CE103 Algorithms and Programming I

Introduction to Source Code Management Systems

Author: Asst. Prof. Dr. Ugur CORUH

Contents
0.1 CE103 Algorithms and Programming I 4
0.2 Week-3« . 4
0.2.1 Introduction to Source Code Management Systems 4
0.2.2 Features of Source Code Management Systems 4
0.2.3 Why Do We Need Source Code Management Systems? (1) 5
0.3 Types of Version Control Systems e 6
0.3.1 Centralized Version Control (TFS, Subversion) (1) 6
0.3.2 Distributed Version Control (Git and Mercurial) (1) 7
0.3.3 List of Source Code Version Management Tools (1) 9
0.3.4 GIT (Distributed Source Code Management) (1) 9
0.3.5 GIT Installation Completed.. 28
0.3.6 Installation of gig (git ignore creator) (1) 29
0.3.7 Usageof gig (1) o o o v 29
0.3.8 Configuration of GIT (1) 30
0.3.9 Using .gitignore files with git-extension (1) 31
0.3.10 Using .gitignore files with git-extension (2) 32
0.3.11 Github Create Repo e 33
0.3.12 Imitilization of Repo (not existing in github) 33
0.3.13 Adding Initiated Repo Remote Upstream Repo (Link with Github Repo) (1) 34
0.3.14 Now you can push your local changes to remote repository 35
0.3.15 If you see a repository on Github then you can download with following operation . . . 35
0.3.16 Checkout a Repository (1) oo i 35
0.3.17 Checkout a Repository (2) o o 35
0.3.18 Checkout a Repository (3) o e 35
0.3.19 Checking Repository Status (1) 35
0.3.20 Checking Repository Status (2) o o 36
0.3.21 Adding Files to Index (1) 0o 36
0.3.22 Adding Files to Index (1) o 36
0.3.23 Commit Changes (1) o i 36
0.3.24 Commit Changes (2) i 37
0.3.25 Commit Changes (3) i 37
0.3.26 Commit Changes (4)« v i it e e 37
0.3.27 Writing Good Commit Messages (1) 38
0.3.28 Add Files to Index (1) o o 40
0.3.29 Add Files to Index (2) e 40
0.3.30 Add Files to Index (3) 40
0.3.31 Add Files to Index (4)« o o i i 40
0.3.32 Add Files to Index (5)« o v i i 40
0.3.33 Add Files to Index (6) o i i 41
0.3.34 Update local repo before sending (1) 41
0.3.35 Update local repo before sending (2) o 41
0.3.36 Update local repo before sending (3) L 41
0.3.37 Update local repo before sending (4) L 42

0.4

0.5

0.3.38 Update local repo before sending (5) L 42
0.3.39 Update local repo before sending (6) 42
0.3.40 Update local repo before sending (7) o 42
0.3.41 Update local repo before sending (8) L 42
0.3.42 Update local repo before sending (9) o 43
0.3.43 Update local repo before sending (10) o 43
0.3.44 Update local repo before sending (11) 43
0.3.45 Update local repo before sending (12) o 43
0.3.46 Update local repo before sending (13) 43
0.3.47 Update local repo before sending (14) oo 43
0.3.48 Update local repo before sending (15) o 44
0.3.49 Send Changes to Remote Repo (1) o 44
0.3.50 Send Changes to Remote Repo (2) 44
0.3.51 Send Changes to Remote Repo (3) 44
0.3.52 Send Changes to Remote Repo (4) o i i i 44
0.3.53 Send Changes to Remote Repo (5) 44
0.3.54 Send Changes to Remote Repo (6) 44
0.3.55 Send Changes to Remote Repo (7) 44
0.3.56 Send Changes to Remote Repo (8) L 45
0.3.57 Send Changes to Remote Repo (9) 45
0.3.58 Send Changes to Remote Repo (10) 45
0.3.59 Send Changes to Remote Repo (11) 46
0.3.60 Send Changes to Remote Repo (12) 46
0.3.61 Send Changes to Remote Repo (13) 46
0.3.62 Branching (1) 46
0.3.63 Branching (2) L 46
0.3.64 Branching (3)« . o e 47
0.3.65 Branching (4) . . o o v v v e 47
0.3.66 Branching (5)« . . . 47
0.3.67 Branching (6) 47
0.3.68 Branching (7) 0 o i 47
List Remote Branches 47
0.4.1 Branching (8) e 47
List All Local and Remote Branches 47
0.5.1 Branching (9)« . 48
0.5.2 Branching (10) 48
0.5.3 Branching (11) o o o e 48
0.5.4 Branching (12) e 48
0.5.5 Branching (13) e 48
0.5.6 Branching (14) 49
0.5.7 Branching (15) 49
0.5.8 Branching (16) e 49
0.5.9 Branching (17) o e 49
0.5.10 Branching (18) e 49
0.5.11 Branching (19) . . o o v v oo oo o e e 50
0.5.12 Branching (20) 50
0.5.13 Branching (21) e 50
0.5.14 Branching (22) e 50
0.5.15 Branching (23) e 51
0.5.16 Branching (24) . . . o v v 51
0.5.17 Branching (25) 51
0.5.18 Branching (26) 51
0.5.19 Branching (27) 0 e 52
0.5.20 Branching (28) 52
0.5.21 Merge Conflicts L e 52
0.5.22 Branching (29) 52
0.5.23 Merge Conflicts o e 52

0.5.24
0.5.25
0.5.26
0.5.27
0.5.28
0.5.29
0.5.30
0.5.31
0.5.32
0.5.33
0.5.34
0.5.35
0.5.36
0.5.37
0.5.38
0.5.39
0.5.40
0.5.41
0.5.42
0.5.43
0.5.44
0.5.45
0.5.46
0.5.47
0.5.48
0.5.49
0.5.50
0.5.51
0.5.52
0.5.53
0.5.54
0.5.55
0.5.56
0.5.57
0.5.58
0.5.59
0.5.60
0.5.61
0.5.62
0.5.63
0.5.64
0.5.65
0.5.66
0.5.67
0.5.68
0.5.69
0.5.70
0.5.71
0.5.72
0.5.73
0.5.74
0.5.75
0.5.76
0.5.77
0.5.78
0.5.79
0.5.80

Branching (30) 53

Merge Conflicts L 53
Branching (31) 53
Merge Conflicts o o 53
Branching (32) o e 54
Merge Conflicts o 54
Branching (33) 54
Branching (34) e 54
Branching (35) 55
Branching (36) o o e 55
Branching (37) o e 55
Branching (38) e 55
Branching (39) 55
Branching (40) 56
Branching (41) o o 56
Branching (42) o e 56
Branching (43) o e 56
Branching (44) e 56
Branching (45) 57
Branching (46) 57
Branching (47) o o 57
Tagging L 57
Log (1)« o v o e 58
Log (2) - o v o 58
Log (3) - o v o o 58
Log (4) . o o 58
Log (5) v v e e e 58
Replace Local Changes (1) i it 58
Replace Local Changes (2) i i 58
Replace Local Changes (3) 59
Reflog (1) . . . o o o o 59
Reflog (2) . . o o o o e 59
Reflog (3) . . o o o o o e 59
Reflog (4) . . o o o o o e 59
Reflog (5) . . o o o o o 60
Resetting (1) o o o 60
Resetting (2) o o ot e 60
Soft Reset (1) . . v v o v o 60
Soft Reset (2) . . . v o o v o 60
Soft Reset (3) . . . v o o v o o 61
Soft Reset (2) o o o 61
Hard reset (1) o o o 61
Hard reset (2) o oo i e 61
Reverting (1) o o o e 62
Reverting (2) o o o e 62
Reverting (3) o o 63
Cherry-picking (1) o o o 63
Cherry-picking (1) o 63
Rebasing (1) o o o o 63
Rebasing (2) o 63
Rebasing (3) o e 64
Rebasing (4) o 64
Rebasing (5) . . v v v v i e 64
Interactive Rebase (1)« . o o o 64
Interactive Rebase (2) o 64
Interactive Rebase (3)o 65
Interactive Rebase (4)o 65

0.5.81 Useful Hints (1) o o i e e 66
0.5.82 Useful Hints (2) 66
0.5.83 Useful Hints (3) 66
0.5.84 Useful Hints (4) o o o 66
0.5.85 GIT Flow e e e e 67
0.5.86 Hotfix 67
0.5.87 GIT Decision Tree o 67
0.5.88 GIT inaction (1) oo 69
0.5.890 GIT inaction (2) o o vt e e 70
0.5.90 GIT inaction (3) L e 71
0.5.91 GIT inaction (4)« . o o it e e 72
0.5.92 GIT inaction (5)« . o o ot 72
0.5.93 GIT inaction (6) o vt i 73
0.5.94 GIT inaction (7) i 74
0.5.95 GOUrce 74
0.5.96 References (1). o o o i i e 75
0.5.97 References (2). o oo e 75
0.5.98 References (3) o o e 75
0.5.99 References (4) e 76
0.5.100References (5) . . .« « v v e 76

List of Figures

List of Tables

0.1 CE103 Algorithms and Programming I

0.2 Week-3
0.2.0.1 Fall Semester, 2021-2022 Download DOC!, SLIDE?, PPTX?

0.2.1 Introduction to Source Code Management Systems

0.2.1.1 Git, Github, Gitlab, Bitbucket, Maven, SVN, TFS Source code management (SCM) is
used to track modifications to a source code repository. SCM tracks a running history of changes to a code
base and helps resolve conflicts when merging updates from multiple contributors. SCM is also synonymous
with Version control. As software projects grow in lines of code and contributor head count, the costs
of communication overhead and management complexity also grow. SCM is a critical tool to alleviate the
organizational strain of growing development costs.

0.2.2 Features of Source Code Management Systems
o Authenticated access for commits
e Revision history on files
e Atomic commits of multiple files

o Versioning/Tagging

Lcel03-week-3-git.tr.md_ doc.pdf
2cel03-week-3-git.tr.md_ slide.pdf
3ce103-week-3-git.tr.md_ slide.pptx

ce103-week-3-git.tr.md_doc.pdf
ce103-week-3-git.tr.md_slide.pdf
ce103-week-3-git.tr.md_slide.pptx

0.2.3 Why Do We Need Source Code Management Systems? (1)

We can save the file with a different name if it’s our school project or one-time papers but for a well-equipped
software development? Not a chance.

0.2.3.1 Why Do We Need Source Code Management Systems? (2) Big projects need a version
control system to track the changes and avoid misunderstanding. A good SCM does the following:

e Backup and Restore

e Synchronization

e Short-Term Undo

e Long-Term Undo

e Track Changes

e Ownership

e Branching and Merging

0.2.3.2 Why Do We Need Source Code Management Systems? (3) Backup and Restore —
Files can be saved at any moment and can be restored from the last saved.

0.2.3.3 Why Do We Need Source Code Management Systems? (4) Synchronization — Pro-
grammers can get the latest code and fetch the up-to-date codes from the repository.

0.2.3.4 Why Do We Need Source Code Management Systems? (5) Short-Term Undo —
Working with a file and messed it up. We can do a short-term undo to the last known version.

0.2.3.5 Why Do We Need Source Code Management Systems? (6) Long-Term Undo - It
helps when we have to make a release version rollback. Something like going to the last version which was
created a year

0.2.3.6 Why Do We Need Source Code Management Systems? (7) Track Changes— We can
track the changes as when anyone is making any change, he can leave a commit message as for why the
change was done.

