CE103 Algorithms and Programming I

C Functional Console Programming

Author: Asst. Prof. Dr. Ugur CORUH

Contents
0.1 CE103 Algorithms and Programming I
0.2 Week-D. . . . o e

1 C Functional Console Programming
1.1 Books and Resources e e

2 C Functional Console Programming
3 C Programming

4 preprocessing

5 compiling

6 assembling

7 linking

7.1 ClIntroduction e e e
7.1.1 Keywords and Identifiers e
7.2 Character set o e e e e e
7.2.1 Alphabets
722 DIGIES © o o oo
7.2.3 Special Characters L e
7.3 CKeywords o o o e e e e
74 Cldentifiers o 0 e
7.4.1 Rules for naming identifiers L L

8 C Variables, Constants and Literals

8.1 Variables.
8.1.1 Rules for naming a variable oL
8.2 Literals e e e e
8.2.1 1. 1Inmtegers. o e e e e e e e
8.2.2 2. Floating-point Literals o
8.2.3 3. Characters e e
8.2.4 4. Escape Sequencesot i e e e
8.2.5 5. String Literals oL
8.3 Constants L e
9 C Data Types
9.1 Basic types L
0.1.1 Int . . o o
9.1.2 float and double e
9.1.3 char e e
9.1.4 void e e

17

17

18

19
21
21
21
21
21
21
21
22
22

22
22
23
23
23
23
23
24
24
24

11

9.1.5 short and long L

9.1.6 signed and unsigned L. oL

9.2 Other data types defined in C programming are:

9.3 Derived Data Types o o e e e e e e e

10 C Input Output (I/0)

10.1 COutput o o e
10.1.1 Example 1: C Output e
10.1.2 Example 2: Integer Output
10.1.3 Example 3: float and double Output oL,
10.1.4 Example 4: Print Characters L

10.2 CInput . . . oo o
10.2.1 Example 5: Integer Input/Output o
10.2.2 Example 6: Float and Double Input/Output
10.2.3 Example 7: C Character I/O e
10.2.4 Example 8: ASCII Value e

10.3 I/O Multiple Values e

10.4 Format Specifiers for I/Oo Lo

C Programming Operators

11.1 C Arithmetic Operators i e e e
11.1.1 Example 1: Arithmetic Operators

11.2 C Increment and Decrement Operators
11.2.1 Example 2: Increment and Decrement Operators

12

Increment ++ and Decrement — Operator as Prefix and Postfix

12.1 ++ and — operator as prefix and postfix L

12.2 Example 1: C Programmingo e e e

12.3 C Assignment Operators o v v v v i s e e e e e
12.3.1 Example 3: Assignment Operators e
12.3.2 C Relational Operators o o v it
12.3.3 Example 4: Relational Operators
12.3.4 C Logical Operators o e e
12.3.5 Example 5: Logical Operators.
12.3.6 C Bitwise Operators o e

12.4 Other Operators o vt it it e
12.4.1 Comma Operator e e e
12.4.2 The sizeof operator L L e e
12.4.3 Example 6: sizeof Operator

13 C Flow Control

14 C if...else Statement

15

14.1 Cif Statement e

14.1.2 Example 1: if statemento
14.2 Cif..else Statement L L

14.2.2 Example 2: if..else statement
14.3 Cif.else Ladder 0
14.3.1 Syntax of if..else Ladder L
14.3.2 Example 3: Cif..else Ladder
14.4 Nested if..else o L o o e
14.4.1 Example 4: Nested if..else

C for Loop
15.1 for Loop . . . o o o o e e
15.1.1 How for loop works? e e

15.1.2 Example 1: forloop 42

15.1.3 Example 2: for loop oL 43

16 C while and do...while Loop 43
16.1 while loop o L e e 44
16.1.1 How while loop works? o 44

16.1.2 Example 1: whileloop e 44

16.2 do..while loop L e e e 45
16.2.1 How do..while loop works? 45

16.2.2 Flowchart of do..while Loop 46

16.2.3 Example 2: do..whileloopo 46

17 C break and continue 47
17.1 Chreak o o e 47
17.1.1 Example 1: break statement L L o o 47

17.2 Cceontinue oL 0 o e e e 48
17.2.1 How continue statement works? L oL o 49

17.2.2 Example 2: continue statement L Lo oL 49

18 C switch Statement 50
18.1 Syntax of switch..case L 50
18.1.1 Example: Simple Calculator 52

19 C goto Statement 52
19.0.1 Syntax of goto Statement 53

19.0.2 Example: goto Statemento 53

19.0.3 Reasons to avoid goto L 54

19.0.4 Should you use goto? oL 54

20 Extras 56

List of Figures

List of Tables

0.1 CE103 Algorithms and Programming I

0.2 Week-5
0.2.0.1 Fall Semester, 2021-2022 Download DOC!, SLIDE?, PPTX?

1 C Functional Console Programming

1.1 Books and Resources

free-programming-books/free-programming-books-langs.md at master - EbookFoundation/free-programming-
books - GitHub*

Lcel03-week-5-c.tr.md_ doc.pdf

2ce103-week-5-c.tr.md_ slide.pdf

3ce103-week-5-c.tr.md_ slide.pptx

4https://github.com/EbookFoundation/free- programming-books,/blob /master/books/free- programming-books-langs. md#c

ce103-week-5-c.tr.md_doc.pdf
ce103-week-5-c.tr.md_slide.pdf
ce103-week-5-c.tr.md_slide.pptx
https://github.com/EbookFoundation/free-programming-books/blob/master/books/free-programming-books-langs.md#c

2 C Functional Console Programming

We will use the following course notes and examples.

Learn C Programming®

Programiz Tutorials v Examples v~ Get App

Learn C Programming

[TuToRIALS = EXAMPLES @ REFERENCES &P ONLINE COMPILER

C is a powerful general-purpose programming language. It can be used to develop software like operating systems, databases, compilers, and so
on. C programming is an excellent language to learn to program for beginners.

Our C tutorials will guide you to learn C programming one step at a time.

C Tutorials - Introduction to C Programming Language®

BTech
Smart Class The perfect place for ¢

A Home sl Courses # Authors & Downloads . Contact Us

C Programming Language

Place your ad here

Topics List

Introduction to C I

Introduction to Computer
Systems

Computing Environments Next ©

Computer Languages Introduction to C Programming

CraEiE el ROl C Programming Language is a very popular computer programming language through which users and computers can

Program v) :) ;)) L
g communicate. Using this series of tutorials, one can learn C Programming Language from the basics. Every topic in these

P Devel t Lif .)) .) .
rogram Development Lt tutorials is explained with clear information and good examples. The content of all the topics is prepared by very experienced

SICS and expert faculty.

A Daclerennind

The C and C++ programming tutorials, hands-on approach with program examples, code samples and tons
of output images using Visual C4++, C++ Builder, Linux gcc and g++ compilers and IDE”

Shttps://www.programiz.com/c-programming
Shttp://www.btechsmartclass.com/c_ programming/introduction-to-c-programming.html
Thttps://www.tenouk.com/cncplusplustutorials.html

https://www.programiz.com/c-programming
http://www.btechsmartclass.com/c_programming/introduction-to-c-programming.html
https://www.tenouk.com/cncplusplustutorials.html

The Tenouk's C and C++ programming tutorials. Experience a complete C and
C++ Journey, hands-on approach, through working program examples,
experiments and illustrations. From Structured, Object Oriented to Generic

Programming. What You Compile |s What You Get

This is a very good starting point if you are fresh in
C/C++ programming and you should start here
because in term of program structures, syntax wise,
it is simpler and easier to understand. The codes
used for the working program examples are mixed of
C and C++ because C is subset of C++, so that you
get knowledge and skills from both worlds. The
topics in C/C++ tutorial are listed below and have
been arranged In the learning sequence order. The
difficult but very important topics may be Program
controls, Array and Pointers. The codes used are
ISO/EC standards that also cover ANSI in general,
otherwise mentioned. Main compilers used are
Microsoft Wisual C++ and originally Borland Builder
C++ and at the end most of the topics. acc and a++

CS50x 20218

Interested in a verified certificate, a professional certificate, or transfer credit and accreditation? And get vaccinated (as soon as it's available to you). y Here's why. Here's how.

This is CS50x

Welcome

Donate [Introduction to the intellectual enterprises of computer science and the art of programming. This course teaches students how to think algorithmically and so
efficiently. Topics include abstraction, algorithms, data structures, encapsulation, resource management, security, software engineering, and web programming.
David J. Malan C, Python, and SOL plus HTML, €SS, and JavaScript. Problem sets inspired by the arts, humanities, social sciences, and sciences. Course culminates in a final pre
malan@harvard.edu concentrators and non-concentrators alike, with or without prior programming experience. Two thirds of CS50 students have never taken CS before. Among ths
+‘ O [©]in] e Qe Y of this course are to inspire students to explore unfamiliar waters, without fear of failure, create an intensive, shared experience, accessible to all students, ant
among students.

