
CE103 Algorithms and Programming I

Week-3

Fall Semester, 2021-2022

Download DOC, SLIDE, PPTX

CE103 Algorithms and Programming I

 RTEU CE103 Week-3

file:///C:/Users/ugur.coruh/Desktop/ce103-algorithms-and-programming-I/docs/week-3-git/ce103-week-3-git.tr.md_doc.pdf
file:///C:/Users/ugur.coruh/Desktop/ce103-algorithms-and-programming-I/docs/week-3-git/ce103-week-3-git.tr.md_slide.pdf
file:///C:/Users/ugur.coruh/Desktop/ce103-algorithms-and-programming-I/docs/week-3-git/ce103-week-3-git.tr.md_slide.pptx

Introduction to Source Code Management Systems

Git, Github, Gitlab, Bitbucket, Maven, SVN, TFS

Source code management (SCM) is used to track modifications to a source code
repository. SCM tracks a running history of changes to a code base and helps resolve
conflicts when merging updates from multiple contributors. SCM is also synonymous
with Version control.

As software projects grow in lines of code and contributor head count, the costs of
communication overhead and management complexity also grow. SCM is a critical tool
to alleviate the organizational strain of growing development costs.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 2

Features of Source Code Management Systems

Authenticated access for commits

Revision history on files

Atomic commits of multiple files

Versioning/Tagging

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 3

Why Do We Need Source Code Management Systems? (1)

We can save the file with a different name if it’s our school project or one-time papers
but for a well-equipped software development? Not a chance.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 4

Why Do We Need Source Code Management Systems? (2)

Big projects need a version control system to track the changes and avoid
misunderstanding. A good SCM does the following:

Backup and Restore
Synchronization

Short-Term Undo

Long-Term Undo

Track Changes
Ownership

Branching and Merging

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 5

Why Do We Need Source Code Management Systems? (3)

Backup and Restore – Files can be saved at any moment and can be restored from the
last saved.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 6

Why Do We Need Source Code Management Systems? (4)

Synchronization – Programmers can get the latest code and fetch the up-to-date codes
from the repository.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 7

Why Do We Need Source Code Management Systems? (5)

Short-Term Undo – Working with a file and messed it up. We can do a short-term undo
to the last known version.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 8

Why Do We Need Source Code Management Systems? (6)

Long-Term Undo – It helps when we have to make a release version rollback.
Something like going to the last version which was created a year

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 9

Why Do We Need Source Code Management Systems? (7)

Track Changes– We can track the changes as when anyone is making any change, he
can leave a commit message as for why the change was done.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 10

Why Do We Need Source Code Management Systems? (8)

Ownership– With every commit made to the master branch, it will ask the owner
permission to merge it.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 11

Why Do We Need Source Code Management Systems? (9)

Branching and Merging – You can create a branch of your source code and create the
changes. Once the changes are approved, you can merge it with the master branch.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 12

Why Do We Need Source Code Management Systems? (10)

Types of Version Control Systems

Centralized Version Control (TFS, Subversion)

Distributed Version Control (Git and Mercurial)

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 13

Centralized Version Control (TFS, Subversion) (1)

The main concept of Centralized Version Control is that it works in a client and server
relationship. The repository is located in one place and allows access to multiple clients.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 14

Centralized Version Control (TFS, Subversion) (2)

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 15

Centralized Version Control (TFS, Subversion) (3)

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 16

Centralized Version Control (TFS, Subversion) (4)

It’s very similar to FTP where you have FTP clients which connect to FTP server. Here all
the user changes and commits have to pass through the central server. For Ex:
Subversion.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 17

Centralized Version Control (TFS, Subversion) (5)

The benefits of centralized version control are:

It’s easy to understand.

There are more GUI and IDE clients.

You have more control over the users and access.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 18

Centralized Version Control (TFS, Subversion) (6)

We do have drawbacks also:

It is dependent on the access to the server.

It can be slower because every command from the client has to pass the server.

Branching and merging strategies are difficult to use.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 19

Distributed Version Control (Git and Mercurial) (1)

These systems are newer to use. In Distributed Version Control, each user has their own
copy of the entire repository as well as the files and history. For Ex: Git and Mercurial

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 20

Distributed Version Control (Git and Mercurial) (2)

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 21

Distributed Version Control (Git and Mercurial) (3)

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 22

Distributed Version Control (Git and Mercurial) (4)

The benefits of distributed version control are:

More powerful and easy change tracking.

No need of a centralized server. Most of the functionalities work in offline mode
also apart from sharing the repositories.

Branching and Merging strategies are more easy and reliable.

It’s faster than the other one.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 23

List of Source Code Version Management Tools (1)

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 24

List of Source Code Version Management Tools (2)

Github

GitLab

BitBucket

SourceForge

Beanstalk

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 25

List of Source Code Version Management Tools (3)

Apache Allura

AWS CodeCommit

Launchpad

Phabricator

GitBucket

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 26

GIT (Distributed Source Code Management) (1)

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 27

GIT (Distributed Source Code Management) (2)

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 28

GIT (Distributed Source Code Management) (3)

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 29

GIT (Distributed Source Code Management) (4)

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 30

GIT (Distributed Source Code Management) (5)

A Basic Overview of How Git Works (1)

Create a “repository” (project) with a git hosting tool (like Bitbucket)

Copy (or clone) the repository to your local machine

Add a file to your local repo and “commit” (save) the changes

“Push” your changes to your master branch

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 31

GIT (Distributed Source Code Management) (6)

A Basic Overview of How Git Works (2)

Make a change to your file with a git hosting tool and commit

“Pull” the changes to your local machine

Create a “branch” (version), make a change, commit the change

Open a “pull request”.

