU CE103 Week-3 409

CE103 Algorithms and Programming |

Once you're satisfied, type

git commit

to commit precisely the changes you selected (the staged changes). Make sure you omit the -a option,
otherwise Git will commit all the edits.

il RTEU CE103 Week-3 410

CE103 Algorithms and Programming |

What if you've edited many files in many places? Reviewing each change one by one becomes
frustratingly mind-numbing. In this case, use git add -i, whose interface is less straightforward, but
more flexible. With a few keystrokes, you can stage or unstage several files at a time, or review and

select changes in particular files only. Alternatively, run git commit --interactive which automatically
commits after you're done.

il RTEU CE103 Week-3 411

CE103 Algorithms and Programming |

The Index: Git's Staging Area

So far we have avoided Git's famous index, but we must now confront it to explain the above. The

index is a temporary staging area. Git seldom shuttles data directly between your project and its

history. Rather, Git first writes data to the index, and then copies the data in the index to its final
destination.

% RTEU CE103 Week-3

412

CE103 Algorithms and Programming |

For example, commit -a is really a two-step process. The first step places a snapshot of the current

state of every tracked file into the index. The second step permanently records the snapshot now in
the index. Committing without the -a option only performs the second step, and only makes sense
after running commands that somehow change the index, such as git add.

w
1% RTEU CE103 Week-3 e

CE103 Algorithms and Programming |

Usually we can ignore the index and pretend we are reading straight from and writing straight to the
history. On this occasion, we want finer control, so we manipulate the index. We place a snapshot of
some, but not all, of our changes into the index, and then permanently record this carefully rigged

snapshot.

w
1% RTEU CE103 Week-3 o

CE103 Algorithms and Programming |

Don’t Lose Your HEAD

The HEAD tag is like a cursor that normally points at the latest commit, advancing with each new
commit. Some Git commands let you move it. For example:

git reset HEAD~3

will move the HEAD three commits back. Thus all Git commands now act as if you hadn’t made those
last three commits, while your files remain in the present. See the help page for some applications.

w
1% RTEU CE103 Week-3 o

CE103 Algorithms and Programming |

But how can you go back to the future? The past commits know nothing of the future.

If you have the SHA1 of the original HEAD then:

git reset 1b6d

But suppose you never took it down? Don't worry: for commands like these, Git saves the original
HEAD as a tag called ORIG_HEAD, and you can return safe and sound with:

git reset ORIG_HEAD

il RTEU CE103 Week-3 416

CE103 Algorithms and Programming |

HEAD-hunting

Perhaps ORIG_HEAD isn't enough. Perhaps you've just realized you made a monumental mistake and
you need to go back to an ancient commit in a long-forgotten branch.

il RTEU CE103 Week-3 417

CE103 Algorithms and Programming |

By default, Git keeps a commit for at least two weeks, even if you ordered Git to destroy the branch
containing it. The trouble is finding the appropriate hash. You could look at all the hash values
in .git/objects and use trial and error to find the one you want. But there's a much easier way.

il RTEU CE103 Week-3 418

CE103 Algorithms and Programming |

Git records every hash of a commit it computes in .git/logs . The subdirectory refs contains the
history of all activity on all branches, while the file HEAD shows every hash value it has ever taken. The
latter can be used to find hashes of commits on branches that have been accidentally lopped off.

The reflog command provides a friendly interface to these log files. Try

git reflog

RTEU CE103 Week-3 419

CE103 Algorithms and Programming |

Instead of cutting and pasting hashes from the reflog, try:

git checkout "@{10 minutes ago}"

i RTEU CE103 Week-3 420

CE103 Algorithms and Programming |

Or checkout the 5th-last visited commit via:

git checkout "@{5}"

i RTEU CE103 Week-3 421

CE103 Algorithms and Programming |

See the “"Specifying Revisions” section of git help rev-parse for more.

You may wish to configure a longer grace period for doomed commits. For example:

git config gc.pruneexpire "30 days"

means a deleted commit will only be permanently lost once 30 days have passed and git gc is run.

