Week-9 (Huffman Coding)

Spring Semester, 2021-2022 Download [DOC,](file:///E:/UgurCoruh/RTEU/Lectures/2021-2022%20Bahar%20CE100%20-%20Algorithms%20and%20Programming%20II/ce100-algorithms-and-programming-II/docs/week-9/ce100-week-9-huffman.en.md_doc.pdf) [SLIDE](file:///E:/UgurCoruh/RTEU/Lectures/2021-2022%20Bahar%20CE100%20-%20Algorithms%20and%20Programming%20II/ce100-algorithms-and-programming-II/docs/week-9/ce100-week-9-huffman.en.md_slide.pdf), [PPTX](file:///E:/UgurCoruh/RTEU/Lectures/2021-2022%20Bahar%20CE100%20-%20Algorithms%20and%20Programming%20II/ce100-algorithms-and-programming-II/docs/week-9/ce100-week-9-huffman.en.md_slide.pptx)

Huffman Coding

Outline

- Heap Data Structure (Review Week-4)
- Heap Sort (Review Week-4)
- Huffman Coding

Huffman Codes

Huffman Codes for Compression

- Widely used and very effective for data compression
- Savings of 20% 90% typical
	- \circ (depending on the characteristics of the data)
- **In summary:** Huffman's greedy algorithm uses a **table of frequencies** of character occurrences to build up an optimal way of **representing each character as a binary string**.

Binary String Representation - Example

- Consider a data file with: \bullet
	- 100K characters
	- Each character is one of $\{a,b,c,d,e,f\}$
- Frequency of each character in the file:

- **Binary character code:** Each character is represented by a unique binary string.
- **Intuition:** \bullet
	- Frequent characters \Leftrightarrow shorter codewords
	- Infrequent characters \Leftrightarrow longer codewords

Binary String Representation - Example

- How many total bits needed for **fixed-length** codewords? $100K \times 3 = 300K$ *bits*
- How many total bits needed for **variable-length(1)** codewords? $45K \times 1 + 13K \times 3 + 12K \times 3 + 16K \times 3 + 9K \times 4 + 5K \times 4 = 224K$
- How many total bits needed for **variable-length(2)** codewords? $45K \times 1 + 13K \times 2 + 12K \times 3 + 16K \times 4 + 9K \times 5 + 5K \times 5 = 241K$

Prefix Codes

- **Prefix codes:** No codeword is also a prefix of some other codeword
- **Example:**

- It can be shown that:
	- Optimal data compression is achievable with a **prefix code**
- In other words, optimality is not lost due to prefix-code restriction.

Prefix Codes: Encoding

 $\begin{array}{ccccccccc} \text{characters} & a & b & c & d & e \end{array}$ codeword 0 101 100 111 1101 1100 *f*

- **Encoding:** Concatenate the codewords representing each character of the file
- **Example:** Encode file "abc" using the codewords above

 ϕ *abc* ⇒ 0.101.100 ⇒ 0101100

Note: "." denotes the concatenation operation. It is just for illustration purposes, and does not exist in the encoded string.

Prefix Codes: Decoding

- Decoding is quite simple with a prefix code
- The first codeword in an encoded file is unambiguous
	- *because no codeword is a prefix of any other*
- **Decoding algorithm:**
	- \circ Identify the initial codeword
	- \circ Translate it back to the original character
	- \circ Remove it from the encoded file
	- o Repeat the decoding process on the remainder of the encoded file.

