CE100 Algorithms and Programming II

Week-7 (Greedy Algorithms, Knapsack)

Spring Semester, 2021-2022

Download DOC, SLIDE, PPTX

Greedy Algorithms, Knapsack

Outline

- Greedy Algorithms and Dynamic Programming Differences
- Greedy Algorithms
 - Activity Selection Problem
 - Knapsack Problems
 - The 0-1 knapsack problem
 - The fractional knapsack problem

CE100 Algorithms and Programming II

Activity Selection Problem

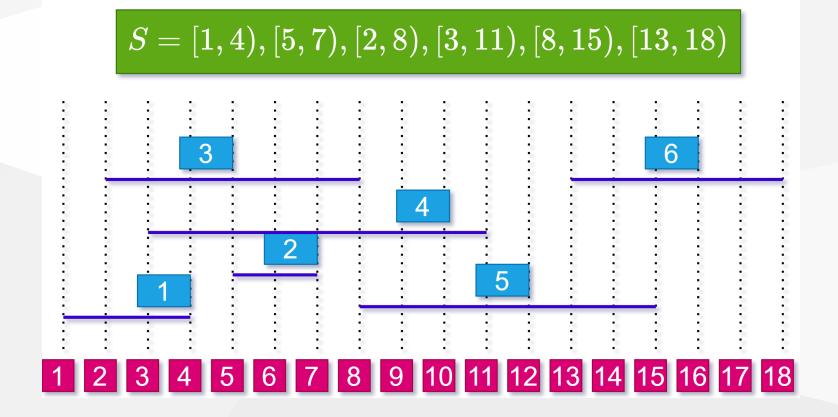
Activity Selection Problem

- We have:
 - A set of activities with fixed start and finish times
 - One shared resource (only one activity can use at any time)
- Objective: Choose the max number of compatible activities
- Note: Objective is to maximize the number of activities, not the total time of activities.
- Example:
 - Activities: Meetings with fixed start and finish times
 - Shared resource: A meeting room
 - *Objective:* Schedule the max number of meetings

Activity Selection Problem

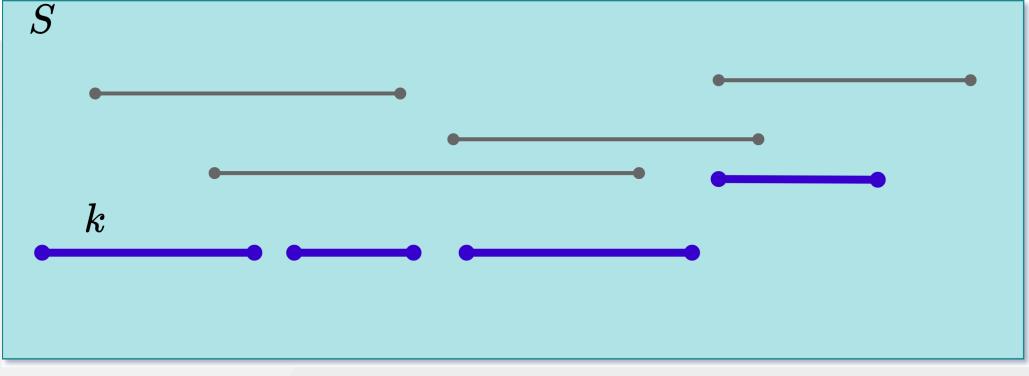
- Input: a set $S = \{a_1, a_2, \dots, a_n\}$ of n activities
- s_i : Start time of activity a_i ,
- f_i : Finish time of activity a_i Activity i takes place in $[s_i, f_i)$
- Aim: Find max-size subset A of mutually *compatible* activities
 - Max number of activities, not max time spent in activities
 - \circ Activities i and j are compatible if intervals $[s_i,f_i)$ and $[s_j,f_j)$ do not overlap, i.e., either $s_i\geq f_j$ or $s_j\geq f_i$

Activity Selection Problem An Example



Optimal Substructure Property

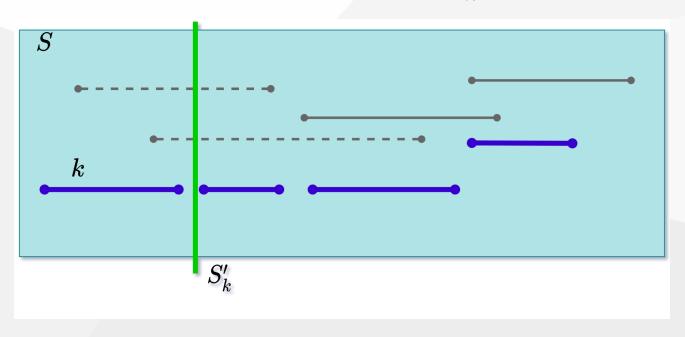
- Consider an optimal solution A for activity set S.
- Let k be the activity in A with the earliest finish time



