CE103 Algorithms and Programming |

CE103 Algorithms and Programming |

Week-3

Fall Semester, 2021-2022
Download DOC, SLIDE, PPTX

#esth) RTEU CE103 Week-3

file:///C:/Users/ugur.coruh/Desktop/ce103-algorithms-and-programming-I/docs/week-3-git/ce103-week-3-git.tr.md_doc.pdf
file:///C:/Users/ugur.coruh/Desktop/ce103-algorithms-and-programming-I/docs/week-3-git/ce103-week-3-git.tr.md_slide.pdf
file:///C:/Users/ugur.coruh/Desktop/ce103-algorithms-and-programming-I/docs/week-3-git/ce103-week-3-git.tr.md_slide.pptx

CE103 Algorithms and Programming |

Introduction to Source Code Management Systems

Git, Github, Gitlab, Bitbucket, Maven, SVN, TFS

Source code management (SCM) is used to track modifications to a source code
repository. SCM tracks a running history of changes to a code base and helps resolve
conflicts when merging updates from multiple contributors. SCM is also synonymous
with Version control.

As software projects grow in lines of code and contributor head count, the costs of
communication overhead and management complexity also grow. SCM is a critical tool
to alleviate the organizational strain of growing development costs.

{ RTEU CE103 Week-3

CE103 Algorithms and Programming |

Features of Source Code Management Systems

e Authenticated access for commits
e Revision history on files
e Atomic commits of multiple files

e Versioning/Tagging

% RTEU CE103 Week-3

CE103 Algorithms and Programming |

Why Do We Need Source Code Management Systems? (1)

We can save the file with a different name if it's our school project or one-time papers
but for a well-equipped software development? Not a chance.

% RTEU CE103 Week-3

CE103 Algorithms and Programming |

Why Do We Need Source Code Management Systems? (2)

Big projects need a version control system to track the changes and avoid
misunderstanding. A good SCM does the following:

e Backup and Restore

e Synchronization

e Short-Term Undo

e Long-Term Undo

e Track Changes

e Ownership

e Branching and Merging

{ RTEU CE103 Week-3

CE103 Algorithms and Programming |

Why Do We Need Source Code Management Systems? (3)

Backup and Restore — Files can be saved at any moment and can be restored from the
last saved.

% RTEU CE103 Week-3

CE103 Algorithms and Programming |

Why Do We Need Source Code Management Systems? (4)

Synchronization — Programmers can get the latest code and fetch the up-to-date codes
from the repository.

% RTEU CE103 Week-3

CE103 Algorithms and Programming |

Why Do We Need Source Code Management Systems? (5)

Short-Term Undo — Working with a file and messed it up. We can do a short-term undo
to the last known version.

% RTEU CE103 Week-3

CE103 Algorithms and Programming |

Why Do We Need Source Code Management Systems? (6)

Long-Term Undo — It helps when we have to make a release version rollback.
Something like going to the last version which was created a year

% RTEU CE103 Week-3

CE103 Algorithms and Programming |

Why Do We Need Source Code Management Systems? (7)

Track Changes— We can track the changes as when anyone is making any change, he
can leave a commit message as for why the change was done.

% RTEU CE103 Week-3

10

CE103 Algorithms and Programming |

Why Do We Need Source Code Management Systems? (8)

Ownership— With every commit made to the master branch, it will ask the owner
permission to merge it.

% RTEU CE103 Week-3

11

CE103 Algorithms and Programming |

Why Do We Need Source Code Management Systems? (9)

Branching and Merging — You can create a branch of your source code and create the
changes. Once the changes are approved, you can merge it with the master branch.

% RTEU CE103 Week-3

12

CE103 Algorithms and Programming |

Why Do We Need Source Code Management Systems? (10)

Types of Version Control Systems

e Centralized Version Control (TFS, Subversion)

e Distributed Version Control (Git and Mercurial)

% RTEU CE103 Week-3

13

CE103 Algorithms and Programming |

Centralized Version Control (TFS, Subversion) (1)

The main concept of Centralized Version Control is that it works in a client and server
relationship. The repository is located in one place and allows access to multiple clients.

% RTEU CE103 Week-3

14

CE103 Algorithms and Programming |

Centralized Version Control (TFS, Subversion) (2)

Centralized version control system

Repository

Workstation/PC #1 Workstation/PC #2 Workstation/PC #3

#esth) RTEU CE103 Week-3

CE103 Algorithms and Programming |

Centralized Version Control (TFS, Subversion) (3)

A

 RTEU CE103 Week-3

16

CE103 Algorithms and Programming |

Centralized Version Control (TFS, Subversion) (4)

It's very similar to FTP where you have FTP clients which connect to FTP server. Here all
the user changes and commits have to pass through the central server. For Ex:
Subversion.

RTEU CE103 Week-3

17

CE103 Algorithms and Programming |

Centralized Version Control (TFS, Subversion) (5)

The benefits of centralized version control are:

e |t's easy to understand.
e There are more GUI and IDE clients.

e You have more control over the users and access.

% RTEU CE103 Week-3

18

CE103 Algorithms and Programming |

Centralized Version Control (TFS, Subversion) (6)

We do have drawbacks also:

e |t is dependent on the access to the server.
e |t can be slower because every command from the client has to pass the server.

e Branching and merging strategies are difficult to use.

% RTEU CE103 Week-3

19

CE103 Algorithms and Programming |

Distributed Version Control (Git and Mercurial) (1)

These systems are newer to use. In Distributed Version Control, each user has their own
copy of the entire repository as well as the files and history. For Ex: Git and Mercurial

% RTEU CE103 Week-3

20

CE103 Algorithms and Programming |

Distributed Version Control (Git and Mercurial) (2)

Distributed version control system
Server

Repository

Repository Repository Repository

commit

Working copy Working copy

Working copy

Workstation/PC #1 Workstation/PC #2 Workstation/PC #3

#esth) RTEU CE103 Week-3

CE103 Algorithms and Programming |

Distributed Version Control (Git and Mercurial) (3)

A

 RTEU CE103 Week-3

22

CE103 Algorithms and Programming |

Distributed Version Control (Git and Mercurial) (4)

The benefits of distributed version control are:

e More powerful and easy change tracking.

 No need of a centralized server. Most of the functionalities work in offline mode
also apart from sharing the repositories.

e Branching and Merging strategies are more easy and reliable.

e |t's faster than the other one.

{ RTEU CE103 Week-3

23

CE103 Algorithms and Programming |

List of Source Code Version Management Tools (1)

#esth) RTEU CE103 Week-3

24

CE103 Algorithms and Programming |

List of Source Code Version Management Tools (2)

e Github

e GitLab

e BitBucket

e SourceForge

e Beanstalk

RTEU CE103 Week-3

CE103 Algorithms and Programming |

List of Source Code Version Management Tools (3)

e Apache Allura

e AWS CodeCommit
e Launchpad

e Phabricator

o GitBucket

% RTEU CE103 Week-3

CE103 Algorithms and Programming |

GIT (Distributed Source Code Management) (1)

o1t

iedthi| RTEU CE103 Week-3

27

CE103 Algorithms and Programming |

GIT (Distributed Source Code Management) (2)

Distributed Version Control
o epcor

<
PULL) T PULL

Tind

PUSH
PUSH
PUSH

B

Developer 1 Developer 2

_J

31vadn

COMMIT
COMMIT

| Working Copy ‘

k-

Working Copy

Developer 1 Developer 2 Developer 3

iedthi| RTEU CE103 Week-3

CE103 Algorithms and Programming |

GIT (Distributed Source Code Management) (3)

GitHub Q |

& o @

- - -

 RTEU CE103 Week-3

29

CE103 Algorithms and Programming |

GIT (Distributed Source Code Management) (4)

++

|/

iedthi| RTEU CE103 Week-3

30

CE103 Algorithms and Programming |

GIT (Distributed Source Code Management) (5)

A Basic Overview of How Git Works (1)

e Create a "repository” (project) with a git hosting tool (like Bitbucket)
e Copy (or clone) the repository to your local machine
e Add a file to your local repo and “commit” (save) the changes

e "Push” your changes to your master branch

% RTEU CE103 Week-3

31

CE103 Algorithms and Programming |

GIT (Distributed Source Code Management) (6)

A Basic Overview of How Git Works (2)

e Make a change to your file with a git hosting tool and commit
e "Pull” the changes to your local machine

e Create a "branch” (version), make a change, commit the change
e Open a “pull request”.

* “Merge” your branch to the master branch

% RTEU CE103 Week-3

32

CE103 Algorithms and Programming |

GIT (Distributed Source Code Management) (7)

Some of The Basic Operations in GIT are

* |nitialize
e Add

e Commit
e Pull

e Push

% RTEU CE103 Week-3

33

CE103 Algorithms and Programming |

GIT (Distributed Source Code Management) (8)

Some of The Basic Operations in GIT are

#esth) RTEU CE103 Week-3

34

CE103 Algorithms and Programming |

GIT (Distributed Source Code Management) (9)

Some of The Basic Operations in GIT are
e Branching
e Merging
e Rebasing

% RTEU CE103 Week-3

35

CE103 Algorithms and Programming |

GIT (Distributed Source Code Management) (10)

Some of The Basic Operations in GIT are

Rebasing

#esth) RTEU CE103 Week-3

36

CE103 Algorithms and Programming |

GIT (Distributed Source Code Management) (8)

A brief idea about how these operations work with the Git repositories (1)

Local Remote

working staging localrepo
directory area

remote
repo

P

#ie8%| RTEU CE103 Week-3

CE103 Algorithms and Programming |

GIT (Distributed Source Code Management) (9)

A brief idea about how these operations work with the Git repositories (2)

Git Data Transport Commands

hetp:/ffosteelea.com

——- ——
vorksooce local remote
P repository repository

pull or rebase

g

fetch

7N

checkout HEAD

checkout |

diff HEAD

revert
| OO N

compare

| diff |

A

 RTEU CE103 Week-3

38

CE103 Algorithms and Programming |

i628%% RTEU CE103 Week-3

39

cer03@hTi{Pistributed-Source Code Management) (10)

A brief idea about how these operations work with the Git repositories (3)

For more detailed cheetsheat please check the following interactive map

NDP Software :: Git Cheatsheet

reset HEAD <file(s)...
reset —soft HEAD*
diff —-cached commit

mm m 'msg
mmit —amend

https://www.ndpsoftware.com/git-cheatsheet.html

Installation of GIT (1)

Check Installation Already Completed
git --version

B CAWINDOWS\systemn3dermd.exe

1Crasort Windows [Verston 10,0, 14901, 57 &
{c) 2020 Microsoft Corporation. All rights reserved.

ers ugur . coruh>git VErS10n

version Z.28. 0. windows. 1

Sers \ugur .coruhl " o

41

CE103 Algorithms and Programming |

Installation of GIT (2)

If your console gives error about git command follow the steps in the link
Install Git | Atlassian Git Tutorial

In this link you will should download following setup according to your operating
system

RTEU CE103 Week-3

42

https://www.atlassian.com/git/tutorials/install-git#windows

CE103 Algorithms and Programming |

Installation of GIT (3)

GIT Setup Files

e Download git for OSX
e Download git for Windows

e Download git for Linux

iedthi| RTEU CE103 Week-3

43

http://git-scm.com/download/mac
http://git-scm.com/download/mac
http://git-scm.com/download/mac
http://git-scm.com/download/mac
http://msysgit.github.io/
http://msysgit.github.io/
http://msysgit.github.io/
http://msysgit.github.io/
http://git-scm.com/book/en/Getting-Started-Installing-Git
http://git-scm.com/book/en/Getting-Started-Installing-Git
http://git-scm.com/book/en/Getting-Started-Installing-Git
http://git-scm.com/book/en/Getting-Started-Installing-Git

CE103 Algorithms and Programming |

Installation of GIT (4)

Download and install GIT from the following links (both have same github release path)

Git - Downloads

 RTEU CE103 Week-3

44

https://git-scm.com/downloads

CE103 Algorithms and Programming |

Installation of GIT (5)

After running setup follow the steps below

Open File - Securty Warreng

Do youu wart 1o nun this filn?