You may also wish to disable automatic invocations of git gc:

git config gc.auto ©

in which case commits will only be deleted when you run git gc manually.

il RTEU CE103 Week-3 422

CE103 Algorithms and Programming |

Building On Git

In true UNIX fashion, Git's design allows it to be easily used as a low-level component of other
programs, such as GUI and web interfaces, alternative command-line interfaces, patch managements
tools, importing and conversion tools and so on. In fact, some Git commands are themselves scripts
standing on the shoulders of giants. With a little tinkering, you can customize Git to suit your

preferences.

w
1% RTEU CE103 Week-3 e

CE103 Algorithms and Programming |

One easy trick is to use built-in Git aliases to shorten your most frequently used commands:

git config --global alias.co checkout

git config --global --get-regexp alias # display current aliases

alias.co checkout

git co foo # same as 'git checkout foo'

i RTEU CE103 Week-3 424

CE103 Algorithms and Programming |

Another is to print the current branch in the prompt, or window title. Invoking

git symbolic-ref HEAD

i RTEU CE103 Week-3 425

CE103 Algorithms and Programming |

shows the current branch name. In practice, you most likely want to remove the "refs/heads/" and
ignore errors:

git symbolic-ref HEAD 2> /dev/null | cut -b 12-

The contrib subdirectory is a treasure trove of tools built on Git. In time, some of them may be
promoted to official commands. On Debian and Ubuntu, this directory lives at /usr/share/doc/git-

core/contrib .

il RTEU CE103 Week-3 426

CE103 Algorithms and Programming |

One popular resident is workdir/git-new-workdir . Via clever symlinking, this script creates a new
working directory whose history is shared with the original repository:

git-new-workdir an/existing/repo new/directory

The new directory and the files within can be thought of as a clone, except since the history is shared,
the two trees automatically stay in sync. There's no need to merge, push, or pull.

w
1% RTEU CE103 Week-3 el

CE103 Algorithms and Programming |

Daring Stunts

These days, Git makes it difficult for the user to accidentally destroy data. But if you know what you
are doing, you can override safeguards for common commands.

il RTEU CE103 Week-3 428

CE103 Algorithms and Programming |

Checkout: Uncommitted changes cause checkout to fail. To destroy your changes, and checkout a
given commit anyway, use the force flag:

git checkout -f HEAD”

i RTEU CE103 Week-3 429

CE103 Algorithms and Programming |

On the other hand, if you specify particular paths for checkout, then there are no safety checks. The
supplied paths are quietly overwritten. Take care if you use checkout in this manner.

Y RTEU CE103 Week-3 430

CE103 Algorithms and Programming |

Reset: Reset also fails in the presence of uncommitted changes. To force it through, run:

git reset --hard 1béd

A

i RTEU CE103 Week-3 431

CE103 Algorithms and Programming |

Branch: Deleting branches fails if this causes changes to be lost. To force a deletion, type:

git branch -D dead_branch # instead of -d

i RTEU CE103 Week-3 432

CE103 Algorithms and Programming |

Similarly, attempting to overwrite a branch via a move fails if data loss would ensue. To force a branch
move, type:

git branch -M source target # instead of -m

Unlike checkout and reset, these two commands defer data destruction. The changes are still stored in
the .git subdirectory, and can be retrieved by recovering the appropriate hash from .git/logs (see
"HEAD-hunting" above). By default, they will be kept for at least two weeks.

Y RTEU CE103 Week-3 433

CE103 Algorithms and Programming |

Clean: Some git commands refuse to proceed because they're worried about clobbering untracked
files. If you're certain that all untracked files and directories are expendable, then delete them
mercilessly with:

git clean -f -d

Next time, that pesky command will work!

il RTEU CE103 Week-3 434

CE103 Algorithms and Programming |

Preventing Bad Commits

Stupid mistakes pollute my repositories. Most frightening are missing files due to a forgotten git add.

Lesser transgressions are trailing whitespace and unresolved merge conflicts: though harmless, | wish
these never appeared on the public record.