CE100 Algorithms and Programming II

Optimal Substructure Property

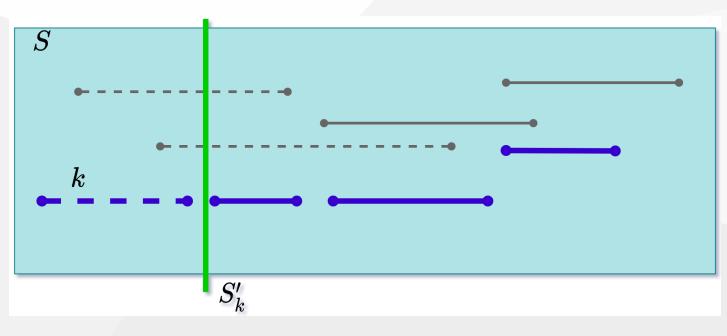
- Consider an optimal solution A for activity set S.
- Let k be the activity in A with the earliest finish time
- Now, consider the **subproblem** S'_k that has the activities that start after k finishes, i.e. $S'_k=\{a_i\in S:s_i\geq f_k\}$
- What can we say about the optimal solution to S_k^\prime ?



CE100 Algorithms and Programming II

Optimal Substructure Property

- Consider an optimal solution A for activity set S.
- Let k be the activity in A with the earliest finish time
- Now, consider the **subproblem** S'_k that has the activities that start after k finishes, i.e. $S'_k=\{a_i\in S:s_i\geq f_k\}$
- $A-\{k\}$ is an optimal solution for S'_k . Why?



Optimal Substructure

- Theorem: Let k be the activity with the earliest finish time in an optimal soln $A\subseteq S$ then
 - $\circ \ A \{k\}$ is an optimal solution to subproblem
 - $\circ \ S'_k = \{a_i \in S: s_i \geq f_k\}$
- Proof (by contradiction):
 - $\circ \, arsigma$ Let B' be an optimal solution to S'_k and
 - $|B'| > |A \{k\}| = |A| 1$
 - $\circ\;$ Then, $B=B'\cup\{k\}$ is compatible and
 - $\bullet \ |B| = |B'| + 1 > |A|$
 - $\,\circ\,$ Contradiction to the optimality of A

Optimal Substructure

- Recursive formulation: Choose the first activity k, and then solve the remaining subproblem S_k^\prime
- How to choose the first activity k?
 - DP, memoized recursion?
 - i.e. choose the k value that will have the max size for S'_k
- DP would work,

 \circ but is it necessary to try all possible values for k?

Greedy Choice Property

• Assume (without loss of generality) $f_1 \leq f_2 \leq \cdots \leq f_n$

• If not, sort activities according to their finish times in non-decreasing order

- Greedy choice property: a sequence of locally optimal (greedy) choices \Rightarrow an optimal solution
- How to choose the first activity **greedily** without losing optimality?

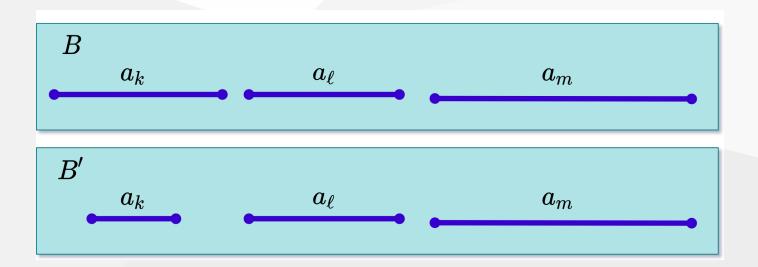
Greedy Choice Property - Theorem

- Let activity set $S=\{a_1,a_2,\ldots a_n\}$, where $f_1\leq f_2\leq \cdots \leq f_n$
- Theorem: There exists an optimal solution $A\subseteq S$ such that $a_1\in A$

In other words, the activity with the earliest finish time is guaranteed to be in an optimal solution.