Tiee A e e e i Be uaalul, el e o5e cE
g oo by’ T T ST B ﬁ#mrﬁnm#mp.tﬂm
o . WMt e ik 7

#ie8%| RTEU CE103 Week-3

CE103 Algorithms and Programming |

]
Eg%
zog
=

Installation of GIT (6)

Select Componenis
Whech components shaukd be nstaled?

Select e (ompinerits vou wanl 55 rital; dear the oomponenits you da ot want i
mstal, Chck Neat wheen you are ready to contree,

|| Addinonal ikors
1| I e Qi Liwrsch
I 0n e Deskiop
[+ Wirsiows Exploner ntegration
|+] Gt Bagh Here
[+ Gt GLi Here
[Amsociate g™ configuration fles with the default bext editer
[+ Aspociate .gh fes by be run with Bash
[Use & TrueType forit in ol corscle wirsikows:

Current selecbon negunes A least 15256 MB of desk space,

Ly

| <Back || Mest> || concd |

| RTEU CE103 Week-3

46

CE103 Algorithms and Programming |

Installation of GIT (7)

=

Adpusting yoaur PATH ervvircanmsenl 1,._"
Heer wiuld you e o use Git from the command ne? *'-J‘

@ UPuie Gt Eroem Git Bask canby

This i Hhe safest chodoe aa your PATH will naot be modified gt all. You will ondy be
plde b use e Gf command ne tools from Gt Bash,

e Git Brom the Windows Command Prompt

This e o formdened Sale o it only ackl forme mirimal Gt i adperd 1o your
FATH B e HELEF SR O TR e onennal s iends. Wil wdll b
able o use Gt from ik Barsh i e Wiradoes Cormaeansd Prompt.

1P Gt el ptienal Uni: beeods fresm: the Wesdows Comamans Prompt

Bk G and the apboral Uni: bools wil Be sdded 8o your PATH,
Warning: This will osnerride Windows Eooli blee "lind™ and “sorl™. Onky
ke bhire opbeon f you underbamsd (b o pleca e,

[ok [med>][cae |

ettt RTEU CE103 Week-3

CE103 Algorithms and Programming |

Installation of GIT (8)

Comflour - o,
Hﬁfuh.i‘?mﬂml:h:mﬂ? ‘H"'}

' Emable fibe system caching
File gyatem cata will be read in Bulk and cached in memory for certain
mnerabions [oore. Scache” i set b "rue”), This prossides: s sonificant
iper fiormance boost.

Emable Git Credential Manager

The Git Credential Manaoer for Windows provades seore Gt oedential storage
for Windows, mest notably muli-factor suthenScaon support for Visusl Stude
Team Servioes and GitHub, (reguires MET framework v4.5, 1 of of later).

 Inable symbeohc bk

[Ersbie symbolc ik requnes; She SeCreateSymbololink permission),
Pleace rote that exsiing repoatones are unaffected by this setting.

| <Bodk |[mmstd | [conci |

i628%% RTEU CE103 Week-3

CE103 Algorithms and Programming |

Installation of GIT (9)

Configuring the termanal emulator te use with Git Bash y
Which termnal emulator do you mant to use with your Git Bash? ’ k)

@ Use HinTTY (the default terminal of H5Y52)

Git Bash will use MATTY &% termnal emulaton, which sports & nesizable window,
non-reciangular sslactions snd & Unicods fort. Windows console programs (such
&8 interactive Python) must be launched via “winply ™ o work in MATTY.

Gk vl L thee cefault cormole window of Windows Nosed, exe "), whidh works, vl
with 'Win3Z conscle programs such a8 nteractve Python o node.js, but ke a
wvery imibed default scrol-back, needs bo be configured o e a Uniosde font in
erder o deplay nan-ASCT characiers oomectly, and price i Windows 10 i
window waa nof freely resizable and it only alowed rectangular texit selecbons,

[-:h:h‘.llﬁuﬂ:- -l:m:d]

ettt RTEU CE103 Week-3

CE103 Algorithms and Programming |

P
ooooooo

Installation of GIT (10)

| RTEU CE103 Week-3

Completing the Git Setup Wizard

Latup has finished nstaling &t on your computer. The
mmumﬂwmhm

Checke Firish b g3t S,

] Launch Git Bash
o etw Rt Mates

50

CE103 Algorithms and Programming |

Installation of GIT Extension (Windows) (1)

You can install Git GUI from https://git-scm.com/downloads/guis
| prefer to use git extension https://gitextensions.github.io/ and https://tortoisegit.org/

Also Download KDiff3 KDiff3 - Browse Files at SourceForge.net

These extensions provide GUI for git operations to make process easier.

20

 RTEU CE103 Week-3

51

https://git-scm.com/downloads/guis
https://gitextensions.github.io/
https://tortoisegit.org/
https://sourceforge.net/projects/kdiff3/files/

CE103 Algorithms and Programming |

Configuration of GIT Extension (Windows) (1)

3 Settings - Checklist

" | Settings source: (® Global e all repsisbonies
~ 3 Git Extensions

B Genersd
= Appesrsnce
& Bertgaeen ks The checifist below validtes the basic settings needed for Git Extensions to work properhy.
" Build serves inbegration Gat 2280 s found on yeur computer.
W Scnpty
E} Hotieys A rename and an el address are cendiguied.
H Shell extension
i Advanced There 5 & mergetool configuered: tortciemenge
b 2;_"“ There is & difttood configured: bfiff}

r A it Shell etensions registered properly.

W Plagms

Linua toels (sh) Teund on yeo computer.

Gt igng is propery regi

Unnoswn 55 client configaered: C\Program Files' Gt bin'sshoexce.

The configuned language is English.
[€heck settings ot startup (dsables stomatically if #ll settings are comect]
Saree and rescan
Changei on the ielected page will be faved initantly,
Therefoee the Cancel buttan does NOT pevent by changes masde. = =i Y

ettt RTEU CE103 Week-3

52

CE103 Algorithms and Programming |

Configuration of GIT Extension (Windows) (2)

If you install git everything should be green and this configuration is stored on
.gitconfig on your home C:/Windows/Users/<user>/.gitconfig

% RTEU CE103 Week-3

53

CE103 Algorithms and Programming |

Configuration of GIT Extension (Windows) (3)

[core]
editor = \"C:/Program Files (x86)/GitExtensions/GitExtensions.exe\" fileeditor
autocrlf = true

quotePath = false

commitGraph = true

longpaths = true
[user]

email = xxxxxxx@gmail.com
name = XXXX XXXXXX
[filter "1fs"]
clean = git-1fs clean -- %f
smudge = git-1fs smudge -- %f
process = git-1fs filter-process
required = true
[pull]
rebase = false
[fetch]
prune = false
[rebase]
autoStash = false
[credential]
helper = manager
[diff]
guitool = kdiff3
[difftool "kdiff3"]
path = C:/Program Files/KDiff3/kdiff3.exe
cmd = \"C:/Program Files/KDiff3/kdiff3.exe\" \"$LOCAL\" \"$REMOTE\"
[merge]
guitool = tortoisemerge
[mergetool "tortoisemerge"]
path = C:/Program Files/TortoiseGit/bin/TortoiseGitMerge.exe
cmd = \"C:/Program Files/TortoiseGit/bin/TortoiseGitMerge.exe\" -base:\"$BASE\" -mine:\"$LOCAL\" -theirs:\"$REMOTE\" -merged:\"$MERGED\"

[receive]
advertisePushOptions = true
[gc]
— writeCommitGraph = true

 —

R
et RTEU CE103 Week-3

CE103 Algorithms and Programming |

Configuration of GIT Extension (Windows) (4)

Also in extension you can see similar settings

3 Settings - Config

Settings source: (@) Effective << (O Local for current repository << (C) Global for all repositories

""X Git Extensions
@ General
% Appearance User name |Ugur Coruh |
6‘3 Revision links
7 Build server integration User email |ugur.(oruh.tr@gmall.(om |
& Scripts Editor |"C:;"Program Files (x86)/GitExtensions/GitExtensions.exe” fileeditor ~ ‘
-fE) Hotkeys
... Shell extension Mergetool |tor‘tmsemerge v|
. 4 g::ar‘:d Path to mergetool |C:megram Files/TortoiseGit/bin/TortoiseGitMerge.exe ‘ Browse
ailes
L7 55H Mergetool command |"C:,"Program Files/ TortoiseGit/bin/TortoiseGitMerge.exe” -base:"SBASE" -mine:"SLOC Suggest
v .4 Git
" Paths Difftool |kdiFf3 v
-4y Config Path to difftoal |C/Program Files/KDiff3/kdiff3.exe \ Browse
4% Advanced
Plugins Difftool command |"C:fProgram Files/KDiff3/kdiff3.exe" "SLOCAL" "SREMOTE" ‘ Suggest
Path to commit template | ‘ Browse
Line endings
(® Checkout Windows-style, commit Unix-style line endings (" core.autocrif" is set to "true")
(C) Checkout as-is, commit Unix-style line endings ("core.autocrlf” is set to "input”)
sty 5 P!
() Checkout as-is, cormmit as-is (" core.autocrlf" is set to "false")
() Mot set
Files content encoding v Configure
QK Cancel Apply
—
—

R
ettt RTEU CE103 Week-3

CE103 Algorithms and Programming |

Configuration of GIT Extension (Windows) (5)

Samples

MergeTool

tortoisemerge
Path to mergetool
C:/Program Files/TortoiseGit/bin/TortoiseGitMerge.exe

Mergetool command

"C:/Program Files/TortoiseGit/bin/TortoiseGitMerge.exe" -base:"$BASE" -mine:"$LOCAL" -theirs:"$REMOTE" -merged:"$MERGED"

RTEU CE103 Week-3

56

CE103 Algorithms and Programming |

Configuration of GIT Extension (Windows) (6)
Difftool

kdiff3

Path to difftool

C:/Program Files/KDiff3/kdiff3.exe

Difftool command

"C:/Program Files/KDiff3/kdiff3.exe" "$LOCAL" "$REMOTE"

% RTEU CE103 Week-3

57

CE103 Algorithms and Programming |

Configuration of GIT Extension (Windows) (7)

If you see something as merge and diff tool is not configured, follow the similar settings
above on your computer. If you installed kdiff3, tortoisegit and extension you will have
same diff and merge tools

This topic also help you

Git: How can | configure KDiff3 as a merge tool and diff tool? - Stack Overflow

% RTEU CE103 Week-3

58

https://stackoverflow.com/questions/33308482/git-how-can-i-configure-kdiff3-as-a-merge-tool-and-diff-tool

CE103 Algorithms and Programming |

Configuration of GIT Extension (Windows) (8)

Settings source: (® Global for all repositories

v ¥ Git Extensions
£¥ General
Appearance

e The checklist below validates the basic settings needed for Git Extensions to work properly.
CQ Revision links

Build server integration Git 2.33.1 is found on your computer.
B Scripts
) Hotkeys A username and an email address are configured.
X Shell extension
I\ Advanced You need to configure merge tool in order to solve merge conflicts. Repair
Detailed
& SsH You should configure a diff tool to show file diff in external program Repair
® Git
@ Plugins Shell extensions registered properly.

orrect path in settings. Repair

Linux tools (sh) not found. To solve this problem you can se
Git Extensions is properly registered.
Default SSH client, OpenSSH, will be used. (commandline window will appear on pull, push and clone operations)

The configured language is English.

