CE102 Digital Logic Design

Çiğdem Sazak Turgut 2022

Week-2 (Introduction to Digital Logic Design)

Spring Semester, 2021-2022
Download SLIDE

气

PART 1: BINARY SYSTEMS

Binary Systems

- Analog Vs Digital
- Digital Systems Binarynumbers
- Number base conversions Compliments Binary Systems
- Octal and Hexadecimal Numbers
- Signed Binary Numbers

Analog and Digital

- Analog information is made up of a continuum of values within a given range.
- At its most basic, digital information can assume only one of two possible values:
- one/zero,
- on/off,
- high/low,
- true/false, etc.
- Digital Information is less susceptible to noise than analog information
- Exact voltage values are not important, only their class (1 or 0)
- The complexity of operations is reduced, thus it is easier to implement them with high accuracy in digital form.

Digital Systems

- Digital;
- generates stores
- processes data
\downarrow
- two states:
- positive (1) and
- non-postitive (0)

RTEU CE102 Week-2

Digital Systems

- A "digital system" is a data technology that uses discrete (discontinuous) values represented by high and low states known as bits.
- non-digital (or analog) systems use a continuous range of values to represent information

Binary Number System

- Binary;
- describes a numbering scheme in which there are only two possible values for each digit: 0 and 1
- Binary Number System
- a numbering system
- represents numeric values using 0 and 1
- known as the base-2 number system

BINARY NUMBER EXAMPLE

- 10
- 111
- 10101
- 11110
$\widetilde{\bar{x}}$

COMPLIMENTS

- used in digital computers to simplify the subtraction operation and for logical manipulation
- There are 2 types of complements for each base r system
- (1) The radix complement
- (2) Diminished radix compliment

Radix compliment: Also referred to as the r"s compliment. Diminished radix compliment:Also referred to as (r r-1)"s compliment

OCTAL NUMBERS

- a binary number is divided up into groups of only 3 bits
- set of bits having a distinct value of between 000 (0) and 111(7).
- Octal numbers therefore have a range of just " 8 " digits, ($0,1,2,3,4,5,6,7$) making them a Base-8 numbering system and therefore, q is equal to " 8 "

HEXADECIMAL NUMBERING SYSTEM

- main disadvantage of binary numbers
- the binary string equivalent of a large decimal base-10 number can be quite long
- Working with large digital systems, such as computers, it is common to find binary numbers consisting of 8,16 and even 32 digits
- Overcome the above problem:
- to arrange the binary numbers into groups or sets of four bits (4-bits)
- These groups of 4-bits uses another type of numbering system also commonly used in computer and digital systems called Hexadecimal Numbers
- uses the Base of 16 system
- Hexdecimal system format is quite compact and much easier to understand

HEXADECIMAL NUMBERING SYSTEM

Decimal	Binary	Octal	Hexadecimal
0	0000	0	0
1	0001	1	1
2	0010	2	2
3	0011	3	3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	10	8

SIGNED BINARY NUMBERS

- In mathematics,
- positive numbers (including zero) are represented as unsigned numbers we do not put the $(+)$ ve sign in front of them to show that they are positive numbers
- When dealing with negative numbers we do use a $(-)$ sign in front of the number to show that the number is negative in value and different from a positive unsigned value and the same is true with signed binary numbers
- However in digital circuits
- there is no provision made to put a plus or even a minus sign to a number
- digital systems operate with binary numbers that are represented in terms of " 0 "s" and "1"s"
- to represent a positive (N) and a negative (-N) binary number we can use the binary numbers with sign
- For signed binary numbers the most significant bit (MSB) is used as the sign
- If the sign bit is " 0 ":
- the number is positive
- If the sign bit is " 1 ":
- the number is negative
- The remaining bits are used to represent the magnitude of the binary number in the usual unsigned binary number format.

Positive Signed Binary Number

- 8-bit word
$\left[\left.\begin{array}{llllll|l|l|llllll}\text { magnitude } \\ \mid & \overbrace{0}^{\text {sign }}\end{array} \right\rvert\, \begin{array}{lllllllll} \\ \hline\end{array}\right]=53$

Negative Signed Binary Number

- 8-bit word

BINARY CODES

- In the coding,
- when numbers, letters or words are represented by a specific group of symbols, it is said that the number, letter or word is being encoded
- The group of symbols is called as a code
- digital data is represented, stored and transmitted as group of binary bits
- called BINARYCODE

Advantages of Binary Code

- Binary codes are suitable for the computer applications.
- Binary codes are suitable for the digital communications.
- Binary codes make the analysis and designing of digital circuits if we use the binary codes.
- Since only 0 \& 1 are being used, implementation becomes easy.

Classification of Binary Codes

- Weighted Codes
- Non-Weighted Codes
- Binary Coded Decimal Code
- Alphanumeric Codes
- Error Detecting Codes
- Error Correcting Codes

RTEU CE102 Week-2

Weighted Codes

- obey the positional weight principle
- Each position of the number represents a specific weight
- Several systems of the codes are used to express the decimal digits 0 through 9

Non-Weighted Codes

- In this type of binary codes,
- The positional weights are not assigned
- The examples of nonweighted codes are Excess-3 code and Gray code

Excess-3 Code

- also called xs-3 code
- It is non-weighted code used to express decimal numbers
- The Excess-3 code words are derived from the 8421 BCD code words adding (0011)2 or (3)10 to each code word in 8421