Greedy Choice Property - Proof

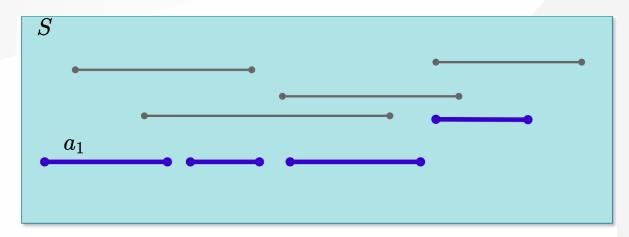
- Theorem: There exists an optimal solution $A\subseteq S$ such that $a_1\in A$
- Proof: Consider an arbitrary optimal solution $B = \{a_k, a_\ell, a_m, \dots \}$, where $f_k < f_\ell < f_m < \dots$
 - $\circ\,$ If k=1, then B starts with a_1 , and the proof is complete
 - If k>1, then create another solution B' by replacing a_k with a_1 . Since $f_1\leq f_k, B'$ is guaranteed to be valid, and |B'|=|B|, hence also optimal

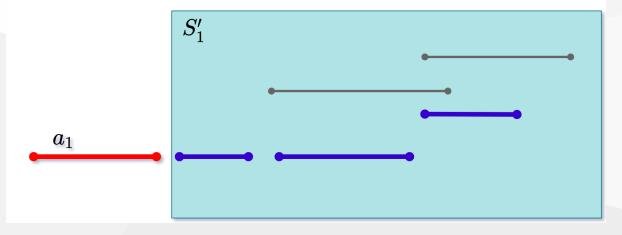


Greedy Algorithm

- So far, we have:
 - $\circ~$ Optimal substructure property: If $A=\{a_k,\dots\}$ is an optimal solution, then $A-\{a_k\}$ must be optimal for subproblem $S'_{k'}$ where $Sk'=\{a_i\in S:s_i\geq f_k\}$
 - Note: a_k is the activity with the earliest finish time in A
 - $\circ\,$ Greedy choice property: There is an optimal solution A that contains a_1
 - Note: a_1 is the activity with the earliest finish time in S

Greedy Algorithm





Greedy Algorithm

- Theorem: There exists an optimal solution $A\subseteq S$ such that $a_1\in A$
- Basic idea of the greedy algorithm:
 - $\circ\;$ Add a_1 to A
 - $\circ\,$ Solve the remaining subproblem S_1' , and then append the result to A
- Remember arbitary optimal solution explaination from previous sections (finish time order is important for a_1 selection with star time and overlapping checking)

$$\circ \; B = \{a_k, a_\ell, a_m, \dots\}$$
,

$$\circ$$
 where $f_k < f_\ell < f_m < \dots$

Greedy Algorithm for Activity Selection

Definitions in Greedy Algorithm:

- j: specifies the index of most recent activity added to A
- $f_j = Max\{f_k: k \in A\}$, max finish time of any activity in A;
 - because activities are processed in non-decreasing order of finish times
- Thus, $s_i \geq f_j$ checks the compatibility of i to current A
- Running time: $\Theta(n)$ assuming that the activities were already sorted.

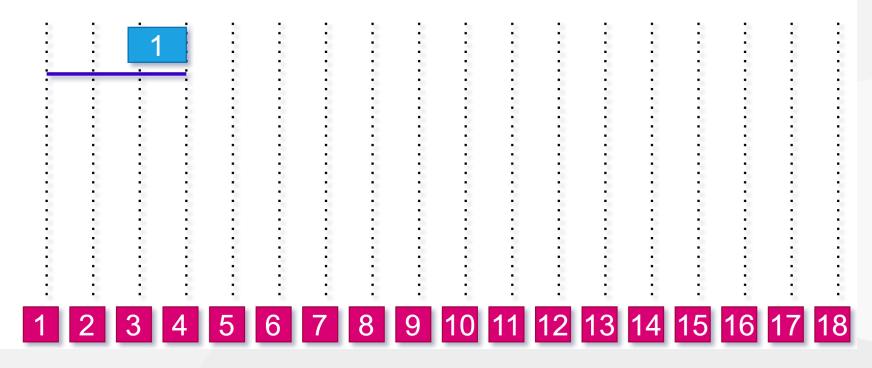
Greedy Algorithm for Activity Selection

Pseudocode for Greedy Algorithm:

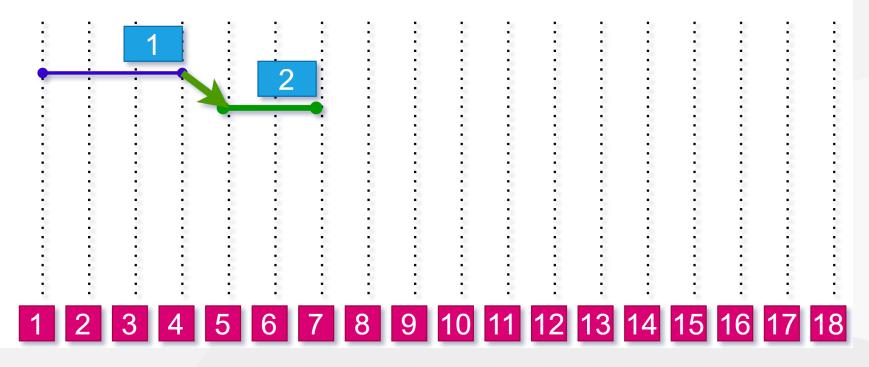
GAS(s, f, n) { $A \leftarrow \{1\}$ $j \leftarrow 1$ for $i \leftarrow 2$ to n do if $s_i \geq f_j$ then $A \leftarrow A \cup \{i\}$ $j \leftarrow i$ endif endfor