ﬁ,. (S50x Puzzle Day 2022 » Watch an introduction
B Howto Prepare for Techni
B¢ 7oom Meetings How to Take this Course

€550 Educator Workshap 2021 Even if you are not a student at Harvard, you are welcome to “take” this course for free via this OpenCourseWare by working your way through the course's eley

CS50's New Year's Seminars M1 material. If you'd like to submit the course's problem sets and final project for feedback, be sure to create an edX account, if you haven't already. Ask questions

Gallery of Final Projects M any of the course’s communities!
What's new for 20212

® |f interested in a verified certificate from edX, enroll at ¢cs dx.org instead.

® |f interested in a professional certificate from edX
Week 0

Week 1
Week 2
Week 3
Week 4

® in web development, enroll at cs50.edx.org/programs/web instead.

® in artificial intelligence, enroll at cs50.edx.org/programs/ai instead.

® in game development, enroll at cs50.edx.org/programs/games instead.

® |f interested in transfer credit and accreditation from Harvard Extension School, register at courses.extension.harvard.edu/course-catalog/courses/subjet

® [finterested in transfer credit and accreditation from Harvard Summer School.renister at coursessummerharvard.edu/rourse-ratalon/rourses/suhiect/C

C Programming For Dummies’

8https://cs50.harvard.edu/x/2021/
9https://c-for-dummies.com/cprog/

Ut

https://cs50.harvard.edu/x/2021/
https://c-for-dummies.com/cprog/

C Programming For Dummies

C Blog

C Programming
NCurses

XML and JSON

Curl

Online Training
Bookstore For Dummies, click here.

From the Book

Answers to Exercises

AAA A AL

C reference - cppreference.com'’

C Programming

dummies

This page supports my book, C Programming For Dummies. For my earlier title, Beginning C Programming

cppreference.com Create account |[Search |
Page Discussion View | View source History
C
ca9, C95, €99, C11, C17, C23
Language Type support Numerics
Basic concepts Program utilities Cemmen mathematical functions
Keywords Variadic functions Floating-point environment (C35]
Preprocessor Error handling Pseudo-random number genaration
Expressions Dynamic memory management Complexinnmbeyarihmeticicaa]
Declaration = S Type-generic math (C99]
HELT Date and time utilities
Initialization Strings library Input,_.fout_put support
EJPCt ons Null-terminated strings: Locall.zatmn st_lppor‘!: P
Statements byte — multibyte — wide Atomic operations library c11)
Headers Algorithms Thread support library (c11)
Technical specifications
Dynamic memory extensions (dynamic memoryTR)
Floating-point extensions, Part 1 (FrFeEx175)
Floating-point extensions, Part 4 (Frexa7s)
External Links — Mon-ANSI/ISO Libraries — Index — Symbol Index
Support us Recent changes FAQ Offline version
What links here Related changes Upload file Special pages Printable version Permanent link Page information
In other languages Cesky Deutsch Espafiol Francais ltaliane E+E ©39 Portugués Pycckuid FASD
This page was last modified on 3 July 2017, at 21:56.
ollfic) Powend B Fowarad by W
Privacy policy About cppreference.com Disclaimers [E®] Mediawiki GeS ngel'H,Eﬁrg

https://c.happycodings.com/

Ohttps://en.cppreference.com/w/c

https://en.cppreference.com/w/c

Haopy Codirngs
e

ear code it

| Google TARAFINDAN GELISTIRILMISTIR |

Arrays Matrices

Beginners Lab C Programming

Bitwize Operators

Con Unix
Code Snippets

C Programming_Language Code Examples

Conversions

Data Structures

File Operations

= C > Arrays Matrices

For While Laops

Functions

eanccmes =¥ C > Beginners Lab Assignments

3 C Programming

C is a versatile programming language. It is useful for creating software such as operating systems, databases,
and compilers. For novices, C programming is a great language to learn to code in.

Our C tutorials will take you step by step through the process of learning C programming.
Before starting you should check your development enviroment.

You will open visual studio community edition and create a C4++4 console application then
rename .cpp file to .c for triggering c complier.

Before starting you should understand the executable generation flows

#include <stdio.h>

int main(void)
{

printf ("hello, world");
}

and how we convert source code to binary code

01111111 01000101 01001100 01000110 00000010 00000001 00000001 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000010 00000000 00111110 00000000 00000001 00000000 00000000 00000000
10110000 00000101 01000000 00000000 00000000 00000000 00000000 00000000
01000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
11010000 00010011 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 01000000 00000000 00111000 00000000
00001001 00000000 01000000 00000000 00100100 00000000 00100001 00000000
00000110 00000000 00000000 00000000 00000101 00000000 00000000 00000000
01000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
01000000 00000000 01000000 00000000 00000000 00000000 00000000 00000000
01000000 00000000 01000000 00000000 00000000 00000000 00000000 00000000
11111000 00000001 00000000 00000000 00000000 00000000 00000000 00000000
11111000 00000001 00000000 00000000 00000000 00000000 00000000 00000000
00001000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000011 00000000 00000000 00000000 00000100 00000000 00000000 00000000
00111000 00000010 00000000 00000000 00000000 00000000 00000000 00000000

There is a sandbox in CS50 harvard course Week 0 - CS50x!!

https://sandbox.cs50.i0/ you can use it for online compiler
#* BRE 0000006 RWVYS K& L0 NHNS
idavA. @ Eric Lau- Everytime w | 1 Okums listes

@ sandbox.cs50.i0/b0361500-2f6b-4e33-ac1c-8376a6df36da
@ SESSIZJENERATOR..] Ancroid

@ Paletion - The Colo... [B) G - DataGridview

& Inline Digital Hydro.

< c

13 Uygulamalar

CERN Open Data P. sentinelcustomer.sa. Modamob Akili Mo, LED series parallel 2.
P

CS50 Sandbox

B helloc
1 #ir
t main(void)

4
printf("hello, world

>_ Termi
hello.c -lcrypt -1cs5@ -1m -o he

$ make hello
clang -fsanitize=signed-integer-overflow -fsanitize=undefined -ggdb3 -00 -std=cll -Wall -Werror -Wextra -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wshadow

hello, world

Mhttps://cs50.harvard.edu/x/2020/weeks/0/

https://cs50.harvard.edu/x/2020/weeks/0/

: Uygulamalar E] CERM Open Data P.. @ sentinelcustc

CS50 Sandbox

B helloc

1l #include <stdio.h>

r

3 int main(void)

4

printf("helleo, world\n");

»>_ Terminal X +

$ make hello

clang -fsanitize=signed-integer-overflo
1lo

$./hello

hello, world

$ ~C

$ ~C
$]

$ make hello

clang -fsanitize=signed-integer-overflow -fsanitize=undefined -ggdb3 -00 -std=cll -Wall -Werror -Wextra
$./hello
hello, world

if you want to make samething in windows environment you should create the following makefile near the
hello.c

snare View
¥ hello-make

3Print = @ Photo Print

Mame
[hello.c
|] Makefile
-
-

Makefile

This ts the default target, which will be built when
you invoke make

.PHONY: all

all: hello

This rule tells make how to build hello from hello.cpp
hello: hello.c
g++ -o hello hello.c

This rule tells make to copy hello to the binaries subdirectory,
creating it if necessary
.PHONY: install
install:
mkdir -p binaries
cp -p hello binaries

This rule tells make to delete hello and hello.o
.PHONY: clean
clean:

rm -f hello

10

BN C\WINDOWS\system32\cmd.exe

ssUzerssugur.corubhsDesktopshello—make *make hello
++ —o hello hello.c

sUzerssugur .. corubsDesktopshello—make *dip
Uolume in drive C is Windows
Uolume Serial Mumber is BC3C-8F8C

Directory of C:xUszerssugur.coruhDesktopshello—make

11822821 @1:44 AM <DIR> -
11822821 @1:44 AM <DIR> -
11822821 B@1:15% AM 73 hello.c

118272021 ©1:44 AM 54,822 hello.exe
11822821 @1:43 AM 458 Makefile

3 Fileds) L4_553 hbhytes

2 Dircs> 181.382.164.480 hytes free

ssUzerssugur.corubhsDesktopshello—make *hello.exe
iello, world

sUzerssaugur . corubsDesktopshello—make >

C:\Users\ugur. coruh\Desktop\hello-make>make hello
g++ —o hello hello.c

C:\Users\ugur.coruh\Desktop\hello-make>dir
Volume in drive C is Windows
Volume Serial Number is 8C3C-8F8C

Directory of C:\Users\ugur.coruh\Desktop\hello-make
11/02/2021 01:44 AM <DIR>

11/02/2021 01:44 AM <DIR> ..
11/02/2021 01:15 AM 73 hello.c

11/02/2021 01:44 AM 54,022 hello.exe
11/02/2021 01:43 AM 458 Makefile
3 File(s) 54,553 bytes

2 Dir(s) 101,382,164,480 bytes free

C:\Users\ugur.coruh\Desktop\hello-make>hello.exe
hello, world

C:\Users\ugur.coruh\Desktop\hello-make>

11

P C Functions x | £ Paraphrasing '

<« & @ sandbox.cs50.i0/b0361500-2f6b-4

¢ Uygulamalar CERMN Cpen Data P... @9 sentinelcus

CS50 Sandbox

BB helloc

1l #include <stdio.h>

L

3 int main(void)

T

printf("hello, world\n");

»_ Terminal

$ clang hello.c

$ 1s

a.out* hello* hello.c
$./a.out

hello, world

$

12

$ clang hello.c
$ 1s

a.out* hello*
$./a.out
hello, world

hello.c

13

&« & @ sandbox.cs50.i0/b0361500-2f6b-4e3

¢ Uygulamalar CEREM Open Data P...