“Merge” your branch to the master branch

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 32

GIT (Distributed Source Code Management) (7)

Some of The Basic Operations in GIT are

Initialize

Add

Commit

Pull

Push

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 33

GIT (Distributed Source Code Management) (8)

Some of The Basic Operations in GIT are

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 34

GIT (Distributed Source Code Management) (9)

Some of The Basic Operations in GIT are

Branching

Merging

Rebasing

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 35

GIT (Distributed Source Code Management) (10)

Some of The Basic Operations in GIT are

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 36

GIT (Distributed Source Code Management) (8)

A brief idea about how these operations work with the Git repositories (1)

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 37

GIT (Distributed Source Code Management) (9)

A brief idea about how these operations work with the Git repositories (2)

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 38

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 39

GIT (Distributed Source Code Management) (10)

A brief idea about how these operations work with the Git repositories (3)

For more detailed cheetsheat please check the following interactive map

NDP Software :: Git Cheatsheet

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 40

https://www.ndpsoftware.com/git-cheatsheet.html

Installation of GIT (1)

Check Installation Already Completed

git --version

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 41

Installation of GIT (2)

If your console gives error about git command follow the steps in the link

Install Git | Atlassian Git Tutorial

In this link you will should download following setup according to your operating
system

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 42

https://www.atlassian.com/git/tutorials/install-git#windows

Installation of GIT (3)

GIT Setup Files

Download git for OSX

Download git for Windows

Download git for Linux

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 43

http://git-scm.com/download/mac
http://git-scm.com/download/mac
http://git-scm.com/download/mac
http://git-scm.com/download/mac
http://msysgit.github.io/
http://msysgit.github.io/
http://msysgit.github.io/
http://msysgit.github.io/
http://git-scm.com/book/en/Getting-Started-Installing-Git
http://git-scm.com/book/en/Getting-Started-Installing-Git
http://git-scm.com/book/en/Getting-Started-Installing-Git
http://git-scm.com/book/en/Getting-Started-Installing-Git

Installation of GIT (4)

Download and install GIT from the following links (both have same github release path)

Git - Downloads

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 44

https://git-scm.com/downloads

Installation of GIT (5)

After running setup follow the steps below

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 45

Installation of GIT (6)

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 46

Installation of GIT (7)

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 47

Installation of GIT (8)

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 48

Installation of GIT (9)

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 49

Installation of GIT (10)

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 50

Installation of GIT Extension (Windows) (1)

You can install Git GUI from https://git-scm.com/downloads/guis

I prefer to use git extension https://gitextensions.github.io/ and https://tortoisegit.org/

Also Download KDiff3 KDiff3 - Browse Files at SourceForge.net

These extensions provide GUI for git operations to make process easier.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 51

https://git-scm.com/downloads/guis
https://gitextensions.github.io/
https://tortoisegit.org/
https://sourceforge.net/projects/kdiff3/files/

Configuration of GIT Extension (Windows) (1)

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 52

Configuration of GIT Extension (Windows) (2)

If you install git everything should be green and this configuration is stored on
.gitconfig on your home C:/Windows/Users/<user>/.gitconfig

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 53

Configuration of GIT Extension (Windows) (3)

[core]

 editor = \"C:/Program Files (x86)/GitExtensions/GitExtensions.exe\" fileeditor

 autocrlf = true

 quotePath = false

 commitGraph = true

 longpaths = true

[user]

 email = xxxxxxx@gmail.com

 name = xxxx xxxxxx

[filter "lfs"]

 clean = git-lfs clean -- %f

 smudge = git-lfs smudge -- %f

 process = git-lfs filter-process

 required = true

[pull]

 rebase = false

[fetch]

 prune = false

[rebase]

 autoStash = false

[credential]

 helper = manager

[diff]

 guitool = kdiff3

[difftool "kdiff3"]

 path = C:/Program Files/KDiff3/kdiff3.exe

 cmd = \"C:/Program Files/KDiff3/kdiff3.exe\" \"$LOCAL\" \"$REMOTE\"

[merge]

 guitool = tortoisemerge

[mergetool "tortoisemerge"]

 path = C:/Program Files/TortoiseGit/bin/TortoiseGitMerge.exe

 cmd = \"C:/Program Files/TortoiseGit/bin/TortoiseGitMerge.exe\" -base:\"$BASE\" -mine:\"$LOCAL\" -theirs:\"$REMOTE\" -merged:\"$MERGED\"

[receive]

 advertisePushOptions = true

[gc]

 writeCommitGraph = true

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 54

Configuration of GIT Extension (Windows) (4)

Also in extension you can see similar settings

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 55

Configuration of GIT Extension (Windows) (5)

Samples

MergeTool

tortoisemerge

Path to mergetool

C:/Program Files/TortoiseGit/bin/TortoiseGitMerge.exe

Mergetool command

"C:/Program Files/TortoiseGit/bin/TortoiseGitMerge.exe" -base:"$BASE" -mine:"$LOCAL" -theirs:"$REMOTE" -merged:"$MERGED"

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 56

Configuration of GIT Extension (Windows) (6)

Difftool

kdiff3

Path to difftool

C:/Program Files/KDiff3/kdiff3.exe

Difftool command

"C:/Program Files/KDiff3/kdiff3.exe" "$LOCAL" "$REMOTE"

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 57

Configuration of GIT Extension (Windows) (7)

If you see something as merge and diff tool is not configured, follow the similar settings
above on your computer. If you installed kdiff3, tortoisegit and extension you will have
same diff and merge tools

This topic also help you

Git: How can I configure KDiff3 as a merge tool and diff tool? - Stack Overflow

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 58

https://stackoverflow.com/questions/33308482/git-how-can-i-configure-kdiff3-as-a-merge-tool-and-diff-tool

