
CE100 Algorithms and Programming II

Week-9 (Huffman Coding)

Spring Semester, 2021-2022

Download DOC, SLIDE, PPTX

CE100 Algorithms and Programming II

 RTEU CE100 Week-9

file:///E:/UgurCoruh/RTEU/Lectures/2021-2022%20Bahar%20CE100%20-%20Algorithms%20and%20Programming%20II/ce100-algorithms-and-programming-II/docs/week-9/ce100-week-9-huffman.en.md_doc.pdf
file:///E:/UgurCoruh/RTEU/Lectures/2021-2022%20Bahar%20CE100%20-%20Algorithms%20and%20Programming%20II/ce100-algorithms-and-programming-II/docs/week-9/ce100-week-9-huffman.en.md_slide.pdf
file:///E:/UgurCoruh/RTEU/Lectures/2021-2022%20Bahar%20CE100%20-%20Algorithms%20and%20Programming%20II/ce100-algorithms-and-programming-II/docs/week-9/ce100-week-9-huffman.en.md_slide.pptx

Huffman Coding

Outline

Heap Data Structure (Review Week-4)

Heap Sort (Review Week-4)
Huffman Coding

CE100 Algorithms and Programming II

 RTEU CE100 Week-9 2

Huffman Codes

CE100 Algorithms and Programming II

 RTEU CE100 Week-9 3

Huffman Codes for Compression

Widely used and very effective for data compression

Savings of 20% - 90% typical

(depending on the characteristics of the data)

In summary: Huffman’s greedy algorithm uses a table of frequencies of character occurrences to
build up an optimal way of representing each character as a binary string.

CE100 Algorithms and Programming II

 RTEU CE100 Week-9 4

Binary String Representation - Example

Consider a data file with:

100K characters

Each character is one of

Frequency of each character in the file:

frequency:	

Binary character code: Each character is represented by a unique binary string.

Intuition:

Frequent characters shorter codewords

Infrequent characters longer codewords

CE100 Algorithms and Programming II

{a, b, c, d, e, f}

, , , , , ​a

45K

b

13K

c

12K

d

16K

e

9K

​f

5K

⇔

⇔

 RTEU CE100 Week-9 5

Binary String Representation - Example

​ ​ ​ ​ ​ ​

characters
frequency

fixed-length
variable-length(1)
variable-length(2)

a

45K
000
0
0

b

13K
001
101
10

c

12K
010
100
110

d

16K
011
111
1110

e

9K
100
1101
11110

f

5K
101
1100
11111

How many total bits needed for fixed-length codewords?

How many total bits needed for variable-length(1) codewords?

How many total bits needed for variable-length(2) codewords?

CE100 Algorithms and Programming II

100K × 3 = 300K bits

45K × 1 + 13K × 3 + 12K × 3 + 16K × 3 + 9K × 4 + 5K × 4 = 224K

45K × 1 + 13K × 2 + 12K × 3 + 16K × 4 + 9K × 5 + 5K × 5 = 241K

 RTEU CE100 Week-9 6

Prefix Codes

Prefix codes: No codeword is also a prefix of some other codeword
Example:

​ ​ ​ ​ ​ ​

characters
codeword

a

0
b

101
c

100
d

111
e

1101
f

1100

It can be shown that:
Optimal data compression is achievable with a prefix code

In other words, optimality is not lost due to prefix-code restriction.

CE100 Algorithms and Programming II

 RTEU CE100 Week-9 7

Prefix Codes: Encoding

​ ​ ​ ​ ​ ​

characters
codeword

a

0
b

101
c

100
d

111
e

1101
f

1100

Encoding: Concatenate the codewords representing each character of the file

Example: Encode file "abc" using the codewords above

Note: "." denotes the concatenation operation. It is just for illustration purposes,
and does not exist in the encoded string.

CE100 Algorithms and Programming II

abc ⇒ 0.101.100 ⇒ 0101100

 RTEU CE100 Week-9 8

Prefix Codes: Decoding

Decoding is quite simple with a prefix code

The first codeword in an encoded file is unambiguous
because no codeword is a prefix of any other

Decoding algorithm:
Identify the initial codeword
Translate it back to the original character

Remove it from the encoded file

Repeat the decoding process on the remainder of the encoded file.