If only | had bought idiot insurance by using a hook to alert me about these problems:

cd .git/hooks

cp pre-commit.sample pre-commit # Older Git versions: chmod +x pre-commit

w
witH| RTEU CE103 Week-3 o

CE103 Algorithms and Programming |

Now Git aborts a commit if useless whitespace or unresolved merge conflicts are detected.

5 RTEU CE103 Week-3 436

CE103 Algorithms and Programming |

For this guide, | eventually added the following to the beginning of the pre-commit hook to guard
against absent-mindedness:

if git 1s-files -o | grep '\.txt$'; then
echo FAIL! Untracked .txt files.
exit 1

fi

i RTEU CE103 Week-3 437

CE103 Algorithms and Programming |

Several git operations support hooks; see git help hooks. We activated the sample post-update hook
earlier when discussing Git over HTTP. This runs whenever the head moves. The sample post-update
script updates files Git needs for communication over Git-agnostic transports such as HTTP.

Y RTEU CE103 Week-3 438

CE103 Algorithms and Programming |

Secrets Revealed

We take a peek under the hood and explain how Git performs its miracles. | will skimp over details.
For in-depth descriptions refer to the user manual.

5 RTEU CE103 Week-3 439

http://schacon.github.com/git/user-manual.html

CE103 Algorithms and Programming |

Invisibility
How can Git be so unobtrusive? Aside from occasional commits and merges, you can work as if you

were unaware that version control exists. That is, until you need it, and that's when you're glad Git was

watching over you the whole time.

w
witH| RTEU CE103 Week-3 e

CE103 Algorithms and Programming |

Other version control systems force you to constantly struggle with red tape and bureaucracy.
Permissions of files may be read-only unless you explicitly tell a central server which files you intend
to edit. The most basic commands may slow to a crawl as the number of users increases. Work grinds
to a halt when the network or the central server goes down.

w
1% RTEU CE103 Week-3 o

CE103 Algorithms and Programming |

In contrast, Git simply keeps the history of your project in the .git directory in your working
directory. This is your own copy of the history, so you can stay offline until you want to communicate
with others. You have total control over the fate of your files because Git can easily recreate a saved

state from .git atany time.

w
1% RTEU CE103 Week-3 e

CE103 Algorithms and Programming |

Integrity

Most people associate cryptography with keeping information secret, but another equally important
goal is keeping information safe. Proper use of cryptographic hash functions can prevent accidental

or malicious data corruption.

w
witH| RTEU CE103 Week-3 e

CE103 Algorithms and Programming |

A SHA1 hash can be thought of as a unique 160-bit ID number for every string of bytes you'll
encounter in your life. Actually more than that: every string of bytes that any human will ever use over
many lifetimes.

8l RTEU CE103 Week-3 444

CE103 Algorithms and Programming |

As a SHA1 hash is itself a string of bytes, we can hash strings of bytes containing other hashes. This
simple observation is surprisingly useful: look up hash chains. We'll later see how Git uses it to
efficiently guarantee data integrity.

8l RTEU CE103 Week-3 445

CE103 Algorithms and Programming |

Briefly, Git keeps your data in the .git/objects subdirectory, where instead of normal filenames,
you'll find only IDs. By using IDs as filenames, as well as a few lockfiles and timestamping tricks, Git
transforms any humble filesystem into an efficient and robust database.

il RTEU CE103 Week-3 446

CE103 Algorithms and Programming |

Intelligence

How does Git know you renamed a file, even though you never mentioned the fact explicitly? Sure,
you may have run git mv, but that is exactly the same as a git rm followed by a git add.

8l RTEU CE103 Week-3 447

CE103 Algorithms and Programming |

Git heuristically ferrets out renames and copies between successive versions. In fact, it can detect
chunks of code being moved or copied around between files! Though it cannot cover all cases, it does
a decent job, and this feature is always improving. If it fails to work for you, try options enabling more
expensive copy detection, and consider upgrading.

il RTEU CE103 Week-3 448

CE103 Algorithms and Programming |

Indexing

For every tracked file, Git records information such as its size, creation time and last modification time
in a file known as the index. To determine whether a file has changed, Git compares its current stats
with those cached in the index. If they match, then Git can skip reading the file again.

w
1% RTEU CE103 Week-3 o

CE103 Algorithms and Programming |

Since stat calls are considerably faster than file reads, if you only edit a few files, Git can update its
state in almost no time.