[¥] Check settings at startup (disables automatically if all settings are correct)

Save and rescan

Changes on the selected page will be saved instantly.

0K Cancel l
Therefore the Cancel button does NOT revert any changes made. Apply

ettt RTEU CE103 Week-3

CE103 Algorithms and Programming |

Configuration of GIT Extension (Windows) (9)

Open Git->Config, in your settings you will see path to mergetool and difftool will be
empty fill settings like that below find executables in your computer and copy paths to
here.

% RTEU CE103 Week-3

60

CE103 Algorithms and Programming |

 —

RECEP TAYYiP
ERDOGAN

Configuration of GIT Extension (Windows) (10)

3¢ Settings - Config

Settings source: (@) Effective << (O Local for current repository << (O Global for all repositories
User name |Ugur Coruh |
User ernail |ugur.coruh.tr@gmai|.com |
Editor |"C:,"Program Files (x86)/GitExtensions/GitExtensions.exe” fileeditor ~ ‘
3 Shell extension Mergetool |tor‘tmsemerge v|

g 4 ’;::‘:L:Ed Path to mergetool |C:f’ngram Files/TortoiseGit/bin/TortoiseGitMerge.exe ‘ Browse
Mergetool command |"C:/Program Files/TortoiseGit/bin/TortoiseGitMerge.exe” -base:"SBASE" -mine:"SLOC, Suggest
Difftool |keifr3 v
Path to difftool | Ci/Program Files/KDiff3/kdiff3.exe \ Browse
Difftoel command |"C:;"Program Files/KDiff3/kdiff3.exe” "SLOCAL" "SREMOTE" ‘ Suggest
Path to commit template | ‘ Browse

Line endings
(® Checkout Windows-style, commit Unix-style line endings (" core.autocrif is set to “true”)
(C) Checkout as-is, commit Unix-style line endings ("core.autocrlf” is set to "input”)
sty 5 p!
() Checkout as-is, cornmit as-is ("core.autocrlf” is set to "false")
(O Mot set
Files content encoding ~ Configure
0K Cancel Apply

RTEU CE103 Week-3

61

CE103 Algorithms and Programming |

Configuration of GIT Extension (Windows) (11)

Also if we want to change and use different diff and merge tool then we can do this

with gitbash console as below

C:\Program Files\TortoiseGit\bin

Find TortoiseGitIDiff.exe and TortoiseGitMerge.exe

e TUTLUSEILDIdITIE, EXE

7 TortoiseGitlDiff.exe

fq/i TertoiseGitMerge.exe
BB TartniceGitDlink eve

% RTEU CE103 Week-3

62

CE103 Algorithms and Programming |

Configuration of GIT Extension (Windows) (12)
Copy path of this applications

C:\Program Files\TortoiseGit\bin\TortoiseGitMerge.exe
C:\Program Files\TortoiseGit\bin\TortoiseGitIDiff.exe

% RTEU CE103 Week-3

63

CE103 Algorithms and Programming |

Configuration of GIT Extension (Windows) (13)

open a gitbash console and run following commands

git
git
git
git
git
git

config
config
config

config
config
config

--global
--global
--global

--global
--global
--global

merge.tool TortoiseGitMerge
mergetool.TortoiseGitMerge.path "C:/Program Files/TortoiseGit/bin/TortoiseGitMerge.exe"
mergetool.TortoiseGitMerge.trustExitCode false

diff.guitool TortoiseGitIDiff
difftool.TortoiseGitIDiff.path "C:/Program Files/TortoiseGit/bin/TortoiseGitIDiff.exe"
difftool.TortoiseGitIDiff.trustExitCode false

This updates will be stored on .gitconfig

% RTEU CE103 Week-3

64

Using the GIT Extension (1)
right click in the git folder and use Git Extension menu for operations.

for sample commit click "Commit"

CRAAKE VA

T %
. + CMAKE JavA b .
Sort by >
EPSOMN EasyPhoto Print = (J) Photo Print Grenap by b
e Refresh
& Quick sccess
B Deskt grt Customize this folder [
Deskto
P @ CMlakeFiles]
-{!..- Downloads ol =64 L
. Documents g i L
ALL_BANLID |
- Undo Delete Ctrl+Z
&= Pictures & ALL_BUILD.w
- Wisual Studio'da ag
0 CMAKE Java o omalke_instal 1
Gt U Here L
CSE -_::_;,-;c"“. . ChlakeCachy |
- Git Bashi H 1
SAGA Sunum & CMakelictst edlimincbanco 3
S0 Sunu ‘_ HellWesldii] Open with Code l ...
Syllabus) i Y N
=fllabu & HeloWeridji W Git Extensions % Open repatitony
il Onelirve 2 HelloWordd s Give aCcess to % Comamit...
HellaWerld v Pl
& This PC t B Git Sync
k] HelloWerldw) Puth
B 30 Objects MANIFEST M * Gt Commi => “master”... - "
] MANIFESTM . ~ ¢ Wiew ste
B Ceskio - oy TostoiseGe b .
. P & ZERD_CHECH X View changes
Diecuments & ZERD_CHECH g y
e d ly Checkout branch...
Diownload N
¥ Downloads Properies ¢ Checkout revision...
hbusse
& Music i by Creste branch.

¢ Open with difftocl
Foe Fustary

&y Reset file changes

= Add files
& Apply patch...
—
Cettings
RECEP TAYYIP
ERDOGAN

CE103 Algorithms and Programming |

Using the GIT Extension (1)

from opening window first stage related files and then write a good commit message

finally click commit to local. You can also commit&push it to remote repository.

| 3 Camenit = m W |

| 50 Werking directory changes - 1 package com.Hello;
1 public class Hellokiorld
i

, ¥ CMakoeFiles/ Target Dinect cries. tat ~

public static wold min(itringf] args)
&= CMakelists.txt i
| o HelloWorld.jar System.out.println(“sello wWorld...");
H

=+ HelleWorld,java

+ HelleWerkd,sin

+ HelleWorkd vexproj

HellcWorkdvexprojfilters
= MANIFEST.MF

o =64/ Debugrall_EUILDYALL_BUILDurecipe
&t ALL_E WALL_E tlog/ ALL_BUILD astbuildstate
+ o6 Debug all E WALL BUILDslog/ CustomBuildoommand. 1.4 w
£ »
@ | % Unstage & stge | B
Fiber g & reg EAT o
o ChpkeFiles 21900/ CMakeC Compiler.omalkoe
& Commit 1) Commit me<sage = Options. = !

W Comma & puth
[Amend Commit
#: Resetall changes

+: Reset unstaged changes

Committer Ugur Coruh <ugur.coruh.tri@gmail.com> b master Staged 1777 Ln O Caol O

A

 RTEU CE103 Week-3

GIT Installation Completed..

BT, W Wi e

6/

CE103 Algorithms and Programming |

Installation of gig (git ignore creator) (1)

Requirements

e Python >= 3.6

e |nternet connection

https://github.com/sloria/gig

pip install -U gig

 RTEU CE103 Week-3

68

https://github.com/sloria/gig

RECEP TAYYIP
ERDOGAN

Windows [Version 10.0.19041.572
All rights reserved.

20 Microsoft Corporation.

:\Users\ugur.coruh>pip install -U gig

m11__t1ng gig

Downloading gig-1.1.0-py2.py3-none-any.whl (4.

"ollecting docopt

Downloading d Lﬂpt-D.E.E.tar.;r (2

zequirement already satisfied,
.0)
tequirement already satisfied,
pquests->gig) (3.0.4)

' nt already satisfied,
Fs->gig) (2.10)
equirement already satisfied,
\s1te-packages (from requests-=g
equirement already satisfied, s

skipping upgrade:

skipping upgrade:

Jl1pp1nq upg
) ﬁl. 5.9

1te- pa:ka;vw (Trom requeat*—*q1ql

d'lrll.. 'l."|' 'F-Ir !
opt (

1lected pack
setup.p

't:Fihnmmch

grade:

Installation of gig (git ignore creator) (2)

5 kB)

requests in c:\programdata\anaconda3\lib\site-packages (from giq) (2.24
chardet<4,>=3.0.2 in c:\programdata\anaconda3\lib\site-packages (from r

idna<3,>=2.5 in c:\programdata‘\anaconda3'lib\site-packages (from reques

urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in c:\programdata‘anaconda3i‘lib

: certifi>=2017.4.17 1in c:\users‘\ugur .coruh\appdata’roaming'python'python

.2-py2.py3-none-any.whl size=13709 sha256=51e63df3a050dc6d409f1b854eb46b7

ﬁzerJgugur.cmruhiappdatailﬂca1%pipx ache\wheels\56\ea'\58Yead137b087d%e326852a851351d1debf4adas

;ﬁccessfﬂ11 built docopt
nstalling ::::|-|-|Htv ' (

69

CE103 Algorithms and Programming |

Installation of gig (git ignore creator) (3)

gig --version

A

 RTEU CE103 Week-3

70

CE103 Algorithms and Programming |

Usage of gig (1)

List all gitignore templates

gig list
gig list -global

 RTEU CE103 Week-3

71

CE103 Algorithms and Programming |

Usage of gig (2)

Sample gitignore for C Java and Visual Studio

gig C Java VisualStudio > .gitignore

 RTEU CE103 Week-3

72

CE103 Algorithms and Programming |

Usage of gig (3)
There is a portal for this also by Toptal

egitignore.io - Create Useful .gitignore Files For Your Project

,gitignore. i0

iedthi| RTEU CE103 Week-3

/3

https://www.toptal.com/developers/gitignore

CE103 Algorithms and Programming |

Usage of gig (4)
for samples you can check the following links.

https://github.com/github/gitignore

https://dev.to/shihanng/gig-a-gitignore-generator-opc

A

 RTEU CE103 Week-3

74

https://github.com/github/gitignore
https://dev.to/shihanng/gig-a-gitignore-generator-opc

CE103 Algorithms and Programming |

Configuration of GIT (1)

It is iImportant to configure your Git because any commits that you
make are associated with your configuration details.

configuring Git with your username and email. In order to do that, type the following
commands in your Git Bash:

git config - - global user.name "<your name>"

git config - - global user.email "<your email>"

RTEU CE103 Week-3

75

Configuration of GIT (2)

LR o 7 hary T bey

76

CE103 Algorithms and Programming |

Configuration of GIT (3)

git configuration files are located on the user folder

. v i » This T » ‘Windows (0] » Uses » ugurcorub @

EPSOMN Easy Proto Pret = 2) Photo Pret

& Downdosds o+ *

' Documents #
= Puctures g
CRAKE Vi
CSE103-Algesith
SAGA Suniam
Syllabus
% OneDreve
B This PC
B 3D Objects
Bl Deskiop

- ™ | L]

ettt RTEU CE103 Week-3

Blarre

FOAMING
#F Saved Garnes
- Seniches
hurdd
H videos
| ath_history
| ardpesk.log
| cendar
L sgenttproject
@ .gconfig

!