Prefix Codes: Decoding - Example

characters *a b c d* codeword 0 101 100 111 1101 *e f* 1100

- Example: Decode encoded file 001011101
	- \circ 001011101
	- 0.01011101
	- $0.0.1011101$
	- $0.0.101.1101$
	- $0.0.101.1101$
	- *aabe*

Prefix Codes

- Convenient representation for the prefix code:
	- \circ a binary tree whose leaves are the given characters
- Binary codeword for a character is the path from the \bullet root to that character in the binary tree
- "O" means "go to the left child"
- "1" means "go to the right child"

Binary Tree Representation of Prefix Codes

- **Weight of an internal node:** sum of weights of the leaves in its subtree
- The binary tree corresponding to the fixed-length code

Binary Tree Representation of Prefix Codes

- **Weight of an internal node:** sum of weights of the leaves in its subtree
- The binary tree corresponding to the **optimal variable-length** code
- An optimal code for a file is always represented by a **full binary tree**

Full Binary Tree Representation of Prefix Codes

- Consider an **FBT** corresponding to an optimal prefix code
- It has $|C|$ leaves (external nodes)
- One for each letter of the alphabet where C is the alphabet from which the characters are drawn
- Lemma: An FBT with $|C|$ external nodes has exactly $|C| 1$ internal nodes

Full Binary Tree Representation of Prefix Codes

- Consider an $FBTT$, corresponding to a prefix code.
- **Notation**:
	- $f(c)$: frequency of character c in the file
	- $d_T(c)$: depth of c 's leaf in the FBT T
	- $B(T)$: the number of bits required to encode the file
- What is the length of the codeword for c ?
	- $d_T(c)$, same as the depth of c in T
- How to compute $B(T)$, cost of tree T ?

 $B(T) = \sum f(c) d_T(c)$ $c \in C$

Cost Computation - Example

$$
B(T)=\sum_{c\in C}f(c)d_T(c)
$$

$$
B(T) = (45 \times 1) + (12 \times 3) + \\ (13 \times 3) + (16 \times 3) + \\ (5 \times 4) + (9 \times 4) \\ = 224
$$

Prefix Codes

Lemma: Let each internal node i is labeled with \bullet the sum of the weight $w(i)$ of the leaves in its subtree

• Then

$$
B(T)=\sum_{c\in C}f(c)d_T(c)=\sum_{i\in I_T}w(i)
$$

- where I_T is the set of internal nodes of T
- **Proof:** Consider a leaf node c with $f(c)$ & $d_T(c)$
	- Then, $f(c)$ appears in the weights of $d_T(c)$ internal node
	- along the path from c to the root
	- Hence, $f(c)$ appears $d_T(c)$ times in the above summation

SEPTER

Cost Computation - Example

 $B(T) = \sum_{i \in I_T} w(i)$ *i* ∈ $B(T) = 100 + 55 + \25 + 30 + 1$ $25+30+14$ 2 2 4

Constructing a Huffman Code

- **Problem Formulation:** For a given character set C, construct an optimal prefix code with the minimum total cost
- **Huffman** invented a **greedy algorithm** that constructs an optimal prefix code called a **Huffman code**
- The greedy algorithm
	- builds the **FBT** corresponding to the optimal code in a **bottom-up** manner
	- begins with a set of $|C|$ leaves
	- p erforms a sequence of $\vert C \vert 1$ "**merges**" to create the final tree

Constructing a Huffman Code

- A **priority queue** Q , keyed on f , is used to identify the two **least-frequent** objects to merge
- The result of the **merger** of two objects is a **new object**
	- \circ inserted into the priority queue according to its frequency
	- \circ which is the sum of the frequencies of the two objects merged

Constructing a Huffman Code

- Priority queue is implemented as a binary heap
- Initiation of Q ($\operatorname{BULD-HEAP}$): $O(n)$ time
- $\operatorname{EXTRACT-MIN}$ & INSERT take $O(lgn)$ time on Q with n objects

Constructing a Huffman Code

HUFFMAN(*c*) $n \leftarrow |C|$ $Q \leftarrow \text{BULD-HEAP}(c)$ *for* $i \leftarrow 1$ *to* $n-1$ *do* $z \leftarrow \text{ALLOCAL}$ $x \leftarrow left[z] \leftarrow \text{EXTRACT-MIN}(Q)$ $y \leftarrow right[z] \leftarrow \text{EXTRACT-MIN}(Q)$ $f[z] \leftarrow f[x] \leftarrow f[y]$ $INSET(Q, z)$ $return$ EXTRACT-MIN(Q) \triangleleft one object left in Q

