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Huffman Codes
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Huffman Codes for Compression

Widely used and very effective for data compression

Savings of 20% - 90% typical

(depending on the characteristics of the data)

In summary: Huffman’s greedy algorithm uses a table of frequencies of character occurrences to
build up an optimal way of representing each character as a binary string.
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Binary String Representation - Example

Consider a data file with:

100K characters

Each character is one of 

Frequency of each character in the file:

frequency:	

Binary character code: Each character is represented by a unique binary string.

Intuition:

Frequent characters  shorter codewords

Infrequent characters  longer codewords
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{a, b, c, d, e, f}

, , , , , ​a

45K

b

13K

c

12K

d

16K

e

9K

​f

5K

⇔

⇔

 RTEU CE100 Week-9 5



Binary String Representation - Example

​ ​ ​ ​ ​ ​

characters
frequency

fixed-length
variable-length(1)
variable-length(2)

a

45K
000
0
0

b

13K
001
101
10

c

12K
010
100
110

d

16K
011
111
1110

e

9K
100
1101
11110

f

5K
101
1100
11111

How many total bits needed for fixed-length codewords?


How many total bits needed for variable-length(1) codewords?


How many total bits needed for variable-length(2) codewords?
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100K × 3 = 300K bits

45K × 1 + 13K × 3 + 12K × 3 + 16K × 3 + 9K × 4 + 5K × 4 = 224K

45K × 1 + 13K × 2 + 12K × 3 + 16K × 4 + 9K × 5 + 5K × 5 = 241K
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Prefix Codes

Prefix codes: No codeword is also a prefix of some other codeword
Example:

​ ​ ​ ​ ​ ​

characters
codeword

a

0
b

101
c

100
d

111
e

1101
f

1100

It can be shown that:
Optimal data compression is achievable with a prefix code

In other words, optimality is not lost due to prefix-code restriction.
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Prefix Codes: Encoding

​ ​ ​ ​ ​ ​

characters
codeword

a

0
b

101
c

100
d

111
e

1101
f

1100

Encoding: Concatenate the codewords representing each character of the file

Example: Encode file "abc" using the codewords above

Note: "." denotes the concatenation operation. It is just for illustration purposes,
and does not exist in the encoded string.
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Prefix Codes: Decoding

Decoding is quite simple with a prefix code

The first codeword in an encoded file is unambiguous
because no codeword is a prefix of any other

Decoding algorithm:
Identify the initial codeword
Translate it back to the original character

Remove it from the encoded file

Repeat the decoding process on the remainder of the encoded file.
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Prefix Codes: Decoding - Example

​ ​ ​ ​ ​

characters
codeword

a

0
b

101
c

100
d

111
e

1101
f

1100

Example: Decode encoded file 
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001011101
001011101

0.01011101
0.0.1011101

0.0.101.1101

0.0.101.1101
aabe
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Prefix Codes

Convenient representation for the prefix code:

a binary tree whose leaves are the given characters

Binary codeword for a character is the path from the

root to that character in the binary tree

" " means "go to the left child"

" " means "go to the right child"
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Binary Tree Representation of Prefix Codes

Weight of an internal node: sum of weights of the leaves in its subtree
The binary tree corresponding to the fixed-length code
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Binary Tree Representation of Prefix
Codes

Weight of an internal node: sum of weights of the
leaves in its subtree

The binary tree corresponding to the optimal
variable-length code

An optimal code for a file is always represented by
a full binary tree
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Full Binary Tree Representation of Prefix Codes

Consider an FBT corresponding to an optimal prefix code

It has  leaves (external nodes)

One for each letter of the alphabet where  is the alphabet from which the characters are drawn

Lemma: An FBT with  external nodes has exactly  internal nodes

CE100 Algorithms and Programming II
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Full Binary Tree Representation of Prefix Codes

Consider an  , corresponding to a prefix code.

Notation:
: frequency of character c in the file

: depth of 's leaf in the  

: the number of bits required to encode the file

What is the length of the codeword for ?
, same as the depth of  in 

How to compute , cost of tree ?
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FBT T

f(c)

d ​(c)T c FBT T

B(T )

c

d ​(c)T c T

B(T ) T

B(T ) = ​f(c)d ​(c)
c∈C
∑ T
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Cost Computation - Example

B(T ) = ​f(c)d ​(c)
c∈C

∑ T

B(T ) =

=

(45 × 1) + (12 × 3)+

(13 × 3) + (16 × 3)+

(5 × 4) + (9 × 4)