T kdiin

el

| .mode_repl_history

| .grconfig.backup
| .gi-for-windows-updater

Dt rriased e

i SO LIE A
02020 11:17 PM
SN 20T 11:17 P
SR il AN
1015 020 T4 Fi
107102000 4:26 AM
ST AILD TCS5 PR
SrTATAILED 10:51 PM
W20 10 PM
EO142020 10:00 PM
N4/ 253 PM
EAN52020 %56 PM
B4 2020 %59 PM
STAN0 Sudd PR

Fypet
FidE FOIOET

File folder

Filé Poldsi

Fili Poldsi

Filé Folder
BASH_HISTORY File
Tt Desfarmend
CONDARL File
QAMTTFROIECT File
Git Confag Source ...
EACELIP File
GIT-FOR-YWINDO...
KDFFIRC Fula
MODE_EEFL_HIST...

4 KB
i KB
1KR
» KB
1kB
1KE
1KB
1KE
QKB

Search ugur.coruhb

Configuration of GIT (4)

If you want to view all your configuration details, use the command below

git config --list

P ol " s A b

/8

N

RECEP TAYYIP
ERDOGAN

Using .gitignore files with git-extension (1)

with gitignore file

CMAKE 1ava

EPSON Easy Phete Print = (D) Phote Print

i Quack peoess
B Desktop
4 Downlcads
Documents
&= Pictures
O CMAKE Mia
CEE103-Algorith
SAGA Sunum
Sxollabug
& OneDrrve
Bl Thas PC
J 30 Objects
B Ceskiop
Documents
4 Downleads

B Busic

Titems

~

-1
0 CMekefdes
O =4
%] ALL_BUILD vexpeey

crnake_install.crnake
CMakeCachett
CMakelists ot

i HelloWedd jar
HelleWedld jova

R HelloWedid sin

% HelleWedld venprey

1 HelleWesld vonpee) filters

BAANIFESTIMAF
Ml ZERD_CHECK vouproj

5] ZERD_CHECK.wonproj filters

-giagnore

1 ALL_BUILD. vexprojfilters

, Canmimet

Waorking dinectony changes -

= .gitigrore
== ALL_BUNLD

Py
== ALL_BUNLD .ve g hilters
= CMakelists.tut

= HelloWedld,jova
= HelloWedd.sin

= HelloWesldvooprog
= HellcWesld.ve
== MANIFESTMF
= ZERO_CHECK vexprey

= ZERD CHECK wooprog filters

yilters

% | ¥ Unstage

Commitier Ugur Coruk <ugur.consh.tri@ gmal.com>

¥ Stage

i

i ErmEresEeEs Generated by gig sesssssssss
2
3 g=8 O 558
a
5 ® Prereguisites
E ®.d
7
B & Object files
9 L
18 *.ka
11 ".obj
12 = elf
13
14 & Linker output
15 N
16
17 B
13
19 & Precompiled Headers
Lo *-gch
21 *.pch
22
23 # Libraries
24 =. 1k
25 ".8
Cormmit Commit message ~
Commit & push

[[] Amend Commit
&5 PReset all changes

&2 Reset unstaged changes

b master Staged 011

79

 —

RECEP TAYYIP
ERDOGAN

i Chamck Bcess
mo

& Downloads

kebop

Documents

= Pictures

o CMAAKE LA
CSE103-Algorith

SAGA Surum

& Onelrive
1 Thiz PC

B 30 Objects

CRAAKE 1Ay

EPSOM Essy Photo Print = {E) Pheto Print

B HelloWorld jae
HelloWorld,java
5 HelloWerld.sln

% HelloWorldvoprog

orkdvon paoj filers
FEST.IAF

% TERD_CHECK vouproj
T ZERD_CHECK vouproj filbers

8 Commit

Using .gitignore files with git-extension (2)

without gitignore file (just move to another location)

Wedang drectory changed =

= ALL_BUILD.woxproj

== ALL_BUILD wenprogfilters

o crakes_ingtallcrmake
= ChMakelschetat

+

& | ¥ Unstage

akel Compiler.omake

M
CMakeletermanelompilen&Bl_Cban

kel W ompder.cmake

MakeDetermineCompilera

akeR L

A kin

piler. crmalkn

CMakeSystern. cmake
CMlakeil Comnpillerid.c
CompileridCene
CompilertdCvexproj

CMakeC Compaerdd. ok

Compdendl exe e

Clee
Clre
Clown
Comy
bnk.g
bk
bk
CMale O Compilerdd.cpp
CompileddCi0Lexe L

$ Stege | @

Committer Ugur Condh <ugur.coruhtrigmail. com>

nf lguraticn:ReldlthbebInfoc/Configurat

Comonit Commit mesage =

Comma & puth

[] &mend Commt

. Feset ol changes
#F; Reset wnstaged changes
T o

F master Staged ln O

80

CE103 Algorithms and Programming |

Github Create Repo

Create a new repository
A Fepodntory contiard all prdgect Ml nchudeng the nevdasn histary. Already hive § pidject repodatany eliewkens?
IPpDrt & repoEiany.

Chiried * Rispaditary name *
l weorub = f rheu_cersg_cs103 '
Great repository names ane short and memorable. Need inspiration? How about sturdy-spoon?

Dwescription {eptionsl)

™ L | Public
LE, Arperrel 0o Bh DEMET CON 2eE Hhs reposilinny. Vou chaose who Can oot
1 Private
Vo choode who Can 3o e Comist B0 Bhes PepOSADy.

Initialize this repository with:
Skip this step if you're importing an existing repasitony.
B Add a README file

Ties i wherne you Can weite & long desoription for your project. Learm mone

] Add gitigrone

Choose which fles rt t5 tack bom g i

pmplaber. Leam more

U Choose a licenss

A hoense telis others what By cien and £am'T 80 with your code. Leam mane.

This will set B saia a5 the default branch. Cha nge the defaul? name in yowr settings.

Create repository

ettt RTEU CE103 Week-3

CE103 Algorithms and Programming |

Initilization of Repo (not existing in github)
git init
e |n order to do that, we use the command git init.

e git init creates an empty Git repository or re-initializes an existing one. It basically
creates a .git directory with sub directories and template files. Running a git init in
an existing repository will not overwrite things that are already there. It rather picks

up the newly added templates.

git init

{ RTEU CE103 Week-3

82

git init

ANGHSreshen pepo

gt me
Imtialzed enpty ¢

[¢/reystma_repo (naster)

61t repository 1n C:/reysna_repo/.1t/

J¢/reyshma_repo (naster)

83

CE103 Algorithms and Programming |

Adding Initiated Repo Remote Upstream Repo (Link with Github Repo) (1)

If you enter following command in the git folder you will see nothing

git remote -v

That mean this repository do not have a remote upstream repository such as a github
or bitbucket repo.

% RTEU CE103 Week-3

84

Adding Initiated Repo Remote Upstream Repo (Link with Github Repo) (2)
Open the github and bitbucket repository and copy project path from

& C & github.com/ucoruh/ce103-sample-text # B O 0 %60 *

21 Uygulamalar CERN Open Datz P.. @ sentinelcustomersa.., * Paletton - The Colo.. [@) C# - DataGridView.. @ Modamob Akill Mo.. @ LED series parallel .. % Inline Digital Hydro. @ SESSIZ JENERATOR.. Androic

o Search or jump to... Pull requests lIssues Marketplace Explore

H ucoruh / ce103-sample-text ' Public

<> Code Issues Pull requests Actions Projects Security Insights

¥ main -~ P 3 branches Go to file Add file ~ Code ~

@ ucoruh Initial commit (3 Clone
HTTPS SSH GitHub CLI

[y READMEmd https://github. com/ucorun/ce103-sample-ter | (L)

Releases
README.md

[Open with GitHub Desktop

cel103-sample-text

Open with Visual Studio

Packages
ce103-sample-text

[) Download ZIP

85

CE103 Algorithms and Programming |

Adding Initiated Repo Remote Upstream Repo (Link with Github Repo) (3)

you will see the following sample from github code button

https://github.com/ucoruh/cel@3-sample-text.git

% RTEU CE103 Week-3

86

CE103 Algorithms and Programming |

Adding Initiated Repo Remote Upstream Repo (Link with Github Repo) (4)

copy link and use with following command

git remote add origin https://github.com/ucoruh/cel@3-sample-text.git

% RTEU CE103 Week-3

87

CE103 Algorithms and Programming |

Adding Initiated Repo Remote Upstream Repo (Link with Github Repo) (5)

then you can check your remote setting with

$ git remote -v
origin https://github.com/ucoruh/cel@3-sample-text.git (fetch)
origin https://github.com/ucoruh/cel@3-sample-text.git (push)

% RTEU CE103 Week-3

88

CE103 Algorithms and Programming |

Adding Initiated Repo Remote Upstream Repo (Link with Github Repo) (6)
you can check the following sample

How to Add a New Remote to your Git Repo | Assembla Help Center

 RTEU CE103 Week-3

89

https://articles.assembla.com/en/articles/1136998-how-to-add-a-new-remote-to-your-git-repo

CE103 Algorithms and Programming |

Now you can push your local changes to remote repository

If you see a repository on Github then you can download with following
operation

% RTEU CE103 Week-3

90

CE103 Algorithms and Programming |

Checkout a Repository (1)

create a working copy of a local repository by running the command

git clone /path/to/repository

% RTEU CE103 Week-3

91

CE103 Algorithms and Programming |

Checkout a Repository (2)

Sample clone command

git clone https://github.com/ucoruh/cel@3-sample-text.git

% RTEU CE103 Week-3

92

CE103 Algorithms and Programming |

Checkout a Repository (3)

when using a remote server, your command will be

git clone username@host:/path/to/repository

Checking Repository Status (1)

git status

The git status command lists all the modified files which are ready to be added to the
local repository.

git status

% RTEU CE103 Week-3

93

Checking Repository Status (2)

git status

LRt T ST L
_.-":'__.-"r‘r;'-:-'5}1'|:5l_r'|5-[;::| (mastel
» 01T status
on branch master
Initial commit

Untracked files: | 1
(use "git add <files..." to include in what will be committed)

nothing added to commit but untracked files present (use "git add™ to track)

Jc/reyshma_repo (

CE103 Algorithms and Programming |

Adding Files to Index (1)

git add

This command updates the index using the current content found in the working tree
and then prepares the content in the staging area for the next commit.

git add <directory>
git add <file>
git add *

% RTEU CE103 Week-3

95

Adding Files to Index (1)

git add

Created two more files edureka3.txt and edureka4.txt. Let us add the files using the
command git add -A. This command will add all the files to the index which are in the
directory but not updated in the index yet.

BAIMGWEL:/ cfreyshma_repo

/c/reyshma_repo (master)

§ git add -A

Reshma@E /c/reyshma_repo (master)
$ g1t status

On branch master

Initial commit

Changes to be committed:
(use "git rm --cached <file>..." to unstage)

/c/reyshma_repo (master)

CE103 Algorithms and Programming |

Commit Changes (1)

git commit

|t refers to recording snapshots of the repository at a given time. Committed
snapshots will never change unless done explicitly.

