CE100 Algorithms and Programming ||

CE100 Algorithms and Programming |l

Week-7 (Greedy Algorithms, Knapsack)

Spring Semester, 2021-2022
Download DOC, SLIDE, PPTX

#eseh) RTEU CE100 Week-7

file:///E:/UgurCoruh/RTEU/Lectures/2021-2022%20Bahar%20CE100%20-%20Algorithms%20and%20Programming%20II/ce100-algorithms-and-programming-II/docs/week-7/ce100-week-7-knapsack.en.md_doc.pdf
file:///E:/UgurCoruh/RTEU/Lectures/2021-2022%20Bahar%20CE100%20-%20Algorithms%20and%20Programming%20II/ce100-algorithms-and-programming-II/docs/week-7/ce100-week-7-knapsack.en.md_slide.pdf
file:///E:/UgurCoruh/RTEU/Lectures/2021-2022%20Bahar%20CE100%20-%20Algorithms%20and%20Programming%20II/ce100-algorithms-and-programming-II/docs/week-7/ce100-week-7-knapsack.en.md_slide.pptx

CE100 Algorithms and Programming |l

Greedy Algorithms, Knapsack

Outline

e Greedy Algorithms and Dynamic Programming Differences

e Greedy Algorithms
o Activity Selection Problem

o Knapsack Problems
= The 0-1 knapsack problem

= The fractional knapsack problem

% RTEU CE100 Week-7

CE100 Algorithms and Programming |l

Activity Selection Problem

983 RTEU CE100 Week-7

CE100 Algorithms and Programming |l

Activity Selection Problem

e \We have;

o A set of activities with fixed start and finish times

o One shared resource (only one activity can use at any time)

e Objective: Choose the max number of compatible activities

e Note: Objective is to maximize the number of activities, not the total time of
activities.

e Example:

o Activities: Meetings with fixed start and finish times

o Shared resource: A meeting room

= = Objective: Schedule the max number of meetings
Y RTEU CE100 Week-7

CE100 Algorithms and Programming |l

Activity Selection Problem

e Input: aset S = {a1,aq,...,a,} of nactivities
e g, :Start time of activity a;,
e f; : Finish time of activity a;
Activity ¢ takes place in [s;, f;)
e Aim: Find max-size subset A of mutually compatible activities
o Max number of activities, not max time spent in activities

o Activities ¢ and j are compatible if intervals |s;, f;) and [s;, f;) do not
overlap, i.e, either s; > f; ors; > f;

% RTEU CE100 Week-7

CE100 Algorithms and Programming |l

Activity Selection Problem An Example

S=11,4),/57),|2,8),[3,11),[8,15), 13, 18)

1 J2)3]4)5])6])7]8]odrol11]12)13J14J15416]17]18

iesth| RTEU CE100 Week-7

CE100 Algorithms and Programming |l

Optimal Substructure Property

e Consider an optimal solution A for activity set .S.

e Let k be the activity in A with the earliest finish time

S
k
——————— emmm——— e——

% RTEU CE100 Week-7

CE100 Algorithms and Programming |l

Optimal Substructure Property

e Consider an optimal solution A for activity set .S.

e Let k be the activity in A with the earliest finish time

e Now, consider the subproblem S,'~€ that has the activities that start after k finishes,

ie. S, = {a; € S:s8 > fi}

e \What can we say about the optimal solution to S;c ?

RTEU CE100 Week-7

CE100 Algorithms and Programming |l

Optimal Substructure Property

e Consider an optimal solution A for activity set .S.

e Let k be the activity in A with the earliest finish time

e Now, consider the subproblem S,'~€ that has the activities that start after k finishes,
ie. S, = {a; € S:s8 > fi}
o A — {k} is an optimal solution for .S} . Why?