0.2.3.7 Why Do We Need Source Code Management Systems? (8) Ownership— With every
commit made to the master branch, it will ask the owner permission to merge it.

0.2.3.8° Why Do We Need Source Code Management Systems? (9) Branching and Merging
— You can create a branch of your source code and create the changes. Once the changes are approved, you
can merge it with the master branch.

0.2.3.9 Why Do We Need Source Code Management Systems? (10)

0.3 Types of Version Control Systems

o Centralized Version Control (TFS, Subversion)
o Distributed Version Control (Git and Mercurial)

0.3.1 Centralized Version Control (TFS, Subversion) (1)

The main concept of Centralized Version Control is that it works in a client and server relationship. The
repository is located in one place and allows access to multiple clients.

Centralized versio

Serv

commit

Working copy Working

Workstation/PC #1 Workstati
0.3.1.1 Centralized Version Control (TFS, Subversion) (2)

0.3.1.2 Centralized Version Control (TFS, Subversion) (3)

0.3.1.3 Centralized Version Control (TFS, Subversion) (4) It’s very similar to FTP where you
have FTP clients which connect to FTP server. Here all the user changes and commits have to pass through
the central server. For Ex: Subversion.

0.3.1.4 Centralized Version Control (TFS, Subversion) (5) The benefits of centralized ver-
sion control are:

e It’s easy to understand.
e There are more GUI and IDE clients.

¢ You have more control over the users and access.

0.3.1.5 Centralized Version Control (TFS, Subversion) (6) We do have drawbacks also:
o It is dependent on the access to the server.
e It can be slower because every command from the client has to pass the server.

e Branching and merging strategies are difficult to use.

0.3.2 Distributed Version Control (Git and Mercurial) (1)

These systems are newer to use. In Distributed Version Control, each user has their own copy of the entire
repository as well as the files and history. For Ex: Git and Mercurial

Distributed versii
Ser

commit
commit

Working copy

Workstation/PC #1 Workstat

0.3.2.1 Distributed Version Control (Git and Mercurial) (2)

0.3.2.2 Distributed Version Control (Git and Mercurial) (3)

0.3.2.3 Distributed Version Control (Git and Mercurial) (4) The benefits of distributed version
control are:

e More powerful and easy change tracking.

e No need of a centralized server. Most of the functionalities work in offline mode also apart from sharing
the repositories.

e Branching and Merging strategies are more easy and reliable.

o It’s faster than the other one.

0.3.3 List of Source Code Version Management Tools (1)

SourceForge

Launchpad

0.3.3.1 List of Source Code Version Management Tools (2)
o Github
o GitLab
o BitBucket
e SourceForge

¢ Beanstalk

0.3.3.2 List of Source Code Version Management Tools (3)
e Apache Allura
o« AWS CodeCommit
e Launchpad
o Phabricator
o GitBucket

0.3.4 GIT (Distributed Source Code Management) (1)

git

Distributed Ve

PUSH
PUSH

P
Main Repc

PULL]

|

:

Developer 1

=
-
>
=
m

COMMIT

=
=
=
O
)

Working Copy

Developer 1 Develop
0.3.4.1 GIT (Distributed Source Code Management) (2)

10

0.3.4.2 GIT (Distributed Source Code Management) (3)

11

0.3.4.3 GIT (Distributed Source Code Management) (4)

0.3.4.4 GIT (Distributed Source Code Management) (5)

0.3.4.4.1 A Basic Overview of How Git Works (1)
o Create a “repository” (project) with a git hosting tool (like Bitbucket)
o Copy (or clone) the repository to your local machine
o Add a file to your local repo and “commit” (save) the changes

e “Push” your changes to your master branch

0.3.4.5 GIT (Distributed Source Code Management) (6)

0.3.4.5.1 A Basic Overview of How Git Works (2)
e Make a change to your file with a git hosting tool and commit
e “Pull” the changes to your local machine
o Create a “branch” (version), make a change, commit the change
e Open a “pull request”.

o “Merge” your branch to the master branch

0.3.4.6 GIT (Distributed Source Code Management) (7)

12

++

Fyy———

| \

0.3.4.6.1 Some of The Basic Operations in GIT are
o Initialize
e Add
o Commit
e Pull
e Push

0.3.4.7 GIT (Distributed Source Code Management) (8)

Initialize

0.3.4.7.1 Some of The Basic Operations in GIT are

0.3.4.8 GIT (Distributed Source Code Management) (9)

0.3.4.8.1 Some of The Basic Operations in GIT are
e Branching
e Merging
e Rebasing

0.3.4.9 GIT (Distributed Source Code Management) (10)

13

Branching

0.3.4.9.1 Some of The Basic Operations in GIT are

0.3.4.10 GIT (Distributed Source Code Management) (8)

14

0.3.4.10.1 A brief idea about how these operations work with the Git repositories (1)

Local Remote

working staging remote

localrepo

directory area repo

0.3.4.11 GIT (Distributed Source Code Management) (9)

15

0.3.4.11.1 A brief idea about how these operations work with the Git repositories (2)

Git Data Transport Commands

hetp:/fosteele.com

commit =-a

add (-u) :>

Erk:\pucu\ m

pull or rebase

< fetch

v < checkout HEAD
4
=

< checkout
E diff HEAD
£ ,
a8 diff

0.3.4.12 GIT (Distributed Source Code Management) (10)

0.3.4.12.1 A brief idea about how these operations work with the Git repositories (3) For
more detailed cheetsheat please check the following interactive map

NDP Software :: Git Cheatsheet?*

4https://www.ndpsoftware.com/git-cheatsheet.html

16

https://www.ndpsoftware.com/git-cheatsheet.html

escape a git mess, Step-by-steps
at &mhat»

GIT GHEATSHEET el
LOCAL REPOSITOR
o —
L —
CTe—
0.3.4.12.2 Installation of GIT (1) Check Installation Already Completed
git --version

B CAWINDOWS system3Zemd. exe B o x

0.3.4.12.3 Installation of GIT (2) If your console gives error about git command follow the steps in
the link

Install Git | Atlassian Git Tutorial®

In this link you will should download following setup according to your operating system

0.3.4.12.4 Installation of GIT (3)

Shttps://www.atlassian.com/git /tutorials/install-git#windows

17

https://www.atlassian.com/git/tutorials/install-git#windows

0.3.4.12.5 GIT Setup Files
« Download® git” for® OSX?
« Download!? git!! for'? Windows!?

e Download!* git!® for!® Linux!”
g

0.3.4.12.6 Installation of GIT (4) Download and install GIT from the following links (both have same
github release path)

Git - Downloads!®

0.3.4.12.7 Installation of GIT (5) After running setup follow the steps below

Opan File - Securty Warming

Do o w1 nan this file 7

.—1] Marre o £ J 5
. Publisher, Dpen Sourie Devcloper. Jebannes Schindedin
Tipe: Application
B Co\Lisers\Rechma\ DevmnlnsdcyGe. 2 100 &4

[¥] Miways mai before apenineg ths e

e s ez e et o b wsedul thes e Sype can
peol ety Fewmm your computer Ondy eun software from publahen
o el . Wt ' e g

Shttp://git-scm.com/download /mac
Thttp://git-scm.com/download /mac
8http://git-scm.com/download /mac
9http://git-scm.com/download /mac
Ohttp://msysgit.github.io/
http://msysgit.github.io/
2http://msysgit.github.io/
Bhttp://msysgit.github.io/
Mhttp://git-scm.com/book /en/Getting-Started-Installing- Git
Shttp:/ /git-scm.com /book /en/Getting-Started-Installing- Git
6http://git-scm.com/book/en/Getting- Started-Installing- Git
Thttp:/ /git-scm.com /book /en/Getting-Started-Installing- Git
Bhttps://git-scm.com/downloads

18

http://git-scm.com/download/mac
http://git-scm.com/download/mac
http://git-scm.com/download/mac
http://git-scm.com/download/mac
http://msysgit.github.io/
http://msysgit.github.io/
http://msysgit.github.io/
http://msysgit.github.io/
http://git-scm.com/book/en/Getting-Started-Installing-Git
http://git-scm.com/book/en/Getting-Started-Installing-Git
http://git-scm.com/book/en/Getting-Started-Installing-Git
http://git-scm.com/book/en/Getting-Started-Installing-Git
https://git-scm.com/downloads

T I S i ==
Componeats ‘,
Tﬂ-wmum "\Q

Bebed the Component i wanlk tS Folal; dear the Campanerts vo g9 fat wani 52
imafadl, Clhick Mext wheen you are ready & conlirus,

L] Tt Qi sty
1| O e et
|5 Weirsdiowes Exploner inbegration
|+ Gt Bagh Here
o] Got Gl Here
|+ Asmosiate ,ga™ configuration fles with the default text editor
|3 Agmosiate gh fes by be run with Bash
| e & TrueType font in ol corsole wirkkows:

Current sslechion nequines a4 leadt 1526 MB of disk space,

ke gt -For-windioses. gbhub. o
| < Back |E hest> | | Canced |

L

0.3.4.12.8 Installation of GIT (6)

Adpusting your PATH envarcanmeent ")
e i e e e Lese Gt o B command ine? "‘

@ e Git from Git Bask cnly

This i e safest choloe g your PATH will not be modified ot ol You willl only be
alske ko use B G command ine ool From Gt Bash.

[ke Git from the Windows Command Prompt

ﬂ“"m‘*ﬂ.ﬂ“““miﬂﬂ‘ihw
PATH i arviosd L BT DR WEh Dvnanal LiFn B Wi il e
mble o use Gt from i Bavch mnd B Wirddows Comerand Prompt.

ke Gt g optional Pnix tools froem the Wesdows Consmand Prompt

Both (t and the opBoral Uini: books will be added fo your PATH.

Warning: This will cwermde Windows book ke “Tind™ and "“sort”, Onby
e bt epbssn i you undersiamd e mnphoa e,

Tt Tt 4 i etk

| <Back | mewt> | | canced |

0.3.4.12.9 Installation of GIT (7)

19

B L R P R |
Comfiguring extra options >,
Mfuu;-:.mﬂmlrmmﬂﬁ """"}

o Enable file system cachang

IFle eyt datn will be read in Buk and cached in memsry fof certan
opergbions [Moore, fscache” i 5ot o "true™), This provides & sonificant
performance boost.

/| Enable Git Credential Manager
The Git Crediontial Manaoer for Winsioss provides secure Git credenitial storage

fiar Windors, maat notably muls-facher sohentcalion mupport for Visusl Shuda
Team Sarvices ard Gitrul, (requires NET framework v4, 5, 1.or or later).

_ | Emabde symbolic bnks

IEnable gymbolc ks (requires the Selreabet ymisolicl ink permissson).
[Please rofe that exising reposibones ane unaffiected by s setiing.

| <Back || st | [canced |

0.3.4.12.10 Installation of GIT (8)

Configuring the terminal emulator bo use with Git Bash y
Which terminal emulator do you want to use with your Git Bash? ’ *)

@ Use MinTTY [the default terminal ol M5Y52)

iGit Bash will se MInTTY a2 terminal amulsior, which sports & resizabls window,
non-reciangular selections and & Uincods font, Windows console programs (such
&% inberacte Python) must be lsundhed via “winply* to work in MnTTY.

| Use Windows' default console window

Git vl e the defaull oonsole window of Windews (o, exe "), which works wel
with Win3Z conscle programs such &3 MBeractive Python of mode.js, but has a
wery imited default scrol-back, needs o be configured 1o use a Unicade fontin
arder ta dsplay non-ASCT] characters comectly, and price i Windows 10 s
window was not freely resizable and it orly allowed rectangular text selections,

[-:H:t]lllut:-l[ﬂul]

0.3.4.12.11 Installation of GIT (9)

20

ol

Completing the Git Setup Wizard

Setup has firnished instaling &t on your computer. The
appicaton may be lunched by selecting the irstaled
ihorbasts.

ik Firish b 368 Setup,
¥ Launch Git Bash
1] Wew Release Mates

o
) O

=

0.3.4.12.12 Installation of GIT (10)

0.3.4.13 Installation of GIT Extension (Windows) (1) You can install Git GUI from
https://git-scm.com/downloads/guis I prefer to use git extension https://gitextensions.github.io/ and

https://tortoisegit.org/
Also Download KDiff3 KDiff3 - Browse Files at SourceForge.net!'?