A

5 RTEU CE103 Week-3 450

CE103 Algorithms and Programming |

We stated earlier that the index is a staging area. Why is a bunch of file stats a staging area? Because
the add command puts files into Git's database and updates these stats, while the commit command,
without options, creates a commit based only on these stats and the files already in the database.

il RTEU CE103 Week-3 451

CE103 Algorithms and Programming |

Git's Origins
This Linux Kernel Mailing List post describes the chain of events that led to Git. The entire thread is a
fascinating archaeological site for Git historians.

A

i RTEU CE103 Week-3 452

http://lkml.org/lkml/2005/4/6/121

CE103 Algorithms and Programming |

The Object Database

Every version of your data is kept in the object database, which lives in the
subdirectory .git/objects ; the other residents of .git/ hold lesser data: the index, branch names,

tags, configuration options, logs, the current location of the head commit, and so on. The object
database is elementary yet elegant, and the source of Git's power.

Each file within .git/objects is an object. There are 3 kinds of objects that concern
us: blob objects, tree objects, and commit objects.

Y RTEU CE103 Week-3 453

CE103 Algorithms and Programming |

Blobs

First, a magic trick. Pick a filename, any filename. In an empty directory:

echo sweet > YOUR_FILENAME

git init

git add .

find .git/objects -type f

You'll see .git/objects/aa/823728ea7d592acc69b36875a482cdf3fd5c8d .

8l RTEU CE103 Week-3 454

CE103 Algorithms and Programming |

How do | know this without knowing the filename? It's because the SHA1 hash of:

"blob™ SP "6" NUL "sweet" LF

IS aa823728ea7d592acc69b36875a482cdf3fd5c8d , where SP is a space, NUL is a zero byte and LF is a
linefeed. You can verify this by typing:

printf "blob 6\000sweet\n" | shalsum

il RTEU CE103 Week-3 455

CE103 Algorithms and Programming |

Git is content-addressable: files are not stored according to their filename, but rather by the hash of
the data they contain, in a file we call a blob object. We can think of the hash as a unique ID for a file’s
contents, so in a sense we are addressing files by their content. The initial blob 6 is merely a header
consisting of the object type and its length in bytes; it simplifies internal bookkeeping.

Y RTEU CE103 Week-3 456

CE103 Algorithms and Programming |

Thus | could easily predict what you would see. The file's name is irrelevant: only the data inside is
used to construct the blob object.

8l RTEU CE103 Week-3 457

CE103 Algorithms and Programming |

You may be wondering what happens to identical files. Try adding copies of your file, with any
filenames whatsoever. The contents of .git/objects stay the same no matter how many you add. Git
only stores the data once.

Y RTEU CE103 Week-3 458

CE103 Algorithms and Programming |

By the way, the files within .git/objects are compressed with zlib so you should not stare at them
directly. Filter them through zpipe -d, or type:

git cat-file -p aa823728ea7d592acc69b36875a482cdf3fd5c8d

which pretty-prints the given object.

Y RTEU CE103 Week-3 459

http://www.zlib.net/zpipe.c

CE103 Algorithms and Programming |

Trees

But where are the filenames? They must be stored somewhere at some stage. Git gets around to the
filenames during a commit:

git commit # Type some message.

find .git/objects -type f

A

5 RTEU CE103 Week-3 460

CE103 Algorithms and Programming |

You should now see 3 objects. This time | cannot tell you what the 2 new files are, as it partly depends
on the filename you picked. We'll proceed assuming you chose “rose”. If you didn't, you can rewrite
history to make it look like you did:

git filter-branch --tree-filter 'mv YOUR_FILENAME rose'

find .git/objects -type f

il RTEU CE103 Week-3 461

CE103 Algorithms and Programming |

Now you should see the file .git/objects/05/b217bb859794d08bboe4f7fo4cbdasb207fbe9 , because this
is the SHA1 hash of its contents:

"tree" SP "32" NUL "100644 rose" NUL ©xaa823728ea7d592acc69b36875a482cdf3fd5c8d

il RTEU CE103 Week-3 462

CE103 Algorithms and Programming |

Check this file does indeed contain the above by typing:

echo ©5b217bb859794d08bb9e4f7f04cbdadb207fbe9 | git cat-file --batch

With zpipe, it's easy to verify the hash:

zpipe -d < .git/objects/05/b217bb859794d08bb9e4f7f04cbdadb207fbed | shalsum

Hash verification is trickier via cat-file because its output contains more than the raw uncompressed
object file.

Y RTEU CE103 Week-3 463

CE103 Algorithms and Programming |

This file is a tree object: a list of tuples consisting of a file type, a filename, and a hash. In our example,
the file type is 100644, which means ‘rose is a normal file, and the hash is the blob object that
contains the contents of rose’. Other possible file types are executables, symlinks or directories. In
the last case, the hash points to a tree object.

il RTEU CE103 Week-3 464

CE103 Algorithms and Programming |

If you ran filter-branch, you'll have old objects you no longer need. Although they will be jettisoned
automatically once the grace period expires, we'll delete them now to make our toy example easier to
follow:

rm -r .git/refs/original

git reflog expire --expire=now --all

git prune

Y RTEU CE103 Week-3 465

CE103 Algorithms and Programming |

For real projects you should typically avoid commands like this, as you are destroying backups. If you
want a clean repository, it is usually best to make a fresh clone. Also, take care when directly
manipulating .git : what if a Git command is running at the same time, or a sudden power outage
occurs? In general, refs should be deleted with git update-ref -d, though usually it's safe to

remove refs/original by hand.

Y RTEU CE103 Week-3 466

CE103 Algorithms and Programming |

Commits

We've explained 2 of the 3 objects. The third is a commit object. Its contents depend on the commit
message as well as the date and time it was created. To match what we have here, we'll have to tweak
it a little:

git commit --amend -m Shakespeare # Change the commit message.

git filter-branch --env-filter 'export

GIT_AUTHOR_DATE="Fri 13 Feb 2009 15:31:30 -0800"

GIT_AUTHOR NAME="Alice"

GIT _AUTHOR _EMAIL="alice@example.com"

GIT COMMITTER DATE="Fri, 13 Feb 2009 15:31:30 -0800"

GIT _COMMITTER_NAME="Bob"

GIT_COMMITTER_EMAIL="bob@example.com"' # Rig timestamps and authors.
find .git/objects -type f

il RTEU CE103 Week-3 467

CE103 Algorithms and Programming |

You should now see .git/objects/49/993fe130c4b3bf24857a15d7969c396b7bc187 which is the SHAT
hash of its contents:

"commit 158" NUL

"tree 05b217bb859794d08bb9e4f7f04cbdadb207fbe9" LF
"author Alice <alice@example.com> 1234567890 -0800" LF
"committer Bob <bob@example.com> 1234567890 -0800" LF
LF

"Shakespeare" LF

Y RTEU CE103 Week-3 468

CE103 Algorithms and Programming |

As before, you can run zpipe or cat-file to see for yourself.

This is the first commit, so there are no parent commits, but later commits will always contain at least
one line identifying a parent commit.

Y RTEU CE103 Week-3 469

CE103 Algorithms and Programming |

Indistinguishable From Magic

Git's secrets seem too simple. It looks like you could mix together a few shell scripts and add a dash of
C code to cook it up in a matter of hours: a melange of basic filesystem operations and SHA1 hashing,
garnished with lock files and fsyncs for robustness. In fact, this accurately describes the earliest
versions of Git. Nonetheless, apart from ingenious packing tricks to save space, and ingenious
indexing tricks to save time, we now know how Git deftly changes a filesystem into a database perfect

for version control.