Configuration of GIT Extension (Windows) (8)

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 59

Configuration of GIT Extension (Windows) (9)

Open Git->Config, in your settings you will see path to mergetool and difftool will be
empty fill settings like that below find executables in your computer and copy paths to
here.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 60

Configuration of GIT Extension (Windows) (10)

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 61

Configuration of GIT Extension (Windows) (11)

Also if we want to change and use different diff and merge tool then we can do this
with gitbash console as below

C:\Program Files\TortoiseGit\bin

Find TortoiseGitIDiff.exe and TortoiseGitMerge.exe

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 62

Configuration of GIT Extension (Windows) (12)

Copy path of this applications

C:\Program Files\TortoiseGit\bin\TortoiseGitMerge.exe

C:\Program Files\TortoiseGit\bin\TortoiseGitIDiff.exe

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 63

Configuration of GIT Extension (Windows) (13)

open a gitbash console and run following commands

git config --global merge.tool TortoiseGitMerge

git config --global mergetool.TortoiseGitMerge.path "C:/Program Files/TortoiseGit/bin/TortoiseGitMerge.exe"

git config --global mergetool.TortoiseGitMerge.trustExitCode false

git config --global diff.guitool TortoiseGitIDiff

git config --global difftool.TortoiseGitIDiff.path "C:/Program Files/TortoiseGit/bin/TortoiseGitIDiff.exe"

git config --global difftool.TortoiseGitIDiff.trustExitCode false

This updates will be stored on .gitconfig

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 64

Using the GIT Extension (1)

right click in the git folder and use Git Extension menu for operations.

for sample commit click "Commit"

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 65

Using the GIT Extension (1)

from opening window first stage related files and then write a good commit message

finally click commit to local. You can also commit&push it to remote repository.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 66

GIT Installation Completed..

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 67

Installation of gig (git ignore creator) (1)

Requirements

Python >= 3.6

Internet connection

https://github.com/sloria/gig

pip install -U gig

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 68

https://github.com/sloria/gig

Installation of gig (git ignore creator) (2)

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 69

Installation of gig (git ignore creator) (3)

gig --version

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 70

Usage of gig (1)

List all gitignore templates

gig list

gig list -global

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 71

Usage of gig (2)

Sample gitignore for C Java and Visual Studio

gig C Java VisualStudio > .gitignore

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 72

Usage of gig (3)

There is a portal for this also by Toptal

•gitignore.io - Create Useful .gitignore Files For Your Project

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 73

https://www.toptal.com/developers/gitignore

Usage of gig (4)

for samples you can check the following links.

https://github.com/github/gitignore

https://dev.to/shihanng/gig-a-gitignore-generator-opc

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 74

https://github.com/github/gitignore
https://dev.to/shihanng/gig-a-gitignore-generator-opc

Configuration of GIT (1)

It is important to configure your Git because any commits that you

make are associated with your configuration details.

configuring Git with your username and email. In order to do that, type the following
commands in your Git Bash:

git config - - global user.name "<your name>"

git config - - global user.email "<your email>"

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 75

Configuration of GIT (2)

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 76

Configuration of GIT (3)

git configuration files are located on the user folder

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 77

Configuration of GIT (4)

If you want to view all your configuration details, use the command below

git config --list

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 78

Using .gitignore files with git-extension (1)

with gitignore file

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 79

Using .gitignore files with git-extension (2)

without gitignore file (just move to another location)

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 80

Github Create Repo

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 81

Initilization of Repo (not existing in github)

git init

In order to do that, we use the command git init.

git init creates an empty Git repository or re-initializes an existing one. It basically
creates a .git directory with sub directories and template files. Running a git init in
an existing repository will not overwrite things that are already there. It rather picks
up the newly added templates.

git init

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 82

git init

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 83

Adding Initiated Repo Remote Upstream Repo (Link with Github Repo) (1)

If you enter following command in the git folder you will see nothing

git remote -v

That mean this repository do not have a remote upstream repository such as a github
or bitbucket repo.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 84

Adding Initiated Repo Remote Upstream Repo (Link with Github Repo) (2)

Open the github and bitbucket repository and copy project path from

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 85

Adding Initiated Repo Remote Upstream Repo (Link with Github Repo) (3)

you will see the following sample from github code button

https://github.com/ucoruh/ce103-sample-text.git

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 86

Adding Initiated Repo Remote Upstream Repo (Link with Github Repo) (4)

copy link and use with following command

git remote add origin https://github.com/ucoruh/ce103-sample-text.git

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 87

Adding Initiated Repo Remote Upstream Repo (Link with Github Repo) (5)

then you can check your remote setting with

$ git remote -v

origin https://github.com/ucoruh/ce103-sample-text.git (fetch)

origin https://github.com/ucoruh/ce103-sample-text.git (push)

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 88

Adding Initiated Repo Remote Upstream Repo (Link with Github Repo) (6)

you can check the following sample

How to Add a New Remote to your Git Repo | Assembla Help Center

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 89

https://articles.assembla.com/en/articles/1136998-how-to-add-a-new-remote-to-your-git-repo

Now you can push your local changes to remote repository

If you see a repository on Github then you can download with following
operation

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 90

Checkout a Repository (1)

create a working copy of a local repository by running the command

git clone /path/to/repository

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 91

Checkout a Repository (2)

Sample clone command

git clone https://github.com/ucoruh/ce103-sample-text.git

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 92

Checkout a Repository (3)

when using a remote server, your command will be

git clone username@host:/path/to/repository

Checking Repository Status (1)

git status

The git status command lists all the modified files which are ready to be added to the
local repository.

git status

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 93

Checking Repository Status (2)

git status

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 94

Adding Files to Index (1)

git add

This command updates the index using the current content found in the working tree

and then prepares the content in the staging area for the next commit.