These extensions provide GUI for git operations to make process easier.

https://sourceforge.net/projects/kdiff3/files/

21

https://sourceforge.net/projects/kdiff3/files/

0.3.4.14 Configuration of GIT Extension (Windows) (1)

3 Settings - Checkist

| Seitings source: (8 Glabal fer all eepeaitonies

w5 Git Exbengions.
it Genenl
™ Appearance
fj} Rivrisze hinks
Build sercer inbegraton
B Senpti
E) Hotieys
M Shell extension
HAdvahied
Ceetasied
& 35H
Ay Git
w I:‘I.lgru.

The checlist below validates the basic setting ded
Gt 2280 i found on yewr compuber.,

A ueimamd and s sl sddress ane configuned.
Theere 5 o mergetool configueed: tontcmemenge
Theere is & difftocd configuned: kndiff 3

Shell extensions regrsiered properly.

Linis: toals {5h) found on Yool ¢omputer.

Gt Extergions. iv p

perly reg
Urinown 559 chent configueed: C\Program Files Gt
The configured langusge is English.

[Check sertings 2t startup [dissbles stomatically if 2

Changes on the delected p
Thebiad oo the L ancel Buthan doed MO

0.3.4.14.1 Configuration of GIT Extension (Windows) (2)

If you install git everything should be
green and this configuration is stored on .gitconfig on your home C:/Windows/Users/<user>/.gitconfig

0.3.4.14.2 Configuration of GIT Extension (Windows) (3)

[core]

editor = \"C:/Program Files (x86)/GitExtensions/GitExtensions.exe\" fileeditor

autocrlf = true
quotePath = false
commitGraph = true
longpaths = true

[user]
email = xxxxxxx0@gmail.com
name = XXXX XXXXXX

[filter "1fs"]
clean = git-1fs clean -- /f

smudge = git-1fs smudge —- %f
process = git-1lfs filter-process

required = true
[pulll
rebase = false

22

[fetch]
prune = false

[rebase]

autoStash = false
[credential]

helper = manager
[diff]

guitool = kdiff3
[difftool "kdiff3"]

path = C:/Program Files/KDiff3/kdiff3.exe

cmd = \"C:/Program Files/KDiff3/kdiff3.exe\" \"$LOCAL\" \"$REMOTE\"
[mergel

guitool = tortoisemerge
[mergetool "tortoisemerge"]

path = C:/Program Files/TortoiseGit/bin/TortoiseGitMerge.exe

cmd = \"C:/Program Files/TortoiseGit/bin/TortoiseGitMerge.exe\" -base:\"$BASE\" -mine:\"$LOCAL\" -t
[receive]

advertisePushOptions = true
[gc]

writeCommitGraph = true

0.3.4.14.3 Configuration of GIT Extension (Windows) (4) Also in extension you can see similar
settings

3¢ Settings - Config *

Settings source: (®) Effective << (O Local for current repository << (O Global for all repositories

v.-){ Git Extensions

i % General
E% Appearance User name |Ugur Coruh |
----- & ' Revision links) :
,,,,, <7 Build server integration User email |ugur.c0ruh.tr@gmall.com |
..... @ Scripts Editor |"C:,-"Program Files (x86)/GitExtensions/GitExtensions.exe” fileeditor v|
.....) Hotkeys
..... | Shell extension Mergetool |t0r‘t0isemerge v|
. EI g::a.:ﬂcded Path to mergetool |C:_a'Program Files/TortoiseGit/bin/TortoiseGitMerge.exe | Browse
aile
o 3; 55H Mergetool command |"C:_a'Program Files/TortoiseGit/bin/TortoiseGitMerge.exe” -base:"SBASE" -mine"SLO C.| Suggest
w AP Git
..... " Paths Difftool ka3 v
""" £3 Config Path to difftool |C:/Program Files/KDiff3/ kdiff3.exe | Browse
ﬂ Advanced
» Plugins Difftool command |"C:_-"I3rogram Files/KDiff3/kdiff3.exe" "SLOCAL" "SREMOTE" | Suggest
Path to commit template | | Browse

Line endings

® Checkout Windows-style, commit Unix-style line endings ("core.autocrlf" is set to "true")
(O Checkout as-is, commit Unix-style line endings ("core.autocrlf” is set to "input”)

(O Checkout as-is, commit as-is ("core.autocrlf” is set to "false")

() Mot set

Files content encoding v Configure

OK Cancel Apply

23

0.3.4.14.4 Configuration of GIT Extension (Windows) (5) Samples
MergeTool

tortoisemerge

Path to mergetool

C:/Program Files/TortoiseGit/bin/TortoiseGitMerge.exe

Mergetool command

"C:/Program Files/TortoiseGit/bin/TortoiseGitMerge.exe" -base:"$BASE" -mine:"$LOCAL" -theirs:"$REMOTE"

0.3.4.14.5 Configuration of GIT Extension (Windows) (6) Difftool
kdiff3

Path to difftool

C:/Program Files/KDiff3/kdiff3.exe

Difftool command

"C:/Program Files/KDiff3/kdiff3.exe" "$LOCAL" "$REMOTE"

0.3.4.14.6 Configuration of GIT Extension (Windows) (7) If you see something as merge and diff
tool is not configured, follow the similar settings above on your computer. If you installed kdiff3, tortoisegit
and extension you will have same diff and merge tools

This topic also help you
Git: How can I configure KDiff3 as a merge tool and diff tool? - Stack Overflow?’

20https:/ /stackoverflow.com/questions/33308482/git- how-can-i-configure-kdiff3- as-a-merge-tool-and-diff-tool

24

https://stackoverflow.com/questions/33308482/git-how-can-i-configure-kdiff3-as-a-merge-tool-and-diff-tool

0.3.4.14.7 Configuration of GIT Extension (Windows) (8)

v ¥ Git Extensions
Y General
™ Appearance
(_',9 Revision links
%" Build server integration
I Scripts
E) Hotkeys
X Shell extension
> Wy Advanced
Detailed
&° SSH
® Git

W Plugins

0.3.4.14.8 Configuration of GIT Extension (Windows) (9)

computer and copy paths to here.

Settings source: @ Global for all repositones

The checklist below validates the basic settings ne
Git 2.33.1 is found on your computer.
A username and an email address are configured.
You need to configure merge tool in order to solv
You should configure a diff tool to show file diff i
Shell extensions registered properly.
Linux tools (sh) not found. To solve this problem y
Git Extensions is properly registered.
Default 55H client, OpenSSH, will be used. (comm

The configured language is English.

[+] Check settings at startup (disables automaticall

Changes on the selecte
Therefore the Cancel button does

Open Git->Config, in your settings
you will see path to mergetool and difftool will be empty fill settings like that below find executables in your

25

3 Settings - Config

| Type to find

Settings source: (@ Effective << () Localf

v){ Git Extensions

----- % General
% Appearance User name
CO Revision links
Build server integration | User email
Scripts Editor
) Hotkeys
(M Shell extension Mergetool
- Ad d
L) De’:;airectﬂe Path to mergetool
L SSH Mergetool command
w AP Git
Ll Paths Difftool
3 Config Path to difftool
41 Advanced
----- &0 Plugins Difftool command

Line endings

O Mot set

Files content encoding

0.3.4.14.9 Configuration of GIT Extension (Windows) (10)

0.3.4.14.10 Configuration of GIT Extension (Windows) (11) Also if we want to change and use
different diff and merge tool then we can do this with gitbash console as below

C:\Program Files\TortoiseGit\bin

Find TortoiseGitIDiff.exe and TortoiseGitMerge.exe
i WTLUIEETILDIDITIE B e

7 TortoiseGit|Diff.exe

'ﬁ TortoiseGitMerge.exe
RE TnrtniceGitPlink eve

0.3.4.14.11 Configuration of GIT Extension (Windows) (12) Copy path of this applications

C:\Program Files\TortoiseGit\bin\TortoiseGitMerge.exe
C:\Program Files\TortoiseGit\bin\TortoiseGitIDiff.exe

0.3.4.14.12 Configuration of GIT Extension (Windows) (13) open a gitbash console and run
following commands

26

tortoisemerge

Path to commit template

® Checkout Windows-style, commit Unix-style i
(O Checkout as-is, commit Unix-style line ending

(O Checkout as-is, commit as-is ("core.autocrif’

-

git config --global merge.tool TortoiseGitMerge
git config --global mergetool.TortoiseGitMerge.path "C:/Program Files/TortoiseGit/bin/TortoiseGitMerge.
git config --global mergetool.TortoiseGitMerge.trustExitCode false

git config --global diff.guitool TortoiseGitIDiff
git config --global difftool.TortoiseGitIDiff.path "C:/Program Files/TortoiseGit/bin/TortoiseGitIDiff.e:
git config --global difftool.TortoiseGitIDiff.trustExitCode false

This updates will be stored on .gitconfig

0.3.4.15 Using the GIT Extension (1) right click in the git folder and use Git Extension menu for
operations.

for sample commit click “Commit”

CRLAKE JAVA

View >
| CMAKE MANA v
Cort by > |
EPS0OM Eazy Photo Print = {2 Photo Print Graag by b
X Refresh

o Chack sccedy

B Desia git Cuntamize this fFolder [
Desktop i
0 ChakeFiles 1
Dowriloads . 1
+ - | |
s Documents Al BT '
ALL_BUILD . w |
* B Undo Dedete Ctrl+Z
& | Pictures & ALL_BUILD v 1
B Visual Studia'da ag
@ CMAKE 12V & cmake_instal e |
Gt GUI Here
CSEN03-dgurith) ChakeCachd |
Git Bash Here |
SAGA Sumumms & CMakelistst = |
SAGA
o Hemowierdj o] Open with Code
5’.!"'“:"':) '\.\: Lot Exténdading M O .
& HelloWerdd y e \pen reposiony
i Oneliree .i:! HellioWorld.< Giee B8t 1D % Comamit...
. HellaWarld Pl
A Thes PC t | Git iymc Bsk
] HelloWorldsy us
B iD Objects — ™ Git Commil -> “mster”... o %
| MANIFESTM) o Wiew stes
Bl Desktop & ZEr0 cHEey o lortodeda | B View changes
Documesnts §] ZERD CHECE M by
- Iy Checkout branch...
Dossmiloads =
) Properties # Checkout revision...
J‘ Whusat T =
o by Create branch,

§ Open with difftoel
Fie history
oy Reset file changes
= Add files
4 Apply patch..,

Cettangs

0.3.4.16 Using the GIT Extension (1) from opening window first stage related files and then write
a good commit message

finally click commit to local. You can also commit&push it to remote repository.