Greedy Algorithm for Activity Selection, An Example (Step-1)

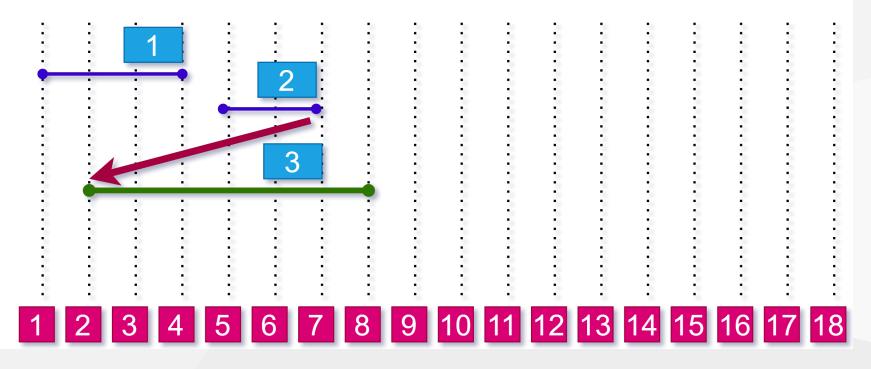
 $f_j = 0 \ S = \{[1,4), [5,7), [2,8), [3,11), [8,15), [13,18)\}$

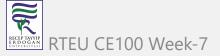


Greedy Algorithm for Activity Selection, An Example (Step-2)

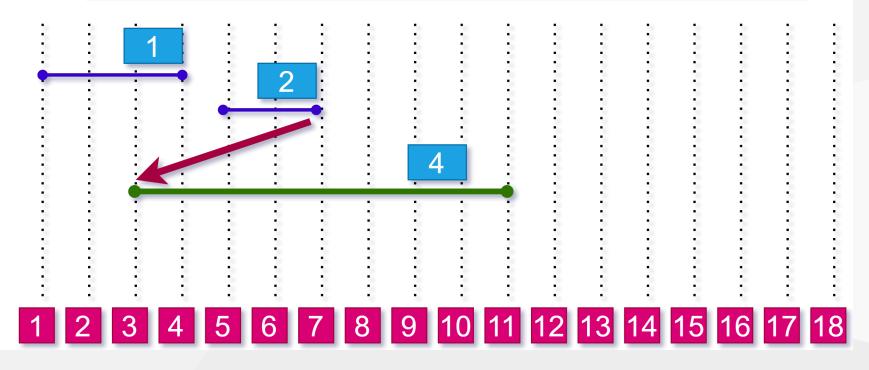


Greedy Algorithm for Activity Selection, An Example (Step-3)