RTEU CE100 Week-7

CE100 Algorithms and Programming |l

Optimal Substructure

e Theorem: Let k be the activity with the earliest finish time in an optimal soln A C
S then
o A — {k} is an optimal solution to subproblem

oS, ={a;, €S:s8 > fi}
e Proof (by contradiction):
o > Let B’ be an optimal solution to S,; and

" |B| > |A—{k}| =4[-1
o Then, B = B U{k} is compatible and
B|=|B'|+1> |A
o Contradiction to the optimality of A
— Q.E.D.

% RTEU CE100 Week-7

10

CE100 Algorithms and Programming |l

Optimal Substructure

e Recursive formulation: Choose the first activity k, and then solve the remaining
subproblem S,

e How to choose the first activity k?

o DP memoized recursion?
= j.e. choose the k value that will have the max size for S,;

e DP would work,

o but is it necessary to try all possible values for k?

% RTEU CE100 Week-7

11

CE100 Algorithms and Programming |l

Greedy Choice Property

e Assume (without loss of generality) f1 < fo < .- < f,
o If not, sort activities according to their finish times in non-decreasing order

e Greedy choice property: a sequence of locally optimal (greedy) choices = an
optimal solution

e How to choose the first activity greedily without losing optimality?

% RTEU CE100 Week-7

12

CE100 Algorithms and Programming |l

Greedy Choice Property - Theorem

e Letactivity set S = {aq,a2,...a,}, where fi < fo <--- < f,

e Theorem: There exists an optimal solution A C S suchthata; € A

In other words, the activity with the earliest finish time is guaranteed to be in an
optimal solution.

% RTEU CE100 Week-7

13

~"Greedy Choic

% RTEU CE100 Week-7

Property - Proof

e Theorem: There exists an optimal solution A C S suchthata; € A

e Proof: Consider an arbitrary optimal solution B = {ag, as, G, - - . }, where

fo <Jfe<fm<...

o If k = 1, then B starts with a1, and the proof is complete

o If K > 1, then create another solution B’ by replacing a; with ay. Since

fi < fr, B'is guaranteed to be valid, and |B’'| = |B

, hence also optimal

B
ag ay Am
c]
B/
ag ay A
C———0 Om—— Oeeeeeee———

14

CE100 Algorithms and Programming |l

Greedy Algorithm

e So far, we have:
o Optimal substructure property: If A = {ag, ... } is an optimal solution, then

A — {a } must be optimal for subproblem S, where Sk’ = {a; € S :
Si > [k}

» Note: ay, is the activity with the earliest finish time in A

o Greedy choice property: There is an optimal solution A that contains a;
= Note: a; is the activity with the earliest finish time in .S

% RTEU CE100 Week-7

15

CE100 Algorithms and Programming |l

Greedy Algorithm

S

ai

ai

explained in the next slide..

 RTEU CE100 Week-7

16

CE100 Algorithms and Programming |l

Greedy Algorithm

e Theorem: There exists an optimal solution A C S suchthata; € A

e Basic idea of the greedy algorithm:

o Addajto 4

o Solve the remaining subproblem S7, and then append the result to A

e Remember arbitary optimal solution explaination from previous sections (finish
time order is important for a; selection with star time and overlapping
checking)

© B:{ak,ag,am,...},
o where fr < for < frn < ...

il RTEU CE100 Week-7 17

CE100 Algorithms and Programming |l

Greedy Algorithm for Activity Selection

Definitions in Greedy Algorithm:

* j:specifies the index of most recent activity added to A
o fi = Maz{fy:k € A}, maxfinish time of any activity in A;

© because activities are processed in non-decreasing order of finish times
e Thus, s; > f; checks the compatibility of ¢ to current A

 Running time: ©(n) assuming that the activities were already sorted.