CE100 Algorithms and Programming II

 RTEU CE100 Week-9 9

Prefix Codes: Decoding - Example

​ ​ ​ ​ ​

characters
codeword

a

0
b

101
c

100
d

111
e

1101
f

1100

Example: Decode encoded file

CE100 Algorithms and Programming II

001011101
001011101

0.01011101
0.0.1011101

0.0.101.1101

0.0.101.1101
aabe

 RTEU CE100 Week-9 10

Prefix Codes

Convenient representation for the prefix code:

a binary tree whose leaves are the given characters

Binary codeword for a character is the path from the

root to that character in the binary tree

" " means "go to the left child"

" " means "go to the right child"

CE100 Algorithms and Programming II

0

1

 RTEU CE100 Week-9 11

Binary Tree Representation of Prefix Codes

Weight of an internal node: sum of weights of the leaves in its subtree
The binary tree corresponding to the fixed-length code

CE100 Algorithms and Programming II

 RTEU CE100 Week-9 12

Binary Tree Representation of Prefix
Codes

Weight of an internal node: sum of weights of the
leaves in its subtree

The binary tree corresponding to the optimal
variable-length code

An optimal code for a file is always represented by
a full binary tree

CE100 Algorithms and Programming II

 RTEU CE100 Week-9 13

Full Binary Tree Representation of Prefix Codes

Consider an FBT corresponding to an optimal prefix code

It has leaves (external nodes)

One for each letter of the alphabet where is the alphabet from which the characters are drawn

Lemma: An FBT with external nodes has exactly internal nodes

CE100 Algorithms and Programming II

∣C∣

C

∣C∣ ∣C∣ − 1

 RTEU CE100 Week-9 14

Full Binary Tree Representation of Prefix Codes

Consider an , corresponding to a prefix code.

Notation:
: frequency of character c in the file

: depth of 's leaf in the

: the number of bits required to encode the file

What is the length of the codeword for ?
, same as the depth of in

How to compute , cost of tree ?

CE100 Algorithms and Programming II

FBT T

f(c)

d ​(c)T c FBT T

B(T)

c

d ​(c)T c T

B(T) T

B(T) = ​f(c)d ​(c)
c∈C
∑ T

 RTEU CE100 Week-9 15

Cost Computation - Example

B(T) = ​f(c)d ​(c)
c∈C

∑ T

B(T) =

=

(45 × 1) + (12 × 3)+

(13 × 3) + (16 × 3)+

(5 × 4) + (9 × 4)

224

CE100 Algorithms and Programming II

 RTEU CE100 Week-9 16

Prefix Codes

Lemma: Let each internal node i is labeled with

the sum of the weight of the leaves in its subtree

Then

B(T) = ​f(c)d ​(c) =
c∈C

∑ T ​w(i)
i∈I ​T

∑

where is the set of internal nodes of

Proof: Consider a leaf node with &

Then, appears in the weights of internal node

along the path from to the root

Hence, appears times in the above summation

CE100 Algorithms and Programming II

w(i)

I ​T T

c f(c) d ​(c)T

f(c) d ​(c)T

c

f(c) d ​(c)T

 RTEU CE100 Week-9 17

Cost Computation -
Example

B(T) = ​w(i)
i∈I ​T

∑

B(T) =

=

100 + 55+

25 + 30 + 14

224

CE100 Algorithms and Programming II

 RTEU CE100 Week-9 18

Constructing a Huffman Code

Problem Formulation: For a given character set C, construct an optimal prefix
code with the minimum total cost

Huffman invented a greedy algorithm that constructs an optimal prefix code
called a Huffman code

The greedy algorithm

builds the FBT corresponding to the optimal code in a bottom-up manner

begins with a set of leaves

performs a sequence of "merges" to create the final tree

CE100 Algorithms and Programming II

∣C∣

∣C∣ − 1

 RTEU CE100 Week-9 19

Constructing a Huffman Code

A priority queue , keyed on , is used

to identify the two least-frequent objects to merge

The result of the merger of two objects is a new object

inserted into the priority queue according to its frequency

which is the sum of the frequencies of the two objects merged

CE100 Algorithms and Programming II

Q f

 RTEU CE100 Week-9 20

Constructing a Huffman Code

Priority queue is implemented as a binary heap
Initiation of (): time

 & take time on with objects

CE100 Algorithms and Programming II

Q BUILD-HEAP O(n)

EXTRACT-MIN INSERT O(lgn) Q n

 RTEU CE100 Week-9 21

Constructing a Huffman Code

​ ​

HUFFMAN(c)

n ← ∣C∣

Q ← BUILD-HEAP(c)

for i ← 1 to n − 1 do

z ← ALLOCATE-NODE()

x ← left[z] ← EXTRACT-MIN(Q)

y ← right[z] ← EXTRACT-MIN(Q)

f [z] ← f [x] ← f [y]

