CE100 Algorithms and Programming ||

CE100 Algorithms and Programming |l

Week-9 (Huffman Coding)

Spring Semester, 2021-2022
Download DOC, SLIDE, PPTX

#edth) RTEU CE100 Week-9

file:///E:/UgurCoruh/RTEU/Lectures/2021-2022%20Bahar%20CE100%20-%20Algorithms%20and%20Programming%20II/ce100-algorithms-and-programming-II/docs/week-9/ce100-week-9-huffman.en.md_doc.pdf
file:///E:/UgurCoruh/RTEU/Lectures/2021-2022%20Bahar%20CE100%20-%20Algorithms%20and%20Programming%20II/ce100-algorithms-and-programming-II/docs/week-9/ce100-week-9-huffman.en.md_slide.pdf
file:///E:/UgurCoruh/RTEU/Lectures/2021-2022%20Bahar%20CE100%20-%20Algorithms%20and%20Programming%20II/ce100-algorithms-and-programming-II/docs/week-9/ce100-week-9-huffman.en.md_slide.pptx

CE100 Algorithms and Programming |l

Huffman Coding

Outline

e Heap Data Structure (Review Week-4)
e Heap Sort (Review Week-4)
e Huffman Coding

% RTEU CE100 Week-9

CE100 Algorithms and Programming |l

Huffman Codes

983 RTEU CE100 Week-9

CE100 Algorithms and Programming |l

Huffman Codes for Compression

e Widely used and very effective for data compression
® Savings of 20% - 90% typical
o (depending on the characteristics of the data)

* In summary: Huffman'’s greedy algorithm uses a table of frequencies of character occurrences to
build up an optimal way of representing each character as a binary string.

% RTEU CE100 Week-9

CE100 Algorithms and Programming |l

Binary String Representation - Example

e Consider a data file with:

© 100K characters

o Each character is one of {a, b, c,d, e, f}

* Frequency of each character in the file:

13K 16K 5K
o frequency: ' a , b ,c, d , e, f
* Binary character code: Each character is represented by a unique binary string.
* |ntuition:

© Frequent characters <= shorter codewords

o Infrequent characters <= longer codewords

% RTEU CE100 Week-9

CE100 Algorithms and Programming |l

Binary String Representation - Example

characters a b c d € f
frequency 45K 13K 12K 16K 9K bK
fixed-length 000 001 010 011 100 101
variable-length(1) 0 101 100 111 1101 1100
variable-length(2) 0 10 110 1110 11110 11111

e How many total bits needed for fixed-length codewords?

100K x 3 = 300K bits

* How many total bits needed for variable-length(1) codewords?

45K x 1+ 13K x 3+ 12K x 3+ 16K x3+9K x4 +5K x4 =224K

¢ How many total bits needed for variable-length(2) codewords?

45K x 1+ 13K X2+ 12K X3+ 16K x4 +9K X 545K x 5 =241K

% RTEU CE100 Week-9

CE100 Algorithms and Programming |l

Prefix Codes

e Prefix codes: No codeword is also a prefix of some other codeword

e Example:

characters a b C d € f
codeword 0 101 100 111 1101 1100

e |t can be shown that:
o Optimal data compression is achievable with a prefix code

e |n other words, optimality is not lost due to prefix-code restriction.

% RTEU CE100 Week-9

CE100 Algorithms and Programming |l

Prefix Codes: Encoding

characters a b C d € f
codeword 0 101 100 111 1101 1100
e Encoding: Concatenate the codewords representing each character of the file

e Example: Encode file "abc" using the codewords above
o abc = 0.101.100 = 0101100

e Note: "." denotes the concatenation operation. It is just for illustration purposes,
and does not exist in the encoded string.

Y RTEU CE100 Week-9

CE100 Algorithms and Programming |l

Prefix Codes: Decoding

e Decoding is quite simple with a prefix code

e The first codeword in an encoded file is unambiguous
o because no codeword is a prefix of any other

e Decoding algorithm:
o |dentify the initial codeword

o Translate it back to the original character
o Remove it from the encoded file

o Repeat the decoding process on the remainder of the encoded file.