% RTEU CE100 Week-7

18

~"Greedy Algorithm for Activity Selection

Pseudocode for Greedy Algorithm:

% RTEU CE100 Week-7

GAS(s, f,n) {
A+ {1}
7+ 1
for s < 2tondo
if s; > f; then
A+ AU {i}
] 1
endif

endfor

}

19

CE100 Algorithms and Programming |l

Greedy Algorithm for Activity Selection, An Example (Step-1)

PN 5 = {[1,4),[5,7),(2,8),[3,11),[8,15),[13,18)}

1 J243a)s5)e)7]s]oliofi1)i2)1314]15016]17]18

iesth| RTEU CE100 Week-7

20

CE100 Algorithms and Programming |l

Greedy Algorithm for Activity Selection, An Example (Step-2)

PR 5 = {[1.4),[5,7),[2,8),[3,11),[8,15),[13,18)}

1 J243a)s5)e)7]s]oliofi1)i2)1314]15016]17]18

iesth| RTEU CE100 Week-7

21

CE100 Algorithms and Programming |l

Greedy Algorithm for Activity Selection, An Example (Step-3)

PR 5 = {[1,4),[5,7),[2,8),[3,11),[8,15),[13,18)}

1 J243a)s5)e)7]s]oliofi1)i2)1314]15016]17]18

iesth| RTEU CE100 Week-7

22

CE100 Algorithms and Programming |l

Greedy Algorithm for Activity Selection, An Example (Step-4)

PR 5 = {[1,4),[5,7),[2,8),[3,11),[8,15),[13,18)}

1 J243a)s5)e)7]s]oliofi1)i2)1314]15016]17]18

iesth| RTEU CE100 Week-7

23

CE100 Algorithms and Programming |l

Greedy Algorithm for Activity Selection, An Example (Step-5)

PR 5 = {[1,4),[5,7),[2,8),[3,11),[8,15),[13,18)}

1 J243a)s5)e)7]s]oliofi1)i2)1314]15016]17]18

iesth| RTEU CE100 Week-7

24

CE100 Algorithms and Programming |l

Greedy Algorithm for Activity Selection, An Example (Step-6)

PRERYY 5 = {[1,4),[5,7),[2,8),[3,11), 8,15), [13,18)}

1 J243a)s5)e6)7]s]olfiofi1)i2)13]14]15016]17]18

iesth| RTEU CE100 Week-7

25

CE100 Algorithms and Programming |l

Greedy Algorithm for Activity Selection, An Example (Step-7)

Final Solution

S = {[17 4)7 [57 7)7 [27 8)7 [37 11)7 [87 15)7 [137 18)}

1 J203]4)s5)6)7]8]ofiofi1}12]13f14f15016]17]18

A={1,2,5)

983 RTEU CE100 Week-7

26

CE100 Algorithms and Programming |l

Comparison of DP and Greedy Algorithms

983 RTEU CE100 Week-7

27

CE100 Algorithms and Programming |l

Reminder: DP-Based Matrix Chain Order

m;; = MIN{m + myi1,; + pi_1pep; }

1<k<j

e \We don’t know ahead of time which k value to choose.

e We first need to compute the results of subproblems m;; and my1 ; before
computing 1m;;

e The selection of k is done based on the results of the subproblems.

% RTEU CE100 Week-7

28

CE100 Algorithms and Programming |l

Greedy Algorithm for Activity Selection

S
® O
©
® ® Ome——)
ai
C ¢ Oo—mmmmmmg @ o
/
Sl
[
C—
ai
@ ® Ommmmmmmnl) "]

explained in the next slide..

% RTEU CE100 Week-7

CE100 Algorithms and Programming |l

Greedy Algorithm for Activity Selection

e Make a greedy selection in the beginning:
o Choose a; (the activity with the earliest finish time)

e Solve the remaining subproblem S’ (all activities that start after a1)

% RTEU CE100 Week-7

30

CE100 Algorithms and Programming |l

Greedy vs Dynamic Programming

e Optimal substructure property exploited by both Greedy and DP strategies

e Greedy Choice Property: A sequence of locally optimal choices = an optimal solution
© We make the choice that seems best at the moment

o Then solve the subproblem arising after the choice is made
* DP: We also make a choice/decision at each step, but the choice may depend on the optimal
solutions to subproblems

® Greedy: The choice may depend on the choices made so far, but it cannot depend on any future

choices or on the solutions to subproblems

% RTEU CE100 Week-7

31

CE100 Algorithms and Programming |l

Greedy vs Dynamic Programming

® DP is a bottom-up strategy (use memory to store the results of subproblems)