CS50 Sandbox

BB helloc

1 #include <stdio.h>

3 int main(void)
4 f
printf("hello, world

»_ Terminal x +

$ clang -o hello hello.c
$ 1s

a.out* hello* hello.c
$./hello

hello, world

s

@ sentinelcustor

14

$ clang -o hello hello.c
$ 1s

a.out* hello* hello.c
$./hello

hello, world

15

P C Functions x | %4 Paraphrz

& C B sandbox.cs50.i0/b0361500-2f

=2: Uygulamalar CERM Cpen Data P.. @9 sentir

CS50 Sandbox

de <stdio.h>

int main(void)

{

N P L b

k
i

printf("hello, world\n");

=]

»_ Terminal X [J Desktop

$ 1s

hello.c

$ clang -o hello hello.c -1lcs50
$ 1s

hello* hello.c

$./hello

hello, world

s

$ 1s
hello.c
$ clang -o hello hello.c -1lcsb0

16

$ 1s
hello* hello.c

$./hello
hello, world
$

Also you can use visual studio community edition.

4 preprocessing

get included file declarations

#include <csb0.h>
#include <stdio.h>

int main(void)

{
string name = get_string("What's your name? ");
printf ("hello, %s\n", name);

}

to this

string get_string(string prompt);
int printf(string format, ...);

int main(void)
{

string name = get_string("What's your name? ");
printf("hello, %s\n", name);

5 compiling

convert source code to assembler code

main: # Omain

.cfi_startproc
BB#0:

pushq %rbp
.LtmpO0:

.cfi_def cfa_offset 16
.Ltmpl:

.cfi_offset Y%rbp, -16
movq %rsp, %rbp

.Ltmp2:
.cfi_def_cfa_register Jrbp
subq $16, Yrsp

xorl Y%eax, heax
movl %eax, hedi
movabsq $.L.str, %rsi

movb $0, %al

callq get_string
movabsq $.L.str.1, %rdi
movq %rax, -8(%rbp)
movq -8(%rbp), Yrsi
movb $0, %al

17

callq printf

6 assembling

convert assembler to opcodes

main:
.cfi_startproc
BB#0:
pushq %rbp
.LtmpO0:
.cfi_def cfa_offset 16
.Ltmpl:

.cfi_offset Y%rbp, -16
movq %rsp, %rbp

.Ltmp2:
.cfi_def_cfa_register Jrbp
subq $16, Yrsp

xorl %heax, heax
movl %eax, hedi
movabsq $.L.str, %rsi

movb $0, %al

callq get_string
movabsq $.L.str.1, %rdi
movq %rax, -8(%rbp)
movq -8(%rbp), ’%rsi
movb $0, %al

callq printf

to this

01111111010001010100110001000110
00000010000000010000000100000000
00000000000000000000000000000000
00000000000000000000000000000000
00000001000000000011111000000000
00000001000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
10100000000000100000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
01000000000000000000000000000000
00000000000000000100000000000000
00001010000000000000000100000000
01010101010010001000100111100101
01001000100000111110110000010000
00110001110000001000100111000111
01001000101111100000000000000000
00000000000000000000000000000000
00000000000000001011000000000000
11101000000000000000000000000000
00000000010010001011111100000000

Omain

18

00000000000000000000000000000000
00000000000000000000000001001000

7 linking

hello.c

csh0.c

stdio.c

01111111010001010100110001000110
00000010000000010000000100000000
00000000000000000000000000000000
00000000000000000000000000000000
00000001000000000011111000000000
00000001000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
10100000000000100000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
01000000000000000000000000000000
00000000000000000100000000000000
00001010000000000000000100000000
01010101010010001000100111100101
01001000100000111110110000010000
00110001110000001000100111000111
01001000101111100000000000000000
00000000000000000000000000000000
00000000000000001011000000000000
11101000000000000000000000000000
00000000010010001011111100000000
00000000000000000000000000000000
00000000000000000000000001001000

00000010000000010000000100000000
00000000000000000000000000000000
00000000000000000000000000000000
00000011000000000011111000000000
00000001000000000000000000000000
11000000000011110000000000000000
00000000000000000000000000000000
01000000000000000000000000000000
00000000000000000000000000000000
00101000001100100000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
01000000000000000011100000000000
00000111000000000100000000000000
00011100000000000001100100000000
00000001000000000000000000000000
00000101000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000

01111111010001010100110001000110

19

hello.c csH0.c stdio.c

00000000000000000000000000000000
00000000000000000000000000000000
01011100001001010000000000000000
00000000000000000000000000000000

- 00101111011011000110100101100010
01100011001011100111001101101111
00101110001101100010000000101111
01110101011100110111001000101111
01101100011010010110001000101111
01111000001110000011011001011111
00110110001101000010110101101100
01101001011011100111010101111000
00101101011001110110111001110101
00101111011011000110100101100010
01100011010111110110111001101111
01101110011100110110100001100001
01110010011001010110010000101110
01100001001000000010000001000001
01010011010111110100111001000101
01000101010001000100010101000100
00100000001010000010000000101111
01101100011010010110001000101111
01111000001110000011011001011111
00110110001101000010110101101100
01101001011011100111010101111000
00101101011001110110111001110101
00101111011011000110010000101101
01101100011010010110111001110101
01111000001011010111100000111000
00110110001011010011011000110100

combine binary codes to generate exe

0111111101000101010011000100011000000010000000010000000100
000000000000000000000000000000000100000000001111100000000000000001000000000000000000000000000000000000
00
00000000000000101000000000001000
0000000001000100000000000000000010100000000000000001000000
000101010101001000100010011110010101001000100000111110110000010000001100011100000010001001110001110100
1000101111100010110000000000001110100000
000000000000000000000000000000010010001011111100
0000000001001000...01111111010001010100110001000110000000100000000100000001000000000000000000000000000
000110000000000111110000000000000000100000000000000000
00000001100000000001111000100000000000000000000000000000
00000000000000000000000000000000000101000001100100
000000000000000000000000000010000000000000000111000000000000000011100000000010000000000000000011100000
0000000011001000000000000000100000000000000000000000000000101000
00
001011100001001010000000000000
00000000000000000000000000000000000...0010111101101100011010010110001001100011001011100111001101101111
001011100011011000100000001011110111010101110011011100100010111101101100011010010110001000101111011110
000011100000110110010111110011011000110100001011010110110001101001011011100111010101111000001011010110
011101101110011101010010111101101100011010010110001001100011010111110110111001101111011011100111001101
101000011000010111001001100101011001000010111001100001001000000010000001000001010100110101111101001110

20

010001010100010101000100010001010100010000100000001010000010000000101111011011000110100101100010001011
110111100000111000001101100101111100110110001101000010110101101100011010010110111001110101011110000010
110101100111011011100111010100101111011011000110010000101101011011000110100101101110011101010111100000
101101011110000011100000110110001011010011011000110100. ..

7.1 C Introduction

7.1.1 Keywords and Identifiers

This tutorial will teach you about keywords, which are reserved words in C programming that are part of
the syntax. You will also be taught about identifiers and how to name them.

7.2 Character set

A character set is a collection of alphabets, letters, and special characters that are supported by the C
programming language. As variables and functions, C accepts both lowercase and uppercase alphabets.

7.2.1 Alphabets

Uppercase: A B C i XY Z
Lowercase: a b c e Xy 2z

7.2.2 Digits
01234567829

7.2.3 Special Characters

Special Characters in C Programming

— e A
N e S

!

White space Characters

A newline, a horizontal tab, a carriage return, and a form feed are all examples of punctuation.

7.3 C Keywords

Keywords are reserved words in programming that have special meanings to the compiler. Keywords are
syntax elements that cannot be used as identifiers. As an example:

int money;
In this case, int is a keyword indicating that moneyis a variable of type int(integer).

Because C is a case-sensitive language, all keywords must be written in lowercase. The following is a list of
all the keywords permitted in ANSI C.

C Keywords
auto double int struct
break else long switch
case enum register typedef
char extern return union

21

auto double int struct

continue for signed void

do if static while
default goto sizeof volatile
const, float short unsigned

All of these keywords, as well as their syntax and application, will be covered in their respective topics.

The Complete List of all 32 C Programming Keywords (With Examples) - Programiz'?

7.4 C Identifiers

The term “identifier” refers to the name given to entities such as variables, functions, structures, and so
on. Identifiers must be distinct. They are created to give a unique name to an entity in order to identify it
during program execution. As an example:

int money;
double accountBalance;

moneyand accountBalanceare identifiers in this context. Also, keep in mind that identifier names must be
distinct from keyword names. Because intis a keyword, it cannot be used as an identifier.

7.4.1 Rules for naming identifiers

1. Letters (including capital and lowercase letters), numbers, and underscores can all be used in a valid
identification.