git add <directory>

git add <file>

git add *

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 95

Adding Files to Index (1)

git add

Created two more files edureka3.txt and edureka4.txt. Let us add the files using the
command git add -A. This command will add all the files to the index which are in the
directory but not updated in the index yet.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 96

Commit Changes (1)

git commit

•It refers to recording snapshots of the repository at a given time. Committed
snapshots will never change unless done explicitly.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 97

Commit Changes (2)

git commit

Let me explain how commit

works with the diagram below

Here, C1 is the initial commit, i.e. the snapshot of the first change from which

another snapshot is created with changes named C2. Note that the master points

to the latest commit. Now, when I commit again, another snapshot C3 is created and
now the master points to C3 instead of C2.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 98

Commit Changes (3)

git commit

Commands:

git commit -m "<message>"

Now, if you want to commit a snapshot of all the changes in the working directory at

once, you can use the command below

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 99

Commit Changes (4)

git commit

Please check writing good commit messages article below

How to write a good commit message - DEV Community

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 100

https://dev.to/chrissiemhrk/git-commit-message-5e21

Writing Good Commit Messages (1)

type: subject

body (optional)

footer (optional)

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 101

Writing Good Commit Messages (2)

1. Type

feat - a new feature

fix - a bug fix

docs - changes in documentation
style - everything related to styling

refactor - code changes that neither fixes a bug or adds a feature

test - everything related to testing

chore - updating build tasks, package manager configs, etc

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 102

Writing Good Commit Messages (3)

2. Subject

This contains a short description of the changes made. It shouldn't be greater than 50
characters, should begin with a capital letter and written in the imperative eg. Add
instead of Added or Adds.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 103

Writing Good Commit Messages (4)

3. Body

The body is used to explain what changes you made and why you made them. Not all
commits are complex enough that they need a body, especially if you are working on a
personal project alone, and as such writing a body is optional.

A blank line between the body and the subject is required and each line should have no
more than 72 characters.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 104

Writing Good Commit Messages (5)

4.Footer

The footer is also optional and mainly used when you are using an issue tracker to
reference the issue ID.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 105

Writing Good Commit Messages (6)

Example Commit Message

feat: Summarize changes in around 50 characters or less

More detailed explanatory text, if necessary. Wrap it to about 72

characters or so. In some contexts, the first line is treated as the

subject of the commit and the rest of the text as the body. The

blank line separating the summary from the body is critical (unless

you omit the body entirely); various tools like `log`, `shortlog`

and `rebase` can get confused if you run the two together.

Explain the problem that this commit is solving. Focus on why you

are making this change as opposed to how (the code explains that).

Are there side effects or other unintuitive consequences of this

change? Here's the place to explain them.

Further paragraphs come after blank lines.

 - Bullet points are okay, too

 - Typically a hyphen or asterisk is used for the bullet, preceded

 by a single space, with blank lines in between, but conventions

 vary here

If you use an issue tracker, put references to them at the bottom,

like this:

Resolves: #123

See also: #456, #789

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 106

Writing Good Commit Messages (7)

git commit -a

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 107

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 108

Add Files to Index (1)

I have created two more text files in my working directory viz. edureka5.txt and
edureka6.txt but they are not added to the index yet.

I am adding edureka5.txt using the command

git add edureka5.txt

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 109

Add Files to Index (2)

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 110

Add Files to Index (3)

I have added edureka5.txt to the index explicitly but not edureka6.txt and made
changes in the previous files. I want to commit all changes in the directory at once.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 111

Add Files to Index (4)

This command will commit a snapshot of all changes in the working directory but
only includes modifications to tracked files i.e. the files that have been added with
git add at some point in their history. Hence, edureka6.txt was not committed
because it was not added to the index yet. But changes in all previous files present
in the repository were committed, i.e. edureka1.txt, edureka2.txt, edureka3.txt,
edureka4.txt and edureka5.txt. Now I have made my desired commits in my local
repository

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 112

Add Files to Index (5)

your local repository consists of three "trees" maintained by git. the first one is your
Working Directory which holds the actual files. the second one is the Index which acts
as a staging area and finally the HEAD which points to the last commit you've made

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 113

Add Files to Index (6)

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 114

Update local repo before sending (1)

Fetching

If we have a remote Git branch, for example a branch on Github, it can happen that the
remote branch has commits that the current branch doesn't have! Maybe another
branch got merged, your colleague pushed a quick fix, and so on.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 115

Update local repo before sending (2)

Fetching

We can get these changes locally, by performing a git fetch on the remote branch! It
doesn't affect your local branch in any way: a fetch simply downloads new data.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 116

Update local repo before sending (3)

Fetching

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 117

Update local repo before sending (4)

Fetching

We can now see all the changes that have been made since we last pushed! We can
decide what we want to do with the new data now that we have it locally.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 118

Update local repo before sending (5)

Pulling

Although a git fetch is very useful in order to get the remote information of a branch,
we can also perform a git pull . A git pull is actually two commands in one: a git
fetch , and a git merge . When we're pulling changes from the origin, we're first
fetching all the data like we did with a git fetch , after which the latest changes are
automatically merged into the local branch

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 119

Update local repo before sending (6)

Pulling

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 120

Update local repo before sending (7)

Pulling

Awesome, we're now perfectly in sync with the remote branch and have all the latest
changes!