* Greedy is a top-down strategy (make choices at each step)
o each greedy choice in the sequence iteratively reduces each problem to a similar but smaller
problem

% RTEU CE100 Week-7

32

CE100 Algorithms and Programming |l

Proof of Correctness of Greedy Algorithms

® Examine a globally optimal solution

e Show that this soln can be modified so that
o (1) A greedy choice is made as the first step

© (2) This choice reduces the problem to a similar but smaller problem
* Apply induction to show that a greedy choice can be used at every step

® Showing (2) reduces the proof of correctness to proving that the problem exhibits optimal
substructure property

% RTEU CE100 Week-7

33

CE100 Algorithms and Programming |l

Greedy Choice Property - Proof

e Theorem: There exists an optimal solution A C S suchthata; € A

* Proof: Consider an arbitrary optimal solution B = {ay, as, @, ... }, where fr. < fi < f, <

o If k = 1, then B starts with a1, and the proof is complete

o If k > 1, then create another solution B’ by replacing a with a1. Since f1 < f, B’ is

guaranteed to be valid, and |B’| = | B|, hence also optimal

B

% RTEU CE100 Week-7

CE100 Algorithms and Programming |l

Elements of Greedy Strategy

®* How can you judge whether
* A greedy algorithm will solve a particular optimization problem?
* Two key ingredients

o Greedy choice property

o Optimal substructure property

% RTEU CE100 Week-7

35

CE100 Algorithms and Programming |l

Key Ingredients of Greedy Strategy

e Greedy Choice Property: A globally optimal solution can be arrived at by making locally optimal
(greedy) choices

* |In DP,we make a choice at each step but the choice may depend on the solutions to
subproblems

* In Greedy Algorithms, we make the choice that seems best at that moment then solve the
subproblems arising after the choice is made

o The choice may depend on choices so far, but it cannot depend on any future choice or on
the solutions to subproblems

® DP solves the problem bottom-up

® Greedy usually progresses in a top-down fashion by making one greedy choice after another
reducing each given problem instance to a smaller one

% RTEU CE100 Week-7

36

CE100 Algorithms and Programming |l

Key Ingredients: Greedy Choice Property

* We must prove that a greedy choice at each step yields a globally optimal solution
® The proof examines a globally optimal solution

e Shows that the soln can be modified so that a greedy choice made as the first step reduces the
problem to a similar but smaller subproblem

® Then induction is applied to show that a greedy choice can be used at each step

® Hence, this induction proof reduces the proof of correctness to demonstrating that an optimal
solution must exhibit optimal substructure property

5 RTEU CE100 Week-7 37

CE100 Algorithms and Programming |l

Key Ingredients: Greedy Choice Property

* How to prove the greedy choice property?
o Consider the greedy choice ¢

o Assume that there is an optimal solution B that doesn’t contain c.
o Show that it is possible to convert B to another optimal solution B’, where B’ contains c.

* Example: Activity selection algorithm
o Greedy choice: aj (the activity with the earliest finish time)

o Consider an optimal solution B without a4
o Replace the first activity in B with a; to construct B’

o Prove that B’ must be an optimal solution

RTEU CE100 Week-7

38

CE100 Algorithms and Programming |l

Key Ingredients: Optimal Substructure

* A problem exhibits optimal substructure if an optimal solution to the problem contains within it
optimal solutions to subproblems

e Example: Activity selection problem S
o |If an optimal solution A to S begins with activity al then the set of activities
A =A—{a1}
© is an optimal solution to the activity selection problem
S'={a; €8S :s > fi}

o where s; is the start time of activity a; and f; is the finish time of activity a;

% RTEU CE100 Week-7

39

CE100 Algorithms and Programming |l

Key Ingredients: Optimal Substructure

® Optimal substructure property is exploited by both Greedy and dynamic programming strategies
®* Hence one may

o Try to generate a dynamic programming soln to a problem when a greedy strategy suffices
inefficient