2. An identifier’s initial letter should be either a letter or an underscore.
3. Keywords such as int, while, and so on cannot be used as identifiers.

4. There are no restrictions on the length of an identification. However, if the identifier is larger than 31
characters, you may have issues with some compilers.

If you follow the above criterion, you can use any name as an identifier; nevertheless, provide meaningful
names to identifiers that make sense.

8 C Variables, Constants and Literals

This article will teach you about variables and the rules for naming variables. You will also learn about
different literals and how to build constants in C programming.

8.1 Variables

A variable in programming is a container (storage space) for data. Each variable should be given a unique
name to denote the storage region (identifier). Variable names are simply a graphical representation of a
memory location. As an example:

int playerScore = 95;
In this case, playerScore is an int variable. The variable is given the integer value 95in this case.

A variable’s value may be altered, thus the term variable.

char ch = 'a';
// some code
ch = '1l";

2https:/ /www.programiz.com/c-programming/list-all-keywords-c-language

22

https://www.programiz.com/c-programming/list-all-keywords-c-language

8.1.1 Rules for naming a variable
1. A variable name can only contain characters (uppercase and lowercase), numbers, and underscores.
2. A variable’s initial letter should be either a letter or an underscore.

3. There are no restrictions on the length of a variable name (identifier). However, if the variable name
is larger than 31characters, you may have issues with some compilers.

Please keep in mind that you should always aim to give variables meaningful names. For example, firstName
is a more appropriate variable name than fn.

C is a highly typed programming language. This means that once a variable is declared, it cannot be
modified. As an example:

int number = 5; // integer variable
number = 5.5; // error
double number; // error

In this case, the type of number variable is int. This variable cannot be assigned the floating-point (decimal)
value 5.5. Furthermore, you cannot change the variable’s data type to double. By the way, in order to hold
decimal values in C, you must designate their type as double or float.

8.2 Literals

Literals are data that are used to represent fixed values. They can be directly utilized in the code. For
example: 1, 2.5, ‘c,” and so on. Literals are 1, 2.5, and ‘¢’ in this case. Why? These words cannot have
various values assigned to them.

8.2.1 1. Integers

An integer is a numeric literal (related with numbers) that does not have any fractional or exponential
components. In C programming, there are three types of integer literals:

o digits (base 10)

 the number octal (base 8)

o hexadecimal (base 16)
For example:

Decimal: O, -9, 22 etc
Octal: 021, 077, 033 etc
Hexadecimal: Ox7f, Ox2a, 0x521 etc

In C, octal begins with a 0 while hexadecimal begins with a 0x.

8.2.2 2. Floating-point Literals
A floating-point literal is a numeric literal with a fractional or exponent form. As an example:

-2.0
0.0000234
-0.22E-5

Please note that

107°

&
\
ot
Il

8.2.3 3. Characters

Enclosing a single character inside single quote marks yields a character literal. For example, ‘a’,;‘m’, ‘F’, ‘2’
“ and so on.

23

8.2.4 4. Escape Sequences

In C programming, it is sometimes important to employ characters that cannot be typed or have specific
meaning. For instance, newline (enter), tab, question mark, and so on.

Escape sequences are utilized to utilise these characters.

Escape Sequences Character

\b Backspace

\f Form feed

\n Newline

\r Return

\t Horizontal Tab
\v Vertical Tab
ARRY | Backslash Null character
| 1’| Single quotation mark | |”|

Double quotation mark | |?| Question

mark [1\0f

8.2.5 5. String Literals
A string literal is a string of characters surrounded by double quotation marks. As an example:

"good" //string constant

" //null string constant

" ! //string constant of siz white space

"x" //string constant having a single character.
"Earth is round\n" //prints string with a newline

8.3 Constants

The const keyword can be used to declare a variable whose value cannot be modified. This will result in a
constant. As an example,

const double PI = 3.14;
We’ve introduced the keyword const. PI is a symbolic constant in this context; its value cannot be modified.

const double PI = 3.14;
PI = 2.9; //Error

You may also use the #define preprocessor directive to declare a constant.

9 C Data Types

In this course, you will learn about basic data types in C programming, such as int, float, and char.

Data types are variable declarations in C programming. The kind and quantity of data linked with variables
are determined by this. As an example,

int myVar;

In this case, myVar is an int (integer) variable. int has a size of 4 bytes.

9.1 Basic types

Here’s a table containing commonly used types in C programming for quick access.

24

Type Size(bytes) Format Specifiers

int at least 2, usually 4 %d %i
char 1 %oc
float 4 %t
double 8 %lf
short int 2 usually %hd
unsigned int at least 2, usually 4 %u
long int at least 4, usually 8 %ld %li
long long int at least 8 %lld %lli
unsigned long int at least 4 %lu
unsigned long long int at least 8 %llu
signed char 1 %oc
usigned char 1 %oc
long double at least 10, usually 12 or 16 %Lf

9.1.1 int

Integers are entire integers with zero, positive, and negative values but no decimal values. For instance, 0,
—5, and 10

In order to declare an integer variable, we can use int.

int id;

In this case, id is an integer variable.

In C programming, you can define many variables at the same time. As an example,

int id, age;

Integers are typically 4 bytes in size (32 bits). It may also take $27{32} $ different states from —2147483648
to 2147483647.

9.1.2 float and double

Real values are stored in float and double variables.

float salary;
double price;

Floating-point numbers in C can also be expressed in exponential form. As an example,

float normalizationFactor = 22.442e2;

What is the distinction between float and double?

Float (single precision float data type) has a size of 4 bytes. And double (double precision float data type)
is 8 bytes in size.

9.1.3 char

The keyword char is used to declare variables of the character type. As an example,

char test = 'h';

The character variable is 1 byte in size.

9.1.4 void

void is an unfinished type. It signifies “nothing” or “nothing of the sort.” You might conceive of emptiness
as the absence of something.

If a function does not return anything, its return type should be void.

It is important to note that void variables cannot be created.

25

9.1.5 short and long
If you need to utilize a huge number, a type specifier long can be used. Here’s how it works:

long a;
long long b;
long double c;

Variables a and b can store integer values in this case. In addition, ¢ may hold a floating-point number.
You can use short if you are certain that just a tiny integer range between
—32767,+32767 will be utilized.
short d;
The sizeof () operator may always be used to determine the size of a variable.
#include <stdio.h>
int main() {
short a;
long b;

long long c;
long double 4d;

printf("size of short = %d bytes\n", sizeof(a));
printf("size of long = %d bytes\n", sizeof(b));
printf("size of long long = %d bytes\n", sizeof(c));
printf("size of long double= %d bytes\n", sizeof(d));
return O;

9.1.6 signed and unsigned

Signed and unsigned are type modifiers in C. You may use them to change the data storage of a data type.
As an example,

unsigned int x;
int y;

Because we applied the unsigned modifier, the variable x can only retain zero and positive numbers.
Given that int has a capacity of 4 bytes, variable y can have values ranging from

2231 t0 231 — 1,

But variable xcan hold values ranging from

0 to 232 — 1.

9.2 Other data types defined in C programming are:

e bool Type
e Enumerated type
e Complex types

9.3 Derived Data Types

Derived types are data types that are derived from basic data types. Arrays, pointers, function types,
structures, and so on are examples.

26

10 C Input Output (I/0)

In this lesson, you will learn how to utilize the scanf () function to accept user input and the printf ()
method to display output to the user.

10.1 C Output

printf () is a common output function in C programming. The function outputs formatted data to the
screen. As an example,

10.1.1 Example 1: C Output

#include <stdio.h>
int main()

{
// Displays the string inside quotations
printf ("C Programming");
return O;

}

Output

C Programming

How does this software function?

The main() function is required in all legal C programs.

The execution of the code begins at the commencement of the main() function.

The printf () function is a library function that is used to provide formatted output to the screen.
The string is printed within quote marks by the function.

In order to utilize printf() in our program, we must include the stdio.h header file using the #include
<stdio.h> declaration.

The “Exit status” of the program is the return 0; statement within the main() method. It’s entirely voluntary.

10.1.2 Example 2: Integer Output

#include <stdio.h>
int main()

{
int testInteger = 5;
printf ("Number = %d", testInteger);
return O;

}

Output

Number = 5

To print inttypes, we utilize the %d format specifier. The value of testInteger will be used in instead of
the %d inside the quotes.

10.1.3 Example 3: float and double Output

#include <stdio.h>
int main()

{
float numberl = 13.5;
double number2 = 12.4;

27

%f\n", numberil) ;
%1f", number?2) ;

printf ("numberl
printf ("number?2

return O;
}
Output
numberl = 13.500000
number2 = 12.400000

We utilize the %f format specifier to print floats. Similarly, to display double numbers, we use %1f.

10.1.4 Example 4: Print Characters

#include <stdio.h>
int main()

{
char chr = 'a';
printf ("character = %c", chr);
return O;

}

Output

character = a

We utilize the %c format specifier to print char.

10.2 C Input

scanf () is a widely used function in C programming to accept user input.

formatted input from typical input devices like keyboards.