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 121

Update local repo before sending (8)

Pulling

git pull

Note that before you affect changes to the central repository you should always pull

changes from the central repository to your local repository to get updated with the
work of all the collaborators that have been contributing in the central repository. For
that we will use the pull command.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 122

Update local repo before sending (9)

Pulling

git pull

But first, you need to set your central repository as origin using the command

git remote add origin <link of your central repository>

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 123

Update local repo before sending (10)

Pulling / git pull

Now that my origin is set

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 124

Update local repo before sending (11)

Pulling / git pull

let us extract files from the origin using pull. For that use the command

git pull origin master

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 125

Update local repo before sending (12)

Pulling / git pull

This command will copy all the files from the master branch of remote repository to
your local repository.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 126

Update local repo before sending (13)

Pulling / git pull

Since my local repository was already updated with files from master branch,
hence the message is Already up-to-date. Refer to the screen shot above

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 127

Update local repo before sending (14)

Pulling / git pull

One can also try pulling files from a different branch using the following command:

git pull origin <branch-name>

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 128

Update local repo before sending (15)

Pulling / git pull

Your local Git repository is now updated with all the recent changes. It is time you
make changes in the central repository by using the push command.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 129

Send Changes to Remote Repo (1)

git push

This command transfers commits from your local repository to your remote
repository. It is the opposite of pull operation.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 130

Send Changes to Remote Repo (2)

git push

Pulling imports commits to local repositories whereas pushing exports commits to
the remote repositories

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 131

Send Changes to Remote Repo (3)

git push

The use of git push is to publish your local changes to a central repository. After
you’ve accumulated several local commits and are ready to share them with the
rest of the team,

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 132

Send Changes to Remote Repo (4)

git push

you can then push them to the central repository by using the following command

git push <remote>

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 133

Send Changes to Remote Repo (5)

git push

This remote refers to the remote repository which had been set before using the
pull command.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 134

Send Changes to Remote Repo (6)

git push

This pushes the changes from the local repository to the remote repository along
with all the necessary commits and internal objects. This creates a local branch in
the destination repository

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 135

Send Changes to Remote Repo (7)

git push

The below files are the files which we have already committed previously in the commit
section and they are all “push-ready“.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 136

Send Changes to Remote Repo (8)

git push

I will use the command git push origin master to reflect these files in the master
branch of my central repository.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 137

Send Changes to Remote Repo (9)

git push

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 138

Send Changes to Remote Repo (10)

git push

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 139

Send Changes to Remote Repo (11)

git push

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 140

Send Changes to Remote Repo (12)

git push

To prevent overwriting, Git does not allow push when it results in a non-fast
forward merge in the

destination repository.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 141

Send Changes to Remote Repo (13)

git push

A non-fast forward merge means an upstream merge i.e. merging with ancestor or
parent branches from a child branch

To enable such merge, use the command below

git push <remote> -force

The above command forces the push operation even if it results in a non-fast

forward merge

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 142

Branching (1)

git branch

Branches in Git are nothing but pointers to a specific commit. Git generally prefers to
keep its branches as lightweight as possible.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 143

Branching (2)

git branch

There are basically two types of branches viz.

local branches

remote tracking branches.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 144

Branching (3)

git branch

A local branch is just another path of your working tree. On the other hand, remote
tracking branches have special purposes. Some of them are:

They link your work from the local repository to the work on central repository.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 145

Branching (4)

git branch

They automatically detect which remote branches to get changes from, when you use
git pull.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 146

Branching (5)

Learn current branch

You can check what your current branch is by using the command

git branch

The one mantra that you should always be chanting while branching is “branch early,
and branch often”

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 147

Branching (6)

List Local Branches

git branch -l

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 148

Branching (7)

List Remote Branches

git branch -r

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 149

Branching (8)

List All Local and Remote Branches

git branch -a

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 150

Branching (9)

Removing merged git branches

(after pull-request action in github)

If you merged your branch to base branch in github and delete it on github your local
branch list will not be updated by it self. You have to use the following command to
update local and remote branch lists. Use the following command to syncronize your
repository with remote upstream repo.

git remote update --prune

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 151

https://splice.com/blog/cleaning-git-branches/

Branching (10)

Create Branch

To create a new branch we use the following command

git branch <branch-name>

The diagram below shows the workflow when a new branch is created. When we create
a new branch it originates from the master branch itself.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 152

Branching (11)

Create Branch

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 153

Branching (12)

Create Branch

Since there is no storage/memory overhead with making many branches, it is easier to

logically divide up your work rather than have big chunky branches

You can create and change branch with following command, create a new branch
named "feature_x" and switch to it using

git checkout -b feature_x

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 154

Branching (13)

Change Branch

git checkout <branch-name>

git checkout master

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 155

Branching (14)

Change Branch

Branching includes the work of a particular commit along with all parent commits.
As you can see in the diagram above, the newBranch has detached itself from the
master and hence will create a different path

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 156

Branching (15)

Delete Local Branch

and delete the branch again, before doing this switch to main or master branches.

git branch -d feature_x

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 157

Branching (16)

Delete Remote Branch

and delete the branch again, before doing this switch to main or master branches.

git push origin --delete feature_x

How to delete remote branches in Git

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 158

https://www.educative.io/edpresso/how-to-delete-remote-branches-in-git

Branching (17)

Push Specific Branch to Remote

A branch is not available to others unless you push the branch to your remote

repository

git push origin <branch>

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 159

Branching (18)

Update & Merge (Conflicts)

to update your local repository to the newest commit, execute

git pull

in your working directory to fetch and merge remote changes.

to merge another branch into your active branch (e.g. master), use

git merge <branch>

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 160

Branching (19)

Update & Merge (Conflicts)

in both cases git tries to auto-merge changes. Unfortunately, this is not always possible
and results in conflicts. You are responsible to merge those conflicts manually by editing
the files shown by git. After changing, you need to mark them as merged with

git add <filename>

before merging changes, you can also preview them by using

git diff <source_branch> <target_branch>

Git merge conflicts | Atlassian Git Tutorial

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 161

https://www.atlassian.com/git/tutorials/using-branches/merge-conflicts

Branching (20)

Update & Merge (Conflicts)

There are two types of merges Git can perform: a fast-forward, or a no-fast-forward

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 162

Branching (21)

Update & Merge (Conflicts)

Fast-forward (--ff)

A fast-forward merge can happen when the current branch has no extra commits
compared to the branch we’re merging. Git is... lazy and will first try to perform the
easiest option: the fast-forward! This type of merge doesn’t create a new commit, but
rather merges the commit(s) on the branch we’re merging right in the current branch

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 163

Branching (22)

Update & Merge (Conflicts)

Fast-forward (--ff)

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 164

Branching (23)

Update & Merge (Conflicts)

Perfect! We now have all the changes that were made on the dev branch available on
the master branch. So, what's the no-fast-forward all about?