224
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Prefix Codes

Lemma: Let each internal node i is labeled with

the sum of the weight  of the leaves in its subtree

Then

B(T ) = ​f(c)d ​(c) =
c∈C

∑ T ​w(i)
i∈I ​T

∑

where  is the set of internal nodes of 

Proof: Consider a leaf node  with  & 

Then,  appears in the weights of  internal node

along the path from  to the root

Hence,  appears  times in the above summation
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w(i)

I ​T T

c f(c) d ​(c)T

f(c) d ​(c)T

c

f(c) d ​(c)T
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Cost Computation -
Example

B(T ) = ​w(i)
i∈I ​T

∑

B(T ) =

=

100 + 55+

25 + 30 + 14

224
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Constructing a Huffman Code

Problem Formulation: For a given character set C, construct an optimal prefix
code with the minimum total cost

Huffman invented a greedy algorithm that constructs an optimal prefix code
called a Huffman code

The greedy algorithm

builds the FBT corresponding to the optimal code in a bottom-up manner

begins with a set of  leaves

performs a sequence of  "merges" to create the final tree
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Constructing a Huffman Code

A priority queue , keyed on , is used

to identify the two least-frequent objects to merge

The result of the merger of two objects is a new object

inserted into the priority queue according to its frequency

which is the sum of the frequencies of the two objects merged

CE100 Algorithms and Programming II

Q f
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Constructing a Huffman Code

Priority queue is implemented as a binary heap
Initiation of  ( ):  time

 &  take  time on  with  objects
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Q BUILD-HEAP O(n)

EXTRACT-MIN INSERT O(lgn) Q n
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Constructing a Huffman Code

​ ​

HUFFMAN(c)

n ← ∣C∣

Q ← BUILD-HEAP(c)

for i ← 1 to n − 1 do

z ← ALLOCATE-NODE()

x ← left[z] ← EXTRACT-MIN(Q)

y ← right[z] ← EXTRACT-MIN(Q)

f [z] ← f [x] ← f [y]

INSERT(Q, z)

return EXTRACT-MIN(Q) ⊲ one object left in Q

CE100 Algorithms and Programming II
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Constructing a Huffman Code - Example

Start with one leaf node for each character
The  nodes with the least frequencies: 

Merge  and create an internal node

Set the internal node frequency to 
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2 f&e

f&e

5 + 9 = 14
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Constructing a Huffman Code - Example

The 2 nodes with least frequencies: 
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b&c
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Constructing a Huffman Code - Example
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Constructing a Huffman Code -
Example
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Constructing a Huffman Code -
Example
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Constructing a Huffman Code -
Example
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Correctness Proof of Huffman’s Algorithm

We need to prove:

The greedy choice property

The optimal substructure property

What is the greedy step in Huffman’s algorithm?

Merging the two characters with the lowest frequencies

We will first prove the greedy choice property

CE100 Algorithms and Programming II
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Greedy Choice Property

Lemma 1: Let  be two characters in  having the lowest frequencies.

Then,  an optimal prefix code for  in which the codewords for  have the same length and
differ only in the last bit

Note: If  are merged in Huffman’s algorithm, their codewords are guaranteed to have the
same length and they will differ only in the last bit.

Lemma 1 states that there exists an optimal solution where this is the case.
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x&y C

∃ C x&y

x&y
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Greedy Choice Property - Proof

Outline of the proof:

Start with an arbitrary optimal solution
Convert it to an optimal solution that satisfies the greedy choice property.

Proof: Let  be an arbitrary optimal solution where:

 are the sibling leaves with the max depth

 are the characters with the lowest frequencies

CE100 Algorithms and Programming II

T

b&c

x&y
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Greedy Choice Property -
Proof

Reminder:
 are the nodes with max

depth
 are the nodes with min

freq.
Without loss of generality, assume:

Then, it must be the case that:
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b&c

x&y

f(x) ≤ f(y)

f(b) ≤ f(c)

f(x) ≤ f(b)

f(y) ≤ f(c)
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Greedy Choice Property - Proof

: exchange the positions of the leaves 

: exchange the positions of the leaves 

CE100 Algorithms and Programming II

T ⇒ T ′ b&x

T ⇒′ T ′′ c&y
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Greedy Choice Property - Proof
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Greedy Choice Property - Proof

Reminder: Cost of tree 

B(T ) = ​f(c)d ​(c)
c∈C

∑ T ′

How does  compare to ?