% RTEU CE103 Week-3

97

CE103 Algorithms and Programming |
Commi anges (2)

git commit

Let me explain how commit
works with the diagram below

Commit

;

~

| B ¥

*

it commit
g >

Here, C1 is the initial commit, i.e. the snapshot of the first change from which
another snapshot is created with changes named C2. Note that the master points
to the latest commit. Now, when | commit again, another snapshot C3 is created and

R | now the master points to C3 instead of C2.
feesat] RTEU CE103 Week-3

98

Commit Chahges (3)

git commit

Commands:

git commit -m

Now, if you want to commit a snapshot of all the changes in the working directory at

"<message>"

MINGWE:="¢ /reyshma_repo

fc '||| 1ster ""
% git commit -m"Adding T
Lmaater (root-commit) tt 1 qdd1n3 four files

committer: Reshma <Res
your name and email address were configured automatically based

on your username and hostname. Please check that they are accurate.
You can suppress this message by setting them explicitly:

git config --global user.name "vour Name”
git config --global user.email you@example.com

after doing this, you may fix the identity used for this commit with:

git commit --amend --reset-author

4 files changed, 0 insertions(+), 0 deletions(-)
lIPth mode 100644 edurekal.txt
4 edureka {
e mode 100644 edure
create mode 100644 edure

Qnce; you.can use the command below

99

CE103 Algorithms and Programming |

Commit Changes (4)

git commit
Please check writing good commit messages article below

How to write a good commit message - DEV Community

RTEU CE103 Week-3 100

https://dev.to/chrissiemhrk/git-commit-message-5e21

CE103 Algorithms and Programming |

Writing Good Commit Messages (1)
type: subject
body (optional)

footer (optional)

i RTEU CE103 Week-3 101

CE103 Algorithms and Programming |

Writing Good Commit Messages (2)

1. Type

e feat - a new feature

e fix - a bug fix

e docs - changes in documentation

e style - everything related to styling

e refactor - code changes that neither fixes a bug or adds a feature
e test - everything related to testing

e chore - updating build tasks, package manager configs, etc

il RTEU CE103 Week-3 102

CE103 Algorithms and Programming |

Writing Good Commit Messages (3)

2. Subject

This contains a short description of the changes made. It shouldn't be greater than 50

characters, should begin with a capital letter and written in the imperative eg. Add
instead of Added or Adds.

RTEU CE103 Week-3

103

CE103 Algorithms and Programming |

Writing Good Commit Messages (4)

3. Body

The body is used to explain what changes you made and why you made them. Not all
commits are complex enough that they need a body, especially if you are working on a
personal project alone, and as such writing a body is optional.

A blank line between the body and the subject is required and each line should have no
more than 72 characters.

il RTEU CE103 Week-3 104

CE103 Algorithms and Programming |

Writing Good Commit Messages (5)

4 .Footer

The footer is also optional and mainly used when you are using an issue tracker to
reference the issue ID.

Y RTEU CE103 Week-3 105

ce1i03\Writing Good-@ommit Messages (6)

Example Commit Message

feat: Summarize changes in around 50 characters or less

More detailed explanatory text, if necessary. Wrap it to about 72
characters or so. In some contexts, the first line is treated as the
subject of the commit and the rest of the text as the body. The
blank line separating the summary from the body is critical (unless
you omit the body entirely); various tools like “log’, "shortlog"
and "rebase’ can get confused if you run the two together.

Explain the problem that this commit is solving. Focus on why you
are making this change as opposed to how (the code explains that).
Are there side effects or other unintuitive consequences of this
change? Here's the place to explain them.

Further paragraphs come after blank lines.
- Bullet points are okay, too
- Typically a hyphen or asterisk is used for the bullet, preceded
by a single space, with blank lines in between, but conventions

vary here

If you use an issue tracker, put references to them at the bottom,
like this:

qF- Resolves: #123
N

%] RTISSE kSO #ARGy #789 1Els

CE103 Algorithms and Programming |

Writing Good Commit Messages (7)

git commit -a

A

i RTEU CE103 Week-3 107

L e AT

, reyshma_repo
git add edureka5.txt

S reyshma —Cepo
% git commit -a -m' hud1wn more f11e;
[master 20b4t4d] Adding more T1le
Committer: Reshma < I
Your name and 55 were configured automatically basec
ease check that they are accurate.

on your username and | - Plea e
ting them explicitly:

You can suppress this message by :

or
!
et

config
contig

"Your Name'
youexample.co

doing this, you may T1x the 1dentity used for 15 commit with:
g1t commit --amend --reset-author

4 1nsertions(+)
edurekas.txt

c/reyshma_repo

RECEP TAYYIP
ERDOGAN

108

CE103 Algorithms and Programming |

Add Files to Index (1)

| have created two more text files in my working directory viz. edureka5.txt and
edurekab.txt but they are not added to the index yet.

| am adding edureka5.txt using the command

git add edureka5.txt

RTEU CE103 Week-3 109

Add Files to Index (2)

RGNS e reyihera_repo

freyshma_repo
o1t add edureka5.txt

I freyshma_repo
5 g1t commit -a -m addnm more files"

[master 20b4T4d] J-.dthru] more T1les

committer: Reshma eshma>

Your name and email ddd ess were configured automatically based

on your username and hostname. Please check that they are accurate.
You can suppress this message by setting them explicitly:

“"Your MName"

git config -- YOl
1 youBexample.com

g
git config --glc

laobal user.n
lobal user.em

name
mai
2r doing this, you may fix the identity used for this commit with:

git commit --amend --reset-author

changed, 4 insertions(+)
te mode 100644 edurekas.txt

fc/reyshma_repo

110

CE103 Algorithms and Programming |

Add Files to Index (3)

| have added edureka5.txt to the index explicitly but not edureka6.txt and made
changes in the previous files. | want to commit all changes in the directory at once.

il RTEU CE103 Week-3 111

CE103 Algorithms and Programming |

Add Files to Index (4)

This command will commit a snapshot of all changes in the working directory but
only includes modifications to tracked files i.e. the files that have been added with
git add at some point in their history. Hence, edureka6.txt was not committed
because it was not added to the index yet. But changes in all previous files present
in the repository were committed, i.e. edurekal.txt, edureka2.txt, edureka3.txt,

edurekad.txt and edureka5.txt. Now | have made my desired commits in my local
repository

559 RTEU CE103 Week-3 112

CE103 Algorithms and Programming |

Add Files to Index (5)

your local repository consists of three "trees" maintained by git. the first one is your
Working Directory which holds the actual files. the second one is the Index which acts
as a staging area and finally the HEAD which points to the last commit you've made

il RTEU CE103 Week-3 113

ammin

Add Files to Index (6)

- -'l

b
|
]
\
b
\
]
i
|

U
I {":

i
i

fxedtay| RTEU CE103 Week-3

CE103 Algorithms and Programming |

Update local repo before sending (1)

Fetching

If we have a remote Git branch, for example a branch on Github, it can happen that the
remote branch has commits that the current branch doesn't have! Maybe another
branch got merged, your colleague pushed a quick fix, and so on.

il RTEU CE103 Week-3 115

CE103 Algorithms and Programming |

Update local repo before sending (2)

Fetching

We can get these changes locally, by performing a git fetch on the remote branch! It
doesn't affect your local branch in any way: a fetch simply downloads new data.

ﬁ 116

feett| RTEU CE103 Week-3

Update local repo before sending (3)

Fetching

HEAD > Git | Fetching
Downloads content from a remote branch or

repository without modifying the local state.

117

CE103 Algorithms and Programming |

Update local repo before sending (4)

Fetching

We can now see all the changes that have been made since we last pushed! We can
decide what we want to do with the new data now that we have it locally.

ﬁ 118

teettt] RTEU CE103 Week-3

CE103 Algorithms and Programming |

Update local repo before sending (5)

Pulling

Although a git fetch is very useful in order to get the remote information of a branch,
we can also perform a git pull . A git pull is actually two commands in one: a git
fetch , and a git merge . When we're pulling changes from the origin, we're first
fetching all the data like we did with a git fetch , after which the latest changes are
automatically merged into the local branch

ﬁ 119

et RTEU CE103 Week-3

Update local repo before sending (6)

Pulling

Git | Pulling

Downloads content from a remote branch/
repository like git fetch would do, and
automatically merges the new changes.

120

CE103 Algorithms and Programming |

Update local repo before sending (7)

Pulling

Awesome, we're now perfectly in sync with the remote branch and have all the latest

changes!

?\- 121

Hesttt| RTEU CE103 Week-3

CE103 Algorithms and Programming |

Update local repo before sending (8)

Pulling

git pull

Note that before you affect changes to the central repository you should always pull
changes from the central repository to your local repository to get updated with the
work of all the collaborators that have been contributing in the central repository. For
that we will use the pull command.

w
1% RTEU CE103 Week-3 12

CE103 Algorithms and Programming |

Update local repo before sending (9)

Pulling

git pull

But first, you need to set your central repository as origin using the command

git remote add origin <link of your central repository>

il RTEU CE103 Week-3 123

Update local repo before sending (10)

Pulling / git pull

/[c/reyshma_repo (master)
https://github.com/reyshma/edureka-02.git"

(R}

i g1t remote add origin

/c/reyshma_repo (master)

Now that my origin is set

124

CE103 Algorithms and Programming |

Update local repo before sending (11)

Pulling / git pull

let us extract files from the origin using pull. For that use the command

git pull origin master

il RTEU CE103 Week-3 125

Update local repo before sending (12)

Pulling / git pull

MINGWEL. '/ reyshma reps

[c/reyshma_repo (master)
5 g1t pull or1gin master
From httrﬂ:ffGTthub.cumfrﬁyshmafedureha-ﬂi
1

* branc master -» FETCH_HEAD

Already up-to-date.

/c/reyshma_repo (mas

This command will copy all the files from the master branch of remote repository to

your local repository.

126

CE103 Algorithms and Programming |

Update local repo before sending (13)

Pulling / git pull

Since my local repository was already updated with files from master branch,
hence the message is Already up-to-date. Refer to the screen shot above

559 RTEU CE103 Week-3 127

CE103 Algorithms and Programming |

Update local repo before sending (14)

Pulling / git pull

One can also try pulling files from a different branch using the following command:

git pull origin <branch-name>

il RTEU CE103 Week-3 128

CE103 Algorithms and Programming |

Update local repo before sending (15)

Pulling / git pull

Your local Git repository is now updated with all the recent changes. It is time you
make changes in the central repository by using the push command.

5598 RTEU CE103 Week-3 129

CE103 Algorithms and Programming |

Send Changes to Remote Repo (1)

git push

e This command transfers commits from your local repository to your remote
repository. It is the opposite of pull operation.

Y RTEU CE103 Week-3 130

CE103 Algorithms and Programming |

Send Changes to Remote Repo (2)

git push

e Pulling imports commits to local repositories whereas pushing exports commits to
the remote repositories

il RTEU CE103 Week-3 131

CE103 Algorithms and Programming |

Send Changes to Remote Repo (3)

git push

e The use of git push is to publish your local changes to a central repository. After
you've accumulated several local commits and are ready to share them with the
rest of the team,

il RTEU CE103 Week-3 132

CE103 Algorithms and Programming |

Send Changes to Remote Repo (4)

git push

you can then push them to the central repository by using the following command

git push <remote>

Y RTEU CE103 Week-3 133

CE103 Algorithms and Programming |

Send Changes to Remote Repo (5)

git push

This remote refers to the remote repository which had been set before using the
pull command.

5598 RTEU CE103 Week-3 134

CE103 Algorithms and Programming |

Send Changes to Remote Repo (6)

git push

e This pushes the changes from the local repository to the remote repository along
with all the necessary commits and internal objects. This creates a local branch in
the destination repository

Y RTEU CE103 Week-3 135

CE103 Algorithms and Programming |

Send Changes to Remote Repo (7)

git push
The below files are the files which we have already committed previously in the commit

section and they are all “push-ready”.

?\‘ 136

##9 RTEU CE103 Week-3

CE103 Algorithms and Programming |

Send Changes to Remote Repo (8)

git push

| will use the command git push origin master to reflect these files in the master
branch of my central repository.