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 165

Branching (24)

Update & Merge (Conflicts)

No-fast-foward (--no-ff)

It's great if your current branch doesn't have any extra commits compared to the branch
that you want to merge, but unfortunately that's rarely the case! If we committed
changes on the current branch that the branch we want to merge doesn't have, git will
perform a no-fast-forward merge.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 166

Branching (25)

Update & Merge (Conflicts)

No-fast-foward (--no-ff)

With a no-fast-forward merge, Git creates a new merging commit on the active branch.
The commit's parent commits point to both the active branch and the branch that we
want to merge!

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 167

Branching (26)

Update & Merge (Conflicts)

No-fast-foward (--no-ff)

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 168

Branching (27)

Update & Merge (Conflicts)

No-fast-foward (--no-ff)

No big deal, a perfect merge! The master branch now contains all the changes that
we've made on the dev branch.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 169

Branching (28)

Merge Conflicts

Although Git is good at deciding how to merge branches and add changes to files, it
cannot always make this decision all by itself This can happen when the two branches
we're trying to merge have changes on the same line in the same file, or if one branch
deleted a file that another branch modified, and so on.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 170

Branching (29)

Merge Conflicts

In that case, Git will ask you to help decide which of the two options we want to keep!
Let's say that on both branches, we edited the first line in the README.md .

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 171

Branching (30)

Merge Conflicts

If we want to merge dev into master , this will end up in a merge conflict: would you
like the title to be Hello! or Hey! ?

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 172

Branching (31)

Merge Conflicts

When trying to merge the branches, Git will show you where the conflict happens. We
can manually remove the changes we don't want to keep, save the changes, add the
changed file again, and commit the changes

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 173

Branching (32)

Merge Conflicts

Although merge conflicts are often quite annoying, it makes total sense: Git shouldn't
just assume which change we want to keep

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 174

Branching (33)

Sample Conflict -1

participants.txt

(I added a hyphen before each name)

Finance team

 Charles

 Lisa

 John

 Stacy

 Alexander

git init

git add .

git commit –m 'Initial list for finance team'

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 175

Branching (34)

Sample Conflict -1

Create a new branch called marketing using the following syntax

git checkout –b marketing

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 176

Branching (35)

Sample Conflict -1

Now open the participants.txt file and start entering the names for the marketing
department below the finance team list, as follows: (I added a hyphen before each
name)

Marketing team

 Collins

 Linda

 Patricia

 Morgan

git add .

git commit –m 'Unfinished list of marketing team'

git checkout master

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 177

Branching (36)

Sample Conflict -1

Open the file and delete the names Alexander and Stacy, save, close, add the changes,
and commit with the commit message Final list from Finance team

git add .

git commit –m "Final list from Finance team"

git checkout marketing

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 178

Branching (37)

Sample Conflict -1

Open the file and add the fifth name, Amanda, for the marketing team, save, add, and
commit

git add .

git commit –m "Initial list of marketing team"

names entered for marketing have been confirmed; now we need to merge these two
lists, which can be done by the following command

git merge master

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 179

Branching (38)

Sample Conflict -1

Auto-merging participants.txt

CONFLICT (content): Merge conflict in participants.txt

Automatic merge failed; fix conflicts and then commit the result.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 180

Branching (39)

Sample Conflict -1

Finance team

-Charles

-Lisa

-John

<<<<<<< HEAD

-Stacy

-Alexander

Marketing team

- Collins

- Linda

- Patricia

- Morgan

- Amanda

=======

>>>>>>> master

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 181

Branching (40)

Sample Conflict -1

<<<<<<<

Changes made on the branch that is being merged into. In most cases,

this is the branch that I have currently checked out (i.e. HEAD).

|||||||

The common ancestor version.

=======

Changes made on the branch that is being merged in. This is often a

feature/topic branch.

>>>>>>>

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 182

Branching (41)

Sample Conflict -1

remove them

keep the lines you want to see in the final version of the file

add and commit

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 183

Branching (42)

Sample Conflict -1

If we want to save all to our version

git checkout --ours . # checkout our local version of all files

git add -u # mark all conflicted files as merged

git commit # commit the merge

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 184

Branching (43)

Sample Conflict -1

If we want to discard all our revision

git checkout --theirs . # checkout remote version of all files

git add -u # mark all conflicted files as merged

git commit # commit the merge

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 185

Branching (44)

Sample Conflict -2

You're going to pull some changes, but oops, you're not up to date:

git fetch origin

git pull origin master

From ssh://gitosis@example.com:22/projectname

 * branch master -> FETCH_HEAD

Updating a030c3a..ee25213

error: Entry 'filename.c' not uptodate. Cannot merge.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 186

Branching (45)

Sample Conflict -2

So you get up-to-date and try again, but have a conflict:

git add filename.c

git commit -m "made some wild and crazy changes"

git pull origin master

From ssh://gitosis@example.com:22/projectname

 * branch master -> FETCH_HEAD

Auto-merging filename.c

CONFLICT (content): Merge conflict in filename.c

Automatic merge failed; fix conflicts and then commit the result.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 187