Y RTEU CE100 Week-9

CE100 Algorithms and Programming |l

Prefix Codes: Decoding - Example

characters a b c d 2 f
codeword 0 101 100 111 1101 1100

e Example: Decode encoded file 001011101
o 001011101

o (0.01011101

0.0.1011101
0.0.101.1101
0.0.101.1101

o aabe

@)

@)

@)

% RTEU CE100 Week-9

10

CE100 Algorithms and Programming |l

Prefix Codes

e Convenient representation for the prefix code:
© a binary tree whose leaves are the given characters

® Binary codeword for a character is the path from the
root to that character in the binary tree

e "0" means "go to the left child"

e "1" means "go to the right child"

% RTEU CE100 Week-9

11

CE100 Algorithms and Programming |l

Binary Tree Representation of Prefix Codes

* Weight of an internal node: sum of weights of the leaves in its subtree

* The binary tree corresponding to the fixed-length code

iesth| RTEU CE100 Week-9

12

CE100 Algorithms and Programming |l

Binary Tree Representation of Prefix
Codes

e Weight of an internal node: sum of weights of the

leaves in its subtree

® The binary tree corresponding to the optimal
variable-length code

* An optimal code for a file is always represented by
a full binary tree

ettt RTEU CE100 Week-9

13

CE100 Algorithms and Programming |l

Full Binary Tree Representation of Prefix Codes

e Consider an FBT corresponding to an optimal prefix code

e It has |C| leaves (external nodes)
e One for each letter of the alphabet where C'is the alphabet from which the characters are drawn

e Lemma: An FBT with |C| external nodes has exactly |C'| — 1 internal nodes

% RTEU CE100 Week-9

14

CE100 Algorithms and Programming |l

Full Binary Tree Representation of Prefix Codes

e Consider an F'BT T, corresponding to a prefix code.

* Notation:
o f(c): frequency of character c in the file

o dr(c): depth of ¢'s leaf in the FBT T
o B(T): the number of bits required to encode the file

e What is the length of the codeword for ¢?
o dr(c), same as the depth of cin T’

e How to compute B(T), cost of tree T7?

° B(T) = 2. f(c)dr(c)

ceC

% RTEU CE100 Week-9

15

CE100 Algorithms and Programming |l

Cost Computation - Example
B(T) =) f(¢)dr(c)

B(T) =(45 x 1) + (12 x 3)+
(13 x 3) + (16 x 3)+
(5x4)+ (9 x4)

=224

983 RTEU CE100 Week-9

CE100 Algorithms and Programming |l

Prefix Codes

® Lemma: Let each internal node i is labeled with
the sum of the weight w(%) of the leaves in its subtree

e Then

=2 f(e)dr(e) =) _wl(i)

ceC ielr

* where I1 is the set of internal nodes of T’
* Proof: Consider a leaf node c with f(c) & dr(c)

o Then, f(c) appears in the weights of dr(c) internal node

o along the path from ¢ to the root

— o Hence, f(c) appears dr(c) times in the above summation

% RTEU CE100 Week-9

17

CE100 Algorithms and Programming |l

Cost Computation -
Example

B(T) =) w(i)
1€1p
B(T) =100 + 55+
25 + 30+ 14
=224

983 RTEU CE100 Week-9

CE100 Algorithms and Programming |l

Constructing a Huffman Code

e Problem Formulation: For a given character set C, construct an optimal prefix

code with the minimum total cost

e Huffman invented a greedy algorithm that constructs an optimal prefix code
called a Huffman code

e The greedy algorithm

o builds the FBT corresponding to the optimal code in a bottom-up manner

o begins with a set of |C'| leaves

o performs a sequence of |C| — 1 "merges" to create the final tree

Y RTEU CE100 Week-9

CE100 Algorithms and Programming |l

Constructing a Huffman Code

e A priority queue @), keyed on f, is used
to identify the two least-frequent objects to merge

e The result of the merger of two objects is a new object

o inserted into the priority queue according to its frequency

o which is the sum of the frequencies of the two objects merged

Y RTEU CE100 Week-9

20

CE100 Algorithms and Programming |l

Constructing a Huffman Code

e Priority queue is implemented as a binary heap
e Initiation of Q) (BUILD-HEAP): O(n) time
e EXTRACT-MIN & INSERT take O(lgn) time on () with n objects