RTEU CE103 Week-3 137

CE103 Algorithms and Programming |

Send Changes to Remote Repo (9)

git push

Mame Date modified Type Size
git 10/28/2016 7:05 PM File folder

[| edul 10/28/2016 6:36 PM File 1KE
[| edu2 10/28/2016 6:36 PM File 1KB
|| edurekal 10/28/2016 5:28 PM Text Document 1 KB
|| edureka2 10/28/2016 5:28 PM Text Document 1KE
|| edureka3 10/28/2016 5:28 PM Text Document 1 KB
| | edurekad 10/28/2016 5:29 PM Text Document 1KE
|| edurekas 10/28/2016 5:29 PM Text Document OKE
|| edurekab 10/28/2016 6:57 PM Text Document 0 KB
|| README.md 10/28/2016 6:36 PM MD File 1KE

ettt RTEU CE103 Week-3 158

Send Changes to Remote Repo (10)

git push

shn reka7s /c/reyshma_repo (master)
$ g1t push origin master
Username for "https://github.com’: reyshma

Counting objects: 11, done.
Delta compression using up to 4 threads.

Compressing objects: 100% (6/6), done.

Nriting ﬂbjectJ: 100% (11/11), 881 bytes | 0 bytes/

otal 11 (delta 1), reused 0 (delta 0)

remote: Resolving deltas: 100% (1/1), done.

o https://github.com/reyshma/ ‘edureka-02. git
1fe7e2d..fddf90a master -> master

'c/reyshma_repo (master)

g =

P |

¥

done..

139

CE103 Algorithms and Programming |

Send Changes to Remote Repo (11)

git push

anch: masier Hew pull request

L1

Create pars Bl Uplosd files Find file .'_I i-_T_i
11 il Sl A

B README.rmd

edureka-02

iedthi| RTEU CE103 Week-3

140

CE103 Algorithms and Programming |

Send Changes to Remote Repo (12)

git push

To prevent overwriting, Git does not allow push when it results in a non-fast
forward merge in the
destination repository.

ettt RTEU CE103 Week-3 1

CE103 Algorithms and Programming |

Send Changes to Remote Repo (13)

git push

A non-fast forward merge means an upstream merge i.e. merging with ancestor or
parent branches from a child branch
To enable such merge, use the command below

git push <remote> -force

The above command forces the push operation even if it results in a non-fast
forward merge

?{
ettt RTEU CE103 Week-3 14

CE103 Algorithms and Programming |

Branching (1)

git branch

Branches in Git are nothing but pointers to a specific commit. Git generally prefers to
keep its branches as lightweight as possible.

il RTEU CE103 Week-3 143

CE103 Algorithms and Programming |

Branching (2)

git branch

There are basically two types of branches viz.

e |ocal branches

e remote tracking branches.

il RTEU CE103 Week-3 144

CE103 Algorithms and Programming |

Branching (3)

git branch

A local branch is just another path of your working tree. On the other hand, remote
tracking branches have special purposes. Some of them are:

They link your work from the local repository to the work on central repository.

w
1% RTEU CE103 Week-3 1

Branching (4)

git branch

They automatically detect which remote branches to get changes from, when you use

git pull.

146

CE103 Algorithms and Programming |

Branching (5)

Learn current branch

You can check what your current branch is by using the command

git branch

The one mantra that you should always be chanting while branching is “branch early,
and branch often”

w
1% RTEU CE103 Week-3 1

CE103 Algorithms and Programming |

Branching (6)

List Local Branches

git branch -1

 RTEU CE103 Week-3

148

CE103 Algorithms and Programming |

Branching (7)

List Remote Branches

git branch -r

 RTEU CE103 Week-3

149

CE103 Algorithms and Programming |

Branching (8)

List All Local and Remote Branches

git branch -a

Y RTEU CE103 Week-3 150

CE103 Algorithms and Programming |

Branching (9)
Removing merged git branches
(after pull-request action in github)

If you merged your branch to base branch in github and delete it on github your local
branch list will not be updated by it self. You have to use the following command to
update local and remote branch lists. Use the following command to syncronize your
repository with remote upstream repo.

git remote update --prune

il RTEU CE103 Week-3 151

https://splice.com/blog/cleaning-git-branches/

CE103 Algorithms and Programming |

Branching (10)

Create Branch

To create a new branch we use the following command

git branch <branch-name>

The diagram below shows the workflow when a new branch is created. When we create
a new branch it originates from the master branch itself.

w
1% RTEU CE103 Week-3 o2

CE103 Algorithms and Programming |

Branching (11)

Create Branch

git branch
newBranch

Master

> newBranch

H5% RTEU CE103 Week-3 153

CE103 Algorithms and Programming |

Branching (12)

Create Branch

Since there is no storage/memory overhead with making many branches, it is easier to
logically divide up your work rather than have big chunky branches

You can create and change branch with following command, create a new branch
named "feature_x" and switch to it using

git checkout -b feature x

il RTEU CE103 Week-3 154

CE103 Algorithms and Programming |

Branching (13)

Change Branch

git checkout <branch-name>

git checkout master

5 RTEU CE103 Week-3 155

CE103 Algorithms and Programming |

Branching (14)

Change Branch

Master git checkout newBranch ; git commit *

newBranch

newBranch

Branching includes the work of a particular commit along with all parent commits.
As you can see in the diagram above, the newBranch has detached itself from the

&| master and hence will create a different path
8 RTEU CE103 Week-3 156

CE103 Algorithms and Programming |

Branching (15)

Delete Local Branch

and delete the branch again, before doing this switch to main or master branches.

git branch -d feature x

il RTEU CE103 Week-3 157

CE103 Algorithms and Programming |

Branching (16)

Delete Remote Branch

and delete the branch again, before doing this switch to main or master branches.

git push origin --delete feature_x

How to delete remote branches in Git

Y RTEU CE103 Week-3 158

https://www.educative.io/edpresso/how-to-delete-remote-branches-in-git

CE103 Algorithms and Programming |

Branching (17)

Push Specific Branch to Remote

A branch is not available to others unless you push the branch to your remote
repository

git push origin <branch>

Y RTEU CE103 Week-3 159

CE103 Algorithms and Programming |

Branching (18)

Update & Merge (Conflicts)

to update your local repository to the newest commit, execute
git pull

in your working directory to fetch and merge remote changes.

to merge another branch into your active branch (e.g. master), use

git merge <branch>

w
1% RTEU CE103 Week-3 160

CE103 Algorithms and Programming |

Branching (19)

Update & Merge (Conflicts)

In both cases git tries to auto-merge changes. Unfortunately, this is not always possible
and results in conflicts. You are responsible to merge those conflicts manually by editing
the files shown by git. After changing, you need to mark them as merged with

git add <filename>

before merging changes, you can also preview them by using

git diff <source branch> <target branch>

Git merge conflicts | Atlassian Git Tutorial

.?z 161

teettt] RTEU CE103 Week-3

https://www.atlassian.com/git/tutorials/using-branches/merge-conflicts

CE103 Algorithms and Programming |

Branching (20)

Update & Merge (Conflicts)

There are two types of merges Git can perform: a fast-forward, or a no-fast-forward

il RTEU CE103 Week-3 162

CE103 Algorithms and Programming |

Branching (21)

Update & Merge (Conflicts)

Fast-forward (--ff)

A fast-forward merge can happen when the current branch has no extra commits
compared to the branch we're merging. Git is... lazy and will first try to perform the
easiest option: the fast-forward! This type of merge doesn't create a new commit, but
rather merges the commit(s) on the branch we're merging right in the current branch

Y RTEU CE103 Week-3 163

Branching (22)

Update & Merge (Conflicts)

Fast-forward (--ff)

Git | Merging (fast-forward)

Default behavior when the merging branch has all
of the current branch’s commits

Doesn't create a new commit, thus doesn’t modify
existing branches

164

CE103 Algorithms and Programming |

Branching (23)

Update & Merge (Conflicts)

Perfect! We now have all the changes that were made on the dev branch available on
the master branch. So, what's the no-fast-forward all about?

Y RTEU CE103 Week-3 165

CE103 Algorithms and Programming |

Branching (24)

Update & Merge (Conflicts)

No-fast-foward (--no-ff)

It's great if your current branch doesn't have any extra commits compared to the branch
that you want to merge, but unfortunately that's rarely the case! If we committed
changes on the current branch that the branch we want to merge doesn't have, git will
perform a no-fast-forward merge.

Y RTEU CE103 Week-3 166

CE103 Algorithms and Programming |

Branching (25)
Update & Merge (Conflicts)

No-fast-foward (--no-ff)

With a no-fast-forward merge, Git creates a new merging commit on the active branch.
The commit's parent commits point to both the active branch and the branch that we

want to merge!

w
1% RTEU CE103 Week-3 107

Branching (26)

Update & Merge (Conflicts)

No-fast-foward (--no-ff)

HEAD >>

Git | Merging (no-fast-forward)

Default behaviar when current branch contains
commits that the merging branch doesn't have

Creates a new commit which merges

two branches together without modifying existing
branches

168

CE103 Algorithms and Programming |

Branching (27)
Update & Merge (Conflicts)

No-fast-foward (--no-ff)

No big deal, a perfect merge! The master branch now contains all the changes that
we've made on the dev branch.

Y RTEU CE103 Week-3 169

CE103 Algorithms and Programming |

Branching (28)

Merge Conflicts

Although Git is good at deciding how to merge branches and add changes to files, it
cannot always make this decision all by itself This can happen when the two branches
we're trying to merge have changes on the same line in the same file, or if one branch
deleted a file that another branch modified, and so on.

w
1% RTEU CE103 Week-3 170

CE103 Algorithms and Programming |

Branching (29)

Merge Conflicts

In that case, Git will ask you to help decide which of the two options we want to keep!
Let's say that on both branches, we edited the first line in the README.md .

il RTEU CE103 Week-3 171

CE103 Algorithms and Pro ing |
ranching (30)

Merge Conflicts

1 # Hey! 1 # Hello!

]

F

2

3 Welcome to the README of 3 Welcome to the README of

4 this amazing project 4 this amazing project

If we want to merge dev into master, this will end up in a merge conflict: would you

' ' | | ?
X like the title to be Hello! or Hey! * —

Branching{(31)

Merge Conflicts

When trying to merge the branches, Git will show you where the conflict happens. We
can manually remove the changes we don't want to keep, save the changes, add the

changed file again, and commit the changes

[HEAD > 1 p35cc

README . md README. md

ec5be 76d12
1. # Hey! 1. # Hello!

173

CE103 Algorithms and Programming |

Branching (32)

Merge Conflicts

Although merge conflicts are often quite annoying, it makes total sense: Git shouldn't
just assume which change we want to keep

il RTEU CE103 Week-3 174

CE103 Algorithms and Programming |

Branching (33)

Sample Conflict -1
participants.txt
(I added a hyphen before each name)

Finance team
Charles
Lisa
John
Stacy
Alexander

git init
git add .
git commit -m 'Initial list for finance team'

w
1% RTEU CE103 Week-3 1

CE103 Algorithms and Programming |

Branching (34)

Sample Conflict -1

Create a new branch called marketing using the following syntax

git checkout -b marketing

il RTEU CE103 Week-3 176

CE103 Algorithms and Programming |

Branching (35)

Sample Conflict -1

Now open the participants.txt file and start entering the names for the marketing
department below the finance team list, as follows: (I added a hyphen before each
name)

Marketing team
Collins
Linda
Patricia
Morgan

git add .
git commit -m 'Unfinished list of marketing team'
git checkout master

il RTEU CE103 Week-3 177

CE103 Algorithms and Programming |

Branching (36)

Sample Conflict -1

Open the file and delete the names Alexander and Stacy, save, close, add the changes,
and commit with the commit message Final list from Finance team

git add .
git commit -m "Final list from Finance team"

git checkout marketing

w
1% RTEU CE103 Week-3 e

CE103 Algorithms and Programming |

Branching (37)

Sample Conflict -1

Open the file and add the fifth name, Amanda, for the marketing team, save, add, and
commit

git add .
git commit -m "Initial list of marketing team"

names entered for marketing have been confirmed; now we need to merge these two
lists, which can be done by the following command

git merge master

w
1% RTEU CE103 Week-3 17

CE103 Algorithms and Programming |

Branching (38)

Sample Conflict -1

Auto-merging participants.txt
CONFLICT (content): Merge conflict in participants.txt
Automatic merge failed; fix conflicts and then commit the result.