10.2.1 Example 5: Integer Input/Output

#include <stdio.h>
int main()

{
int testInteger;
printf ("Enter an integer: ");
scanf ("/,d", &testInteger);
printf ("Number = %d",testInteger);
return O;

}

Output

Enter an integer: 4
Number = 4

The scanf () function reads

To accept int input from the user, we utilized the %d format specifier inside the scanf () method. When a

user enters an integer, it is saved in the variable testInteger.

You'll see that we used &testInteger within scanf (). This is due to the fact that &testInteger obtains
the address of testInteger, and the value given by the user is saved in that address.

10.2.2 Example 6: Float and Double Input/Output

#include <stdio.h>
int main()
{
float numil;
double num2;

28

printf ("Enter a number: ");

scanf ("%f", &numl);

printf ("Enter another number: ");
scanf ("%1f", &num2) ;

printf ("numl = %f\n", numl);

printf ("num2 = %1f", num2);
return O;

}

Output

Enter a number: 12.523
Enter another number: 10.2
numl = 12.523000

num2 = 10.200000

For floatand double, we use the format specifiers %f and %1f, respectively.

10.2.3 Example 7: C Character I/0

#include <stdio.h>
int main()

{
char chr;
printf ("Enter a character: ");
scanf ("%c",&chr) ;
printf ("You entered %c.", chr);
return O;

}

Output

Enter a character: g
You entered g

When a user enters a character into the aforementioned software, the character itself is not saved. An integer
value (ASCII value) is instead stored.

When we use the %c text format to represent that value, the input character is displayed. The ASCII value
of the character is printed when we utilize %d to show it.

10.2.4 Example 8: ASCII Value

#include <stdio.h>

int main()

{
char chr;
printf ("Enter a character: ");
scanf ("%c", &chr);
// When Jc is used, a character is displayed
printf ("You entered Yc.\n",chr);
// When Jd is used, ASCII walue is displayed
printf ("ASCII value is %d.", chr);
return O;
}

29

Output

Enter a character: g
You entered g.
ASCII value is 103.

10.3 I/0O Multiple Values

Here’s how to take numerous user inputs and show them.

#include <stdio.h>

int main()

{
int a;
float b;
printf ("Enter integer and then a float: ");
// Taking multiple inputs
scanf ("/,d%f", &a, &b);
printf ("You entered %d and %f", a, b);
return O;
}
Output

Enter integer and then a float: -3
3.4
You entered -3 and 3.400000

10.4 Format Specifiers for I/0O

As you can see from the samples above, we apply

e %d for int

e %f for float

e %1f for double
e Y%c for char

The following is a collection of widely used C data types and associated format specifiers.

Type Size(bytes) Format Specifiers
int at least 2, usually 4 %d %i
char 1 %oc

float 4 %f
double 8 %lf
short int 2 usually %hd
unsigned int at least 2, usually 4 %u

long int at least 4, usually 8 %ld %li
long long int at least 8 %lld %lli
unsigned long int at least 4 %olu
unsigned long long int at least 8 %ollu
signed char 1 %oc
usigned char 1 %oc

long double at least 10, usually 12 or 16 ~ %Lf

30

11 C Programming Operators

With the assistance of examples, you will learn about several operators in C programming in this course.

An operator is a symbol that performs an operation on a value or variable. For example, the operator + is
used to compute addition.

C has a diverse set of operators to execute a variety of tasks.

11.1 C Arithmetic Operators

An arithmetic operator performs mathematical operations such as addition, subtraction, multiplication,
division etc on numerical values (constants and variables).

Operator Meaning of Operator

+ Addition or unary plus

- Substraction or unary minus
Multiplication

/ Division

%o Remainder after division (modulo division)

11.1.1 Example 1: Arithmetic Operators

// Working of arithmetic operators
#include <stdio.h>
int main()

{
int a = 9,b = 4, c;
c = atb;
printf("a+b = %d \n",c);
c = a-b;
printf("a-b = %d \n",c);
c = ax*b;
printf ("a*b = %d \n",c);
c = a/b;
printf("a/b = %d \n",c);
c = alb;
printf ("Remainder when a divided by b = %d \n",c);
return O;

}

Output

atb = 13

a-b =5

axb = 36

a/b = 2

Remainder when a divided by b=1
As you might guess, the operators +, -, and * calculate addition, subtraction, and multiplication, respectively.
9/4Equals 2.25 in standard math. In the program, however, the result is 2.

This is due to the fact that both variables a and b are integers. As a result, the output is also an integer.
The compiler ignores the word following the decimal point and displays response 2 rather than 2.25.

The residual is computed using the modulo operator percent. The remaining is 1 when a=9 is divided by
b=4. Only integers can be used with the percent operator.

31

Assume that a = 5.0, b = 2.0, ¢ = 5, and d = 2. After that, in C programming,.

// Either one of the operands is a floating-point number

a/b = 2.5
a/d = 2.5
c/b = 2.5

// Both operands are integers
c/d = 2

11.2 C Increment and Decrement Operators

To alter the value of an operand (constant or variable) by one, C programming offers two operators: increment
++ and decrease —-.

Increment ++ raises the value by one, and decrement -- lowers the value by one. These two operators are
unary, which means they only work on a single operand.

11.2.1 Example 2: Increment and Decrement Operators

// Working of increment and decrement operators
#include <stdio.h>
int main()

{
int a = 10, b = 100;
float ¢ = 10.5, d = 100.5;
printf("++a = %d \n", ++a);
printf("--b = %d \n", --b);
printf ("++c = %f \n", ++c);
printf("--d = %f \n", --d);
return O;

}

Output

++a = 11

--b = 99

++c = 11.500000

--d = 99.500000

The operators ++ and -- are used as prefixes here. These two operators, like a++ and a-- can also be used
as postfixes.

12 Increment ++ and Decrement — Operator as Prefix and Postfix

The increment operator ++ in programming (Java, C, C++, JavaScript, and so on) increments the value of
a variable by one. Similarly, the decrement operator — reduces a variable’s value by one.

a=>5

++a; // a becomes 6
a++; // a becomes 7
--a; // a becomes 6
a--; // a becomes 5

So far, so straightforward. When these two operators are employed as a prefix and a postfix, there is a
significant difference.

32

12.1 4+ and — operator as prefix and postfix

When you use the ++ operator as a prefix, such as: ++var, the value of var is increased by one and then
returned.

If you use the ++ operator as a postfix, such as var++, the original value of var is returned first, followed
by a one-digit increase of var.

The — operator functions similarly to the +4 operator, except that it reduces the value by one.

12.2 Example 1: C Programming

#include <stdio.h>
int main() {
int varl = 5, var2 = 5;

// 5 is displayed
// Then, warl is increased to 6.
printf ("/d\n", varl++);

// var2 is increased to 6
// Then, it is displayed.
printf ("/d\n", ++var2);

return O;
}
Output
5
6

12.3 C Assignment Operators

An assignment operator is a type of operator that is used to assign a value to a variable. = is the most
commonly used assignment operator.

Operator Example Same as

= a=b a=b
+= a+=b a=a-+b
-= a-=Db a=a-b
— a=b a=a*b
/= a/=b a=a/b
%= a%=b a=a%b

12.3.1 Example 3: Assignment Operators

// Working of assignment operators
#include <stdio.h>
int main()

{

int a = 5, c;

c = a; // c is 5
printf("c = %d\n", c);
c += a; // ¢ is 10
printf("c = %d\n", c);
c -= a; // c is b5
printf("c = %d\n", c);

33

c *= a; // ¢ is 25
printf("c = J%d\n", c);
c /= a; // ¢ is &5
printf("c = %d\n", c);
c %= a; // ¢c =0

printf("c = %d\n", c);

return O;

}
Output

=5
= 10
=5
25
=5
=0

O o o0 o0 o0 o0
]

12.3.2 C Relational Operators

A relational operator verifies the relationship of two operands. If the relationship is true, it returns 1; if the
relationship is false, it returns 0.

Operator Meaning of Operator Example

== Equal to 5 == 3 is evaluated to 0
> Greater than 5 > 3 is evaluated to 1
< Less than 5 < 3 is evaluated to 0
1= Not equal to 5 1= 3 is evaluated to 1
>= Greater than or equal to 5 >= 3 is evaluated to 1
<= Less than or equal to 5 <= 3 is evaluated to 0

12.3.3 Example 4: Relational Operators

// Working of relational operators
#include <stdio.h>
int main()

{
int a =5, b =5, ¢ = 10;
printf("/d == %d is %d \n", a, b, a == b);
printf("/d == %d is %d \n", a, c, a == c);
printf("/%d > %d is %d \n", a, b, a > b);
printf("/%d > %d is %d \n", a, c, a > c);
printf("/d < %d is %d \n", a, b, a < b);
printf("/d < %d is %d \n", a, c, a < c);
printf("jd '= %d is %d \n", a, b, a != b);
printf("%d '= %d is %d \n", a, c, a != c¢);
printf ("/d >= %d is %d \n", a, b, a >= b);
printf ("/d >= %d is %d \n", a, c, a >= c);
printf("%d <= %d is %d \n", a, b, a <= b);
printf("/d <= %d is %d \n", a, c, a <= ¢);
return O;

}

Output

34

5 ==5is 1
5 ==10 is 0
5>51is 0
5> 10 is O
5<5is 0
5 <10 is 1
5 1=51is 0
5 1=10 is 1
5 >=5 is 1
5 >= 10 is O
5 <=5 is 1
5 <= 10 is 1

12.3.4 C Logical Operators

A logical operator expression returns either 0 or 1, depending on whether the expression is true or false.