Constructing a Huffman Code - Example

- Start with one leaf node for each character
- The 2 nodes with the least frequencies: $f\&e$
- Merge f & e and create an internal node
- Set the internal node frequency to $5+9=14$

Constructing a Huffman Code - Example

The 2 nodes with least frequencies: $b\&c$

Constructing a Huffman Code - Example

Constructing a Huffman Code - Example

Constructing a Huffman Code - Example

Constructing a Huffman Code - Example

Correctness Proof of Huffman's Algorithm

- **We need to prove:**
	- The greedy choice property
	- \circ The optimal substructure property
- **What is the greedy step in Huffman's algorithm?**
	- *Merging the two characters with the lowest frequencies*
- *We will first prove the greedy choice property*

Greedy Choice Property

- **Lemma 1:** Let $x \& y$ be two characters in C having the lowest frequencies. \bullet
- Then, \exists an optimal prefix code for C in which the codewords for $x \& y$ have the same length and differ only in the last bit
- Note: If $x \& y$ are merged in Huffman's algorithm, their codewords are guaranteed to have the *same length and they will differ only in the last bit*.
	- *Lemma 1* states that there exists an optimal solution where this is the case.

- Outline of the proof:
	- \circ Start with an arbitrary optimal solution
	- \circ Convert it to an optimal solution that satisfies the greedy choice property.
- **Proof:** Let T be an arbitrary optimal solution where:
	- $b\&c$ are the sibling leaves with the max depth
	- $x \& y$ are the characters with the lowest frequencies

Greedy Choice Property -P r o o f

- Reminder:
	- $b\&c$ are the nodes with max depth
	- $x \& y$ are the nodes with min freq.
- Without loss of generality, assume: $f(x) \leq f(y)$
	- $f(b) \leq f(c)$
- Then, it must be the case that:
	- $f(x) \leq f(b)$

- $T\Rightarrow T'$: exchange the positions of the leaves $b\&x$
- $T'\Rightarrow T''$: exchange the positions of the leaves $c\&y$

Reminder: Cost of tree *T* ′

 $B(T) = \sum_{\alpha} f(c) d_{T'}(c)$ *c*∈*C* $\sum f(c)d_{T'}$

- How does $B(T')$ compare to $B(T)$?
- $\textsf{Reminder:}\:f(x)\leq f(b)\;.$ $d_{T^\prime}(x) = d_T(b)$ and $d_{T^\prime}(b) = 0$ $d_T(x)$

 $\textsf{Reminder:}\: f(x)\leq f(b).$

$$
\mathrel{\circ} \, d_{T'}(x) = d_{T}(b) \text{ and } d_{T'}(b) = d_{T}(x)
$$

The difference in cost between T and T^\prime :

$$
B(T)-B(T') = \sum_{c \in C} f(c)d_T(c) - \sum_{c \in C} f(c)d_{T'}(c) \\ = f[x]d_T(x) + f[b]d_T(b) - f[x]d_{T'}(x) - f[b]d_{T'}(b) \\ = f[x]d_T(x) + f[b]d_T(b) - f[x]d_T(x) - f[b]d_T(b) \\ = f[b](d_T(b) + d_T(x)) - f[x](d_T(b) - d_T(x)) \\ = (f[b] - f[x])(d_T(b) + d_T(x))
$$

$B(T) - B(T') = (f[b] - f[x])(d_T(b) + d_T(x))$ $T(0) \pm a_T$

- $\textsf{Since } f[b]-f[x]\geq 0 \text{ and } d_T(b)\geq d_T(x).$ therefore $B(T')\leq B(T)$
- In other words, T' is also optimal