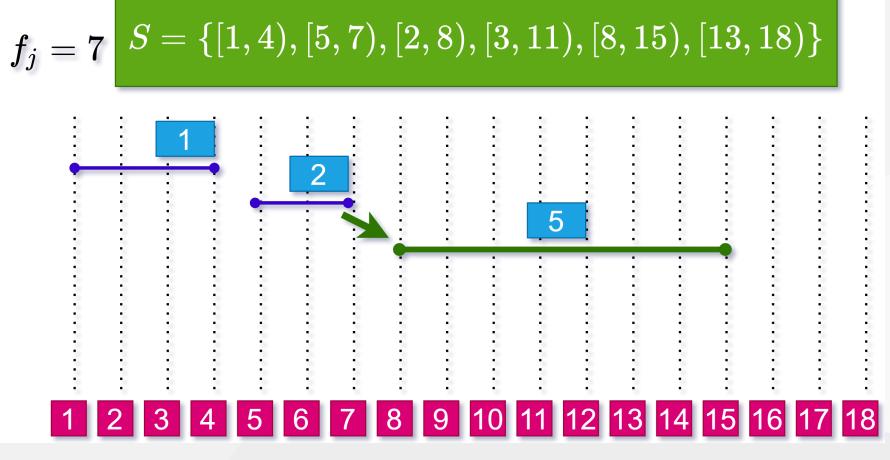




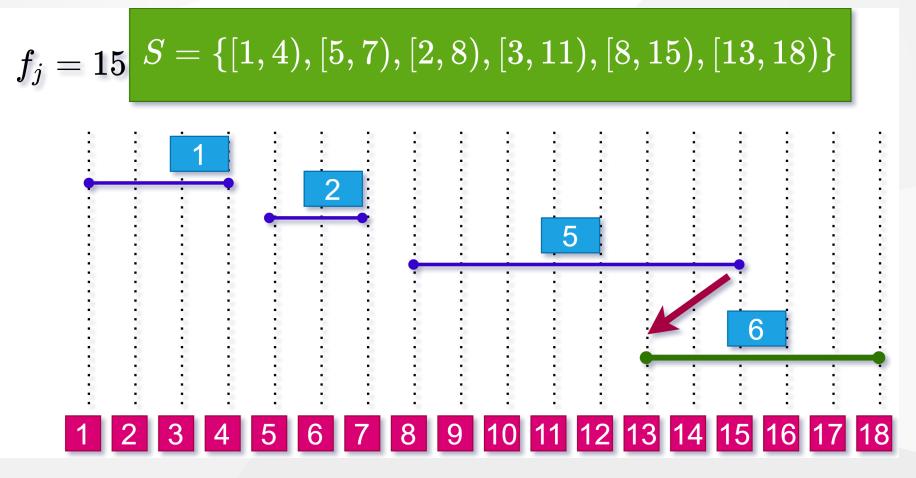
Greedy Algorithm for Activity Selection, An Example (Step-4)



Greedy Algorithm for Activity Selection, An Example (Step-5)

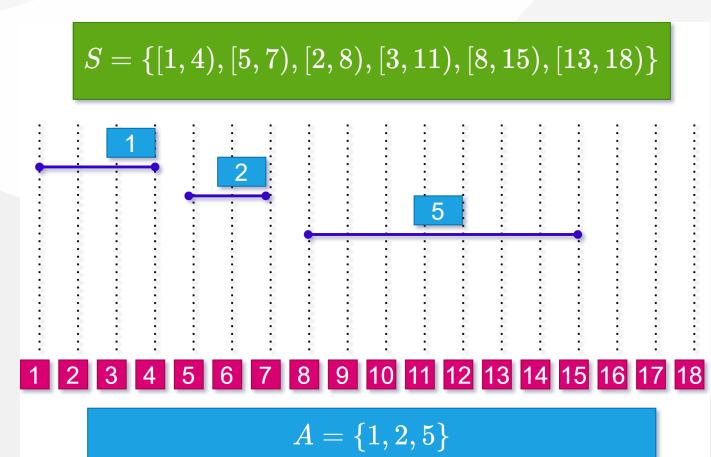


Greedy Algorithm for Activity Selection, An Example (Step-6)



Greedy Algorithm for Activity Selection, An Example (Step-7)

Final Solution



CE100 Algorithms and Programming II

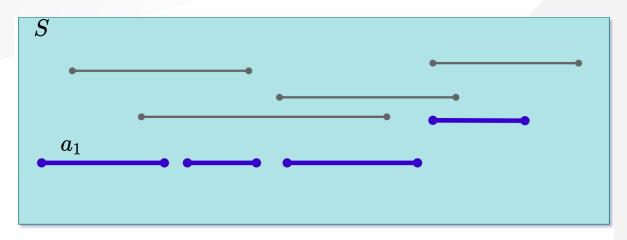
Comparison of DP and Greedy Algorithms

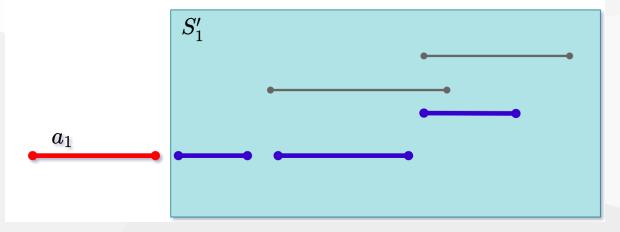
Reminder: DP-Based Matrix Chain Order

$$m_{ij} = MIN_{i \leq k < j} \{m_{ik} + m_{k+1,j} + p_{i-1}p_kp_j\}$$

- We don't know ahead of time which k value to choose.
- We first need to compute the results of subproblems m_{ik} and $m_{k+1,j}$ before computing m_{ij}
- The selection of k is done based on the **results of the subproblems**.