Operator Meaning Example
&& Logical AND. True only if all operands If ¢ = 5 and d = 2 then, expression ((c==5) &&
are true (d>5)) equals to 0.

| Logical OR. True only if either one operand is true
! Logical NOT. True only if the operand If ¢ = 5 then, expression !(c==5) equals to 0.
is 0

12.3.5 Example 5: Logical Operators

// Working of logical operators

#include <stdio.h>
int main()

{
int a =5, b =5, ¢ =10, result;
result = (a == b) && (c > b);
printf("(a == b) && (c > b) is %d \n", result);
result = (a == b) && (c < b);
printf("(a == b) && (c < b) is %d \n", result);
result = (a ==b) || (c < b);
printf("(a == b) || (c < b) is %d \n", result);
result = (a !'=b) || (c < b);
printf("(a !'= b) || (c < b) is %d \n", result);
result = !(a != b);
printf("!(a != b) is %d \n", result);
result = !(a == b);
printf("!(a == b) is %d \n", result);
return O;
}
Output

(a ==Db) & (c > b) is 1
(a ==Db) & (c < b) is O

35

(a==D) || (c <b) is 1
(a!'=Db) || (¢c <b)is O
1(a !'=Db) is 1
I(a ==Db) is 0

Explanation of logical operator program

e (a == Db) & (c > 5) evaluates to 1 because both operands (a == b) and (c > b) is 1 (true).
o (a == Db) && (c < b) evaluates to 0 because operand (c < b) is 0 (false).

e (a ==D) || (c < Db) evaluates to 1 because (a = b) is 1 (true).
e (a !=1b) |l (c < b) evaluates to 0 because both operand (a != b) and (c < b) are 0 (false).
o !(a !'= b) evaluates to 1 because operand (a !'= b) is 0 (false). Hence, !(a != D) is 1 (true).

o !(a == b) evaluates to 0 because (a == b) is 1 (true). Hence, ! (a == b) is 0 (false).

12.3.6 C Bitwise Operators

Mathematical operations like as addition, subtraction, multiplication, division, and so on are transformed
to bit-level during computation, which speeds up processing and saves power.

In C programming, bitwise operators are used to execute bit-level operations.

Operators Meaning of Operators

& Bitwise AND

Bitwise exclusive OR
~ Bitwise complement
« Shift left

» Shift right

12.4 Other Operators
12.4.1 Comma Operator
Comma operators are used to connect similar expressions. As an example:

int a, ¢ =5, d;

12.4.2 The sizeof operator

sizeof is a unary operator that returns the data size (constants, variables, array, structure, etc).

12.4.3 Example 6: sizeof Operator

#include <stdio.h>

int main()

{
int a;
float b;
double c;
char d;
printf ("Size of int=)lu bytes\n",sizeof(a));
printf ("Size of float=Y%lu bytes\n",sizeof(b));
printf ("Size of double=%lu bytes\n",sizeof(c));
printf ("Size of char=)lu byte\n",sizeof(d));

return O;

}
Output

36

Size of int = 4 bytes
Size of float = 4 bytes
Size of double = 8 bytes
Size of char = 1 byte

Other operators,

such as the ternary operator 7:,
the reference operator &,

the dereference operator *, and

the member selection operator ->, will be covered in more detail later.

13 C Flow Control
14 C if...else Statement

With the assistance of examples, you will learn about the if statement (including if...else and nested if...else)
in C programming.

14.1 C if Statement
In C programming, the if statement has the following syntax:

if (test expression)
{

// code
+

14.1.1 How if statement works?

The test expression inside the parentheses is evaluated by the if statement ().

If the test expression is true, the statements within the if body are performed. If the test expression is
interpreted as false, the statements within the if body are not performed.

Expression is true. Expression is false.
int test = 5; int test = 5;
if (test < 10) if (test > 10)
{ {
// codes // codes
} }
// codes after if // codes after if

Check relational and logical operators to understand more about when a test expression is evaluated to true
(non-zero value) and false (0).

14.1.2 Example 1: if statement

// Program to display a number tf it is negative

37

#include <stdio.h>
int main() {
int number;

printf ("Enter an integer: ");
scanf ("%d", &number) ;

// true tf number is less than O
if (number < 0) {
printf ("You entered %d.\n", number);

printf ("The if statement is easy.");
return O;

}

Output 1

Enter an integer: -2
You entered -2.
The if statement is easy.

When the user types -2, the test expression number 0 is evaluated as true. As a result, the value -2 that you
typed is displayed on the screen.

Output 2

Enter an integer: 5
The if statement is easy.

When the user enters 5, the test expression number 0 is assessed as false, and the statement within the body
of the if is not performed.

14.2 C if...else Statement
An else block is optional in the if statement. The if...else sentence has the following syntax:

if (test expression) {
// run code if test expression s true

}
else {

// run code if test expression is false
}

14.2.1 How if...else statement works?
If the test expression is found to be true,

Statements within the if body are performed. Statements within the body of else are not executed. If the
test expression is found to be false,

Phrases inside the body of else are performed; statements within the body of if are skipped.

38

Expression is true. Expression is false.

int test = 5; int test = 5;
1if (test < 10) if (test » 10)
{ {
/[body of if // body of if
} }
else else
{ =
// body of else // body of else

} }

14.2.2 Example 2: if...else statement

// Check whether an tinteger s odd or even

#include <stdio.h>

int main() {
int number;
printf ("Enter an integer: ");
scanf ("%d", &number) ;

// True if the remainder is O
if (number’%2 == 0) {
printf("/d is an even integer.",number);

}
else {
printf("/d is an odd integer.",number);
}
return O;
}
Output

Enter an integer: 7
7 is an odd integer.

When the user enters 7, the test expression numbery 2==0 returns false. As a result, the statement within
the body of else is performed.
14.3 C if...else Ladder

Depending on whether the test phrase is true or false, the if..else statement runs two separate programs.
Sometimes a decision must be made between more than two options. You may use the if...else ladder to
compare numerous test expressions and execute various statements.

14.3.1 Syntax of if...else Ladder

if (test expressionl) {
// statement (s)

39

}

else if (test expression2) {
// statement (s)

}

else if (test expression3) {
// statement (s)

}
else {

// statement (s)
}

14.3.2 Example 3: C if...else Ladder

// Program to relate two integers using =, > or < symbol

#include <stdio.h>

int main() {
int numberl, number?2;
printf ("Enter two integers: ");
scanf ("%d %d", &numberl, &number2);

//checks if the two integers are equal.
if (number1l == number2) {
printf ("Result: %d = ’%d",numberl,number?2) ;

//checks if numberl is greater than number2.
else if (numberl > number2) {
printf ("Result: %d > ’%d", numberl, number2);

//checks if both test expressions are false
else {
printf ("Result: %d < ’%d",numberl, number?2);

}

return O;
}
Output

Enter two integers: 12
23
Result: 12 < 23

14.4 Nested if...else

An if...else statement can be included within the body of another if. . .elsestatement.

14.4.1 Example 4: Nested if...else

This program, similar to the if...else ladder’s example, compares two numbers using, >, and =. To fix this
problem, we will utilize a layered if...else expression.

#include <stdio.h>
int main() {
int numberl, number2;

40

printf ("Enter two integers: ");
scanf ("%d %d", &numberl, &number2);

if (numberl >= number?2) {

if (numberl == number2) {
printf ("Result: %d = %d",numberl,number?2) ;
}
else {
printf ("Result: %d > ’%d", numberl, number2);
}
}
else {
printf ("Result: %d < ’%d",numberl, number?2);
}
return O;

}

You do not need to use brackets if the body of an if...else statement contains only one sentence.

if (a > b) {

printf ("Hello");
}
printf ("Hi");

is equivalent to

if (a > b)
printf ("Hello");
printf ("Hi");

15 C for Loop

With the assistance of examples, you will learn how to design a for loop in C programming in this article.
A loop is a programming construct that is used to repeat a block of code until the stated condition is fulfilled.
Loops in C programming are classified into three types:

e while loop

e for loop

e do..while loop

This lesson will teach us about the for loop. The while and do..while loops will be covered in the next
tutorial.

15.1 for Loop
The for loop has the following syntax:

for (initializationStatement; testExpression; updateStatement)

{
// statements inside the body of loop

15.1.1 How for loop works?

The initialization statement is only used once. The test expression is then evaluated. The for loop is ended
if the test statement is interpreted as false. If the test expression is true, the statements inside the for loop’s
body are performed, and the update expression is updated. The test expression is examined once more. This

41

procedure is repeated until the test expression is false. The loop is terminated when the test expression is
false.

Initilization Expression

or Loop Body

15.1.2 Example 1: for loop

// Print numbers from 1 to 10
#include <stdio.h>

int main() {
int i;

for (i = 1; i < 11; ++1i)
{
printf("%d ", i);
}
return O;

}

42

Output
123456789 10

1. i is initialized to 1.

