CE100 Algorithms and Programming II

Week-9 (Huffman Coding)

Spring Semester, 2021-2022

Download DOC, SLIDE, PPTX

Huffman Coding

Outline

- Heap Data Structure (Review Week-4)
- Heap Sort (Review Week-4)
- Huffman Coding

Huffman Codes

Huffman Codes for Compression

- Widely used and very effective for data compression
- Savings of 20% 90% typical
 - (depending on the characteristics of the data)
- In summary: Huffman's greedy algorithm uses a table of frequencies of character occurrences to build up an optimal way of representing each character as a binary string.

Binary String Representation - Example

- Consider a data file with:
 - 100K characters
 - \circ Each character is one of $\{a,b,c,d,e,f\}$
- Frequency of each character in the file:

$$\circ$$
 frequency: $\overbrace{a}^{45K}, \overbrace{b}^{13K}, \overbrace{c}^{12K}, \overbrace{d}^{16K}, \overbrace{e}^{9K}, \overbrace{f}^{5K}$

- Binary character code: Each character is represented by a unique binary string.
- Intuition:
 - Frequent characters ⇔ shorter codewords
 - Infrequent characters ⇔ longer codewords

Binary String Representation - Example

characters	a	b	c	d	e	f
frequency	45K	13K	12K	16K	9K	5K
fixed-length	000	001	010	011	100	101
variable-length(1)	0	101	100	111	1101	1100
variable-length(2)	0	10	110	1110	11110	11111

ullet How many total bits needed for **fixed-length** codewords? $100K imes 3 = 300K \ bits$

• How many total bits needed for <code>variable-length(1)</code> codewords? 45K imes 1 + 13K imes 3 + 12K imes 3 + 16K imes 3 + 9K imes 4 + 5K imes 4 = 224K

• How many total bits needed for <code>variable-length(2)</code> codewords? 45K imes 1 + 13K imes 2 + 12K imes 3 + 16K imes 4 + 9K imes 5 + 5K imes 5 = 241K

Prefix Codes

- Prefix codes: No codeword is also a prefix of some other codeword
- Example:

```
characters a b c d e f codeword 0 101 100 111 1101 1100
```

- It can be shown that:
 - Optimal data compression is achievable with a prefix code
- In other words, optimality is not lost due to **prefix-code** restriction.

Prefix Codes: Encoding

- Encoding: Concatenate the codewords representing each character of the file
- Example: Encode file "abc" using the codewords above

$$\circ abc \Rightarrow 0.101.100 \Rightarrow 0101100$$

• Note: "." denotes the concatenation operation. It is just for illustration purposes, and does not exist in the encoded string.

Prefix Codes: Decoding

- Decoding is quite simple with a prefix code
- The first codeword in an encoded file is unambiguous
 - because no codeword is a prefix of any other
- Decoding algorithm:
 - Identify the initial codeword
 - Translate it back to the original character
 - Remove it from the encoded file
 - Repeat the decoding process on the remainder of the encoded file.

Prefix Codes: Decoding - Example

```
characters a b c d e f codeword 0 101 100 111 1101 1100
```

- ullet Example: Decode encoded file 001011101
 - 001011101
 - 0.01011101
 - o 0.0.1011101
 - o 0.0.101.1101
 - \circ 0.0.101.1101
 - \circ aabe

Prefix Codes

- Convenient representation for the prefix code:
 - o a binary tree whose leaves are the given characters
- Binary codeword for a character is the path from the root to that character in the binary tree
- "0" means "go to the left child"
- "1" means "go to the right child"

Binary Tree Representation of Prefix Codes

- Weight of an internal node: sum of weights of the leaves in its subtree
- The binary tree corresponding to the fixed-length code

Binary Tree Representation of Prefix Codes

- Weight of an internal node: sum of weights of the leaves in its subtree
- The binary tree corresponding to the optimal variable-length code
- An optimal code for a file is always represented by a full binary tree

Full Binary Tree Representation of Prefix Codes

- Consider an FBT corresponding to an optimal prefix code
- It has |C| leaves (external nodes)
- ullet One for each letter of the alphabet where C is the alphabet from which the characters are drawn
- ullet Lemma: An FBT with |C| external nodes has exactly |C|-1 internal nodes

Full Binary Tree Representation of Prefix Codes

- ullet Consider an $FBT\ T$, corresponding to a prefix code.
- Notation:
 - \circ f(c): frequency of character c in the file
 - $\circ d_T(c)$: depth of c's leaf in the $FBT\ T$
 - \circ B(T): the number of bits required to encode the file
- What is the length of the codeword for *c*?
 - $\circ \ d_T(c)$, same as the depth of c in T
- How to compute B(T), cost of tree T?