% RTEU CE100 Week-9

21

CE100 Algorithms and Programming |l

Constructing a Huffman Code

HUFFMAN(c)
n < |C|
Q + BUILD-HEAP(c)
fori<+1ton—1do
2 < ALLOCATE-NODE()
z < left|z] + EXTRACT-MIN(Q)
y < right|z] + EXTRACT-MIN(Q)
flz] < flz] < fly]
INSERT(Q, 2)
return EXTRACT-MIN(Q) < one object left in @

% RTEU CE100 Week-9

22

CE100 Algorithms and Programming |l

Constructing a Huffman Code - Example

e Start with one leaf node for each character

e The 2 nodes with the least frequencies: f&e
e Merge f&e and create an internal node

e Set the internal node frequencyto d +9 = 14

=3

\Y%

983 RTEU CE100 Week-9

CE100 Algorithms and Programming |l

Constructing a Huffman Code - Example

* The 2 nodes with least frequencies: b&c

983 RTEU CE100 Week-9

24

CE100 Algorithms and Programming |l

Constructing a Huffman Code - Example

983 RTEU CE100 Week-9

- mm mm mm Em o o

25

CE100 Algorithms and Programming |l

Constructing a Huffman Code -
Example

iesth| RTEU CE100 Week-9

26

CE100 Algorithms and Programming |l

Constructing a Huffman Code -
Example

iesth| RTEU CE100 Week-9

27

CE100 Algorithms and Programming |l

Constructing a Huffman Code -
Example

iesth| RTEU CE100 Week-9

28

CE100 Algorithms and Programming |l

Correctness Proof of Huffman’s Algorithm

¢ We need to prove:

o The greedy choice property

© The optimal substructure property
* What is the greedy step in Huffman’s algorithm?
o Merging the two characters with the lowest frequencies

o We will first prove the greedy choice property

% RTEU CE100 Week-9

29

CE100 Algorithms and Programming |l

Greedy Choice Property

e Lemma 1: Let &y be two characters in C' having the lowest frequencies.

e Then, d an optimal prefix code for C' in which the codewords for £&y have the same length and
differ only in the last bit

e Note: If z&y are merged in Huffman’s algorithm, their codewords are guaranteed to have the

same length and they will differ only in the last bit.
© Lemma 1T states that there exists an optimal solution where this is the case.

% RTEU CE100 Week-9

30

CE100 Algorithms and Programming |l

Greedy Choice Property - Proof

e Qutline of the proof:

o Start with an arbitrary optimal solution

o Convert it to an optimal solution that satisfies the greedy choice property.

e Proof: Let 1" be an arbitrary optimal solution where:

o b&c are the sibling leaves with the max depth

o x&y are the characters with the lowest frequencies

% RTEU CE100 Week-9

31

CE100 Algorithms and Programming |l

Greedy Choice Property -
Proof

e Reminder:
o b&c are the nodes with max

depth
o x&y are the nodes with min
freq.

e Without loss of generality, assume:

o f(z) < f(y)
o f(b) < f(c)
e Then, it must be the case that:
o f(z) < f(b)
o f(y) < f(e)

iesth| RTEU CE100 Week-9

32

CE100 Algorithms and Programming |l

Greedy Choice Property - Proof

e T = T': exchange the positions of the leaves b&x
e T" = T": exchange the positions of the leaves c&y

T T

iesth| RTEU CE100 Week-9

Tll

33

CE100 Algorithms and Programming |l

Greedy Choice Property - Proof

T

iesth| RTEU CE100 Week-9

Ezxchange
&b

34

CE100 Algorithms and Programming |l

Greedy Choice Property - Proof

e Reminder: Cost of tree T"
B(T) =) f(c)dr(c)

e How does B(T") compare to B(T')?
e Reminder: f(z) < f(b)
O dT/(.’,U) = dT(b) and dT/(b) =
dT(m)

iesth| RTEU CE100 Week-9

35

CE100 Algorithms and Programming |l
Greedy Choice Property - Proof

e Reminder: f(z) < f(b)
o dT/(w) — dT(b) and dT/(b) — dT(m)

e The difference in cost between T and T":