27

| % Comemit
Fa | =0 Werking directony changes

Filter files uting @ neguior expression

;o ChipkeFiles TangetDinectories.tet]
4= Chiskelists.tet
| o= HelloWorkd, jar

& HelloWorld.java

+ HelleWerld.sin

= HelloWord.vesprej

= HelloWorkd vexprog filters

o= MANIFESTMF

o w6/ Debug ALL_BUILDYALL_BUILDurecipe

o b/ Debug/ALL_EUILDYALL_BUILD tog/aLL BUILD:lesthuildstate

o w6 Debug/ALL_EUILDVALL BUILD.tlog CustemBuildcommand.id v

L1 >
@ | ¥ Unstage § Stege | B
Filter files wiing @ reguicr expression =

o ChiakeFiles 319,01/ CMakeC Compiler.omaloe

Committer Uigur Comuh <ugur.comh.trdgmail.com=

package com.Mello;
: public class Hellowerld

{
public static vold main{5String[] args)
" {
] System.out.println{“Hello World...");
}
|
G Comrmit 52 Commit message =

Enter commd mesiage

@ Commat & push
] Asmend Commit

#: Fesetall changes

+; Reset unstaged changes

b master

Staged 17T Ln O

Options =

Cal O

0.3.5 GIT Installation Completed..

28

ARG AT e e s s

0.3.6 Installation of gig (git ignore creator) (1)
Requirements

e Python >= 3.6

o Internet connection
https://github.com/sloria/gig

pip install -U gig

ruh>pip install -U gig

none-any.wh1

skipping u

skip

collecte
instal

0.3.6.1 Installation of gig (git ignore creator) (2)

0.3.6.2 Installation of gig (git ignore creator) (3)

gig —--version

0.3.7 Usage of gig (1)
List all gitignore templates

gig list
gig list -global

29

0.3.7.1 Usage of gig (2) Sample gitignore for C Java and Visual Studio

gig C Java VisualStudio > .gitignore

0.3.7.2 Usage of gig (3) There is a portal for this also by Toptal

« gitignore.io - Create Useful .gitignore Files For Your Project?!

,gitignore.io

0.3.7.3 Usage of gig (4) for samples you can check the following links.
https://github.com/github/gitignore
https://dev.to/shihanng/gig-a-gitignore-generator-opc

0.3.8 Configuration of GIT (1)

It is important to configure your Git because any commits that you make are associated with your configu-
ration details.

configuring Git with your username and email. In order to do that, type the following commands in your
Git Bash:

git config - - global user.name "<your name>"

git config - - global user.email "<your email>"

0.3.8.1 Configuration of GIT (2)

2lhttps://www.toptal.com/developers/gitignore

30

https://www.toptal.com/developers/gitignore

0.3.8.2 Configuration of GIT (3) git configuration files are located on the user folder

v | + This PC » Windows (T:) » Lsen @ ugurcoruh

EPSOMN Easy Prota Pt = (Z) Photo Prist
& Downiopds ~

. O T g
Drocuments ’
P Saved Garnes
&= Pictures
Searches
CMAKE M
CSE103-Algeath E Videsd
SAGA S Badh_htory
SallyBaif cardpesi.log
sendars
B Onsliieng
garitproject
B8 This PC @ .giconfig

B 3D Objects g Sk

Bl Desktop

Documents

git-For-windows -updater

k T o -
kdiffarc

rinde_repl_history

|

0.3.8.3 Configuration of GIT (4) If you want to view all your configuration details, use the command
below

git config --list

PRIV U Reshma i

0.3.9 Using .gitignore files with git-extension (1)

with gitignore file

31

A

s Chuick sccess

B Deskiop

& Dowrnlcads
Documents

= Pictures

o CMAKE WA

garith

SAGA Suny

Syllabus
@ OneDince
Bl Thas PC
B 30 Objects
B Deskiop
Documenits
&4 Downloads
Jv Music

tems

CMAKE LA

EPSOMN Easy Photo Print = &) Photo Prim

git
0 CMekeFiles
0 x4

%l AL

vErpee)
UILD, voopeoy filters
crmalice_install. crnalkoe

CMakeCache txt

Ankelists et

a HelloWeald jar
HelleWeld jina

ER HelloWedld.sin

% HelloWedld veapeey

B HelloWeald vopecy filters
MANIFESTMF

! ZERD CHECK.woxproj

[ZERD_CHECK voxpregfilters
.gitignare

M, Come

Waorking dinectory changes -

=+ gitignore

o= CMakel s tei
- HelloWeld java
-+ Hellg!

= Hello!
o Hellel
= MANIFESTMF

= LERD_CHECK.vexpesy

= ZERD_CHECK.wcoproj filters

i hilters

W | & Unstage

$ Stage @

7 Ugur Corub <ugurconsh.trifgmal.com>

1 ezgessenes Generated by gig ssesssssses
2

3 £33 [=88

4

3 B Prérequisites
(] ®.d

7

B # Object files
5 "

18 *.ka

1 t.ohj

12 *elf

13

4 # Linker output
15 *ilk

16 *-map

17 " uexp

18

19 # Precompiled Headers
28 *-geh

1 . peh

22

3 # Libraries

24 *.1lib

25 ".8

Commit Commit message =

Commit & push

[] amend Comenat
s Feset all changes

#F; Reset unstaged changes

b master

0.3.10 Using .gitignore files with git-extension (2)

without gitignore file (just move

st Chuick access

ktop

View

CMAKE JAA »

EPSOM Easy Photo Print = () Photo Print

to another location)

W Commit

Wodang dwectory changed =

= ALL_BUILD.vexproj
o ALL_BUILD.verproj filters

encodings"y

Taged O11

& Downloads o iz = crmake_install crake
. @) = + ChakeCachesnt
Documents 2 1] " M M
A Tl ALL_BUNLD.vexprcy + ChMakel Compiler.omake
= Pictures 1 B D e e + ChMakeliN Compder.crnalke
@ CMUAKE A ke_snstall crmake + CMakeDeterminelompilerBl_C.bin
CSE103-Algorith CMpkel pehe bt -+ CMakeDetermunelompi
- CMpkeleite et - SheRLL
AGA
SA6A Surum & HelloWerldjor H keSystan. cmake
Syllabus = + ChMakel Compilerid.c
HellgWerld jova - -
+ CompierdC.ene
& OraDrive lloWeeid.sin - -
o CompileridC.v oj
T
3 This PC eldvorproy + CMskeC Compdentd.oby .
_— rid. v proj.filters o sk CompderbdC e g.1e
| § jects EST.MF + Clee
I De Tl ZERO_CHECK wouproj + Clre
1 ZERD, CHECK vorprojfifters . Clom
- Camy
&+ ikt <
:: :':: . Comis Commt message -
.
r CMskeC:OCompilesid.cpp Commit.8 push
- Compilerddl0Lee i
< » [] Amend Comamet

@ | # Unstage $oage | B Foadichange

+; Reset wnstaged changes
b master

Comamitter Ugur Consh sugur.coruh.tr@gmail.com: Staged Q77

32

0.3.11 Github Create Repo

Create a new repository

A PEpadet ey Sortierd. All proyect Bl shcludeng the renison histony. Alnaady have § project repodnony eliewkens?
Impart & repetian,

Crhwvred * Rispndilary nam *
8 wcoruh = rteu_ceng_cs103 W
Great repositony names ane short and memorable. Meed inspiration? How about sturdy-spoon?

Derscription joptional)

i [_ | Pt
W= Aryonse N Bhe mbemet CBn 56t this repasinny, You choose who can oommit

1 Private
! Woap choorse whi Can $6 s ComeeE b0 el Pepasinny

Imitialize this repository with
Skip this step if you're importing an existing repositony.

B Add a BEADME file

Thes i wheere youl Con wite & Hong desorptaon Tor your propect. Lesrs mone

Ll Add gitignore
Chogue whigh flep not B Back Som g gt of templater Leam more
| Pt & lignga
& lenenise pells others shat By L Bndl 20031 0 wath your code. Learn =eaee

Thits will set B sat= a5 the default branch. Change the default name in your settings.

Create repository

0.3.12 Initilization of Repo (not existing in github)
0.3.12.1 git init
e In order to do that, we use the command git init.

o git init creates an empty Git repository or re-initializes an existing one. It basically creates a .git
directory with sub directories and template files. Running a git init in an existing repository will not
overwrite things that are already there. It rather picks up the newly added templates.

git init

33

MINGWEL: \cireyshma_tepn

ma_repo (

§ git imt] . . _ R
Initialized empty Git repository in C:/reyshma_repo/.git/

ma_repo (maste

0.3.12.2 git init

0.3.13 Adding Initiated Repo Remote Upstream Repo (Link with Github Repo) (1)
If you enter following command in the git folder you will see nothing
git remote -v

That mean this repository do not have a remote upstream repository such as a github or bitbucket repo.

0.3.13.1 Adding Initiated Repo Remote Upstream Repo (Link with Github Repo) (2) Open
the github and bitbucket repository and copy project path from

&« C & github.com/ucoruh/ce103-sample-text + BB o000

i Uygulamalar CERN Open Data P.. @ sentinslcustomersa.. @ Paletton - The Colo.. [B) €% - DatsGridView.. @ Modsmob Akili Mo.. @ LEDseriesparallel a.. 8 Inline Digital Hydro.. @ SESSIZ JENERATOR... Androic

O Search or jump to... / Pull requests Issues Marketplace Explore

B ucoruh / ce103-sample-text ' Publi

<> Code Issues Pull requests Projects Security Insights Settings

¥ main - branches tags Go 1o file Add file ~ About

ce103-sample-
6 ucoruh Initial commit (3 Clone
HTTPS SSH GitHub CLI

[READMEmd https://github. con/ucoruh/ce103-sample-te:

Releases
README.md

4] Open with GitHub Desktop

ce103-sample-text

Open with Visual Studio
Packages
ce103-sample-text
[}) Download ZIP

0.3.13.2 Adding Initiated Repo Remote Upstream Repo (Link with Github Repo) (3) you
will see the following sample from github code button

https://github.com/ucoruh/cel03-sample-text.git

0.3.13.3 Adding Initiated Repo Remote Upstream Repo (Link with Github Repo) (4) copy
link and use with following command

git remote add origin https://github.com/ucoruh/cel03-sample-text.git

34

0.3.13.4 Adding Initiated Repo Remote Upstream Repo (Link with Github Repo) (5) then
you can check your remote setting with

$ git remote -v
origin https://github.com/ucoruh/cel03-sample-text.git (fetch)
origin https://github.com/ucoruh/cel03-sample-text.git (push)

0.3.13.5 Adding Initiated Repo Remote Upstream Repo (Link with Github Repo) (6) you
can check the following sample

How to Add a New Remote to your Git Repo | Assembla Help Center??

0.3.14 Now you can push your local changes to remote repository

0.3.15 If you see a repository on Github then you can download with following operation

0.3.16 Checkout a Repository (1)
create a working copy of a local repository by running the command

git clone /path/to/repository

0.3.17 Checkout a Repository (2)
Sample clone command

git clone https://github.com/ucoruh/cel03-sample-text.git

0.3.18 Checkout a Repository (3)
when using a remote server, your command will be

git clone username@host:/path/to/repository

0.3.19 Checking Repository Status (1)

0.3.19.1 git status The git status command lists all the modified files which are ready to be added to
the local repository.

git status

22https://articles.assembla.com/en/articles/1136998-how-to-add-a-new-remote- to-your-git-repo

35

https://articles.assembla.com/en/articles/1136998-how-to-add-a-new-remote-to-your-git-repo

0.3.20 Checking Repository Status (2)

B cirehera_ripe

§ git status

oranch master

‘e/reyshma_repo

"to include in what will be committ

nothing added to commit but untracked files present (use "git add" to track)

0.3.20.1 git status

eyshma_repo

0.3.21 Adding Files to Index (1)

0.3.21.1 git add This command updates the index using the current content found in the working tree
and then prepares the content in the staging area for the next commit.

git add <directory>
git add <file>
git add *

0.3.22 Adding Files to Index (1)

0.3.22.1 git add Created two more files edureka3.txt and edurekad.txt. Let us add the files using the
command git add -A. This command will add all the files to the index which are in the directory but not

updated in the index yet.