2. The test expression 1 < 11 is evaluated. Since 1 less than 11 is true, the body of for loop is executed.
This will print the 1 (value of i) on the screen.

3. The update statement ++i is executed. Now, the value of i will be 2. Again, the test expression is
evaluated to true, and the body of for loop is executed. This will print 2 (value of i) on the screen.

4. Again, the update statement ++i is executed and the test expression i < 11 is evaluated. This process
goes on until i becomes 11.

5. When i becomes 11, i < 11 will be false, and the for loop terminates.

15.1.3 Example 2: for loop

// Program to calculate the sum of first n natural numbers
// Positive integers 1,2,3...n are known as natural numbers

#include <stdio.h>
int main()

{
int num, count, sum = 0;
printf ("Enter a positive integer: ");
scanf ("%d", &num);
// for loop terminates when num %is less than count
for(count = 1; count <= num; ++count)
{
sum += count;
}
printf ("Sum = %d", sum);
return O;
}
Output

Enter a positive integer: 10
Sum = 55

The value entered by the user is stored in the variable num. Suppose, the user entered 10.

The count is initialized to 1 and the test expression is evaluated. Since the test expression count<=num (1
less than or equal to 10) is true, the body of for loop is executed and the value of sum will equal to 1.

Then, the update statement ++count is executed and count will equal to 2. Again, the test expression is
evaluated. Since 2 is also less than 10, the test expression is evaluated to true and the body of the for loop
is executed. Now, sum will equal 3.

This process goes on and the sum is calculated until the count reaches 11.
When the count is 11, the test expression is evaluated to 0 (false), and the loop terminates.

Then, the value of sum is printed on the screen.

16 C while and do...while Loop

In this tutorial, you will learn to create while and do...while loop in C programming with the help of examples.

In programming, loops are used to repeat a block of code until a specified condition is met.

43

C programming has three types of loops.

1. for loop
2. while loop
3. do..while loop

In the previous tutorial, we learned about for loop. In this tutorial, we will learn about while and do. .while

loop.

16.1 while loop
The syntax of the while loop is:

while (testExpression) {
// the body of the loop
}

16.1.1 How while loop works?

e The while loop evaluates the testExpression inside the parentheses ().
e If testExpression is true, statements inside the body of while loop are executed.

testExpression is evaluated again.

e The process goes on until testExpression is evaluated to false.
o If testExpression is false, the loop terminates (ends).

Test
Expression

while Loop Body

16.1.2 Example 1: while loop

// Print numbers from 1 to 5

#include <stdio.h>
int main() {

44

Then,

int 1 = 1;

while (1 <= 5) {
printf ("%d\n", 1i);
++1;

}

return O;

Output

O WN -

Here, we have initialized i to 1.

1. When i = 1, the test expression i <= 5 is true. Hence, the body of the while loop is executed. This
prints 1 on the screen and the value of i is increased to 2.

2. Now, i = 2, the test expression i <= 5 is again true. The body of the while loop is executed again.
This prints 2 on the screen and the value of i is increased to 3.

3. This process goes on until i becomes 6. Then, the test expression i <= 5 will be false and the loop
terminates.

16.2 do...while loop

The do..while loop is similar to the while loop with one important difference. The body of do...while
loop is executed at least once. Only then, the test expression is evaluated.

The syntax of the do...while loop is:

do {
// the body of the loop
}

while (testExpression);

16.2.1 How do...while loop works?

e The body of do...while loop is executed once. Only then, the testExpression is evaluated.

o If testExpression is true, the body of the loop is executed again and testExpression is evaluated
once more.

e This process goes on until testExpression becomes false.

o If testExpression is false, the loop ends.

45

16.2.2 Flowchart of do...while Loop

do..while Loop Body

16.2.3 Example 2: do...while loop

// Program to add numbers until the user enters zero

#include <stdio.h>
int main() {
double number, sum = O;

// the body of the loop ts executed at least once
do {
printf ("Enter a number: ");
scanf ("%1f", &number);
sum += number;
}
while (number !'= 0.0);

printf("Sum = %.21f",sum) ;

return O;
}
Output
Enter number:

N =
o

a
Enter a number:
Enter a number: -3.4
Enter a number: 4.2
Enter a number: O
Sum = 4.70

Here, we have used a do...while loop to prompt the user to enter a number. The loop works as long as
the input number is not 0.

The do. ..while loop executes at least once i.e. the first iteration runs without checking the condition. The

46

condition is checked only after the first iteration has been executed.

do {
printf ("Enter a number: ");
scanf ("%1f", &number);
sum += number;

}

while (number != 0.0);

So, if the first input is a non-zero number, that number is added to the sum variable and the loop continues
to the next iteration. This process is repeated until the user enters 0.

But if the first input is 0, there will be no second iteration of the loop and sum becomes 0. 0.

Outside the loop, we print the value of sum.

17 C break and continue

We learned about loops in previous tutorials. In this tutorial, we will learn to use break and continue
statements with the help of examples.

17.1 C break
The break statement ends the loop immediately when it is encountered. Its syntax is:
break;

The break statement is almost always used with if. . .else statement inside the loop.

while (testExpression) { do {
if (condition to break) { iflfcnﬁﬂ}tiun to break) {
— break; e,
} }
} while (testExpression);
—

—

for (init; testExpression; update) {

if (condition to break) {
break;

}

17.1.1 Example 1: break statement

// Program to calculate the sum of numbers (10 numbers maz)
// If the user enters a megative number, the loop terminates

47

#include <stdio.h>

int main() {
int 1i;
double number, sum = 0.0;

for (i = 1; i <= 10; ++i) {
printf ("Enter njd: ", i);
scanf ("%1f", &number);

// if the user enters a negative number, break the loop
if (number < 0.0) {
break;

}

sum += number; // sum = sum + number;

}
printf ("Sum = %.21f", sum);

return O;

}
Output

Enter nil:
Enter n2:
Enter n3:
Enter n4: -3
Sum = 10.30

w DN
NSNS

This program calculates the sum of a maximum of 10 numbers. Why a maximum of 10 numbers? It’s
because if the user enters a negative number, the break statement is executed. This will end the for loop,
and the sum is displayed.

In C, break is also used with the switch statement. This will be discussed in the next tutorial.

17.2 C continue

The continue statement skips the current iteration of the loop and continues with the next iteration. Its
syntax is:

continue;

The continue statement is almost always used with the if...else statement.

48

17.2.1 How continue statement works?

do {
while (testExpression) { Fy rndae
// codes if (testExpression) {
if (testExpression) { continue;
continue; }

} 7y 2 |3 while (testExpression);

for (init; testExpression; update) {
Codes
if (testExpression) {
continue;

codes

17.2.2 Example 2: continue statement
// Program to calculate the sum of numbers (10 numbers maz)

// If the user enters a negative number, tt's not added to the result

#include <stdio.h>
int main() {
int 1i;
double number, sum = 0.0;

for (i = 1; i <= 10; ++i) {
printf ("Enter a njd: ", i);
scanf ("%1f", &number) ;

if (number < 0.0) {
continue;

}

sum += number; // sum = sum + number;

}
printf ("Sum = %.21f", sum);

return O;

}
Output

Enter nl1: 1.1

49

Enter n2: 2.2
Enter n3: 5.5
Enter nd: 4.4
Enter nb: -3.4
Enter n6: -45.5
Enter n7: 34.5
Enter n8: -4.2
Enter n9: -1000
Enter n10: 12
Sum = 59.70

In this program, when the user enters a positive number, the sum is calculated using sum += number;
statement.

When the user enters a negative number, the continue statement is executed and it skips the negative
number from the calculation.

18 C switch Statement

In this tutorial, you will learn to create the switch statement in C programming with the help of an example.
The switch statement allows us to execute one code block among many alternatives.

You can do the same thing with the if...else..if ladder. However, the syntax of the switch statement
is much easier to read and write.

18.1 Syntax of switch...case

switch (expression)
{

case constantl:
// statements
break;

case constant2:
// statements
break;

default:
// default statements
}

How does the switch statement work?
The expression is evaluated once and compared with the values of each case label.

o If there is a match, the corresponding statements after the matching label are executed. For example,
if the value of the expression is equal to constant2, statements after case constant2: are executed
until break is encountered.

e If there is no match, the default statements are executed.

If we do not use break, all statements after the matching label are executed.

By the way, the default clause inside the switch statement is optional.

50

single expression

equals to
case constantl?

equals to
case constant2?

equals to
case constant3?

Mo

51

code block 3

Default code

18.1.1 Example: Simple Calculator

// Program to create a simple calculator
#include <stdio.h>

int main() {
char operator;
double nl1, n2;

printf ("Enter an operator (+, -, *, /): ");
scanf ("c", &operator);

printf ("Enter two operands: ");

scanf (")1f %1f",&nl, &n2);

switch(operator)
{
case '+':
printf("}.11f + %.11f = 7,.11f",n1, n2, nl+n2);
break;

case '-':
printf("%.11f - % .11f = 7.11f",nl1, n2, nl-n2);
break;

case 'x':
printf ("% .11f * %.11f = %,.11f",n1, n2, nl*n2);
break;

case '/':
printf ("% .11f / %.11f = 7,.11f",n1, n2, nl/n2);
break;

// operator doesn't match any case constant +, -, *, /
default:
printf ("Error! operator is not correct");

}
return O;
}
Output
Enter an operator (+, -, *,): -
Enter two operands: 32.5
12.4

32.5 - 12.4 = 20.1

The - operator entered by the user is stored in the operator variable. And, two operands 32.5 and 12.4 are
stored in variables nl and n2 respectively.