© Or, may mistakenly think that a greedy soln works when in fact a DP soln is required
Incorrect

®* Example: Knapsack Problems(S, w)

RTEU CE100 Week-7

40

CE100 Algorithms and Programming |l

P
ooooooo

Knapsack Problems

| RTEU CE100 Week-7

41

CE100 Algorithms and Programming |l

Knapsack Problem

e Each item ¢ has: = m’ﬂ

o weight w;

o value v;
* A thief has a knapsack of weight capacity w) m@

e Which items to choose to maximize the value of

the items in the knapsack? m

{| RTEU CE100 Week-7 42

CE100 Algorithms and Programming |l

Knapsack Problem: Two Versions

®* The 0-1 knapsack problem:

o Each item is discrete.
o Each item either chosen as a whole or not chosen.

o Examples: TV, laptop, gold bricks, etc.
* The fractional knapsack problem:

© Can choose fractional part of each item.
o If item i has weight wi, we can choose any amount < wi

o Examples: Gold dust, silver dust, rice, etc.

% RTEU CE100 Week-7

43

CE100 Algorithms and Programming |l

Knapsack Problems

e The 0-1Knapsack Problem(S, W)

o A thief robbing a store finds n items S = {I4, I», . .., I, }, the ith item is worth v; dollars
and weighs w; pounds, where vi and wi are integers

o He wants to take as valuable a load as possible, but he can carry at most W pounds in his

knapsack, where W is an integer

o The thief cannot take a fractional amount of an item
* The Fractional Knapsack Problem (S, W)

o The scenario is the same

o But, the thief can take fractions of items rather than having to make binary (0 — 1) choice
for each item

% RTEU CE100 Week-7

44

CE100 Algorithms and Programming |l

Optimal Substructure Property for the 0-1 Knapsack Problem (S, W)

® Consider an optimal load L for the problem (S, W).
® |etlj be anitem chosen in L with weight wj

® Assume we remove |j from L, and let:

L;- = LH{I;}
S; = 5-{1;}
W], = W—wj

* Q: What can we say about the optimal substructure property?

iesth| RTEU CE100 Week-7

45

CE100 Algorithms and Programming |l

Optimal Substructure Property for the 0-1 Knapsack Problem (S, W)

L;- = LH{I;}
S; = 5—{1;}
WJ, — W—'wj

® Optimal substructure property:
o L’ must be an optimal solution for (S5, W)

e Why?
o If we remove item j from L, we can construct a new optimal solution L for (55, W)

o If L is optimal, then L must be optimal

iesth| RTEU CE100 Week-7

46

CE100 Algorithms and Programming |l

Optimal Substructure Property for the 0-1 Knapsack Problem (S, W)

L; = L-{I;}
S; = S—{I;}
W]’ — W—'wj

e Optimal substructure: L’; must be an optimal solution for (57, W)
* Proof: By contradiction, assume there is a solution B; for (57, W), which is better than L’.

o We can construct a solution B for the original problem (S, W) as: B = Bj'U I3.

o The total value of B is now higher than L, which is a contradiction because L is optimal for

(S, W).
« Q.E.D.
—_—
ﬁ RTEU CE100 Week-7 47

CE100 Algorithms and Programming |l

Optimal Substructure Property for the Fractional Knapsack Problem (S, W)

e Consider an optimal solution L for (S, W)

e If we remove a weight 0 < w < w; of item 7 from optimal load L and let:
o The remaining load
L; = L — {w pounds of I;}
o must be a most valuable load weighing at most
W]' =W —w
o pounds that the thief can take from
S; =8 — {I;} U{w; — w pounds of I;}

e Thatis, Lj” should be an optimal soln to the

_ Fractional Knapsack Problem(S’, W)

% RTEU CE100 Week-7

CE100 Algorithms and Programming |l

Knapsack Problems

e Two different problems:

© 0-1 knapsack problem

© Fractional knapsack problem
® The problems are similar.
o Both problems have optimal substructure property.

* Which algorithm to solve each problem?