w
1% RTEU CE103 Week-3 470

CE103 Algorithms and Programming |

For example, if any file within the object database is corrupted by a disk error, then its hash will no
longer match, alerting us to the problem. By hashing hashes of other objects, we maintain integrity at
all levels. Commits are atomic, that is, a commit can never only partially record changes: we can only
compute the hash of a commit and store it in the database after we already have stored all relevant
trees, blobs and parent commits. The object database is immune to unexpected interruptions such as

power outages.

w
1% RTEU CE103 Week-3 o

CE103 Algorithms and Programming |

We defeat even the most devious adversaries. Suppose somebody attempts to stealthily modify the
contents of a file in an ancient version of a project. To keep the object database looking healthy, they
must also change the hash of the corresponding blob object since it's now a different string of bytes.

il RTEU CE103 Week-3 472

CE103 Algorithms and Programming |

This means they'll have to change the hash of any tree object referencing the file, and in turn change
the hash of all commit objects involving such a tree, in addition to the hashes of all the descendants
of these commits. This implies the hash of the official head differs to that of the bad repository.

il RTEU CE103 Week-3 473

CE103 Algorithms and Programming |

By following the trail of mismatching hashes we can pinpoint the mutilated file, as well as the commit
where it was first corrupted.

8l RTEU CE103 Week-3 474

CE103 Algorithms and Programming |

In short, so long as the 20 bytes representing the last commit are safe, it's impossible to tamper with a
Git repository.

A

8l RTEU CE103 Week-3 475

CE103 Algorithms and Programming |

What about Git's famous features? Branching? Merging? Tags? Mere detalls.

The current head is kept in the file .git/HEAD , which contains a hash of a commit object. The hash
gets updated during a commit as well as many other commands.

Branches are almost the same: they are files in .git/refs/heads . Tags too: they live
in .git/refs/tags but they are updated by a different set of commands.

RTEU CE103 Week-3

476

CE103 Algorithms and Programming |

Git Shortcomings

There are some Git issues I've swept under the carpet. Some can be handled easily with scripts and
hooks, some require reorganizing or redefining the project, and for the few remaining annoyances,
one will just have to wait. Or better yet, pitch in and help!

8l RTEU CE103 Week-3 477

CE103 Algorithms and Programming |

SHA1 Weaknesses

As time passes, cryptographers discover more and more SHA1 weaknesses. Already, finding hash
collisions is feasible for well-funded organizations. Within years, perhaps even a typical PC will have
enough computing power to silently corrupt a Git repository.

Hopefully Git will migrate to a better hash function before further research destroys SHAT.

RTEU CE103 Week-3 478

CE103 Algorithms and Programming |

Unrelated Files

If your project is very large and contains many unrelated files that are constantly being changed, Git
may be disadvantaged more than other systems because single files are not tracked. Git tracks
changes to the whole project, which is usually beneficial.

A solution is to break up your project into pieces, each consisting of related files. Use git
submodule if you still want to keep everything in a single repository.

w
1% RTEU CE103 Week-3 7

CE103 Algorithms and Programming |

Who's Editing What?

Some version control systems force you to explicitly mark a file in some way before editing. While this
is especially annoying when this involves talking to a central server, it does have two benefits:

1. Diffs are quick because only the marked files need be examined.

2. One can discover who else is working on the file by asking the central server who has marked it

for editing.

With appropriate scripting, you can achieve the same with Git. This requires cooperation from the
programmer, who should execute particular scripts when editing a file.

Y RTEU CE103 Week-3 480

CE103 Algorithms and Programming |

File History

Since Git records project-wide changes, reconstructing the history of a single file requires more work
than in version control systems that track individual files.

The penalty is typically slight, and well worth having as other operations are incredibly efficient. For
example, git checkout is faster than cp -a, and project-wide deltas compress better than
collections of file-based deltas.

w
1% RTEU CE103 Week-3 o

CE103 Algorithms and Programming |

Initial Clone

Creating a clone is more expensive than checking out code in other version control systems when
there is a lengthy history.
The initial cost is worth paying in the long run, as most future operations will then be fast and offline.