The excess-3 codes are obtained as follows
Example : Decimal $\Longrightarrow 8421_{B C D} \Longrightarrow$ Excess-3

```
Decimal BCD Excess-3
    8421 BCD+0011
0 0000 0011
1 0001 0100
2 0010 0101
3 0011 0110
4 0100 0111
5 0101 1000
6 0110 1001
7 0111 1010
```


Gray Code

- It is the non-weighted code and it is not arithmetic codes
- Application of Gray code
- Gray code is popularly used in the shaft position encoders
- A shaft position encoder produces a code word which represents the angular position of the shaft

Binary Coded Decimal (BCD) Code

- In this code each decimal digit is represented by a 4-bit binary number
- BCD is a way to express each of the decimal digits with a binary code
- In the BCD, with four bits we can represent sixteen numbers (0000 to 1111)

Decimal	0	1	2	3	4	5	6	7	8	9
BCD	0000	1				1	10	11	1000	1001

Alphanumeric Codes

- Abinary digit or bit can represent only two symbols as it has only two states '0' or '1'
- But this is not enough for communication between two computers because there we need many more symbols for communication.
- These symbols are required to represent 26 alphabets with capital and small letters, numbers from 0 to 9 , punctuation marks and other symbols
- The alphanumeric codes are the codes that represent numbers and alphabetic characters
- Mostly such codes also represent other characters such as symbol and various instructions necessary for conveying information
- The following three alphanumeric codes are very commonly used for the data representation.
- American Standard Code for Information Interchange (ASCII)
- Extended Binary Coded Decimal Interchange Code (EBCDIC)
- Five bit Baudot Code

Number Base Conversions

- Binary to BCD Conversion
- BCD to Binary Conversion
- BCD to Excess-3
- Excess-3 to BCD

Binary to BCD Conversion

- Step-1: Convert the binary number to decimal
- Step-2: Convert decimal number to BCD

RTEU CE102 Week-2

Step-1 : Binary to Decimal Conversion

Convert to Decimal Equivalent
Example : Convert $(11101)_{2}$ to BCD

$$
\begin{aligned}
& =(11101)_{2} \\
& =\left(\left(1 \times 2^{4}\right)+\left(1 \times 2^{3}\right)+\left(1 \times 2^{2}\right)+\left(0 \times 2^{1}\right)+\left(1 \times 2^{0}\right)\right)_{10} \\
& =(16+8+4+0+1)_{10} \\
& =29_{10} \\
& \downarrow \\
& (11101)_{2}=29_{10}
\end{aligned}
$$

Step-2: Decimal to BCD Conversion

Convert to BCD Equivalent
Example : Convert $(11101)_{2}$ to BCD
Convert each digit into groups of four binary digits equivalent

$$
\begin{aligned}
& =(11101)_{2}=29_{10} \\
& =29_{10} \\
& =0010_{2} 1001_{2} \\
& =(00101001)_{B C D} \\
& \downarrow \\
& (11101)_{2}=(00101001)_{B C D}
\end{aligned}
$$

BCD to Decimal Conversion

- Calculating Decimal Equivalent
- Convert each four digit into a group and get decimal equivalent for each group

$$
\begin{aligned}
& =(00101001)_{B C D} \\
& =0010_{2} 1001_{2} \\
& =2_{10} 9_{10} \\
& =29_{10} \\
& \downarrow \\
& (00101001)_{B C D}=29_{10}
\end{aligned}
$$

- Calculating Binary Equivalent of 29_{10}
- Used long division method for decimal to binary conversion

$$
\begin{aligned}
& \text { Step- } 1=29 / 2 \Longrightarrow \text { result }: 14 \text { remainder }: 1 \\
& \text { Step- } 2=14 / 2 \Longrightarrow \text { result }: 7 \text { remainder }: 0 \\
& \text { Step- } 3=7 / 2 \Longrightarrow \text { result }: 3 \text { remainder }: 1 \\
& \text { Step- } 4=3 / 2 \Longrightarrow \text { result }: 1 \text { remainder }: 1 \\
& \text { Step- } 5=1 / 2 \Longrightarrow \text { result }: 0 \text { remainder }: 1 \\
& \quad \downarrow \\
& \quad 29_{10}=(11101)_{2}=(00101001)_{B C D}
\end{aligned}
$$

BCD to Excess-3 Conversion

Step 1: Convert BCD to decimal
Step 2: Add $(3)_{10}$ to this decimal number
Step 3:Convert into binary to get excess-3 code

BCD to Excess-3 Conversion

Example - convert $(1001)_{B C D}$ to Excess-3

$$
\begin{aligned}
& =\text { Step-1:Convert to Decimal } \rightarrow(1001)_{B C D}=9_{10} \\
& =\text { Step-2:Add } 3 \text { to decimal } \rightarrow 9_{10}+3_{10}=12_{10} \\
& =\text { Step-3:Convert to Excess- } 3 \rightarrow 12_{10}=(1100)_{2} \\
& \downarrow \\
& (1001)_{B C D}=(1100)_{X S-3}
\end{aligned}
$$

Excess-3 to BCD Conversion

- Subtract $(0011)_{2}$ from each 4 bit of excess-3 digit to obtain the corresponding BCD code

Excess-3 to BCD Conversion

Example: Convert $(10011010)_{X S-3}$ to BCD.

```
Given XS-3 number = 1 0 0 1 1 0 1 0
Subtract (0011)_2 = 0 0 1 1 0 0 1 1
BCD = 0 1 1 0 0 1 1 1
```

Result
$(10011010)_{X S-3}=(01100111)_{B C D}$

PART 2: BINARY ARITHMETIC SYSTEMS

References
$\widetilde{\text { 줄 }}$

$$
\text { End -Of -Week }-2-\text { Module }
$$