MINGWEL:/c/reyshma_repo
$ git add -a
$ git status

on branch master

Initial commit

eyshma_repo (

‘reyshma_repo (

Changes to be committed:

(use "git rm --cached

<file>..." to unstage)

=8]

yshma_repo (master)

0.3.23 Commit Changes (1)

0.3.23.1 git commit

o It refers to recording snapshots of the repository at a given time. Committed
snapshots will never change unless done explicitly.

36

0.3.24 Commit Changes (2)

0.3.24.1 git commit Let me explain how commit works with the diagram below

Commit

git commit

Here, C1 is the initial commit, i.e. the snapshot of the first change from which another snapshot is created
with changes named C2. Note that the master points to the latest commit. Now, when I commit again,
another snapshot C3 is created and now the master points to C3 instead of C2.

0.3.25 Commit Changes (3)
0.3.25.1 git commit Commands:

git commit -m "<message>"

MINGWEL c/reythma repo =

ma_repo

<

$ git commit -m"Adding four files) N
[master (root-commit) t8t2694] Adding four files

committer: Reshma <Resh

Your e and email address were configured automatically based
on your username and hostname. Please check that they a

You can suppress this message by setting them explicitly:

git config --global user.name_"yo Name"
git config --global user.email you@example.com

4 files changed,
create mode 1

e mode
create mode 100644
create mode 100644

Now, if you want to commit a snapshot of all the changes in the working directory at once, you can use the
command below

0.3.26 Commit Changes (4)

0.3.26.1 git commit Please check writing good commit messages article below

37

How to write a good commit message - DEV Community??

0.3.27 Writing Good Commit Messages (1)

type: subject
body (optional)

footer (optiomnal)

0.3.27.1 Writing Good Commit Messages (2)

0.3.27.1.1 1. Type

o feat - a new feature

e fix - a bug fix

e docs - changes in documentation

o style - everything related to styling

e refactor - code changes that neither fixes a bug or adds a feature
e test - everything related to testing

e chore - updating build tasks, package manager configs, etc

0.3.27.2 Writing Good Commit Messages (3)

0.3.27.2.1 2. Subject This contains a short description of the changes made. It shouldn’t be greater
than 50 characters, should begin with a capital letter and written in the imperative eg. Add instead of
Added or Adds.

0.3.27.3 Writing Good Commit Messages (4)

0.3.27.3.1 3. Body The body is used to explain what changes you made and why you made them. Not
all commits are complex enough that they need a body, especially if you are working on a personal project
alone, and as such writing a body is optional.

A blank line between the body and the subject is required and each line should have no more than 72
characters.

0.3.27.4 Writing Good Commit Messages (5)

0.3.27.4.1 4.Footer The footer is also optional and mainly used when you are using an issue tracker to
reference the issue ID.

0.3.27.5 Writing Good Commit Messages (6)

23https://dev.to/chrissiemhrk/git-commit-message-5e21

38

https://dev.to/chrissiemhrk/git-commit-message-5e21

0.3.27.5.1 Example Commit Message

feat: Summarize changes in around 50 characters or less

More detailed explanatory text, if necessary. Wrap it to about 72
characters or so. In some contexts, the first line is treated as the
subject of the commit and the rest of the text as the body. The
blank line separating the summary from the body is critical (unless
you omit the body entirely); various tools like “log”, “shortlog"
and ‘rebase” can get confused if you run the two together.

Explain the problem that this commit is solving. Focus on why you
are making this change as opposed to how (the code explains that).
Are there side effects or other unintuitive consequences of this
change? Here's the place to explain them.

Further paragraphs come after blank lines.
- Bullet points are okay, too
- Typically a hyphen or asterisk is used for the bullet, preceded
by a single space, with blank lines in between, but conventions

vary here

If you use an issue tracker, put references to them at the bottom,
like this:

Resolves: #123
See also: #456, #7389

0.3.27.6 Writing Good Commit Messages (7)

git commit -a

- doing this, you may fix the identity used for this commit with:

git commit --amend --reset-author

39

0.3.28 Add Files to Index (1)

I have created two more text files in my working directory viz. edurekab.txt and edureka6.txt but they are
not added to the index yet.

I am adding edurekab.txt using the command

git add edurekab.txt

0.3.29 Add Files to Index (2)

MINGWE: cfreyshema_repo =]

ma_repo

git commit --amend --re

0.3.30 Add Files to Index (3)

I have added edurekab.txt to the index explicitly but not edureka6.txt and made changes in the previous
files. I want to commit all changes in the directory at once.

0.3.31 Add Files to Index (4)

This command will commit a snapshot of all changes in the working directory but only includes
modifications to tracked files i.e. the files that have been added with git add at some point in
their history. Hence, edureka6.txt was not committed because it was not added to the index
yet. But changes in all previous files present in the repository were committed, i.e. edurekal.txt,
edureka2.txt, edureka3.txt, edurekad.txt and edurekab.txt. Now I have made my desired commits
in my local repository

0.3.32 Add Files to Index (5)

your local repository consists of three “trees” maintained by git. the first one is your Working Directory
which holds the actual files. the second one is the Index which acts as a staging area and finally the HEAD
which points to the last commit you’ve made

40

0.3.33 Add Files to Index (6)

0.3.34 Update local repo before sending (1)

0.3.34.1 Fetching If we have a remote Git branch, for example a branch on Github, it can happen that
the remote branch has commits that the current branch doesn’t have! Maybe another branch got merged,
your colleague pushed a quick fix, and so on.

0.3.35 Update local repo before sending (2)

0.3.35.1 Fetching We can get these changes locally, by performing a git fetch on the remote branch!
It doesn’t affect your local branch in any way: a fetch simply downloads new data.

0.3.36 Update local repo before sending (3)

bash

Git | Fetching

Downloads content from a remote branch or
repository without modifying the local state.

0.3.36.1 Fetching

41

0.3.37 Update local repo before sending (4)

0.3.37.1 Fetching We can now see all the changes that have been made since we last pushed! We can
decide what we want to do with the new data now that we have it locally.

0.3.38 Update local repo before sending (5)

0.3.38.1 Pulling Although a git fetch is very useful in order to get the remote information of a branch,
we can also perform a git pull. A git pull is actually two commands in one: a git fetch, and a git
merge. When we’re pulling changes from the origin, we’re first fetching all the data like we did with a git
fetch, after which the latest changes are automatically merged into the local branch

0.3.39 Update local repo before sending (6)

bash

Git | Pulling

Downloads content from a remote branch/
repository like git fetch would do, and
automatically merges the new changes.

0.3.39.1 Pulling

0.3.40 Update local repo before sending (7)

0.3.40.1 Pulling Awesome, we're now perfectly in sync with the remote branch and have all the latest
changes!

0.3.41 Update local repo before sending (8)
0.3.41.1 Pulling
0.3.41.2 git pull Note that before you affect changes to the central repository you should always pull

changes from the central repository to your local repository to get updated with the work of all the collabo-
rators that have been contributing in the central repository. For that we will use the pull command.

42

0.3.42 Update local repo before sending (9)
0.3.42.1 Pulling

0.3.42.2 git pull But first, you need to set your central repository as origin using the command

git remote add origin <link of your central repository>

0.3.43 Update local repo before sending (10)

hma/edureka-02.git"

shma_repo

0.3.43.1 Pulling / git pull

Now that my origin is set

0.3.44 Update local repo before sending (11)
0.3.44.1 Pulling / git pull let us extract files from the origin using pull. For that use the command

git pull origin master

0.3.45 Update local repo before sending (12)

s J/c/reyshma_repo
s 1T V] Q
From 5 .

-> FETCH_HEAD

already up-to-date.

Je/reyshma_repo

0.3.45.1 Pulling / git pull

This command will copy all the files from the master branch of remote repository to your local repository.

0.3.46 Update local repo before sending (13)
0.3.46.1 Pulling / git pull

Since my local repository was already updated with files from master branch, hence the message
is Already up-to-date. Refer to the screen shot above

0.3.47 Update local repo before sending (14)

0.3.47.1 Pulling / git pull One can also try pulling files from a different branch using the following
command:

git pull origin <branch-name>

43

0.3.48 Update local repo before sending (15)
0.3.48.1 Pulling / git pull

Your local Git repository is now updated with all the recent changes. It is time you make changes
in the central repository by using the push command.

0.3.49 Send Changes to Remote Repo (1)
0.3.49.1 git push

e This command transfers commits from your local repository to your remote repository. It is the
opposite of pull operation.

0.3.50 Send Changes to Remote Repo (2)
0.3.50.1 git push

e Pulling imports commits to local repositories whereas pushing exports commits to the remote reposi-
tories

0.3.51 Send Changes to Remote Repo (3)
0.3.51.1 git push

e The use of git push is to publish your local changes to a central repository. After you've accumulated
several local commits and are ready to share them with the rest of the team,

0.3.52 Send Changes to Remote Repo (4)
0.3.52.1 git push you can then push them to the central repository by using the following command

git push <remote>

0.3.53 Send Changes to Remote Repo (5)
0.3.53.1 git push

This remote refers to the remote repository which had been set before using the pull command.

0.3.54 Send Changes to Remote Repo (6)
0.3.54.1 git push

e This pushes the changes from the local repository to the remote repository along with all the necessary
commits and internal objects. This creates a local branch in the destination repository

0.3.55 Send Changes to Remote Repo (7)

0.3.55.1 git push The below files are the files which we have already committed previously in the commit
section and they are all “push-ready*.

44

0.3.56 Send Changes to Remote Repo (8)

0.3.56.1 git push I will use the command git push origin master to reflect these files in the master
branch of my central repository.

0.3.57 Send Changes to Remote Repo (9)

Mame . Date modified Type Size
.git 10/28/2016 7:05 PM File folder

|| edul 10/28/2016 6:36 PM File 1 KB
|| edul 10/28/2016 6:36 PM File 1 KB
|| edurekal 10/25/2016 5:28 PM Text Document 1 KB
|| edureka2 10/28/2016 5:28 PM Text Document 1 KB
|| edureka3 10/28/2016 5:28 PM Text Document 1 KB
|| edurekad 10/25/2016 5:29 PM Text Document 1 KB
|| edureka5 10/28/2016 5:29 PM Text Document O KB
|| edurekab 10/28/2016 6:57 PM Text Document 0O KB
|| README.rmd 10/28/2016 6:36 PM MD File 1 KB

0.3.57.1 git push

0.3.58 Send Changes to Remote Repo (10)

MINGWS: e/ reyshma_repo =1

) ma_repo (mas
git push origin master
Uaername for "https://github.com’: reyshma

Counting objects: 1

Delta compression using up to 4 threads.

fnmpr9>s1nu ub]PCt) .
obje 81 bytes | 0 bytes/s, done.

ie]ta (1))

u'l\.mg de'ltas ltjﬂ (,
thub.com/reyshma/edure -—EL.git
..fddf90a master

ma_repo (r

0.3.58.1 git push

45

0.3.59 Send Changes to Remote Repo (11)

e t W1 a 111

A Hew pull reguest Create new Ble Upload files Find file C A : =

B README.md

0.3.59.1 git push edureka-02

0.3.60 Send Changes to Remote Repo (12)
0.3.60.1 git push

To prevent overwriting, Git does not allow push when it results in a non-fast forward merge in
the destination repository.