Branching (46)

Sample Conflict -2

So you decide to take a look at the changes:

git mergetool

Oh my, oh my, upstream changed some things, but just to use my changes...no...their
changes...

git checkout --ours filename.c

git checkout --theirs filename.c

git add filename.c

git commit -m "using theirs"

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 188

Branching (47)

Sample Conflict -2

And then we try a final time

git pull origin master

From ssh://gitosis@example.com:22/projectname

 * branch master -> FETCH_HEAD

Already up-to-date.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 189

Tagging

it's recommended to create tags for software releases. this is a known concept,

which also exists in SVN. You can create a new tag named 1.0.0 by executing

git tag 1.0.0 1b2e1d63ff

the 1b2e1d63ff stands for the first 10 characters of the commit id you want to

reference with your tag. You can get the commit id by looking at the...

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 190

Log (1)

in its simplest form, you can study repository history using.. git log

You can add a lot of parameters to make the log look like what you want. To see

only the commits of a certain author:

git log --author=bob

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 191

Log (2)

To see a very compressed log where each commit is one line:

git log --pretty=oneline

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 192

Log (3)

Or maybe you want to see an ASCII art tree of all the branches, decorated with the
names of tags and branches:

git log --graph --oneline --decorate --all

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 193

Log (4)

See only which files have changed:

git log --name-status

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 194

Log (5)

These are just a few of the possible parameters you can use. For more, see

git log --help

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 195

Replace Local Changes (1)

In case you did something wrong, which for sure never happens ;), you can replace

local changes using the command

git checkout -- <filename>

this replaces the changes in your working tree with the last content in HEAD.

Changes already added to the index, as well as new files, will be kept.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 196

Replace Local Changes (2)

if you use dot (.) then all local changes will be rollbacked.

 git checkout -- .

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 197

Replace Local Changes (3)

If you instead want to drop all your local changes and commits, fetch the latest

history from the server and point your local master branch at it like this

git fetch origin

git reset --hard origin/master

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 198

Reflog (1)

Everyone makes mistakes, and that's totally okay! Sometimes it may feel like you've
corrupt your git repo so badly that you just want to delete it entirely.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 199

Reflog (2)

git reflog is a very useful command in order to show a log of all the actions that have
been taken! This includes merges, resets, reverts: basically any alteration to your branch.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 200

Reflog (3)

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 201

Reflog (4)

If you made a mistake, you can easily redo this by resetting HEAD based on the
information that reflog gives us!

Say that we actually didn't want to merge the origin branch. When we execute the git
reflog command, we see that the state of the repo before the merge is at HEAD@{1} .
Let's perform a git reset to point HEAD back to where it was on HEAD@{1} !

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 202

Reflog (5)

We can see that the latest action has been pushed to the reflog

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 203

Resetting (1)

It can happen that we committed changes that we didn't want later on. Maybe it's a
WIP commit, or maybe a commit that introduced bugs! In that case, we can perform a
git reset .

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 204

Resetting (2)

A git reset gets rid of all the current staged files and gives us control over where
HEAD should point to.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 205

Soft Reset (1)

A soft reset moves HEAD to the specified commit (or the index of the commit compared
to HEAD), without getting rid of the changes that were introduced on the commits
afterward!

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 206

Soft Reset (2)

Let's say that we don't want to keep the commit 9e78i which added a style.css file,
and we also don't want to keep the commit 035cc which added an index.js file.
However, we do want to keep the newly added style.css and index.js file! A perfect
use case for a soft reset.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 207

Soft Reset (3)

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 208

Soft Reset (2)

When typing git status , you'll see that we still have access to all the changes that
were made on the previous commits. This is great, as this means that we can fix the
contents of these files and commit them again later on!

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 209

Hard reset (1)

Sometimes, we don't want to keep the changes that were introduced by certain
commits. Unlike a soft reset, we shouldn't need to have access to them any more. Git
should simply reset its state back to where it was on the specified commit: this even
includes the changes in your working directory and staged files!

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 210

Hard reset (2)

Git has discarded the changes that were introduced on 9e78i and 035cc , and reset its
state to where it was on commit ec5be .

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 211

Reverting (1)

Another way of undoing changes is by performing a git revert . By reverting a certain
commit, we create a new commit that contains the reverted changes!

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 212

Reverting (2)

Let's say that ec5be added an index.js file. Later on, we actually realize we didn't
want this change introduced by this commit anymore! Let's revert the ec5be commit.

Perfect! Commit 9e78i reverted the changes that were introduced by the ec5be
commit.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 213

Reverting (3)

Performing a git revert is very useful in order to undo a certain commit, without
modifying the history of the branch.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 214

Cherry-picking (1)

When a certain branch contains a commit that introduced changes we need on our
active branch, we can cherry-pick that command! By cherry-pick ing a commit, we
create a new commit on our active branch that contains the changes that were
introduced by the cherry-pick ed commit.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 215

Cherry-picking (1)

Say that commit 76d12 on the dev branch added a change to the index.js file that
we want in our master branch. We don't want the entire we just care about this one
single commit!

Cool, the master branch now contains the changes that 76d12 introduced

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 216

Rebasing (1)

We just saw how we could apply changes from one branch to another by performing a
git merge . Another way of adding changes from one branch to another is by

performing a git rebase .

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 217

Rebasing (2)

A git rebase copies the commits from the current branch, and puts these copied
commits on top of the specified branch.

Perfect, we now have all the changes that were made on the master branch available
on the dev branch!