Greedy Algorithm for Activity Selection





Greedy Algorithm for Activity Selection

- Make a greedy selection in the beginning:
 Choose a₁ (the activity with the earliest finish time)
- Solve the remaining subproblem S_1^\prime (all activities that start after a1)

Greedy vs Dynamic Programming

- Optimal substructure property exploited by both Greedy and DP strategies
- Greedy Choice Property: A sequence of locally optimal choices \Rightarrow an optimal solution
 - We make the choice that seems best at the moment
 - Then solve the subproblem arising after the choice is made
- DP: We also make a choice/decision at each step, but the choice may depend on the optimal solutions to subproblems
- **Greedy:** The choice may depend on the choices made so far, but it cannot depend on any future choices or on the solutions to subproblems

Greedy vs Dynamic Programming

- **DP** is a bottom-up strategy (use memory to store the results of subproblems)
- Greedy is a top-down strategy (make choices at each step)
 - each greedy choice in the sequence iteratively reduces each problem to a similar but smaller problem

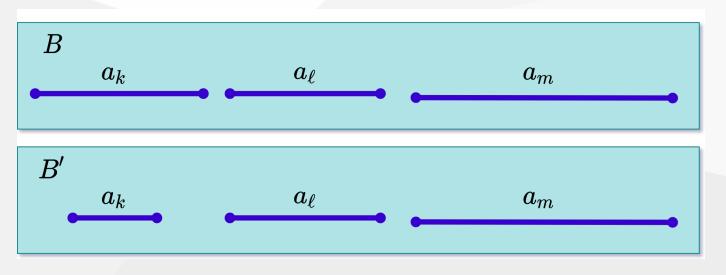
Proof of Correctness of Greedy Algorithms

- Examine a globally optimal solution
- Show that this soln can be modified so that
 - (1) A greedy choice is made as the first step
 - (2) This choice reduces the problem to a similar but smaller problem
- Apply induction to show that a greedy choice can be used at every step
- Showing (2) reduces the proof of correctness to proving that the problem exhibits optimal substructure property

CE100 Algorithms and Programming II

Greedy Choice Property - Proof

- Theorem: There exists an optimal solution $A\subseteq S$ such that $a_1\in A$
- Proof: Consider an arbitrary optimal solution $B = \{a_k, a_\ell, a_m, \dots\}$, where $f_k < f_\ell < f_m <$
 - $\circ~$ If k=1, then B starts with a_1 , and the proof is complete
 - $\circ~$ If k>1, then create another solution B' by replacing a_k with a_1 . Since $f_1\leq f_k$, B' is guaranteed to be valid, and |B'|=|B|, hence also optimal



Elements of Greedy Strategy

- How can you judge whether
- A greedy algorithm will solve a particular optimization problem?
- Two key ingredients
 - Greedy choice property
 - Optimal substructure property

Key Ingredients of Greedy Strategy

- Greedy Choice Property: A globally optimal solution can be arrived at by making locally optimal (greedy) choices
- In DP, we make a choice at each step but the choice may depend on the solutions to subproblems
- In **Greedy Algorithms**, we make the choice that seems best at that moment then solve the subproblems arising after the choice is made
 - The choice may depend on choices so far, but it cannot depend on any future choice or on the solutions to subproblems
- DP solves the problem bottom-up
- Greedy usually progresses in a top-down fashion by making one greedy choice after another reducing each given problem instance to a smaller one

Key Ingredients: Greedy Choice Property

- We must prove that a greedy choice at each step yields a globally optimal solution
- The proof examines a globally optimal solution
- Shows that the soln can be modified so that a **greedy choice made as the first step** reduces the problem to a similar but smaller subproblem
- Then **induction** is applied to show that a greedy choice can be used at each step
- Hence, this induction proof reduces the proof of correctness to demonstrating that an optimal solution must exhibit **optimal substructure** property

Key Ingredients: Greedy Choice Property

- How to prove the greedy choice property?
 - $^\circ\,$ Consider the greedy choice c
 - \circ Assume that there is an optimal solution B that doesn't contain c.
 - \circ Show that it is possible to **convert** *B* to another optimal solution *B*', where *B*' contains *c*.
- **Example:** Activity selection algorithm
 - \circ Greedy choice: a_1 (the activity with the earliest finish time)
 - \circ Consider an optimal solution B without a_1
 - $^{\circ}\,$ Replace the first activity in B with a_1 to construct B'
 - \circ Prove that B' must be an optimal solution

Key Ingredients: Optimal Substructure

- A problem exhibits optimal substructure if an optimal solution to the problem contains within it optimal solutions to subproblems
- Example: Activity selection problem ${\cal S}$
 - If an optimal solution A to S begins with activity a1 then the set of activities

$$A'=A-\{a_1\}$$

• is an optimal solution to the activity selection problem

$$S'=\{a_i\in S:s_i\geq f_1\}$$

 $^{\circ}\,$ where s_i is the start time of activity a_i and f_i is the finish time of activity a_i