$$\circ \; B(T) = \sum_{c \in C} f(c) d_T(c)$$

Cost Computation - Example

$$B(T) = \sum_{c \in C} f(c) d_T(c)$$

$$B(T) = (45 \times 1) + (12 \times 3) +$$
 $(13 \times 3) + (16 \times 3) +$
 $(5 \times 4) + (9 \times 4)$
 $= 224$

Prefix Codes

- Lemma: Let each internal node i is labeled with the sum of the weight w(i) of the leaves in its subtree
- Then

$$B(T) = \sum_{c \in C} f(c) d_T(c) = \sum_{i \in I_T} w(i)$$

- ullet where I_T is the set of internal nodes of T
- ullet Proof: Consider a leaf node c with $f(c) \otimes d_T(c)$
 - \circ Then, f(c) appears in the weights of $d_T(c)$ internal node
 - \circ along the path from c to the root
 - \circ Hence, f(c) appears $d_T(c)$ times in the above summation

Cost Computation - Example

$$B(T) = \sum_{i \in I_T} w(i)$$

$$B(T) = 100 + 55 +$$
 $25 + 30 + 14$
 $= 224$

- **Problem Formulation:** For a given character set C, construct an optimal prefix code with the minimum total cost
- Huffman invented a greedy algorithm that constructs an optimal prefix code called a Huffman code
- The greedy algorithm
 - o builds the FBT corresponding to the optimal code in a bottom-up manner
 - \circ begins with a set of |C| leaves
 - \circ performs a sequence of |C|-1 "merges" to create the final tree

- ullet A **priority queue** Q, keyed on f, is used to identify the two **least-frequent** objects to merge
- The result of the merger of two objects is a new object
 - o inserted into the priority queue according to its frequency
 - which is the sum of the frequencies of the two objects merged

- Priority queue is implemented as a binary heap
- Initiation of Q (BUILD-HEAP): O(n) time
- ullet EXTRACT-MIN & INSERT take O(lgn) time on Q with n objects


```
HUFFMAN(c)
   n \leftarrow |C|
   Q \leftarrow \text{BUILD-HEAP}(c)
   for i \leftarrow 1 to n-1 do
      z \leftarrow \text{ALLOCATE-NODE}()
      x \leftarrow left[z] \leftarrow \text{EXTRACT-MIN}(Q)
      y \leftarrow right[z] \leftarrow \text{EXTRACT-MIN}(Q)
      f[z] \leftarrow f[x] \leftarrow f[y]
      INSERT(Q, z)
   return \; \text{EXTRACT-MIN}(Q) \lhd \text{one object left in } Q
```


- Start with one leaf node for each character
- The 2 nodes with the least frequencies: f&e
- Merge f&e and create an internal node
- ullet Set the internal node frequency to 5+9=14

ullet The 2 nodes with least frequencies: b&c

Correctness Proof of Huffman's Algorithm

- We need to prove:
 - The greedy choice property
 - The optimal substructure property
- What is the greedy step in Huffman's algorithm?
 - Merging the two characters with the lowest frequencies
- We will first prove the greedy choice property

Greedy Choice Property

- Lemma 1: Let x&y be two characters in C having the lowest frequencies.
- ullet Then, \exists an optimal prefix code for C in which the codewords for x&y have the same length and differ only in the last bit
- Note: If x&y are merged in Huffman's algorithm, their codewords are guaranteed to have the same length and they will differ only in the last bit.
 - Lemma 1 states that there exists an optimal solution where this is the case.

- Outline of the proof:
 - Start with an arbitrary optimal solution
 - Convert it to an optimal solution that satisfies the greedy choice property.
- ullet Proof: Let T be an arbitrary optimal solution where:
 - \circ b&c are the sibling leaves with the max depth
 - $\circ x \& y$ are the characters with the **lowest frequencies**

- Reminder:
 - \circ b&c are the nodes with max depth
 - $\circ x \& y$ are the nodes with min freq.
- Without loss of generality, assume:

$$\circ f(x) \leq f(y)$$

$$\circ f(b) \leq f(c)$$

• Then, it must be the case that:

$$\circ f(x) \leq f(b)$$

$$\circ f(y) \leq f(c)$$

- ullet $T\Rightarrow T'$: exchange the positions of the leaves b&x
- ullet $T'\Rightarrow T''$: exchange the positions of the leaves c&y

• Reminder: Cost of tree T'

$$B(T) = \sum_{c \in C} f(c) d_{T'}(c)$$

- ullet How does $B(T^\prime)$ compare to B(T)?
- ullet Reminder: $f(x) \leq f(b)$ $or d_{T'}(x) = d_T(b)$ and $d_{T'}(b) = d_T(x)$