0.3.61 Send Changes to Remote Repo (13)
0.3.61.1 git push

A non-fast forward merge means an upstream merge i.e. merging with ancestor or parent branches
from a child branch To enable such merge, use the command below

git push <remote> -force

The above command forces the push operation even if it results in a non-fast forward merge

0.3.62 Branching (1)

0.3.62.1 git branch Branches in Git are nothing but pointers to a specific commit. Git generally prefers
to keep its branches as lightweight as possible.

0.3.63 Branching (2)
0.3.63.1 git branch There are basically two types of branches viz.
o local branches

e remote tracking branches.

46

0.3.64 Branching (3)

0.3.64.1 git branch A local branch is just another path of your working tree. On the other hand, remote
tracking branches have special purposes. Some of them are:

They link your work from the local repository to the work on central repository.

0.3.65 Branching (4)

0.3.65.1 git branch They automatically detect which remote branches to get changes from, when you
use git pull.

0.3.66 Branching (5)
0.3.66.1 Learn current branch You can check what your current branch is by using the command
git branch

The one mantra that you should always be chanting while branching is “branch early, and branch often”

0.3.67 Branching (6)
0.3.67.1 List Local Branches

git branch -1

0.3.68 Branching (7)
0.4 List Remote Branches

git branch -r

0.4.1 Branching (8)
0.5 List All Local and Remote Branches

git branch -a

47

0.5.1 Branching (9)
Removing merged git branches?*
(after pull-request action in github)

If you merged your branch to base branch in github and delete it on github your local branch list will not
be updated by it self. You have to use the following command to update local and remote branch lists. Use
the following command to syncronize your repository with remote upstream repo.

git remote update --prune

0.5.2 Branching (10)
0.5.2.1 Create Branch To create a new branch we use the following command
git branch <branch-name>

The diagram below shows the workflow when a new branch is created. When we create a new branch it
originates from the master branch itself.

0.5.3 Branching (11)

git branch
newBranch

>

0.5.3.1 Create Branch

0.5.4 Branching (12)

0.5.4.1 Create Branch Since there is no storage/memory overhead with making many branches, it is
easier to logically divide up your work rather than have big chunky branches

You can create and change branch with following command, create a new branch named “feature_x” and
switch to it using

git checkout -b feature_x

0.5.5 Branching (13)
0.5.5.1 Change Branch

git checkout <branch-name>

git checkout master

24https://splice.com/blog/cleaning- git-branches/

48

https://splice.com/blog/cleaning-git-branches/

0.5.6 Branching (14)

Master it checkout newBranch ; git commit
>
newBranch

0.5.6.1 Change Branch

Branching includes the work of a particular commit along with all parent commits. As you can
see in the diagram above, the newBranch has detached itself from the master and hence will
create a different path

0.5.7 Branching (15)

0.5.7.1 Delete Local Branch and delete the branch again, before doing this switch to main or master
branches.

git branch -d feature_x

0.5.8 Branching (16)

0.5.8.1 Delete Remote Branch and delete the branch again, before doing this switch to main or master
branches.

git push origin --delete feature_x

How to delete remote branches in Git?®

0.5.9 Branching (17)

0.5.9.1 Push Specific Branch to Remote A branch is not available to others unless you push the
branch to your remote repository

git push origin <branch>

0.5.10 Branching (18)
0.5.10.1 Update & Merge (Conflicts) to update your local repository to the newest commit, execute
git pull

25https://www.educative.io/edpresso/how-to-delete-remote- branches-in-git

49

https://www.educative.io/edpresso/how-to-delete-remote-branches-in-git

in your working directory to fetch and merge remote changes.
to merge another branch into your active branch (e.g. master), use

git merge <branch>

0.5.11 Branching (19)

0.5.11.1 Update & Merge (Conflicts) in both cases git tries to auto-merge changes. Unfortunately,
this is not always possible and results in conflicts. You are responsible to merge those conflicts manually by
editing the files shown by git. After changing, you need to mark them as merged with

git add <filename>
before merging changes, you can also preview them by using
git diff <source_branch> <target_branch>

Git merge conflicts | Atlassian Git Tutorial®®

0.5.12 Branching (20)

0.5.12.1 Update & Merge (Conflicts) There are two types of merges Git can perform: a fast-
forward, or a no-fast-forward

0.5.13 Branching (21)
0.5.13.1 Update & Merge (Conflicts)

0.5.13.1.1 Fast-forward (--ff) A fast-forward merge can happen when the current branch has no
extra commits compared to the branch we’re merging. Git is.. lazy and will first try to perform the easiest
option: the fast-forward! This type of merge doesn’t create a new commit, but rather merges the commit(s)
on the branch we’re merging right in the current branch

0.5.14 Branching (22)
0.5.14.1 Update & Merge (Conflicts)

26https://www.atlassian.com/git /tutorials/using-branches/merge-conflicts

50

https://www.atlassian.com/git/tutorials/using-branches/merge-conflicts

bash

Git | Merging (fast-forw,

Default behavior when the merging
of the current branch’s commits

Doesn't create a new commit, thus d
existing branches

0.5.14.1.1 Fast-forward (--ff)

0.5.15 Branching (23)

0.5.15.1 Update & Merge (Conflicts) Perfect! We now have all the changes that were made on the
dev branch available on the master branch. So, what’s the no-fast-forward all about?

0.5.16 Branching (24)
0.5.16.1 Update & Merge (Conflicts)

0.5.16.1.1 No-fast-foward (--no-ff) It’s great if your current branch doesn’t have any extra commits
compared to the branch that you want to merge, but unfortunately that’s rarely the case! If we committed
changes on the current branch that the branch we want to merge doesn’t have, git will perform a no-fast-
forward merge.

0.5.17 Branching (25)
0.5.17.1 Update & Merge (Conflicts)
0.5.17.1.1 No-fast-foward (--no-ff) With a no-fast-forward merge, Git creates a new merging commit

on the active branch. The commit’s parent commits point to both the active branch and the branch that
we want to merge!

0.5.18 Branching (26)
0.5.18.1 Update & Merge (Conflicts)

51

bash

master

Git | Merging (no-fas

Default behavior when current
commits that the merging bra

Creates a new commit which
two branches together withou
branches

0.5.18.1.1 No-fast-foward (--no-£f)

0.5.19 Branching (27)
0.5.19.1 Update & Merge (Conflicts)

0.5.19.1.1 No-fast-foward (--no-ff) No big deal, a perfect merge! The master branch now contains
all the changes that we’ve made on the dev branch.

0.5.20 Branching (28)
0.5.21 Merge Conflicts

Although Git is good at deciding how to merge branches and add changes to files, it cannot always make
this decision all by itself This can happen when the two branches we’re trying to merge have changes on the
same line in the same file, or if one branch deleted a file that another branch modified, and so on.

0.5.22 Branching (29)
0.5.23 Merge Conlflicts

In that case, Git will ask you to help decide which of the two options we want to keep! Let’s say that on
both branches, we edited the first line in the README . md.

52

0.5.24 Branching (30)
0.5.25 Merge Conflicts

Hello!

Hey!

Welcome to the README of Welcome to the README of

4 this amazing project

4 this amazing project

If we want to merge dev into master, this will end up in a merge conflict: would you like the title to be
Hello! or Hey!?

0.5.26 Branching (31)
0.5.27 Merge Conflicts

When trying to merge the branches, Git will show you where the conflict happens. We can manually remove
the changes we don’t want to keep, save the changes, add the changed file again, and commit the changes

53

README . md README . md
ec5be 76d12
1. # Hey! 1. # Hello!

0.5.28 Branching (32)
0.5.29 Merge Conflicts

Although merge conflicts are often quite annoying, it makes total sense: Git shouldn’t just assume which
change we want to keep

0.5.30 Branching (33)
0.5.30.1 Sample Conflict -1 participants.txt
(I added a hyphen before each name)

Finance team

Charles

Lisa

John

Stacy

Alexander
git init
git add .
git commit -m 'Initial list for finance team'

0.5.31 Branching (34)
0.5.31.1 Sample Conflict -1 Create a new branch called marketing using the following syntax

git checkout -b marketing

0.5.32 Branching (35)

0.5.32.1 Sample Conflict -1 Now open the participants.txt file and start entering the names for
the marketing department below the finance team list, as follows: (I added a hyphen before each name)

Marketing team
Collins

Linda
Patricia
Morgan

git add .
git commit -m 'Unfinished list of marketing team'
git checkout master

0.5.33 Branching (36)

0.5.33.1 Sample Conflict -1 Open the file and delete the names Alexander and Stacy, save, close,
add the changes, and commit with the commit message Final list from Finance team

git add .
git commit -m "Final list from Finance team"
git checkout marketing

0.5.34 Branching (37)

0.5.34.1 Sample Conflict -1 Open the file and add the fifth name, Amanda, for the marketing team,
save, add, and commit

git add .
git commit -m "Initial list of marketing team"

names entered for marketing have been confirmed; now we need to merge these two lists, which can be done
by the following command

git merge master

0.5.35 Branching (38)
0.5.35.1 Sample Conflict -1

Auto-merging participants.txt
CONFLICT (content): Merge conflict in participants.txt
Automatic merge failed; fix conflicts and then commit the result.

0.5.36 Branching (39)
0.5.36.1 Sample Conflict -1

Finance team
—Charles
-Lisa

—-John
<<<<<<< HEAD
-Stacy
—-Alexander

55

Marketing team
- Collins

- Linda
Patricia

>>>>>>> master

0.5.37 Branching (40)
0.5.37.1 Sample Conflict -1

<LK

Changes made on the branch that is being merged into. In most cases,
this is the branch that I have currently checked out (i.e. HEAD).
ARRRRN

The common ancestor version.

Changes made on the branch that is being merged in. This is often a
feature/topic branch.
>>>>>>>

0.5.38 Branching (41)
0.5.38.1 Sample Conflict -1

o remove them
e keep the lines you want to see in the final version of the file
o add and commit

0.5.39 Branching (42)

0.5.39.1 Sample Conflict -1 If we want to save all to our version

git checkout --ours . # checkout our local version of all files
git add -u # mark all conflicted files as merged
git commit # commit the merge

0.5.40 Branching (43)

0.5.40.1 Sample Conflict -1 If we want to discard all our revision

git checkout --theirs . # checkout remote version of all files
git add -u # mark all conflicted files as merged
git commit # commit the merge

0.5.41 Branching (44)
0.5.41.1 Sample Conflict -2 You’re going to pull some changes, but oops, you’re not up to date:

git fetch origin
git pull origin master

56

From ssh://gitosis@example.com:22/projectname

* branch master -> FETCH_HEAD
Updating a030c3a..ee25213
error: Entry 'filename.c' not uptodate. Cannot merge.

0.5.42 Branching (45)
0.5.42.1 Sample Conflict -2 So you get up-to-date and try again, but have a conflict:

git add filename.c
git commit -m "made some wild and crazy changes"
git pull origin master

From ssh://gitosis@example.com:22/projectname

* branch master -> FETCH_HEAD

Auto-merging filename.c

CONFLICT (content): Merge conflict in filename.c

Automatic merge failed; fix conflicts and then commit the result.