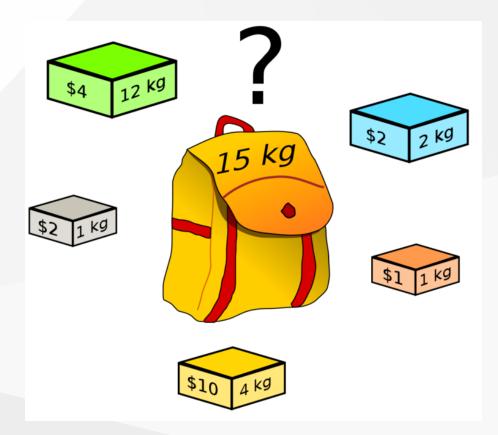
Key Ingredients: Optimal Substructure

- Optimal substructure property is exploited by both Greedy and dynamic programming strategies
- Hence one may
 - Try to generate a dynamic programming soln to a problem when a greedy strategy suffices inefficient
 - Or, may mistakenly think that a greedy soln works when in fact a DP soln is required incorrect
- **Example:** Knapsack Problems(S, w)

CE100 Algorithms and Programming II

Knapsack Problems

- Each item *i* has:
 - $\circ\;$ weight w_i
 - \circ value v_i
- A thief has a knapsack of weight capacity w
- Which items to choose to maximize the value of the items in the knapsack?



Knapsack Problem: Two Versions

- The 0-1 knapsack problem:
 - Each item is discrete.
 - Each item either chosen as a whole or not chosen.
 - **Examples:** *TV, laptop, gold bricks, etc.*
- The fractional knapsack problem:
 - Can choose fractional part of each item.
 - If item i has weight wi, we can choose any amount ≤ wi
 - **Examples:** Gold dust, silver dust, rice, etc.

Knapsack Problems

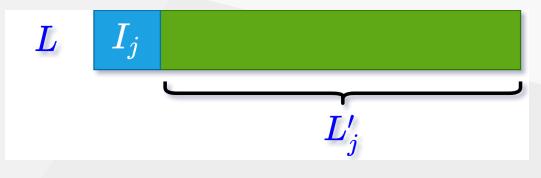
- The 0-1 Knapsack $\mathsf{Problem}(S,W)$
 - A thief robbing a store finds n items $S = \{I_1, I_2, \ldots, I_n\}$, the ith item is worth v_i dollars and weighs w_i pounds, where vi and wi are integers
 - $^\circ\,$ He wants to take as valuable a load as possible, but he can carry at most W pounds in his knapsack, where W is an integer
 - The thief cannot take a fractional amount of an item
- The Fractional Knapsack Problem (S,W)
 - $\circ~$ The scenario is the same
 - $\,\circ\,$ But, the thief can take fractions of items rather than having to make binary (0 1) choice for each item

Optimal Substructure Property for the 0-1 Knapsack Problem (S, W)

- Consider an optimal load L for the problem (S, W).
- Let Ij be an item chosen in L with weight wj
- Assume we remove Ij from L, and let:

$$egin{aligned} L'_{j} &= L - \{I_{j}\} \ S'_{j} &= S - \{I_{j}\} \ W'_{j} &= W - w_{j} \end{aligned}$$

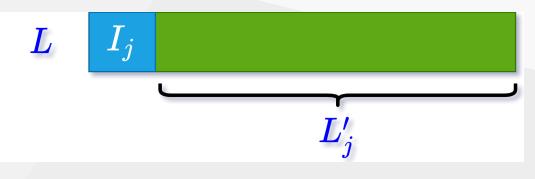
• Q: What can we say about the optimal substructure property?



Optimal Substructure Property for the 0-1 Knapsack Problem (S, W)

 $egin{aligned} L'_j &= L \!\!-\!\!\{I_j\} \ S'_j &= S \!\!-\!\!\{I_j\} \ W'_j &= W \!\!-\!\!w_j \end{aligned}$

- Optimal substructure property:
 - $\circ \ L'_j$ must be an optimal solution for (S'_j, W'_j)
- Why?
 - $^{\circ}\,$ If we remove item j from L, we can construct a new optimal solution L'_j for (S'_j,W'_j)
 - $\circ \,$ If L'_i is optimal, then L must be optimal



Optimal Substructure Property for the 0-1 Knapsack Problem (S, W)

 $egin{aligned} L'_j &= L \!\!-\!\!\{I_j\} \ S'_j &= S \!\!-\!\!\{I_j\} \ W'_j &= W \!\!-\!\!w_j \end{aligned}$

- Optimal substructure: L'_i must be an optimal solution for (S'_i, W'_i)
- **Proof:** By contradiction, assume there is a solution B'_i for (S'_i, W'_i) , which is better than L'_i .
 - $\circ~$ We can construct a solution B for the original problem (S,W) as: $B=Bj'\cup Ij.$
 - $^\circ\,$ The total value of B is now higher than L, which is a contradiction because L is optimal for (S,W).
- Q.E.D.