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 218

Rebasing (3)

A big difference compared to merging, is that Git won't try to find out which files to
keep and not keep. The branch that we're rebasing always has the latest changes that
we want to keep! You won't run into any merging conflicts this way, and keeps a nice
linear Git history.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 219

Rebasing (4)

This example shows rebasing on the master branch. In bigger projects, however, you
usually don't want to do that. A git rebase changes the history of the project as new
hashes are created for the copied commits!

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 220

Rebasing (5)

Rebasing is great whenever you're working on a feature branch, and the master branch
has been updated. You can get all the updates on your branch, which would prevent
future merging conflicts!

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 221

Interactive Rebase (1)

Before rebasing the commits, we can modify them! We can do so with an interactive
rebase. An interactive rebase can also be useful on the branch you're currently working
on, and want to modify some commits.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 222

Interactive Rebase (2)

There are 6 actions we can perform on the commits we're rebasing:

reword : Change the commit message

edit : Amend this commit

squash : Meld commit into the previous commit

fixup : Meld commit into the previous commit, without keeping the commit's log
message
exec : Run a command on each commit we want to rebase

drop : Remove the commit

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 223

Interactive Rebase (3)

Awesome! This way, we can have full control over our commits. If we want to remove a
commit, we can just drop it.

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 224

Interactive Rebase (4)

Or if we want to squash multiple commits together to get a cleaner history, no problem!

Interactive rebasing gives you a lot of control over the commits you're trying to rebase,
even on the current active branch

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 225

Useful Hints (1)

built-in git GUI

gitk

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 226

Useful Hints (2)

use colorful git output

git config color.ui true

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 227

Useful Hints (3)

show log on just one line per commit

git config format.pretty oneline

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 228

Useful Hints (4)

use interactive adding

git add -i

HEAD~2 // previous two commits fro head

HEAD~~ // previous two commits from head

HEAD@{2} // reflog order

18fe5 // previous commit hash

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 229

GIT Flow

A successful Git branching model » nvie.com

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 230

https://nvie.com/posts/a-successful-git-branching-model/

Hotfix

OneFlow – a Git branching model and workflow | End of Line Blog

a simple git branching model · GitHub

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 231

https://www.endoflineblog.com/oneflow-a-git-branching-model-and-workflow
https://gist.github.com/jbenet/ee6c9ac48068889b0912

GIT Decision Tree

http://justinhileman.info/article/git-pretty/git-pretty.png

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 232

http://justinhileman.info/article/git-pretty/git-pretty.png

GIT in action (1)

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 233

GIT in action (2)

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 234

GIT in action (3)

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 235

GIT in action (4)

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 236

GIT in action (5)

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 237

GIT in action (6)

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 238

GIT in action (7)

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 239

Gource

https://gource.io/

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 240

https://gource.io/

References (1)

Source Code Management | Atlassian Git Tutorial.

What is Source Code Management or Version Control ? - The Linux Juggernaut

https://www.edureka.co/blog/how-to-use-github/

https://www.edureka.co/blog/git-tutorial/

https://www.edureka.co/blog/install-git/

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 241

https://www.atlassian.com/git/tutorials/source-code-management#:~:text=Source%20code%20management%20(SCM)%20is,also%20synonymous%20with%20Version%20control
https://www.linuxnix.com/what-is-source-code-management-or-version-control/
https://www.edureka.co/blog/how-to-use-github/
https://www.edureka.co/blog/git-tutorial/
https://www.edureka.co/blog/install-git/

References (2)

git - the simple guide - no deep shit!

GitHub - rogerdudler/git-guide: git - the simple guide

https://dev.to/lydiahallie/cs-visualized-useful-git-commands-37p1#merge

How to write a good commit message - DEV Community

https://blog.xebialabs.com/2016/06/14/periodic-table-devops-tools-v-2/

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 242

https://rogerdudler.github.io/git-guide/index.html
https://github.com/rogerdudler/git-guide
https://dev.to/lydiahallie/cs-visualized-useful-git-commands-37p1
https://dev.to/chrissiemhrk/git-commit-message-5e21
https://blog.xebialabs.com/2016/06/14/periodic-table-devops-tools-v-2/

References (3)

https://harness.io/2018/01/devops-tools-lifecycle-mesh-2018/

https://medium.com/swlh/how-to-become-an-devops-engineer-in-2020-
80b8740d5a52

https://www.lucidchart.com/blog/devops-process-flow

https://www.researchgate.net/publication/262450962_Rugby_An_Agile_Process_Model_
Based_on_Continuous_Delivery

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 243

https://harness.io/2018/01/devops-tools-lifecycle-mesh-2018/
https://medium.com/swlh/how-to-become-an-devops-engineer-in-2020-80b8740d5a52
https://www.lucidchart.com/blog/devops-process-flow
https://www.researchgate.net/publication/262450962_Rugby_An_Agile_Process_Model_Based_on_Continuous_Delivery

References (4)

git - the simple guide - no deep shit!

Git Tutorial | Commands And Operations In Git | Edureka

How to write a good commit message - DEV Community

An Introduction to Git and GitHub by Brian Yu - YouTube

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 244

https://rogerdudler.github.io/git-guide/index.html
https://www.edureka.co/blog/git-tutorial/
https://dev.to/chrissiemhrk/git-commit-message-5e21
https://www.youtube.com/watch?v=MJUJ4wbFm_A&ab_channel=CS50

References (5)

https://education.github.com/git-cheat-sheet-education.pdf

NDP Software :: Git Cheatsheet;

Learn Git Branching

https://guides.github.com/introduction/git-handbook/

CE103 Algorithms and Programming I

 RTEU CE103 Week-3 245

https://education.github.com/git-cheat-sheet-education.pdf
http://www.ndpsoftware.com/git-cheatsheet.html#loc=remote_repo
https://learngitbranching.js.org/
https://guides.github.com/introduction/git-handbook/