However, in some situations, it may be preferable to create a shallow clone with the --depth option.
This is much faster, but the resulting clone has reduced functionality.

w
1% RTEU CE103 Week-3 1ol

CE103 Algorithms and Programming |

Volatile Projects

Git was written to be fast with respect to the size of the changes. Humans make small edits from
version to version. A one-liner bugfix here, a new feature there, emended comments, and so forth. But
if your files are radically different in successive revisions, then on each commit, your history
necessarily grows by the size of your whole project.

RTEU CE103 Week-3

483

CE103 Algorithms and Programming |

There is nothing any version control system can do about this, but standard Git users will suffer more
since normally histories are cloned.

i RTEU CE103 Week-3 484

CE103 Algorithms and Programming |

The reasons why the changes are so great should be examined. Perhaps file formats should be
changed. Minor edits should only cause minor changes to at most a few files.

Y RTEU CE103 Week-3 485

CE103 Algorithms and Programming |

Or perhaps a database or backup/archival solution is what is actually being sought, not a version
control system. For example, version control may be ill-suited for managing photos periodically taken
from a webcam.

Y RTEU CE103 Week-3 486

CE103 Algorithms and Programming |

If the files really must be constantly morphing and they really must be versioned, a possibility is to use
Git in a centralized fashion. One can create shallow clones, which checks out little or no history of the
project. Of course, many Git tools will be unavailable, and fixes must be submitted as patches. This is
probably fine as it's unclear why anyone would want the history of wildly unstable files.

il RTEU CE103 Week-3 487

CE103 Algorithms and Programming |

Another example is a project depending on firmware, which takes the form of a huge binary file. The
history of the firmware is uninteresting to users, and updates compress poorly, so firmware revisions
would unnecessarily blow up the size of the repository.

Y RTEU CE103 Week-3 488

CE103 Algorithms and Programming |

In this case, the source code should be stored in a Git repository, and the binary file should be kept
separately. To make life easier, one could distribute a script that uses Git to clone the code, and rsync
or a Git shallow clone for the firmware.

Y RTEU CE103 Week-3 489

CE103 Algorithms and Programming |

Global Counter

Some centralized version control systems maintain a positive integer that increases when a new
commit is accepted. Git refers to changes by their hash, which is better in many circumstances.

Y RTEU CE103 Week-3 490

CE103 Algorithms and Programming |

But some people like having this integer around. Luckily, it's easy to write scripts so that with every
update, the central Git repository increments an integer, perhaps in a tag, and associates it with the
hash of the latest commit.

il RTEU CE103 Week-3 491

CE103 Algorithms and Programming |

Every clone could maintain such a counter, but this would probably be useless, since only the central
repository and its counter matters to everyone.

i RTEU CE103 Week-3 492

CE103 Algorithms and Programming |

Empty Subdirectories

Empty subdirectories cannot be tracked. Create dummy files to work around this problem.

5 RTEU CE103 Week-3 493

CE103 Algorithms and Programming |

The current implementation of Git, rather than its design, is to blame for this drawback. With luck,
once Git gains more traction, more users will clamour for this feature and it will be implemented.

il RTEU CE103 Week-3 494

CE103 Algorithms and Programming |

Initial Commit

A stereotypical computer scientist counts from 0, rather than 1. Unfortunately, with respect to
commits, git does not adhere to this convention. Many commands are unfriendly before the initial
commit. Additionally, some corner cases must be handled specially, such as rebasing a branch with a

different initial commit.

w
1% RTEU CE103 Week-3 P

CE103 Algorithms and Programming |

Git would benefit from defining the zero commit: as soon as a repository is constructed, HEAD would
be set to the string consisting of 20 zero bytes. This special commit represents an empty tree, with no
parent, at some time predating all Git repositories.

Y RTEU CE103 Week-3 496

CE103 Algorithms and Programming |

Then running git log, for example, would inform the user that no commits have been made yet,
instead of exiting with a fatal error. Similarly for other tools.

i RTEU CE103 Week-3 497

CE103 Algorithms and Programming |

Every initial commit is implicitly a descendant of this zero commit.