% RTEU CE100 Week-9

36

CE100 Algorithms and Programming |l

Greedy Choice Property - Proof
B(T) — B(T") = (f[b] — flz])(dr(b) + dr())

e Since f|b] — flx] > 0and dr(b) > dr(x)
o therefore B(T") < B(T)

e |n other words, T" is also optimal

% RTEU CE100 Week-9

37

CE100 Algorithms and Programming |l

Greedy Choice Property - Proof

T/

iesth| RTEU CE100 Week-9

Exchange
y&c

T//

38

CE100 Algorithms and Programming |l

Greedy Choice Property - Proof

® We can similarly show that

B(T') — B(T") > 0 = B(T") < B(T")

o which implies B(T") < B(T)

e Since T is optimal = B(T") = B(T') = T" is also optimal

Note: T contains our greedy choice:
o Characters &y appear as sibling leaves of max-depth in T"

* Hence, the proof for the greedy choice property is complete

% RTEU CE100 Week-9

39

CE100 Algorithms and Programming |l

Greedy-Choice Property of Determining an Optimal Code

* Lemma 1implies that

o process of building an optimal tree
© by mergers can begin with the greedy choice of merging

o those two characters with the lowest frequency

e We have already proved that B(T') = > w(%), thatis,
€1

o the total cost of the tree constructed

o is the sum of the costs of its mergers (internal nodes) of all possible mergers

® At each step Huffman chooses the merger that incurs the least cost

% RTEU CE100 Week-9

40

CE100 Algorithms and Programming |l

Optimal Substructure Property

e Consider an optimal solution T for alphabet C. Let and y
be any two sibling leaf nodes in T'. Let z be the parent node
ofxandyinT.

 Consider the subtree T" where T" = T—{z, y}.

o Here, consider z as a new character, where
= flz] = flz] + fly]

e Optimal substructure property: T must be optimal for the
alphabet C’,
where C' = C—{z,y} U{z}

 RTEU CE100 Week-9

41

CE100 Algorithms and Programming |l

Optimal Substructure Property - Proof

Reminder:
B(T) = _ flcldr(c)

Try to express B(T) in terms of B(T").

Note: All characters in C' have the same depth in T and T".

B(T) = B(T")—cost(z) + cost(x) + cost(y)

RTEU CE100 Week-9

42

CE100 Algorithms and Programming |l

Optimal Substructure Property - Proof

Reminder:
B(T) = Y fldldr(c)
ceC
B(T) = B(T")—cost(z) + cost(x) + cost(y)

= B(T') — flz].dr(2) + flz].dr(z) + fly]-dr(y)
= B(T") — flz]-dr(2) + (f[z] + fly])(dr(2) + 1)
= B(T") — flz].dr(2) + f[z](dr(z) + 1)
= B(T") - f[2]

dT(w) = dT(Z) +1

dr(y) =dr(z) +1

= B(T) = B(T") + flz] + fly]

 RTEU CE100 Week-9

43

CE100 Algorithms and Programming |l

Optimal Substructure Property - Proof

e We want to prove that T is optimal for
o 0" = Cz,y} U{z}

® Assume by contradiction that that there exists another

solution for C'! with smaller cost than T". Call this solution R':

e B(R') < B(T")
* Let us construct another prefix tree R by adding &y as
children of z in R’

B(T) = B(T") + flz] + f[y]

RTEU CE100 Week-9

44

CE100 Algorithms and Programming |l

Optimal Substructure Property - Proof

e Let us construct another prefix tree R by adding &y as

children of z in R’.

* We have:

° B(R) = B(R') + flx] + f[y]
* |n the beginning, we assumed that:

o B(R') < B(T")
e So, we have;

° B(R) < B(T") + flz| + fly| = B(T)

Contradiction! Proof complete

 RTEU CE100 Week-9

45

CE100 Algorithms and Programming |l

Greedy Algorithm for Huffman Coding - Summary

e For the greedy algorithm, we have proven that:
o The greedy choice property holds.

o The optimal substructure property holds.

e S0, the greedy algorithm is optimal.

% RTEU CE100 Week-9

46

CE100 Algorithms and Programming |l

References

e Introduction to Algorithms, Third Edition | The MIT Press
e Bilkent CS473 Course Notes (new)
e Bilkent CS473 Course Notes (old)

iesth| RTEU CE100 Week-9

47

https://mitpress.mit.edu/books/introduction-algorithms-third-edition
http://nabil.abubaker.bilkent.edu.tr/473/
http://cs.bilkent.edu.tr/~ugur/teaching/cs473/

CE100 Algorithms and Programming |l

—End — Of — Week — 9 — Course — Module—

 RTEU CE100 Week-9

48