Since the operator is -, the control of the program jumps to
printf("%.11f - %.11f = %.11f", nl, n2, nl-n2);

Finally, the break statement terminates the switch statement.

19 C goto Statement

In this tutorial, you will learn to create the goto statement in C programming. Also, you will learn when to
use a goto statement and when not to use it.

52

The goto statement allows us to transfer control of the program to the specified label.

19.0.1 Syntax of goto Statement
goto label;

label:

statement;

The label is an identifier. When the goto statement is encountered, the control of the program jumps to
label: and starts executing the code.

—— goto label;

-
1]
-2
q"]
=

19.0.2 Example: goto Statement

// Program to calculate the sum and average of positive numbers
// If the user enters a mnegative number, the sum and average are displayed.

#include <stdio.h>
int main() {

const int maxInput = 100;
int i;
double number, average, sum = 0.0;

for (i = 1; i <= maxInput; ++i) {
printf("/d. Enter a number: ", i);
scanf ("%1f", &number);

// go to jump if the user enters a negative number
if (number < 0.0) {

goto jump;
b

sum += number;

Jjump:
average = sum / (i - 1);
printf ("Sum = %.2f\n", sum);

53

printf ("Average = 7,.2f", average);

return O;
}
Output
1. Enter a number: 3
2. Enter a number: 4.3
3. Enter a number: 9.3
4. Enter a number: -2.9

Sum = 16.60
Average = 5.53

19.0.3 Reasons to avoid goto
The use of goto statement may lead to code that is buggy and hard to follow. For example,

one:
for (i = 0; i < number; ++i)
{
test += i;
goto two;
}
two:
if (test > 5) {
goto three;
}

Also, the goto statement allows you to do bad stuff such as jump out of the scope.

That being said, goto can be useful sometimes. For example: to break from nested loops.

19.0.4 Should you use goto?

If you think the use of goto statement simplifies your program, you can use it. That being said, goto is
rarely useful and you can create any C program without using goto altogether.

Here’s a quote from Bjarne Stroustrup, creator of C++, “The fact that ‘goto’ can do anything is
exactly why we don’t use it.”

C Functions'?

C User-defined functions'4

Types of User-defined Functions in C Programming®
C Recursion (Recursive function)'®
C Storage Class'”

C Function Examples'®

C Arrays (With Examples)'?

C Multidimensional Arrays (2d and 3d Array)*’

Bhttps://www.programiz.com/c-programming/c-functions

Mhttps:/ /www.programiz.com/c-programming/c-user-defined-functions
15https:/ /www.programiz.com/c-programming/types- user-defined- functions
16https:/ /www.programiz.com/c-programming/c-recursion

Thttps:/ /www.programiz.com/c-programming/c-storage-class
Bhttps://www.programiz.com/c-programming/c-functions-examples
Yhttps://www.programiz.com/c-programming/c-arrays
2Ohttps://www.programiz.com/c-programming/c-multi-dimensional-arrays

54

https://www.programiz.com/c-programming/c-functions
https://www.programiz.com/c-programming/c-user-defined-functions
https://www.programiz.com/c-programming/types-user-defined-functions
https://www.programiz.com/c-programming/c-recursion
https://www.programiz.com/c-programming/c-storage-class
https://www.programiz.com/c-programming/c-functions-examples
https://www.programiz.com/c-programming/c-arrays
https://www.programiz.com/c-programming/c-multi-dimensional-arrays

Pass arrays to a function in C?!
for Pointers check CS50 visuals in PDF
C Pointers (With Examples)??
Relationship Between Arrays and Pointers in C Programming (With Examples)??
C Pass Addresses and Pointers to Functions?*
C Dynamic Memory Allocation Using malloc(), calloc(), free() & realloc()?®
C Array and Pointer Examples®®
Strings in C (With Examples)?”
String Manipulations In C Programming Using Library Functions?®
String Examples in C Programming?’
c¢. C Functions
d. C Programming Functions
ii. C User-defined Functions
iii. C Function Types
iv. C Recursion
v. C Storage Class
vi. C Function Examples
vii. C Programming Arrays
viii. C Programming Arrays
ix. C Multi-dimensional Arrays
x. C Arrays & Functions
e. C Programming Pointers
f. C Programming Pointers
ii. C Pointers & Arrays
iii. C Pointers and Functions
iv. C Memory Allocation
v. Array & Pointer Examples
f. C Programming Strings
g. C Programming Strings
ii. C String Functions
iii. C String Examples
g. C Structure and Union
h. C Structure

2Ihttps://www.programiz.com/c-programming/c-arrays- functions
22https://www.programiz.com/c-programming/c-pointers
23https://www.programiz.com/c-programming/c-pointers-arrays
24https://www.programiz.com/c-programming/c-pointer-functions
25https://www.programiz.com/c-programming/c-dynamic-memory-allocation
26https://www.programiz.com/c-programming/c- pointer-examples

2Thttps: //www.programiz.com/c-programming/c-strings
28https://www.programiz.com/c-programming/string-handling- functions
29https://www.programiz.com/c-programming/c-string-examples

55

https://www.programiz.com/c-programming/c-arrays-functions
https://www.programiz.com/c-programming/c-pointers
https://www.programiz.com/c-programming/c-pointers-arrays
https://www.programiz.com/c-programming/c-pointer-functions
https://www.programiz.com/c-programming/c-dynamic-memory-allocation
https://www.programiz.com/c-programming/c-pointer-examples
https://www.programiz.com/c-programming/c-strings
https://www.programiz.com/c-programming/string-handling-functions
https://www.programiz.com/c-programming/c-string-examples

ii. C Struct & Pointers

iii. C Struct & Functions

iv. C Unions

v. C Struct Examples

h. C Programming Files

i. C Files Input/Output

ii. C Files Examples

iii. Additional Topics

iv. C Enumeration

v. C Preprocessors

vi. C Standard Library
C Programming Examples
https://cdnvideo.eba.gov.tr/fatihkalem/fatihkalem_ portable.zip

https://cdnvideo.eba.gov.tr/fatihkalem /fatihkalem_ setup.exe

20 Extras

56

	CE103 Algorithms and Programming I
	Week-5
	C Functional Console Programming
	Books and Resources

	C Functional Console Programming
	C Programming
	preprocessing
	compiling
	assembling
	linking
	C Introduction
	Keywords and Identifiers

	Character set
	Alphabets
	Digits
	Special Characters

	C Keywords
	C Identifiers
	Rules for naming identifiers

	C Variables, Constants and Literals
	Variables
	Rules for naming a variable

	Literals
	1. Integers
	2. Floating-point Literals
	3. Characters
	4. Escape Sequences
	5. String Literals

	Constants

	C Data Types
	Basic types
	int
	float and double
	char
	void
	short and long
	signed and unsigned

	Other data types defined in C programming are:
	Derived Data Types

	C Input Output (I/O)
	C Output
	Example 1: C Output
	Example 2: Integer Output
	Example 3: float and double Output
	Example 4: Print Characters

	C Input
	Example 5: Integer Input/Output
	Example 6: Float and Double Input/Output
	Example 7: C Character I/O
	Example 8: ASCII Value

	I/O Multiple Values
	Format Specifiers for I/O

	C Programming Operators
	C Arithmetic Operators
	Example 1: Arithmetic Operators

	C Increment and Decrement Operators
	Example 2: Increment and Decrement Operators

	Increment ++ and Decrement – Operator as Prefix and Postfix
	++ and – operator as prefix and postfix
	Example 1: C Programming
	C Assignment Operators
	Example 3: Assignment Operators
	C Relational Operators
	Example 4: Relational Operators
	C Logical Operators
	Example 5: Logical Operators
	C Bitwise Operators

	Other Operators
	Comma Operator
	The sizeof operator
	Example 6: sizeof Operator

	C Flow Control
	C if…else Statement
	C if Statement
	How if statement works?
	Example 1: if statement

	C if…else Statement
	How if…else statement works?
	Example 2: if…else statement

	C if…else Ladder
	Syntax of if…else Ladder
	Example 3: C if…else Ladder

	Nested if…else
	Example 4: Nested if…else

	C for Loop
	for Loop
	How for loop works?
	Example 1: for loop
	Example 2: for loop

	C while and do…while Loop
	while loop
	How while loop works?
	Example 1: while loop

	do…while loop
	How do…while loop works?
	Flowchart of do…while Loop
	Example 2: do…while loop

	C break and continue
	C break
	Example 1: break statement

	C continue
	How continue statement works?
	Example 2: continue statement

	C switch Statement
	Syntax of switch…case
	Example: Simple Calculator

	C goto Statement
	Syntax of goto Statement
	Example: goto Statement
	Reasons to avoid goto
	Should you use goto?

	Extras