5 RTEU CE103 Week-3 498

CE103 Algorithms and Programming |

However there are some problem cases unfortunately. If several branches with different initial
commits are merged together, then rebasing the result requires substantial manual intervention.

Y RTEU CE103 Week-3 499

CE103 Algorithms and Programming |

Interface Quirks

For commits A and B, the meaning of the expressions "A..B" and "A...B" depends on whether the
command expects two endpoints or a range. See git help diff and git help rev-parse.

Y RTEU CE103 Week-3 500

CE103 Algorithms and Programming |

References (1)

Source Code Management | Atlassian Git Tutorial.

What is Source Code Management or Version Control ? - The Linux Juggernaut
https://www.edureka.co/blog/how-to-use-github/
https://www.edureka.co/blog/git-tutorial/

https://www.edureka.co/blog/install-git/

ettt RTEU CE103 Week-3 o0

https://www.atlassian.com/git/tutorials/source-code-management#:~:text=Source%20code%20management%20(SCM)%20is,also%20synonymous%20with%20Version%20control
https://www.linuxnix.com/what-is-source-code-management-or-version-control/
https://www.edureka.co/blog/how-to-use-github/
https://www.edureka.co/blog/git-tutorial/
https://www.edureka.co/blog/install-git/

CE103 Algorithms and Programming |

References (2)

git - the simple guide - no deep shit!

GitHub - rogerdudler/git-guide: git - the simple guide
https://dev.to/lydiahallie/cs-visualized-useful-git-commands-37p1#merge
How to write a good commit message - DEV Community

https.//blog.xebialabs.com/2016/06/14/periodic-table-devops-tools-v-2/

ettt RTEU CE103 Week-3 °02

https://rogerdudler.github.io/git-guide/index.html
https://github.com/rogerdudler/git-guide
https://dev.to/lydiahallie/cs-visualized-useful-git-commands-37p1
https://dev.to/chrissiemhrk/git-commit-message-5e21
https://blog.xebialabs.com/2016/06/14/periodic-table-devops-tools-v-2/

CE103 Algorithms and Programming |

References (3)

https://harness.io/2018/01/devops-tools-lifecycle-mesh-2018/
https://medium.com/swlh/how-to-become-an-devops-engineer-in-2020-80b8740d5a52
https://www.lucidchart.com/blog/devops-process-flow

https://www.researchgate.net/publication/262450962_Rugby_An_Agile_Process_Model_Based_on_Con
tinuous_Delivery

ettt RTEU CE103 Week-3 203

https://harness.io/2018/01/devops-tools-lifecycle-mesh-2018/
https://medium.com/swlh/how-to-become-an-devops-engineer-in-2020-80b8740d5a52
https://www.lucidchart.com/blog/devops-process-flow
https://www.researchgate.net/publication/262450962_Rugby_An_Agile_Process_Model_Based_on_Continuous_Delivery

CE103 Algorithms and Programming |

References (4)

git - the simple guide - no deep shit!

Git Tutorial | Commands And Operations In Git | Edureka
How to write a good commit message - DEV Community

An Introduction to Git and GitHub by Brian Yu - YouTube

5598 RTEU CE103 Week-3 504

https://rogerdudler.github.io/git-guide/index.html
https://www.edureka.co/blog/git-tutorial/
https://dev.to/chrissiemhrk/git-commit-message-5e21
https://www.youtube.com/watch?v=MJUJ4wbFm_A&ab_channel=CS50

CE103 Algorithms and Programming |

References (5)

https://education.github.com/git-cheat-sheet-education.pdf
NDP Software :: Git Cheatsheet;
Learn Git Branching

https://quides.github.com/introduction/git-handbook/

ettt RTEU CE103 Week-3 o0

https://education.github.com/git-cheat-sheet-education.pdf
http://www.ndpsoftware.com/git-cheatsheet.html#loc=remote_repo
https://learngitbranching.js.org/
https://guides.github.com/introduction/git-handbook/

CE103 Algorithms and Programming |

End —Of — Week — 3

5598 RTEU CE103 Week-3 506