INSERT(Q, z)

return EXTRACT-MIN(Q) ⊲ one object left in Q

CE100 Algorithms and Programming II

 RTEU CE100 Week-9 22

Constructing a Huffman Code - Example

Start with one leaf node for each character
The nodes with the least frequencies:

Merge and create an internal node

Set the internal node frequency to

CE100 Algorithms and Programming II

2 f&e

f&e

5 + 9 = 14

 RTEU CE100 Week-9 23

Constructing a Huffman Code - Example

The 2 nodes with least frequencies:

CE100 Algorithms and Programming II

b&c

 RTEU CE100 Week-9 24

Constructing a Huffman Code - Example

CE100 Algorithms and Programming II

 RTEU CE100 Week-9 25

Constructing a Huffman Code -
Example

CE100 Algorithms and Programming II

 RTEU CE100 Week-9 26

Constructing a Huffman Code -
Example

CE100 Algorithms and Programming II

 RTEU CE100 Week-9 27

Constructing a Huffman Code -
Example

CE100 Algorithms and Programming II

 RTEU CE100 Week-9 28

Correctness Proof of Huffman’s Algorithm

We need to prove:

The greedy choice property

The optimal substructure property

What is the greedy step in Huffman’s algorithm?

Merging the two characters with the lowest frequencies

We will first prove the greedy choice property

CE100 Algorithms and Programming II

 RTEU CE100 Week-9 29

Greedy Choice Property

Lemma 1: Let be two characters in having the lowest frequencies.

Then, an optimal prefix code for in which the codewords for have the same length and
differ only in the last bit

Note: If are merged in Huffman’s algorithm, their codewords are guaranteed to have the
same length and they will differ only in the last bit.

Lemma 1 states that there exists an optimal solution where this is the case.

CE100 Algorithms and Programming II

x&y C

∃ C x&y

x&y

 RTEU CE100 Week-9 30

Greedy Choice Property - Proof

Outline of the proof:

Start with an arbitrary optimal solution
Convert it to an optimal solution that satisfies the greedy choice property.

Proof: Let be an arbitrary optimal solution where:

 are the sibling leaves with the max depth

 are the characters with the lowest frequencies

CE100 Algorithms and Programming II

T

b&c

x&y

 RTEU CE100 Week-9 31

Greedy Choice Property -
Proof

Reminder:
 are the nodes with max

depth
 are the nodes with min

freq.
Without loss of generality, assume:

Then, it must be the case that:

CE100 Algorithms and Programming II

b&c

x&y

f(x) ≤ f(y)

f(b) ≤ f(c)

f(x) ≤ f(b)

f(y) ≤ f(c)
 RTEU CE100 Week-9 32

Greedy Choice Property - Proof

: exchange the positions of the leaves

: exchange the positions of the leaves

CE100 Algorithms and Programming II

T ⇒ T ′ b&x

T ⇒′ T ′′ c&y

 RTEU CE100 Week-9 33

Greedy Choice Property - Proof

CE100 Algorithms and Programming II

 RTEU CE100 Week-9 34

Greedy Choice Property - Proof

Reminder: Cost of tree

B(T) = ​f(c)d ​(c)
c∈C

∑ T ′

How does compare to ?

Reminder:
 and

CE100 Algorithms and Programming II

T ′

B(T)′ B(T)

f(x) ≤ f(b)
d ​(x) =T ′ d ​(b)T d ​(b) =T ′

d ​(x)T

 RTEU CE100 Week-9 35

Greedy Choice Property - Proof

Reminder:

 and

The difference in cost between and :

B(T) − B(T) =′
​f(c)d ​(c) − ​f(c)d ​(c)

c∈C

∑ T

c∈C

∑ T ′

= f [x]d ​(x) + f [b]d ​(b) − f [x]d ​(x) − f [b]d ​(b)T T T ′ T ′

= f [x]d ​(x) + f [b]d ​(b) − f [x]d ​(x) − f [b]d ​(b)T T T T

= f [b](d ​(b) + d ​(x)) − f [x](d ​(b) − d ​(x))T T T T

= (f [b] − f [x])(d ​(b) + d ​(x))T T

CE100 Algorithms and Programming II

f(x) ≤ f(b)

d ​(x) =T ′ d ​(b)T d ​(b) =T ′ d ​(x)T

T T ′

 RTEU CE100 Week-9 36

Greedy Choice Property - Proof

​

B(T) − B(T) = (f [b] − f [x])(d ​(b) + d ​(x))′
T T

Since and
therefore

In other words, is also optimal

CE100 Algorithms and Programming II

f [b] − f [x] ≥ 0 d ​(b) ≥T d ​(x)T

B(T) ≤′ B(T)

