Çiğdem Sazak Turgut 2022

Week-2 (Introduction to Digital Logic Design)

Spring Semester, 2021-2022

Download SLIDE

PART 1: BINARY SYSTEMS

Binary Systems

- Analog Vs Digital
- Digital Systems Binarynumbers
- Number base conversions Compliments Binary Systems
 - Octal and Hexadecimal Numbers
- Signed Binary Numbers

CE102 Digital Logic Design Analog and Digital

- Analog information is made up of a continuum of values within a given range.
- At its most basic, digital information can assume only one of two possible values:
 - one/zero,
 - on/off ,

CF102 Week-2

- high/low ,
- true/false, etc.
- Digital Information is less susceptible to noise than analog information
- Exact voltage values are not important, only their class (1 or 0)
- The complexity of operations is reduced, thus it is easier to implement them with high accuracy in digital form.

4

Digital Systems

- Digital;
 - generates stores
 - processes data
 - two states:
 - positive (1) and
 - non-postitive (0)

Digital Systems

- A "digital system" is a data technology that uses discrete (discontinuous) values represented by high and low states known as bits.
- non-digital (or analog) systems use a continuous range of values to represent information

Binary Number System

- Binary;
 - describes a numbering scheme in which there are only two possible values for each digit: 0 and 1
- Binary Number System
 - a numbering system
 - represents numeric values using 0 and 1
 - known as the base-2 number system

BINARY NUMBER EXAMPLE

- 10
- 111
- 10101
- 11110

COMPLIMENTS

- used in digital computers to simplify the subtraction operation and for logical manipulation
- There are 2 types of complements for each base r system
 - (1) The radix complement
 - (2) Diminished radix compliment

Radix compliment: Also referred to as the r"s compliment. Diminished radix compliment: Also referred to as (r-1)"s compliment

OCTAL NUMBERS

- a binary number is divided up into groups of only 3 bits
 - set of bits having a distinct value of between 000 (0) and 111(7).
- Octal numbers therefore have a range of just "8" digits, (0, 1, 2, 3, 4, 5, 6, 7) making them a Base-8 numbering system and therefore, q is equal to "8"

HEXADECIMAL NUMBERING SYSTEM

- main disadvantage of binary numbers
 - the binary string equivalent of a large decimal base-10 number can be quite long
 - Working with large digital systems, such as computers, it is common to find binary numbers consisting of 8, 16 and even 32 digits
- Overcome the above problem:
 - to arrange the binary numbers into groups or sets of four bits (4-bits)
 - These groups of 4-bits uses another type of numbering system also commonly used in computer and digital systems called Hexadecimal Numbers
 - $\circ\,$ uses the Base of 16 system
 - Hexdecimal system format is quite compact and much easier to understand

HEXADECIMAL NUMBERING SYSTEM

Decimal	Binary	Octal	Hexadecimal
0	0000	0	0
1	0001	1	1
2	0010	2	2
3	0011	3	3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	10	8



SIGNED BINARY NUMBERS

- In mathematics,
 - positive numbers (*including zero*) are represented as unsigned numbers we do not put the (+) ve sign in front of them to show that they are positive numbers
 - When dealing with negative numbers we do use a (-) sign in front of the number to show that the number is negative in value and different from a positive unsigned value and the same is true with signed binary numbers

- However in digital circuits
 - there is no provision made to put a plus or even a minus sign to a number
 - $\circ\,$ digital systems operate with binary numbers that are represented in terms of " 0 "s" and "1"s"
- to represent a positive (N) and a negative (-N) binary number we can use the binary numbers with sign

- For signed binary numbers the most significant bit (MSB) is used as the sign
- If the sign bit is "0":
 - the number is positive
- If the sign bit is "1":
 - the number is negative
- The remaining bits are used to represent the magnitude of the binary number in the usual unsigned binary number format.

Positive Signed Binary Number

• 8-bit word

Negative Signed Binary Number

• 8-bit word

BINARY CODES

- In the coding,
 - when numbers, letters or words are represented by a specific group of symbols, it is said that the number, letter or word is being encoded
- The group of symbols is called as a code
- digital data is represented, stored and transmitted as group of binary bits
- called BINARYCODE

Advantages of Binary Code

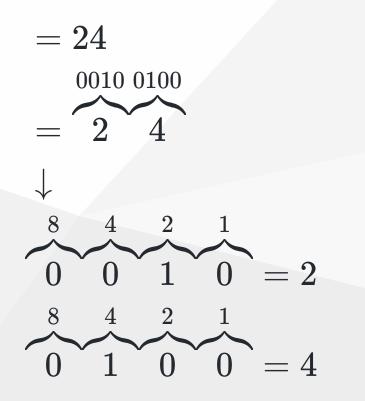
- Binary codes are suitable for the computer applications.
- Binary codes are suitable for the digital communications.
- Binary codes make the analysis and designing of digital circuits if we use the binary codes.
- Since only 0 & 1 are being used, implementation becomes easy.