- We can similarly show that
- $B(T') B(T'') \geq 0 \Rightarrow B(T'') \leq B(T')$

which implies $B(T'') \leq B(T)$

- Since T is optimal \Rightarrow $B(T'') = B(T) \Rightarrow T''$ is also optimal
- Note: T'' contains our greedy choice:
	- Characters $x \& y$ appear as sibling leaves of max-depth in T''
- Hence, the proof for the greedy choice property is complete

Greedy-Choice Property of Determining an Optimal Code

- **Lemma 1** implies that
	- \circ process of building an optimal tree
	- \circ by mergers can begin with the greedy choice of merging
	- \circ those two characters with the lowest frequency
- We have already proved that $B(T)=\,\sum\,w(i)$, that is, $i \in I_T$ ∑
	- \circ the total cost of the tree constructed
	- is the **sum** of the **costs** of its **mergers** (**internal nodes**) **of all possible mergers**
- At each step **Huffman chooses** the merger that incurs the **least cost**

Optimal Substructure Property

- Consider an optimal solution T for alphabet C . Let x and y be any two sibling leaf nodes in T . Let z be the parent node of x and y in T .
- Consider the subtree T' where $T' = T \{x, y\}.$ \circ Here, consider z as a new character, where $f[z] = f[x] + f[y]$
- **Optimal substructure property:** T' must be optimal for the alphabet C^{\prime} , where $C' = C - \{x, y\} \cup \{z\}$

Optimal Substructure Property - Proof

Reminder:

$$
B(T)=\sum_{c\in C}f[c]d_T(c)
$$

Try to express $B(T)$ in terms of $B(T^{\prime}).$

Note: All characters in C' have the same depth in T and T' .

 $B(T) = B(T') - cost(z) + cost(x) + cost(y)$

Optimal Substructure Property - Proof

Reminder:

$$
B(T)=\sum_{c\in C}f[c]d_T(c)
$$

$$
\begin{aligned} B(T) & = B(T') - cost(z) + cost(x) + cost(y) \\ & = B(T') - f[z].d_T(z) + f[x].d_T(x) + f[y].d_T(y) \\ & = B(T') - f[z].d_T(z) + (f[x] + f[y])(d_T(z) + 1) \\ & = B(T') - f[z].d_T(z) + f[z](d_T(z) + 1) \\ & = B(T') - f[z] \end{aligned}
$$

$$
d_T(x)=d_T(z)+1\\[4pt] d_T(y)=d_T(z)+1
$$

 $B(T) = B(T') + f[x] + f[y]$

Optimal Substructure Property - Proof

- We want to prove that T^\prime is optimal for
	- $C' = C \{x, y\} \cup \{z\}$
- Assume by contradiction that that there exists another solution for C' with smaller cost than $T'.$ Call this solution $R'.$
- $B(R') < B(T')$
- Let us construct another prefix tree R by adding $x \& y$ as children of z in R'

$$
B(T)=B(T^{\prime})+f[x]+f[y]
$$

Optimal Substructure Property - Proof

- Let us construct another prefix tree R by adding $x \& y$ as children of z in R' .
- We have:
	- $B(R) = B(R') + f[x] + f[y]$
- In the beginning, we assumed that: $B(R') < B(T')$
- So, we have:
	- $B(R) < B(T')+f[x]+f[y]=B(T)$

Contradiction! Proof complete

Greedy Algorithm for Huffman Coding - Summary

- For the greedy algorithm, we have proven that:
	- **The greedy choice property** holds.
	- **The optimal substructure property** holds.
- So, the greedy algorithm is optimal.

References

- [Introduction to Algorithms, Third Edition | The MIT Press](https://mitpress.mit.edu/books/introduction-algorithms-third-edition)
- [Bilkent CS473 Course Notes \(new\)](http://nabil.abubaker.bilkent.edu.tr/473/)
- [Bilkent CS473 Course Notes \(old\)](http://cs.bilkent.edu.tr/~ugur/teaching/cs473/)

−*End* − *Of* − *Week* − 9 − *Course* − *Module*−