T ′

 RTEU CE100 Week-9 37

Greedy Choice Property - Proof

CE100 Algorithms and Programming II

 RTEU CE100 Week-9 38

Greedy Choice Property - Proof

We can similarly show that

which implies

Since is optimal is also optimal

Note: contains our greedy choice:

Characters appear as sibling leaves of max-depth in

Hence, the proof for the greedy choice property is complete

CE100 Algorithms and Programming II

B(T) −′ B(T) ≥′′ 0 ⇒ B(T) ≤′′ B(T)′

B(T) ≤′′ B(T)

T ⇒ B(T) =′′ B(T) ⇒ T ′′

T ′′

x&y T ′′

 RTEU CE100 Week-9 39

Greedy-Choice Property of Determining an Optimal Code

Lemma 1 implies that

process of building an optimal tree

by mergers can begin with the greedy choice of merging

those two characters with the lowest frequency

We have already proved that , that is,

the total cost of the tree constructed

is the sum of the costs of its mergers (internal nodes) of all possible mergers

At each step Huffman chooses the merger that incurs the least cost

CE100 Algorithms and Programming II

B(T) = ​w(i)
i∈I ​T

∑

 RTEU CE100 Week-9 40

Optimal Substructure Property

Consider an optimal solution for alphabet . Let and
be any two sibling leaf nodes in . Let be the parent node
of and in .

Consider the subtree where .
Here, consider z as a new character, where

Optimal substructure property: must be optimal for the
alphabet ,

where

CE100 Algorithms and Programming II

T C x y

T z

x y T

T ′ T =′ T–{x, y}

f [z] = f [x] + f [y]

T ′

C ′

C =′ C–{x, y} ∪ {z}

 RTEU CE100 Week-9 41

Optimal Substructure Property - Proof

Reminder:

B(T) = ​f [c]d ​(c)
c∈C

∑ T

Try to express in terms of .

Note: All characters in have the same depth in and .

B(T) = B(T)–cost(z) +′ cost(x) + cost(y)

CE100 Algorithms and Programming II

B(T) B(T)′

C ′ T T ′

 RTEU CE100 Week-9 42

Optimal Substructure Property - Proof

Reminder:

B(T) = ​f [c]d ​(c)
c∈C

∑ T

​ ​

B(T) = B(T)–cost(z) + cost(x) + cost(y)′

= B(T) − f [z].d ​(z) + f [x].d ​(x) + f [y].d ​(y)′
T T T

= B(T) − f [z].d ​(z) + (f [x] + f [y])(d ​(z) + 1)′
T T

= B(T) − f [z].d ​(z) + f [z](d ​(z) + 1)′
T T

= B(T) − f [z]′

​

d ​(x) = d ​(z) + 1T T

d ​(y) = d ​(z) + 1T T

​

B(T) = B(T) + f [x] + f [y]′

CE100 Algorithms and Programming II

 RTEU CE100 Week-9 43

Optimal Substructure Property - Proof

We want to prove that is optimal for

Assume by contradiction that that there exists another
solution for with smaller cost than . Call this solution :

Let us construct another prefix tree by adding as
children of in

​

B(T) = B(T) + f [x] + f [y]′

CE100 Algorithms and Programming II

T ′

C =′ C–{x, y} ∪ {z}

C ′ T ′ R′

B(R) <′ B(T)′

R x&y
z R′

 RTEU CE100 Week-9 44

Optimal Substructure Property - Proof

Let us construct another prefix tree by adding as
children of in .

We have:

In the beginning, we assumed that:

So, we have:

Contradiction! Proof complete

CE100 Algorithms and Programming II

R x&y
z R′

B(R) = B(R) +′ f [x] + f [y]

B(Rʹ) < B(T)′

B(R) < B(T) +′ f [x] + f [y] = B(T)

 RTEU CE100 Week-9 45

Greedy Algorithm for Huffman Coding - Summary

For the greedy algorithm, we have proven that:
The greedy choice property holds.

The optimal substructure property holds.

So, the greedy algorithm is optimal.

CE100 Algorithms and Programming II

 RTEU CE100 Week-9 46

References

Introduction to Algorithms, Third Edition | The MIT Press

Bilkent CS473 Course Notes (new)

Bilkent CS473 Course Notes (old)

CE100 Algorithms and Programming II

 RTEU CE100 Week-9 47

https://mitpress.mit.edu/books/introduction-algorithms-third-edition
http://nabil.abubaker.bilkent.edu.tr/473/
http://cs.bilkent.edu.tr/~ugur/teaching/cs473/

CE100 Algorithms and Programming II

−End − Of − Week − 9 − Course − Module−

 RTEU CE100 Week-9 48