0.5.43 Branching (46)

0.5.43.1 Sample Conflict -2 So you decide to take a look at the changes:

git mergetool

Oh my, oh my, upstream changed some things, but just to use my changes...no...their changes...

git checkout --ours filename.c
git checkout --theirs filename.c
git add filename.c

git commit -m "using theirs"

0.5.44 Branching (47)
0.5.44.1 Sample Conflict -2 And then we try a final time

git pull origin master

From ssh://gitosis@example.com:22/projectname
* branch master -> FETCH_HEAD
Already up-to-date.

0.5.45 Tagging

it’s recommended to create tags for software releases. this is a known concept, which also exists in SVN.
You can create a new tag named 1.0.0 by executing

git tag 1.0.0 1b2el1d63ff

the 1b2e1d63ff stands for the first 10 characters of the commit id you want to reference with your tag. You
can get the commit id by looking at the...

o7

0.5.46 Log (1)
in its simplest form, you can study repository history using.. git log

You can add a lot of parameters to make the log look like what you want. To see only the commits of a
certain author:

git log --author=bob

0.5.47 Log (2)
To see a very compressed log where each commit is one line:

git log --pretty=oneline

0.5.48 Log (3)

Or maybe you want to see an ASCII art tree of all the branches, decorated with the names of tags and
branches:

git log --graph --oneline --decorate --all

0.5.49 Log (4)
See only which files have changed:

git log --name-status

0.5.50 Log (5)
These are just a few of the possible parameters you can use. For more, see

git log --help

0.5.51 Replace Local Changes (1)

In case you did something wrong, which for sure never happens ;), you can replace local changes using the
command

git checkout -- <filename>

this replaces the changes in your working tree with the last content in HEAD. Changes already added to the
index, as well as new files, will be kept.

0.5.52 Replace Local Changes (2)
if you use dot (.) then all local changes will be rollbacked.

git checkout —- .

58

0.5.53 Replace Local Changes (3)

If you instead want to drop all your local changes and commits, fetch the latest history from the server and
point your local master branch at it like this

git fetch origin

git reset --hard origin/master

0.5.54 Reflog (1)

Everyone makes mistakes, and that’s totally okay! Sometimes it may feel like you’ve corrupt your git repo
so badly that you just want to delete it entirely.

0.5.55 Reflog (2)

git reflog is a very useful command in order to show a log of all the actions that have been taken! This
includes merges, resets, reverts: basically any alteration to your branch.

0.5.56 Reflog (3)

Git | Reflog

Shows the history of actions in the repo.

With this information, you can easily undo
changes that have been made to a repository
with git reset

0.5.57 Reflog (4)

If you made a mistake, you can easily redo this by resetting HEAD based on the information that reflog
gives us!

Say that we actually didn’t want to merge the origin branch. When we execute the git reflog command,
we see that the state of the repo before the merge is at HEAD@{1}. Let’s perform a git reset to point HEAD
back to where it was on HEAD@{1}!

59

0.5.58 Reflog (5)

o000 bash

commit(initial)

We can see that the latest action has been pushed to the reflog

0.5.59 Resetting (1)

It can happen that we committed changes that we didn’t want later on. Maybe it’s a WIP commit, or maybe
a commit that introduced bugs! In that case, we can perform a git reset.

0.5.60 Resetting (2)

A git reset gets rid of all the current staged files and gives us control over where HEAD should point to.

0.5.61 Soft Reset (1)

A soft reset moves HEAD to the specified commit (or the index of the commit compared to HEAD), without
getting rid of the changes that were introduced on the commits afterward!

0.5.62 Soft Reset (2)

Let’s say that we don’t want to keep the commit 9e78i which added a style.css file, and we also don’t
want to keep the commit 035cc which added an index.js file. However, we do want to keep the newly
added style.css and index. js file! A perfect use case for a soft reset.

60

0.5.63 Soft Reset (3)

Git | Soft reset

Points HEAD to the specified commit

Keeps changes that have been made
since the new commit that HEAD points to, and
keeps the modifications in the working directory

0.5.64 Soft Reset (2)

When typing git status, you'll see that we still have access to all the changes that were made on the
previous commits. This is great, as this means that we can fix the contents of these files and commit them
again later on!

0.5.65 Hard reset (1)

Sometimes, we don’t want to keep the changes that were introduced by certain commits. Unlike a soft reset,
we shouldn’t need to have access to them any more. Git should simply reset its state back to where it was
on the specified commit: this even includes the changes in your working directory and staged files!

0.5.66 Hard reset (2)

Git has discarded the changes that were introduced on 9e78i and 035cc, and reset its state to where it was
on commit ecbbe.

61

Git | Hard reset

Points HEAD to the specified commit

Discards changes that have been made
since the new commit that HEAD points to,

and deletes changes in working directory

0.5.67 Reverting (1)

Another way of undoing changes is by performing a git revert. By reverting a certain commit, we create
a new commit that contains the reverted changes!

0.5.68 Reverting (2)

Let’s say that ecbbe added an index.js file. Later on, we actually realize we didn’t want this change
introduced by this commit anymore! Let’s revert the ecbbe commit.

Git | Reverting

Reverts the changes that commits introduce.
Creates a new commit with the reverted changes.

Perfect! Commit 9e78i reverted the changes that were introduced by the ecbbe commit.

0.5.69 Reverting (3)

Performing a git revert is very useful in order to undo a certain commit, without modifying the history
of the branch.

0.5.70 Cherry-picking (1)

When a certain branch contains a commit that introduced changes we need on our active branch, we can
cherry-pick that command! By cherry-picking a commit, we create a new commit on our active branch
that contains the changes that were introduced by the cherry-picked commit.

0.5.71 Cherry-picking (1)

Say that commit 76d12 on the dev branch added a change to the index. js file that we want in our master
branch. We don’t want the entire we just care about this one single commit!

Git | Cherry-picking

Creates a new commit with the changes that
the cherry-picked commit introduced.

By default, Git will only apply the changes if
the current branch does not have these
changes in order to prevent an empty commit.

Cool, the master branch now contains the changes that 76d12 introduced

0.5.72 Rebasing (1)

We just saw how we could apply changes from one branch to another by performing a git merge. Another
way of adding changes from one branch to another is by performing a git rebase.

0.5.73 Rebasing (2)

A git rebase copies the commits from the current branch, and puts these copied commits on top of the
specified branch.

63

bash

Git | Rebasing

Copies commits on top of another branch
without creating a commit, which keeps a linear history

Changes the history as new hashes are created
for the copied commits

Perfect, we now have all the changes that were made on the master branch available on the dev branch!

0.5.74 Rebasing (3)

A big difference compared to merging, is that Git won’t try to find out which files to keep and not keep.
The branch that we're rebasing always has the latest changes that we want to keep! You won’t run into any
merging conflicts this way, and keeps a nice linear Git history.

0.5.75 Rebasing (4)

This example shows rebasing on the master branch. In bigger projects, however, you usually don’t want to
do that. A git rebase changes the history of the project as new hashes are created for the copied
commits!

0.5.76 Rebasing (5)

Rebasing is great whenever you’re working on a feature branch, and the master branch has been updated.
You can get all the updates on your branch, which would prevent future merging conflicts!

0.5.77 Interactive Rebase (1)

Before rebasing the commits, we can modify them! We can do so with an interactive rebase. An interactive
rebase can also be useful on the branch you’re currently working on, and want to modify some commits.

0.5.78 Interactive Rebase (2)
There are 6 actions we can perform on the commits we’re rebasing:

e reword: Change the commit message

64

e edit: Amend this commit

e squash: Meld commit into the previous commit

e fixup: Meld commit into the previous commit, without keeping the commit’s log message
o exec: Run a command on each commit we want to rebase

e drop: Remove the commit

0.5.79 Interactive Rebase (3)

Awesome! This way, we can have full control over our commits. If we want to remove a commit, we can just
drop it.

Git | Interactive Rebase

Makes it possible to edit commits before rebasing

Creates new commits for the edited commits/
commits which history has been changed

Options: reword | edit | squash | fixup | exec |drop

0.5.80 Interactive Rebase (4)

Or if we want to squash multiple commits together to get a cleaner history, no problem!

65

Git | Interactive Rebase - Squash
Squashes previous commit into one commit
before rebasing.

master

Interactive rebasing gives you a lot of control over the commits you’re trying to rebase, even on the current
active branch

0.5.81 Useful Hints (1)
built-in git GUI

gitk

0.5.82 Useful Hints (2)
use colorful git output

git config color.ui true

0.5.83 Useful Hints (3)
show log on just one line per commit

git config format.pretty oneline

0.5.84 Useful Hints (4)

use interactive adding

git add -i

HEAD-~2 // previous two commits fro head
HEAD~~ // previous two commits from head
HEAD@{2} // reflog order

18feb // previous commit hash

66

0.5.85 GIT Flow

Example diagram for a workflow similar to "Git-flow" :

Each tag represents a

production release —» Tag: 1.0.0 Tag: 1.01 Tag: 1.1.0 Tag: 1.2.0
main {) {) {) : ’
The main branch e \J) e

Hotfix Commit

1.1.0-release ——»
The release branch

Feel free to add notes here
about the process of merging
T into the release branch.

I
NS

develop

The development or sprint branch Feel free to add notes here
about the process of merging

into the release branch.

JIRA-35--example feature
Your feature branch

Feel free to add notes here about the process of merging feature branches.

A successful Git branching model » nvie.com?”

0.5.86 Hotfix

Tag: 1.0.0 Tag: 1.1.0 Tag: 1.2.0
main

The main branch

M\
N/
Tag: 1.1.1

JIRA-35--example-feature

Your feature branch Hotfix Commit

OneFlow — a Git branching model and workflow | End of Line Blog?®
a simple git branching model - GitHub?’

0.5.87 GIT Decision Tree

http://justinhileman.info/article/git-pretty/git-pretty.png

2Thttps://nvie.com/posts/a-successful-git-branching-model /
28https://www.endoflineblog.com/oneflow-a-git- branching-model-and-workflow
2%https://gist.github.com/jbenet/ee6c9acd8068889b0912

67

https://nvie.com/posts/a-successful-git-branching-model/
https://www.endoflineblog.com/oneflow-a-git-branching-model-and-workflow
https://gist.github.com/jbenet/ee6c9ac48068889b0912

So you have a mess
on your hands

Do you care Split off a logical chunk

What sort of An uncommitted. enough about Yes Lﬂoﬁ :'nk_e Wel from your mess, stage it,
mess? mess your mess to Caud ¢ SIS and commit it with a
keep it? (oiinrz good message.
| accidentally

committed something

Still have a
mess?

My Git history
is ugly

git reset --hard

Has anyone
else seen
it?

No, we're
cool now

git revert {COMMITISH}

(I do not think it means what you think it means.)

What would
make this
better?

How long Last
ago? commit

| forgot to,
add a file

git add {myfile}

Is it already Everything js going
to be fine

on GitHub?

It seems like

forever ago A better message

git commit --amend

Should we

e Just throw the
cr:lr:r:ateso last commit awa

git reset --hard HEADM

No, | need to
change history

git rebase origin/{branch}

Take a
mulligan?

We'll reset and
commit from
scratch

Is anyone
down
stream?

git reset {COMMITISH}

We're going to
do an interactive
rebase!

Enough to
form a lynch
mob?

Do you hate git rebase -i {COMMITISH}

them?