Reminder: 
 and 

CE100 Algorithms and Programming II

T ′

B(T )′ B(T )

f(x) ≤ f(b)
d ​(x) =T ′ d ​(b)T d ​(b) =T ′

d ​(x)T
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Greedy Choice Property - Proof

Reminder: 

 and 

The difference in cost between  and :

B(T ) − B(T ) =′
​f(c)d ​(c) − ​f(c)d ​(c)

c∈C

∑ T

c∈C

∑ T ′

= f [x]d ​(x) + f [b]d ​(b) − f [x]d ​(x) − f [b]d ​(b)T T T ′ T ′

= f [x]d ​(x) + f [b]d ​(b) − f [x]d ​(x) − f [b]d ​(b)T T T T

= f [b](d ​(b) + d ​(x)) − f [x](d ​(b) − d ​(x))T T T T

= (f [b] − f [x])(d ​(b) + d ​(x))T T

CE100 Algorithms and Programming II

f(x) ≤ f(b)

d ​(x) =T ′ d ​(b)T d ​(b) =T ′ d ​(x)T

T T ′
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Greedy Choice Property - Proof

​

B(T ) − B(T ) = (f [b] − f [x])(d ​(b) + d ​(x))′
T T

Since  and 
therefore 

In other words,  is also optimal
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f [b] − f [x] ≥ 0 d ​(b) ≥T d ​(x)T

B(T ) ≤′ B(T )

T ′
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Greedy Choice Property - Proof
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Greedy Choice Property - Proof

We can similarly show that

which implies 

Since  is optimal  is also optimal

Note:  contains our greedy choice:

Characters  appear as sibling leaves of max-depth in 

Hence, the proof for the greedy choice property is complete
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B(T ) −′ B(T ) ≥′′ 0 ⇒ B(T ) ≤′′ B(T )′

B(T ) ≤′′ B(T )

T ⇒ B(T ) =′′ B(T ) ⇒ T ′′

T ′′

x&y T ′′
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Greedy-Choice Property of Determining an Optimal Code

Lemma 1 implies that

process of building an optimal tree

by mergers can begin with the greedy choice of merging

those two characters with the lowest frequency

We have already proved that  , that is,

the total cost of the tree constructed

is the sum of the costs of its mergers (internal nodes) of all possible mergers

At each step Huffman chooses the merger that incurs the least cost
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B(T ) = ​w(i)
i∈I ​T

∑
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Optimal Substructure Property

Consider an optimal solution  for alphabet . Let  and 
be any two sibling leaf nodes in . Let  be the parent node
of  and  in .

Consider the subtree  where .
Here, consider z as a new character, where

Optimal substructure property:  must be optimal for the
alphabet ,

where 
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T C x y

T z

x y T

T ′ T =′ T–{x, y}

f [z] = f [x] + f [y]

T ′

C ′

C =′ C–{x, y} ∪ {z}
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Optimal Substructure Property - Proof

Reminder:

B(T ) = ​f [c]d ​(c)
c∈C

∑ T

Try to express  in terms of .

Note: All characters in  have the same depth in  and .

B(T ) = B(T )–cost(z) +′ cost(x) + cost(y)

CE100 Algorithms and Programming II

B(T ) B(T )′

C ′ T T ′
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Optimal Substructure Property - Proof

Reminder:

B(T ) = ​f [c]d ​(c)
c∈C

∑ T

​ ​

B(T ) = B(T )–cost(z) + cost(x) + cost(y)′

= B(T ) − f [z].d ​(z) + f [x].d ​(x) + f [y].d ​(y)′
T T T

= B(T ) − f [z].d ​(z) + (f [x] + f [y])(d ​(z) + 1)′
T T

= B(T ) − f [z].d ​(z) + f [z](d ​(z) + 1)′
T T

= B(T ) − f [z]′

​

d ​(x) = d ​(z) + 1T T

d ​(y) = d ​(z) + 1T T

​

B(T ) = B(T ) + f [x] + f [y]′

CE100 Algorithms and Programming II
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Optimal Substructure Property - Proof

We want to prove that  is optimal for

Assume by contradiction that that there exists another
solution for  with smaller cost than . Call this solution :

Let us construct another prefix tree  by adding  as
children of  in 

​

B(T ) = B(T ) + f [x] + f [y]′

CE100 Algorithms and Programming II

T ′

C =′ C–{x, y} ∪ {z}

C ′ T ′ R′

B(R ) <′ B(T )′

R x&y
z R′
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Optimal Substructure Property - Proof

Let us construct another prefix tree  by adding  as
children of  in .

We have:

In the beginning, we assumed that:

So, we have:

Contradiction! Proof complete
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R x&y
z R′

B(R) = B(R ) +′ f [x] + f [y]

B(Rʹ) < B(T )′

B(R) < B(T ) +′ f [x] + f [y] = B(T )
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Greedy Algorithm for Huffman Coding - Summary

For the greedy algorithm, we have proven that:
The greedy choice property holds.

The optimal substructure property holds.

So, the greedy algorithm is optimal.
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