• Reminder: $f(x) \leq f(b)$

$$\circ \ d_{T'}(x) = d_T(b)$$
 and $d_{T'}(b) = d_T(x)$

• The difference in cost between T and T':

$$egin{aligned} B(T) - B(T') &= \sum_{c \in C} f(c) d_T(c) - \sum_{c \in C} f(c) d_{T'}(c) \ &= f[x] d_T(x) + f[b] d_T(b) - f[x] d_{T'}(x) - f[b] d_{T'}(b) \ &= f[x] d_T(x) + f[b] d_T(b) - f[x] d_T(x) - f[b] d_T(b) \ &= f[b] (d_T(b) + d_T(x)) - f[x] (d_T(b) - d_T(x)) \ &= (f[b] - f[x]) (d_T(b) + d_T(x)) \end{aligned}$$

Greedy Choice Property - Proof

$$B(T) - B(T') = (f[b] - f[x])(d_T(b) + d_T(x))$$

- ullet Since $f[b]-f[x]\geq 0$ and $d_T(b)\geq d_T(x)$ \circ therefore $B(T')\leq B(T)$
- ullet In other words, T' is also optimal

Greedy Choice Property - Proof

Greedy Choice Property - Proof

- We can similarly show that
- $B(T') B(T'') \ge 0 \Rightarrow B(T'') \le B(T')$
 - \circ which implies $B(T'') \leq B(T)$
- ullet Since T is optimal $\Rightarrow B(T'') = B(T) \Rightarrow T''$ is also optimal
- Note: T'' contains our greedy choice:
 - \circ Characters x&y appear as sibling leaves of max-depth in T''
- Hence, the proof for the greedy choice property is complete

Greedy-Choice Property of Determining an Optimal Code

- Lemma 1 implies that
 - process of building an optimal tree
 - by mergers can begin with the greedy choice of merging
 - those two characters with the lowest frequency
- ullet We have already proved that $B(T) = \sum_{i \in I_T} w(i)$, that is,
 - the total cost of the tree constructed
 - o is the sum of the costs of its mergers (internal nodes) of all possible mergers
- At each step **Huffman chooses** the merger that incurs the **least cost**

Optimal Substructure Property

- ullet Consider an optimal solution T for alphabet C. Let x and y be any two sibling leaf nodes in T. Let z be the parent node of x and y in T.
- Consider the subtree T' where $T' = T \{x, y\}$.
 - Here, consider z as a new character, where

$$\bullet f[z] = f[x] + f[y]$$

• Optimal substructure property: T' must be optimal for the alphabet C', where $C'=C-\{x,y\}\cup\{z\}$

Reminder:

$$B(T) = \sum_{c \in C} f[c] d_T(c)$$

Try to express B(T) in terms of $B(T^{\prime})$.

Note: All characters in C' have the same depth in T and T'.

$$B(T) = B(T') - cost(z) + cost(x) + cost(y)$$

Reminder:

$$B(T) = \sum_{c \in C} f[c] d_T(c)$$

$$egin{aligned} B(T) &= B(T') - cost(z) + cost(x) + cost(y) \ &= B(T') - f[z].d_T(z) + f[x].d_T(x) + f[y].d_T(y) \ &= B(T') - f[z].d_T(z) + (f[x] + f[y])(d_T(z) + 1) \ &= B(T') - f[z].d_T(z) + f[z](d_T(z) + 1) \ &= B(T') - f[z] \end{aligned}$$

$$d_T(x)=d_T(z)+1 \ d_T(y)=d_T(z)+1$$

$$B(T) = B(T') + f[x] + f[y]$$

ullet We want to prove that T' is optimal for

$$\circ \ C' = C – \{x,y\} \cup \{z\}$$

- Assume by contradiction that that there exists another solution for C' with smaller cost than T'. Call this solution R':
- B(R') < B(T')
- ullet Let us construct another prefix tree R by adding x&y as children of z in R'

$$B(T) = B(T') + f[x] + f[y]$$

- Let us construct another prefix tree R by adding x&y as children of z in R'.
- We have:

$$\circ \ B(R) = B(R') + f[x] + f[y]$$

• In the beginning, we assumed that:

$$\circ B(R') < B(T')$$

• So, we have:

$$\circ \ B(R) < B(T') + f[x] + f[y] = B(T)$$

Contradiction! Proof complete

Greedy Algorithm for Huffman Coding - Summary

- For the greedy algorithm, we have proven that:
 - The greedy choice property holds.
 - The optimal substructure property holds.
- So, the greedy algorithm is optimal.

References

- Introduction to Algorithms, Third Edition | The MIT Press
- Bilkent CS473 Course Notes (new)
- Bilkent CS473 Course Notes (old)

$$-End-Of-Week-9-Course-Module-$$