Y RTEU CE103 Week-3 180

CE103 Algorithms and Programming |

Branching (39)

Sample Conflict -1

Finance team
-Charles
-Lisa

-John
<<<<<<< HEAD
-Stacy
-Alexander

Marketing team
- Collins

- Linda

- Patricia

- Morgan

- Amanda

>>>>>>> master

% RTEU CE103 Week-3

181

CE103 Algorithms and Programming |

Branching (40)

Sample Conflict -1

<<<<K<KK
Changes made on the branch that is being merged into. In most cases,
this is the branch that I have currently checked out (i.e. HEAD).

The common ancestor version.

Changes made on the branch that is being merged in. This is often a
feature/topic branch.
>OE>5>>>

il RTEU CE103 Week-3 182

CE103 Algorithms and Programming |

Branching (41)

Sample Conflict -1

* remove them
e keep the lines you want to see in the final version of the file

e add and commit

Y RTEU CE103 Week-3 183

CE103 Algorithms and Programming |

Branching (42)

Sample Conflict -1

If we want to save all to our version

git checkout --ours . # checkout our local version of all files
git add -u # mark all conflicted files as merged
git commit # commit the merge

il RTEU CE103 Week-3 184

CE103 Algorithms and Programming |

Branching (43)

Sample Conflict -1

If we want to discard all our revision

git checkout --theirs . # checkout remote version of all files
git add -u # mark all conflicted files as merged
git commit # commit the merge

Y RTEU CE103 Week-3 185

CE103 Algorithms and Programming |

Branching (44)

Sample Conflict -2

You're going to pull some changes, but oops, you're not up to date:

git fetch origin
git pull origin master

From ssh://gitosis@example.com:22/projectname

* branch master -> FETCH_HEAD
Updating a@30c3a..ee25213
error: Entry 'filename.c' not uptodate. Cannot merge.

Y RTEU CE103 Week-3 186

CE103 Algorithms and Programming |

Branching (45)

Sample Conflict -2

So you get up-to-date and try again, but have a conflict:

git add filename.c
git commit -m "made some wild and crazy changes”

git pull origin master

From ssh://gitosis@example.com:22/projectname
* branch master -> FETCH_HEAD
Auto-merging filename.c
CONFLICT (content): Merge conflict in filename.c
Automatic merge failed; fix conflicts and then commit the result.

w
1% RTEU CE103 Week-3 107

CE103 Algorithms and Programming |

Branching (46)

Sample Conflict -2

So you decide to take a look at the changes:

git mergetool

Oh my, oh my, upstream changed some things, but just to use my changes...no...their
changes...

git checkout --ours filename.c
git checkout --theirs filename.c
git add filename.c

git commit -m "using theirs”

Y RTEU CE103 Week-3 188

CE103 Algorithms and Programming |

Branching (47)

Sample Conflict -2

And then we try a final time

git pull origin master

From ssh://gitosis@example.com:22/projectname
* branch master -> FETCH_HEAD
Already up-to-date.

Y RTEU CE103 Week-3 189

CE103 Algorithms and Programming |

Tagging
it's recommended to create tags for software releases. this is a known concept,
which also exists in SVN. You can create a new tag named 1.0.0 by executing

git tag 1.0.0 1b2eld63ff

the 1b2e1d63ff stands for the first 10 characters of the commit id you want to
reference with your tag. You can get the commit id by looking at the...

Y RTEU CE103 Week-3 190

CE103 Algorithms and Programming |

Log (1)

in its simplest form, you can study repository history using.. git log

You can add a lot of parameters to make the log look like what you want. To see

only the commits of a certain author:

git log --author=bob

.?: 191

Hesttt| RTEU CE103 Week-3

CE103 Algorithms and Programming |

Log (2)

To see a very compressed log where each commit is one line:

git log --pretty=oneline

i RTEU CE103 Week-3 192

CE103 Algorithms and Programming |

Log (3)

Or maybe you want to see an ASCII art tree of all the branches, decorated with the
names of tags and branches:

git log --graph --oneline --decorate --all

Y RTEU CE103 Week-3 193

CE103 Algorithms and Programming |

Log (4)

See only which files have changed:

git log --name-status

A

i RTEU CE103 Week-3 194

CE103 Algorithms and Programming |

Log (5)

These are just a few of the possible parameters you can use. For more, see

git log --help

5 RTEU CE103 Week-3 195

CE103 Algorithms and Programming |

Replace Local Changes (1)

In case you did something wrong, which for sure never happens ;), you can replace
local changes using the command

git checkout -- <filename>

this replaces the changes in your working tree with the last content in HEAD.
Changes already added to the index, as well as new files, will be kept.

w
1% RTEU CE103 Week-3 190

CE103 Algorithms and Programming |

Replace Local Changes (2)

iIf you use dot (.) then all local changes will be rollbacked.

git checkout --

il RTEU CE103 Week-3 197

CE103 Algorithms and Programming |

Replace Local Changes (3)

If you instead want to drop all your local changes and commits, fetch the latest
history from the server and point your local master branch at it like this

git fetch origin

git reset --hard origin/master

Y RTEU CE103 Week-3 198

CE103 Algorithms and Programming |

Reflog (1)

Everyone makes mistakes, and that's totally okay! Sometimes it may feel like you've
corrupt your git repo so badly that you just want to delete it entirely.

Y RTEU CE103 Week-3 199

CE103 Algorithms and Programming |

Reflog (2)

git reflog is a very useful command in order to show a log of all the actions that have
been taken! This includes merges, resets, reverts: basically any alteration to your branch.

Y RTEU CE103 Week-3 200

Reflog (3)

bash

Git | Reflog

Shows the history of actions in the repo.

With this information, you can easily undo
changes that have been made to a repository
with git reset

201

CE103 Algorithms and Programming |

Reflog (4)

If you made a mistake, you can easily redo this by resetting HEAD based on the
information that reflog gives us!

Say that we actually didn't want to merge the origin branch. When we execute the git
reflog command, we see that the state of the repo before the merge is at HEAD@{1} .
Let's perform a git reset to point HEAD back to where it was on HEAD@{1} !

il RTEU CE103 Week-3 202

Reflog (5)

N N bash

master$ git reflog

84e55 @{@}: commit(merge)
commit
~eset moving to head~1

: commit{initial)

We can see that the latest action has been pushed to the reflog

203

CE103 Algorithms and Programming |

Resetting (1)

It can happen that we committed changes that we didn't want later on. Maybe it's a
WIP commit, or maybe a commit that introduced bugs! In that case, we can perform a

git reset.

il RTEU CE103 Week-3 204

CE103 Algorithms and Programming |

Resetting (2)

A git reset gets rid of all the current staged files and gives us control over where
HEAD should point to.

Y RTEU CE103 Week-3 205

CE103 Algorithms and Programming |

Soft Reset (1)

A soft reset moves HEAD to the specified commit (or the index of the commit compared
to HEAD), without getting rid of the changes that were introduced on the commits

afterward!

w
1% RTEU CE103 Week-3 e

CE103 Algorithms and Programming |

Soft Reset (2)

Let's say that we don't want to keep the commit 9e78i which added a style.css file,
and we also don't want to keep the commit @35cc which added an index.js file.
However, we do want to keep the newly added style.css and index.js file! A perfect
use case for a soft reset.

il RTEU CE103 Week-3 207

Soft Reset (3)

bash

Git | Soft reset

Points HEAD to the specified commit

Keeps changes that have been made
since the new commit that HEAD points to, and
keeps the modifications in the working directory

208

CE103 Algorithms and Programming |

Soft Reset (2)

When typing git status, you'll see that we still have access to all the changes that
were made on the previous commits. This is great, as this means that we can fix the
contents of these files and commit them again later on!

w
1% RTEU CE103 Week-3 0

CE103 Algorithms and Programming |

Hard reset (1)

Sometimes, we don't want to keep the changes that were introduced by certain
commits. Unlike a soft reset, we shouldn't need to have access to them any more. Git
should simply reset its state back to where it was on the specified commit: this even
includes the changes in your working directory and staged files!

w
1% RTEU CE103 Week-3 -1

Hard reset (2)

Git has discarded the changes that were introduced on 9e78i and @35cc, and reset its
state to where it was on commit ec5be .

Git | Hard reset

Points HEAD to the specified commit

Discards changes that have been made
since the new commit that HEAD points to,
and deletes changes in working directory

211

CE103 Algorithms and Programming |

Reverting (1)

Another way of undoing changes is by performing a git revert . By reverting a certain
commit, we create a new commit that contains the reverted changes!

il RTEU CE103 Week-3 212

Reverting (2)

Let's say that ec5be added an index.js file. Later on, we actually realize we didn't
want this change introduced by this commit anymore! Let's revert the ecsbe commit.

Git | Reverting

Reverts the changes that commits introduce.
Creates a new commit with the reverted changes.

Perfect! Commit 9e78i reverted the changes that were introduced by the ec5be

| commit.

213

CE103 Algorithms and Programming |

Reverting (3)

Performing a git revert is very useful in order to undo a certain commit, without
modifying the history of the branch.

il RTEU CE103 Week-3 214

CE103 Algorithms and Programming |

Cherry-picking (1)

When a certain branch contains a commit that introduced changes we need on our
active branch, we can cherry-pick that command! By cherry-pick ing a commit, we
create a new commit on our active branch that contains the changes that were
introduced by the cherry-pick ed commit.

il RTEU CE103 Week-3 215

Cherry-picking (1)

Say that commit 76d12 on the dev branch added a change to the index.js file that

we want in our master branch. We don't want the entire we just care about this one
single commit!

HEAD >> '
Lo > (see) | [[roz

Git | Cherry-picking
Creates a new commit with the changes that
the cherry-picked commit introduced.
By default, Git will only apply the changes if
the current branch does not have these
changes in order to prevent an empty commit.

Cool, the master branch now contains the changes that 76d12 introduced

216

CE103 Algorithms and Programming |

Rebasing (1)

We just saw how we could apply changes from one branch to another by performing a
git merge . Another way of adding changes from one branch to another is by
performing a git rebase .

il RTEU CE103 Week-3 217

Rebasing (2)

A git rebase copies the commits from the current branch, and puts these copied

commits on top of the specified branch.