DangerZone™

git push --force origin {branch}

Send them a note, let
‘em know you're
changing history.

It's safest to let it
stay ugly then

68

0.5.88 GIT in action (1)

GaHub

“ersion Control

© 2008

Master

}

Pull down &
crate local
feature branch

K A

Feature XYZ @
Fanl

{

Pul Request @

GitHub
Version Contral

Peer code
FEVIEWS

)

Q9D

Bug Secrey Passig
check aralyss Budds

User bug

®

analysis

@—

Cloud Jobs

Load Balancer

Auto

DEDIDE

A@—

®

InbEnmeE

{1

Load Balancer

Baskiq

69

0.5.89 GIT in action (2)

Sprint : Fp

. Sprint
Start k) . Q 3 End
e - @
opear o

@ Non-releasable build
© Releasable build

[; Release

70

0.5.90 GIT in action (3)

Program Management Program Program
Manager Managar
Cross-Project Project 1 Project 2 m Project n
— [Management Management IHnnngemunt
Program Project Project Project
Managers Leader , Leader Leader
% Program Team Team
Managers (Y} Leader T} Leader Nl Laa,dar
Development Development Development
Release Release . Release . Release
Coordinator Manager Manager Manager
? Developer 3 . Developer g . Developer
&L I S SIS
2 veloper ? . Developer 3 . Developer
& Customer 8 Cuslomer - I& Customer

71

0.5.91 GIT in action (4)

m;‘,ﬁm ¥JIRA | | @ git

[=Nl P
2 (A
E ANSIBLE
= N

Maven N

kubernetes

@ Nagios' | | splunk> Ea
Jenkins CODESHIP DATADOG

0.5.92 GIT in action (5)

Deploy Run M Manage Notify
i I | T TN
rrna stty 43 Moot
S — signital ©
B @) T g T o —— F——
i - Tilbigpanca mATers
. — :*“9]
. g L S—
| sorvica sk |
— > * VcterOps
y——— y— servcenew
Dorcecl) demkina () Mamiboo "{ b westes harness Mutomic BEEEE——— :"m"" :bmt @ Cpatierse
e JIRA
@rewa Eeoos Eamcry ‘A PO0 Boenecwn, Slenuted e —
O Mewhelie. AFPDYNAMICS
e oron
| e] " e
1] < 0s0n0
§:= [} [2o Dol — 4= slack
:.-:* U T Do LGOLY KIIRA
- 1 . zeriss i a
_—e = [— e e >
G | G | comentens]
T e asent bnestrters | - box
) pegsony o e mwem ndesk
B P, Hegies — Fda &5 L
e = @ireshiiak
o] ‘. — @ twilio
@harness
Contruous Daivery As-A-Sarvica
e hacneas i

Copyright € Hamess Inc. 2018

72

0.5.93 GIT in action (6)

g

PERIODIC TABLE OF DEVOPS TOOLS (v:

Xebialabs

Deliver Faster

73

0.5.94 GIT in action (7)

'. Event ﬁ Time based release & Event based release

- . .

Requirements
Elicitation

Sprint 2

Sprint 1

L
|
1

Sprint 0

Sprintn

0.5.95 Gource

https://gource.io/

74

0.5.96 References (1)

Source Code Management | Atlassian Git Tutorial®’.

What is Source Code Management or Version Control ? - The Linux Juggernaut?3!
https://www.edureka.co/blog/how-to-use-github/
https://www.edureka.co/blog/git-tutorial /
https://www.edureka.co/blog/install-git /

0.5.97 References (2)

git - the simple guide - no deep shit!3?

GitHub - rogerdudler/git-guide: git - the simple guide33
https://dev.to/lydiahallie/cs-visualized-useful-git-commands-37p1#merge®*

How to write a good commit message - DEV Community>®

https://blog.xebialabs.com/2016/06/14 /periodic-table-devops-tools-v-2/

0.5.98 References (3)

https://harness.io/2018/01/devops-tools-lifecycle-mesh-2018/
https://medium.com/swlh/how-to-become-an-devops-engineer-in-2020-80b8740d5a52
https://www.lucidchart.com/blog/devops-process-flow

https://www.researchgate.net/publication/262450962_Rugby An_ Agile Process_Model Based_on_ Continuous_ Deliver

30https://www.atlassian.com /git /tutorials/source-code-management#:~:text=Source%20code%20management %20(SCM)

%20is,als0%20synonymous%20with%20Version%20control
3Lhttps://www.linuxnix.com/what-is-source-code-management-or-version-control /
32https://rogerdudler.github.io/git-guide/index.html
33https://github.com /rogerdudler/git-guide
34https://dev.to/lydiahallie/cs-visualized-useful-git-commands-37p1
35https://dev.to/chrissiemhrk/git-commit-message-5e21

75

https://www.atlassian.com/git/tutorials/source-code-management#:~:text=Source%20code%20management%20(SCM)%20is,also%20synonymous%20with%20Version%20control
https://www.atlassian.com/git/tutorials/source-code-management#:~:text=Source%20code%20management%20(SCM)%20is,also%20synonymous%20with%20Version%20control
https://www.linuxnix.com/what-is-source-code-management-or-version-control/
https://rogerdudler.github.io/git-guide/index.html
https://github.com/rogerdudler/git-guide
https://dev.to/lydiahallie/cs-visualized-useful-git-commands-37p1
https://dev.to/chrissiemhrk/git-commit-message-5e21

0.5.99 References (4)

git - the simple guide - no deep shit!3%

Git Tutorial | Commands And Operations In Git | Edureka®”
How to write a good commit message - DEV Community?®

An Introduction to Git and GitHub by Brian Yu - YouTube®’

0.5.100 References (5)
https://education.github.com/git-cheat-sheet-education.pdf
NDP Software :: Git Cheatsheet*’;

Learn Git Branching*!

https://guides.github.com/introduction/git-handbook/

36https://rogerdudler.github.io/git-guide/index.html
3Thttps://www.edureka.co/blog/git-tutorial /
38https://dev.to/chrissiemhrk/git-commit-message-5e21
39https://www.youtube.com/watch?v=MJUJ4wbFm_ A&ab_ channel=CS50
40http:/ /www.ndpsoftware.com/git-cheatsheet.html#tloc=remote_ repo

41 https://learngitbranching.js.org/

76

https://rogerdudler.github.io/git-guide/index.html
https://www.edureka.co/blog/git-tutorial/
https://dev.to/chrissiemhrk/git-commit-message-5e21
https://www.youtube.com/watch?v=MJUJ4wbFm_A&ab_channel=CS50
http://www.ndpsoftware.com/git-cheatsheet.html#loc=remote_repo
https://learngitbranching.js.org/

	CE103 Algorithms and Programming I
	Week-3
	Introduction to Source Code Management Systems
	Features of Source Code Management Systems
	Why Do We Need Source Code Management Systems? (1)

	Types of Version Control Systems
	Centralized Version Control (TFS, Subversion) (1)
	Distributed Version Control (Git and Mercurial) (1)
	List of Source Code Version Management Tools (1)
	GIT (Distributed Source Code Management) (1)
	GIT Installation Completed..
	Installation of gig (git ignore creator) (1)
	Usage of gig (1)
	Configuration of GIT (1)
	Using .gitignore files with git-extension (1)
	Using .gitignore files with git-extension (2)
	Github Create Repo
	Initilization of Repo (not existing in github)
	Adding Initiated Repo Remote Upstream Repo (Link with Github Repo) (1)
	Now you can push your local changes to remote repository
	If you see a repository on Github then you can download with following operation
	Checkout a Repository (1)
	Checkout a Repository (2)
	Checkout a Repository (3)
	Checking Repository Status (1)
	Checking Repository Status (2)
	Adding Files to Index (1)
	Adding Files to Index (1)
	Commit Changes (1)
	Commit Changes (2)
	Commit Changes (3)
	Commit Changes (4)
	Writing Good Commit Messages (1)
	Add Files to Index (1)
	Add Files to Index (2)
	Add Files to Index (3)
	Add Files to Index (4)
	Add Files to Index (5)
	Add Files to Index (6)
	Update local repo before sending (1)
	Update local repo before sending (2)
	Update local repo before sending (3)
	Update local repo before sending (4)
	Update local repo before sending (5)
	Update local repo before sending (6)
	Update local repo before sending (7)
	Update local repo before sending (8)
	Update local repo before sending (9)
	Update local repo before sending (10)
	Update local repo before sending (11)
	Update local repo before sending (12)
	Update local repo before sending (13)
	Update local repo before sending (14)
	Update local repo before sending (15)
	Send Changes to Remote Repo (1)
	Send Changes to Remote Repo (2)
	Send Changes to Remote Repo (3)
	Send Changes to Remote Repo (4)
	Send Changes to Remote Repo (5)
	Send Changes to Remote Repo (6)
	Send Changes to Remote Repo (7)
	Send Changes to Remote Repo (8)
	Send Changes to Remote Repo (9)
	Send Changes to Remote Repo (10)
	Send Changes to Remote Repo (11)
	Send Changes to Remote Repo (12)
	Send Changes to Remote Repo (13)
	Branching (1)
	Branching (2)
	Branching (3)
	Branching (4)
	Branching (5)
	Branching (6)
	Branching (7)

	List Remote Branches
	Branching (8)

	List All Local and Remote Branches
	Branching (9)
	Branching (10)
	Branching (11)
	Branching (12)
	Branching (13)
	Branching (14)
	Branching (15)
	Branching (16)
	Branching (17)
	Branching (18)
	Branching (19)
	Branching (20)
	Branching (21)
	Branching (22)
	Branching (23)
	Branching (24)
	Branching (25)
	Branching (26)
	Branching (27)
	Branching (28)
	Merge Conflicts
	Branching (29)
	Merge Conflicts
	Branching (30)
	Merge Conflicts
	Branching (31)
	Merge Conflicts
	Branching (32)
	Merge Conflicts
	Branching (33)
	Branching (34)
	Branching (35)
	Branching (36)
	Branching (37)
	Branching (38)
	Branching (39)
	Branching (40)
	Branching (41)
	Branching (42)
	Branching (43)
	Branching (44)
	Branching (45)
	Branching (46)
	Branching (47)
	Tagging
	Log (1)
	Log (2)
	Log (3)
	Log (4)
	Log (5)
	Replace Local Changes (1)
	Replace Local Changes (2)
	Replace Local Changes (3)
	Reflog (1)
	Reflog (2)
	Reflog (3)
	Reflog (4)
	Reflog (5)
	Resetting (1)
	Resetting (2)
	Soft Reset (1)
	Soft Reset (2)
	Soft Reset (3)
	Soft Reset (2)
	Hard reset (1)
	Hard reset (2)
	Reverting (1)
	Reverting (2)
	Reverting (3)
	Cherry-picking (1)
	Cherry-picking (1)
	Rebasing (1)
	Rebasing (2)
	Rebasing (3)
	Rebasing (4)
	Rebasing (5)
	Interactive Rebase (1)
	Interactive Rebase (2)
	Interactive Rebase (3)
	Interactive Rebase (4)
	Useful Hints (1)
	Useful Hints (2)
	Useful Hints (3)
	Useful Hints (4)
	GIT Flow
	Hotfix
	GIT Decision Tree
	GIT in action (1)
	GIT in action (2)
	GIT in action (3)
	GIT in action (4)
	GIT in action (5)
	GIT in action (6)
	GIT in action (7)
	Gource
	References (1)
	References (2)
	References (3)
	References (4)
	References (5)