% RTEU CE100 Week-7

49

CE100 Algorithms and Programming |l

Fractional Knapsack Problem

® Can we use a greedy algorithm?

* Greedy choice: Take as much as possible from the item with the largest value per pound v; /w;

® Does the greedy choice property hold?

o Let j be the item with the largest value per pound v; /'wj
o Need to prove that there is an optimal load that has as much 7 as possible.

o Proof: Consider an optimal solution L that does not have the maximum amount of item j. We
could replace the items in L with item j until L has maximum amount of 3. L would still be

optimal, because item jJ has the highest value per pound.

% RTEU CE100 Week-7

50

CE100 Algorithms and Programming |l

Greedy Solution to Fractional Knapsack

® (1) Compute the value per pound fvi/w,- for each item
e (2) The thief begins by taking, as much as possible, of the item with the greatest value per pound

® (3) If the supply of that item is exhausted before filling the knapsack, then he takes, as much as
possible, of the item with the next greatest value per pound

® (4) Repeat (2-3) until his knapsack becomes full

Thus, by sorting the items by value per pound the greedy algorithm runs in O(nlgn) time

% RTEU CE100 Week-7

51

CE100 Algorithms and Programming |l
Fractional Knapsack Problem: Example

20 kg $80

20 kg $100

10 kg $60

wy = 10kg wy =20kg w1 =30kg Cgpacity = 50kg
1 =

v $60 Vo — $100 V1 — $120

iesth| RTEU CE100 Week-7

CE100 Algorithms and Programming |l

0-1 Knapsack Problem

® Can we use the same greedy algorithm?
© |s there a better solution?

wy = 10kg wy = 20kg w; = 30kg
V1 = $60 Vo = $100 V1 = $120

iesth| RTEU CE100 Week-7

20 kg $100

10 kg $60

Capacity = 50kg

Total = $160

53

CE100 Algorithms and Programming |l

0-1 Knapsack Problem

* The optimal solution for this problem is:
© This solution cannot be obtained using the greedy algorithm

30 kg $120

20 kg $100

Capacity = 50kg

Total = $220

wy = 10kg wy = 20kg w1 = 30kg
V1 = $6O Vo = $1OO V1 = $120

 RTEU CE100 Week-7

54

CE100 Algorithms and Programming |l

0-1 Knapsack Problem

* When we consider an item I; for inclusion we must compare the solutions to two subproblems

o Subproblems in which I; is included and excluded

® The problem formulated in this way gives rise to many
o overlapping subproblems (a key ingredient of DP)
= |n fact, dynamic programming can be used to solve the 0-1 Knapsack problem

% RTEU CE100 Week-7

55

CE100 Algorithms and Programming |l

0-1 Knapsack Problem

e A thief robbing a store containing n articles
o {aj,as,...,a,}
* The value of 74, article is v; dollars (v; is integer)

e The weight of 743, article is w; kg (w; is integer)

Thief can carry at most W kg in his knapsack

Which articles should he take to maximize the value of his load?

Let K, w = {ai1,as,...,a, : W} denote 0-1 knapsack problem

Consider the solution as a sequence of n decisions

o j.e., 1tp decision: whether thief should pick a; for optimal load.

% RTEU CE100 Week-7

56

CE100 Algorithms and Programming |l

Optimal Substructure Property

* Notation: K,

o The items to choose from: {a1,...,a,}

o The knapsack capacity: W
* Consider an optimal load L for problem K, s
® |et's consider two cases:

o @, isin L

° @, is notin L

% RTEU CE100 Week-7

57

CE100 Algorithms and Programming |l
Optimal Substructure Property

e Casel:Ifa,, € L

o What can we say about the optimal substructure?
= L—{a,} must be optimal for K, 1 y_yn

" n—1,W—wn-
= The items to choose from {ay,...a, 1}
= The knapsack capacity: W—wn
e Case2:Ifa, ¢ L

o What can we say about the optimal substructure?
= L must be optimal for K,,_1 w