Classification of Binary Codes

- Weighted Codes
- Non-Weighted Codes
- Binary Coded Decimal Code
- Alphanumeric Codes
- Error Detecting Codes
- Error Correcting Codes

Weighted Codes

- obey the positional weight principle
- Each position of the number represents a specific weight
- Several systems of the codes are used to express the decimal digits 0 through 9



Non-Weighted Codes

- In this type of binary codes,
 - The positional weights are not assigned
 - The examples of nonweighted codes are Excess-3 code and Gray code

Excess-3 Code

- also called XS-3 code
- It is non-weighted code used to express decimal numbers
- The Excess-3 code words are derived from the 8421 BCD code words adding (0011)2 or (3)10 to each code word in 8421

The excess-3 codes are obtained as follows Example : **Decimal** \Longrightarrow 8421_{BCD} \Longrightarrow **Excess-3**

Decimal	BCD 8421	Excess-3 BCD+0011
0	0000	0011
1	0001	0100
2	0010	0101
3	0011	0110
4	0100	0111
5	0101	1000
6	0110	1001
7	0111	1010

Gray Code

- It is the non-weighted code and it is not arithmetic codes
- Application of Gray code
 - Gray code is popularly used in the shaft position encoders
 - A shaft position encoder produces a code word which represents the angular position of the shaft

Binary Coded Decimal (BCD) Code

- In this code each decimal digit is represented by a 4-bit binary number
- BCD is a way to express each of the decimal digits with a binary code
- In the BCD, with four bits we can represent sixteen numbers (0000 to 1111)

Decimal	0	1	2	3	4	5	6	7	8	9	
BCD	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	

Alphanumeric Codes

- Abinary digit or bit can represent only two symbols as it has only two states '0' or '1'
- But this is not enough for communication between two computers because there we need many more symbols for communication.
- These symbols are required to represent 26 alphabets with capital and small letters, numbers from 0 to 9, punctuation marks and other symbols
- The alphanumeric codes are the codes that represent numbers and alphabetic characters
- Mostly such codes also represent other characters such as symbol and various instructions necessary for conveying information

- The following three alphanumeric codes are very commonly used for the data representation.
 - American Standard Code for Information Interchange (ASCII)
 - Extended Binary Coded Decimal Interchange Code (EBCDIC)
 - Five bit Baudot Code

Number Base Conversions

- Binary to BCD Conversion
- BCD to Binary Conversion
- BCD to Excess-3
- Excess-3 to BCD

Binary to BCD Conversion

- **Step-1**: Convert the binary number to decimal
- Step-2: Convert decimal number to BCD

Step-1: Binary to Decimal Conversion Convert to **Decimal** Equivalent **Example** : Convert $(11101)_2$ to **BCD** $=(11101)_2$ $=((1 imes 2^4)+(1 imes 2^3)+(1 imes 2^2)+(0 imes 2^1)+(1 imes 2^0))_{10}$ $=(16+8+4+0+1)_{10}$ $=29_{10}$ $(11101)_2 = 29_{10}$

Step-2: Decimal to BCD Conversion

Convert to BCD Equivalent

```
Example : Convert (11101)_2 to BCD
```

Convert each digit into groups of four binary digits equivalent

$$=(11101)_2=29_{10}$$

$$= 29_{10}$$

- $= 0010_2 1001_2$
- $=(00101001)_{BCD}$
- $\downarrow (11101)_2 = (00101001)_{BCD}$

BCD to Decimal Conversion

- Calculating Decimal Equivalent
 - Convert each four digit into a group and get decimal equivalent for each group
 - $= (00101001)_{BCD}$
 - $= 0010_2 1001_2$
 - $=2_{10}9_{10}$
 - $=29_{10}$ \downarrow

 $(00101001)_{BCD} = 29_{10}$

- Calculating Binary Equivalent of $29_{10}\,$

• Used long division method for decimal to binary conversion

 $egin{aligned} ext{Step-1} &= 29/2 \implies result: 14 \ remainder: 1 \ ext{Step-2} &= 14/2 \implies result: 7 \ remainder: 0 \ ext{Step-3} &= 7/2 \implies result: 3 \ remainder: 1 \ ext{Step-4} &= 3/2 \implies result: 1 \ remainder: 1 \ ext{Step-5} &= 1/2 \implies result: 0 \ remainder: 1 \ ext{Step-5} &= 1/2 \implies result: 0 \ remainder: 1 \ ext{\downarrow} \ &29_{10} &= (11101)_2 = (00101001)_{BCD} \end{aligned}$

BCD to Excess-3 Conversion

Step 1: Convert BCD to decimal Step 2: Add $(3)_{10}$ to this decimal number Step 3:Convert into binary to get excess-3 code

BCD to Excess-3 Conversion

Example – convert $(1001)_{BCD}$ to Excess-3

 $egin{aligned} &= ext{Step-1:Convert to Decimal} o (1001)_{BCD} = 9_{10} \ &= ext{Step-2:Add 3 to decimal} o 9_{10} + 3_{10} = 12_{10} \ &= ext{Step-3:Convert to Excess-3} o 12_{10} = (1100)_2 \ &\downarrow \ &(1001)_{BCD} = (1100)_{XS-3} \end{aligned}$

Excess-3 to BCD Conversion

• Subtract $(0011)_2$ from each 4 bit of excess-3 digit to obtain the corresponding BCD code

Excess-3 to BCD Conversion

Example: Convert $(10011010)_{XS-3}$ to **BCD**.

Given XS-3 number Subtract (0011)_2			-	-			-		-	
BCD	=	0	1	1	0	0	1	1	1	

Result

$(10011010)_{XS-3} = (01100111)_{BCD}$

PART 2: BINARY ARITHMETIC SYSTEMS

References

End - Of - Week - 2 - Module