Git | Rebasing

Copies commits on top of another branch
without creating a commit, which keeps a linear history

Changes the history as new hashes are created
for the copied commits

Perfect, we now have all the changes that were made on the master

on the dev branch!

branch available

218

CE103 Algorithms and Programming |

Rebasing (3)

A big difference compared to merging, is that Git won't try to find out which files to
keep and not keep. The branch that we're rebasing always has the latest changes that

we want to keep! You won't run into any merging conflicts this way, and keeps a nice

linear Git history.

w
1% RTEU CE103 Week-3 -

CE103 Algorithms and Programming |

Rebasing (4)

This example shows rebasing on the master branch. In bigger projects, however, you
usually don't want to do that. A git rebase changes the history of the project as new
hashes are created for the copied commits!

il RTEU CE103 Week-3 220

CE103 Algorithms and Programming |

Rebasing (5)

Rebasing is great whenever you're working on a feature branch, and the master branch
has been updated. You can get all the updates on your branch, which would prevent
future merging conflicts!

w
1% RTEU CE103 Week-3 -

CE103 Algorithms and Programming |

Interactive Rebase (1)

Before rebasing the commits, we can modify them! We can do so with an interactive
rebase. An interactive rebase can also be useful on the branch you're currently working

on, and want to modify some commits.

w
1% RTEU CE103 Week-3 e

CE103 Algorithms and Programming |

Interactive Rebase (2)

There are 6 actions we can perform on the commits we're rebasing:

e reword : Change the commit message
® edit: Amend this commit
® squash : Meld commit into the previous commit

e fixup : Meld commit into the previous commit, without keeping the commit's log
message

e exec : Run a command on each commit we want to rebase

e drop : Remove the commit

w
1% RTEU CE103 Week-3 e

Interactive Rebase (3)

Awesome! This way, we can have full control over our commits. If we want to remove a
commit, we can just drop It.

master

Git | Interactive Rebase

Makes it possible to edit commits before rebasing

Creates new commits for the edited commits/
commits which history has been changed

Options: reword | edit | squash | fixup | exec|drop

224

Interactive Rebase (4)

Or if we want to squash multiple commits together to get a cleaner history, no problem!

Git | Interactive Rebase - Squash

Squashes previous commit into one commit
before rebasing.

master

Interactive rebasing gives you a lot of control over the commits you're trying to rebase,
even on the current active branch

225

CE103 Algorithms and Programming |

Useful Hints (1)
built-in git GUI

gitk

 RTEU CE103 Week-3

226

CE103 Algorithms and Programming |

A

Useful Hints (2)

use colorful git output

git config color.ui true

 RTEU CE103 Week-3

227

CE103 Algorithms and Programming |

Useful Hints (3)

show log on just one line per commit

git config format.pretty oneline

i RTEU CE103 Week-3 228

CE103 Algorithms and Programming |

Useful Hints (4)

use interactive adding

git add -i

HEAD~2
HEAD~~
HEAD@{2}
18fe5

% RTEU CE103 Week-3

// previous two commits fro head
// previous two commits from head
// reflog order
// previous commit hash

229

CE103 Algorithms and Programming |

GIT Flow

Example diagram for a workflow similar to "Git-flow" :

Each tag represents a
production release

—» Tag: 1.0.0 Tag: 1.0.1 Tag: 1.1.0 Tag: 1.2.0

main

The main branch

1.1.0-releazse ————mm»
The release branch

Feel free to add notes here
about the process of merging
into the release branch.

develop
The development or sprint branch Feel free to add notes here
about the process of merging

into the release branch.

JIRA-35-——examnple feature
Your feature branch

Feel free to add notes here about the process of merging feature branches.

A successful Git branching model » nvie.com

% RTEU CE103 Week-3

230

https://nvie.com/posts/a-successful-git-branching-model/

CE103 Algorithms and Programming |

Hotfix
Tag:1.00 Tag: 1.1 Tag:1.20
main
The main branch
JIRA-35--example-feature
Your feature branch Hotfix Commit

OneFlow — a Git branching model and workflow | End of Line Blog

a simple git branching model - GitHub

il RTEU CE103 Week-3 231

https://www.endoflineblog.com/oneflow-a-git-branching-model-and-workflow
https://gist.github.com/jbenet/ee6c9ac48068889b0912

CE103 Algorithms and Programming |

RE¢
ER

CEP
RD

Il

P TAYYIP
OGAN
RSTTES|

GIT Decision Tree

http://justinhileman.inf

RTEU CE103 Week-3

o/article/qgit-p

retty/qgit-pretty.png

S0 you have a mess
on your hands

Split off a logical chunk

Do you caig Looks like we
What sort of An uncommitted. enough about Yo e from your mess, stage it
mess? mess jour mess 1 s cauphit EESIL and commit it with a
In el good message.

keep it?

I accidentally

committed something
stil have a
mess?

git reset

My Git history.
is ygly.

Has anyone
else seen
[

git revert {COMMITISH}
(1 do ot think it means what you think it means.)

How long Last _iforgot o,)
ago? commit addatic (A
Everything is going

o be fine

Is it aready
on GitHub?
Itseems like

forever ago git comnit --amend

Just throw the
last commit awz

git reset --hard HEADA

No, I need to

change history git rebase origin/{branch}

well reset and

muligan?

Is anyone git reset {COMMITISH}
down

stream?

We're going to
do an interactive
rebase!

git rebase -i {COMMITISH}

Enough to

Do you hate
form a lynch o

e

DangerZone™

Yes

‘/ It's safest to letit
stay ugly then

git push --force origin {branch}

Send them a note, let
‘em know you're
changing history.

http://justinhileman.info/article/git-pretty/git-pretty.png

CE103 Algorithms and Programming |

GIT in action (1)

ettt RTEU CE103 Week-3

-

GitHub
Yersion Control

Fo Y

Master

}

Pull down &
creade local
feature branch

Feature XYZ ,_ |

l

Develop

20

Create PR

'

Pul Request |'RJ-'.'§;:?:
L 5

2L

GitHub
Version Control

Qi Testing
Peer code
TEVIEWS l
‘

QYD

By Securty Passing
cheechl Bralyia Busds

Ao
Deplay

@—

Cloud Jobs

&H

Load Balancer

Auto
Deprux

d—

®

Irberrset

t

Load Balancer

Snapabol

backups

CE103 Algorithms and Programming |

GIT in action (2)
Sslﬂrr;t e 9 &\ B o

\ 4
~4h o _—
valapar Usar- Manageameant Sprint-

tst; 8@ }‘—* |\
20) >QO
B
\.—-'./
o—>0—0 >@—>@

. Non-releasable build
O Releasable build
[_; Release

5598 RTEU CE103 Week-3 234

CE103 Algorithms and Programming |

GIT in action (3)

Program Management ™ bogam Ml . prograns
Manager Manager
Cross-Project Project 1 Project 2 - Project n
i
ndilin Management Management Management
Program . Project Project Project
Managers Leader The. Leader T Leader
- Program Team Team Team
Managers \J}) Leader ([Leader (JJ)) Leader
Development Development Development
Release . Releasa . Release . Relaase
Coordinator Manager Manager Manager
‘v, Developer v/, Developer v/, Developer
: = = : _L‘; = - _I'"‘I‘ =
‘v, Developer v, Developer v, Developer
L alil) 5 ___.", b i)
3 Cusfomer 3 Cuslomer - l& Custlomer

ettt RTEU CE103 Week-3 e3

CE103 Algorithms and Programming |

GIT in action (4)

£

)

€ sht

A1IvH3d0O

18 RTEU CE103 Week-3 236

CE103 Algorithms and Programming |

GIT in action (5)

Run Manage MNotify
oo Okt T ——
F—— — whghital £
Rbgais e pagercuty
. R
are Y et - P aa tirags
| sevica et ___|
> * Vickor s
Crmem @ L Lot SrACONW
Lo s #bme 3 opstien
BTN WIRA
& ey (ol ENSTANA il
O Mrwibglic. ASPDYNAMICS
splhunk | Celebervien]
A ™ ks Saasona .
o« TR g g B R 1.
e o, LeooLy RIRA o
% ™ e L e e)
[e B
“ ‘ PR
e O A P g T
o e Setea zendesk
'fwuhimk
T _ T @ twilio
[
Contnuaus Dalivany Al-A-Sarice
Sooe Farnens i

Commight © Hamess Inc. 2018

#| RTEU CE103 Week-3 237

CE103 Algorithms and Programming |

GIT in action (6)

PERIODIC TABLE OF DEVOPS TOOLS (v2) (v1)

W Follow Gxebialabs

ettt RTEU CE103 Week-3 239

CE103 Algorithms and Programming |

GIT in action (7)

’ Event [;Time based release @ Event based release

= = — — 4

Requirements
Elicitation

—_———— = =

Design
Implementation

Sprint 2

Sprint 1

Sprint 0

Sprint n |

LI T LI
] 1]
] 1]

239

| RTEU CE103 Week-3

CE103 Algorithms and Programming |

Gource

https://gource.io/

fxedtay| RTEU CE103 Week-3

https://gource.io/

CE103 Algorithms and Programming |

References (1)

Source Code Management | Atlassian Git Tutorial.

What is Source Code Management or Version Control ? - The Linux Juggernaut
https://www.edureka.co/blog/how-to-use-github/
https://www.edureka.co/blog/git-tutorial/

https://www.edureka.co/blog/install-git/

559 RTEU CE103 Week-3 241

https://www.atlassian.com/git/tutorials/source-code-management#:~:text=Source%20code%20management%20(SCM)%20is,also%20synonymous%20with%20Version%20control
https://www.linuxnix.com/what-is-source-code-management-or-version-control/
https://www.edureka.co/blog/how-to-use-github/
https://www.edureka.co/blog/git-tutorial/
https://www.edureka.co/blog/install-git/

CE103 Algorithms and Programming |

References (2)

git - the simple guide - no deep shit!

GitHub - rogerdudler/git-guide: git - the simple guide
https://dev.to/lydiahallie/cs-visualized-useful-git-commands-37p1#merge
How to write a good commit message - DEV Community

https://blog.xebialabs.com/2016/06/14/periodic-table-devops-tools-v-2/

559 RTEU CE103 Week-3 242

https://rogerdudler.github.io/git-guide/index.html
https://github.com/rogerdudler/git-guide
https://dev.to/lydiahallie/cs-visualized-useful-git-commands-37p1
https://dev.to/chrissiemhrk/git-commit-message-5e21
https://blog.xebialabs.com/2016/06/14/periodic-table-devops-tools-v-2/

CE103 Algorithms and Programming |

References (3)

https://harness.io/2018/01/devops-tools-lifecycle-mesh-2018/

https://medium.com/swlh/how-to-become-an-devops-engineer-in-2020-
80b8740d5a52

https://www.lucidchart.com/blog/devops-process-flow

https://www.researchgate.net/publication/262450962_Rugby_An_Agile_Process_Model_
Based_on_Continuous_Delivery

5598 RTEU CE103 Week-3 243

https://harness.io/2018/01/devops-tools-lifecycle-mesh-2018/
https://medium.com/swlh/how-to-become-an-devops-engineer-in-2020-80b8740d5a52
https://www.lucidchart.com/blog/devops-process-flow
https://www.researchgate.net/publication/262450962_Rugby_An_Agile_Process_Model_Based_on_Continuous_Delivery

CE103 Algorithms and Programming |

References (4)

git - the simple guide - no deep shit!

Git Tutorial | Commands And Operations In Git | Edureka
How to write a good commit message - DEV Community

An Introduction to Git and GitHub by Brian Yu - YouTube

=
:
ettt RTEU CE103 Week-3 ead

https://rogerdudler.github.io/git-guide/index.html
https://www.edureka.co/blog/git-tutorial/
https://dev.to/chrissiemhrk/git-commit-message-5e21
https://www.youtube.com/watch?v=MJUJ4wbFm_A&ab_channel=CS50

CE103 Algorithms and Programming |

References (5)

https://education.github.com/git-cheat-sheet-education.pdf
NDP Software :: Git Cheatsheet;
Learn Git Branching

https://guides.github.com/introduction/git-handbook/

5598 RTEU CE103 Week-3 245

https://education.github.com/git-cheat-sheet-education.pdf
http://www.ndpsoftware.com/git-cheatsheet.html#loc=remote_repo
https://learngitbranching.js.org/
https://guides.github.com/introduction/git-handbook/