" n—1,W-
= The items to choose from {a1,...an_1}
= The knapsack capacity: W

=

4 RTEU CE100 Week-7

58

CE100 Algorithms and Programming |l

Optimal Substructure Property

e In other words, optimal solution to K, jyr contains an

optimal solution to:
o either: Ky 1 w—wn (if ay, is selected)

o or: Kp—1,w (if @y, is not selected)

% RTEU CE100 Week-7

59

CE100 Algorithms and Programming |l

Recursive Formulation

0
clt,w| = < c[i — 1, w],

maz{v; +cli — 1, w — w;|,clit — 1, w]

% RTEU CE100 Week-7

ift:=0, orw=20
if w; > w

otherwsise

60

CE100 Algorithms and Programming |l

0-1 Knapsack Problem

® Recursive definition for value of optimal soln:
o This recurrence says that an optimal solution Sz-,w for K

= either contains a; = ¢(S;, w) = v; + ¢(Si—1.w—w,;)
= or does not contain a; = ¢(S%,w) = ¢(S;_1,w)
o If thief decides to pick a;
= He takes v; value and he can choose from {a1, as, ..., a;_1} up to the weight limit
w— w;togetcli — 1, w — w;]
o If he decides not to pick a;
= He can choose from {a1, as, ..., a;_ 1} up to the weight limit w to get c|[i — 1, w]

o The better of these two choices should be made

% RTEU CE100 Week-7

61

CE100 Algorithms and Programming |l

Bottom-up Computation

* Need to process:
o cli, w]

® after computing:
o cli —1,w],
o cli — 1, w — w;]
= forall w; < w

% RTEU CE100 Week-7

62

CE100 Algorithms and Programming |l

[[[[[[[

Bottom-up Computation

fori <+ 1tondo
forw < 1to W do

cli,w| < ...

| RTEU CE100 Week-7

w w
»
>
>
>
>

5 >
cli, w I
63

CE100 Algorithms and Programming |l

DP Solution to 0-1 Knapsack

e cisan(n+ 1) x (W +1)array;c[0...n:0...

* Note : table is computed in row-major order

e Runtime: T'(n) = O(nW)

% RTEU CE100 Week-7

Wi

64

CE100 Algorithms and Programming |l

DP Solution to 0-1 Knapsack

KNAPO-1(v,w,n, W)
for w <+ 0 to W do
cl0,w| <0
for 2 «+ 0 tom do
cli,0] < 0
for 1 < 0 tom do
for w < 1to W do
if w; < w then
cli,w| + max{v; +cli — 1,w — w;], c[i — 1,w|}
else

cli,w| < cli — 1, w|

return c\m, W]

% RTEU CE100 Week-7

65

CE100 Algorithms and Programming |l

Constructing an Optimal Solution

e No extra data structure is maintained to keep track of the choices made to
compute c|i, W]
o i.e. The choice of whether choosing item i or not
e Possible to understand the choice done by comparing c|i, w| with c|i — 1, w]
o If ¢[i, w| = c[i — 1, w)] then it means item i was assumed to be not
chosen for the best c|i, w]

% RTEU CE100 Week-7

66

CE100 Algorithms and Programming |l

Finding the Set S of Articles in an Optimal Load
SOLKNAPO-1(a,v,w,n, W, c)
14— nw<— W
S« 0

while 1 < 0 do

if cli,w| = cli — 1,w] then

11— 1
else
S+ Su{a;}
W 4— W — wj
11— 1
= return S

% RTEU CE100 Week-7

CE100 Algorithms and Programming |l

References

e Introduction to Algorithms, Third Edition | The MIT Press
e Bilkent CS473 Course Notes (new)
e Bilkent CS473 Course Notes (old)

iesth| RTEU CE100 Week-7

68

https://mitpress.mit.edu/books/introduction-algorithms-third-edition
http://nabil.abubaker.bilkent.edu.tr/473/
http://cs.bilkent.edu.tr/~ugur/teaching/cs473/

CE100 Algorithms and Programming |l

—End — Of — Week — 7 — Course — Module—

 RTEU CE100 Week-7

69