CE100 Algorithms and Programming II

Optimal Substructure Property for the Fractional Knapsack Problem (S, W)

- Consider an optimal solution L for (S, W)
- If we remove a weight $0 < w \leq w_j$ of item j from optimal load L and let:
 - The remaining load

$$L_j' = L - \{w ext{ pounds of } I_j\}$$

must be a most valuable load weighing at most

$$W_j'=W-w$$

• pounds that the thief can take from

$$S_j' = S - \{I_j\} \cup \{w_j - w ext{ pounds of } I_j\}$$

• That is, Lj´ should be an optimal soln to the

Fractional Knapsack $\operatorname{Problem}(S'_j, W'_j)$

Knapsack Problems

- Two different problems:
 - 0-1 knapsack problem
 - Fractional knapsack problem
- The problems are similar.
 - Both problems have optimal substructure property.
- Which algorithm to solve each problem?

Fractional Knapsack Problem

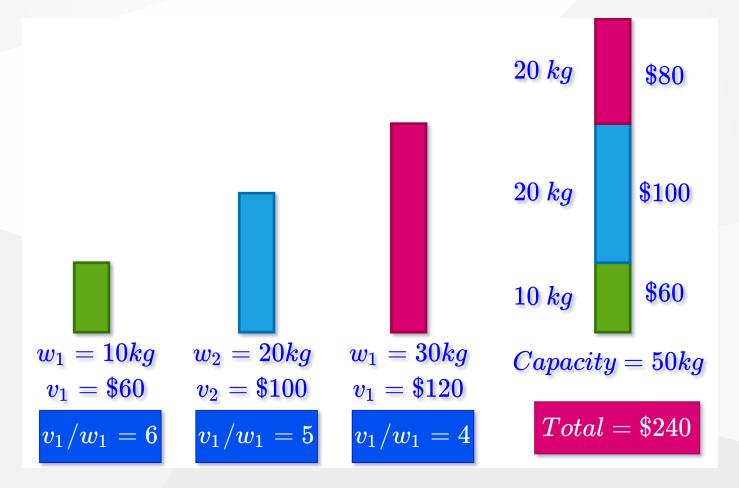
- Can we use a greedy algorithm?
- Greedy choice: Take as much as possible from the item with the largest value per pound v_i/w_i
- Does the greedy choice property hold?
 - $\circ\;$ Let j be the item with the largest value per pound v_j/w_j
 - $^{\circ}$ Need to prove that there is an optimal load that has as much j as possible.
 - **Proof**: Consider an optimal solution L that does not have the maximum amount of item j. We could replace the items in L with item j until L has maximum amount of j. L would still be optimal, because item j has the highest value per pound.

Greedy Solution to Fractional Knapsack

- (1) Compute the value per pound v_i/w_i for each item
- (2) The thief begins by taking, as much as possible, of the item with the greatest value per pound
- (3) If the supply of that item is exhausted before filling the knapsack, then he takes, as much as possible, of the item with the next greatest value per pound
- (4) Repeat (2-3) until his knapsack becomes full

Thus, by sorting the items by value per pound the greedy algorithm runs in O(nlgn) time

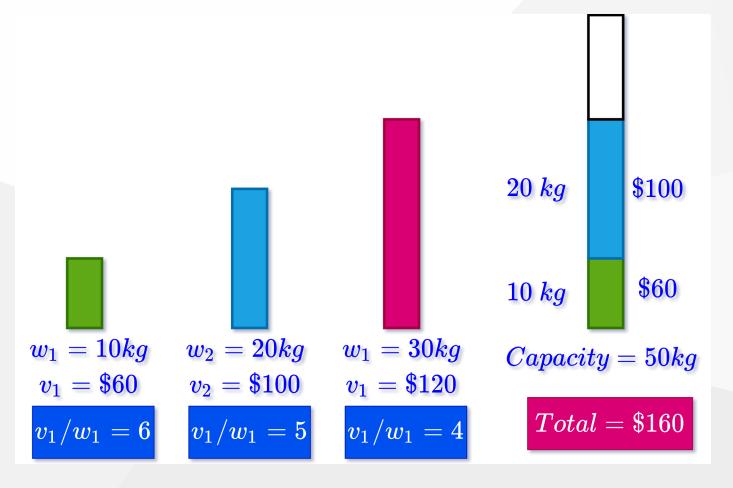
Fractional Knapsack Problem: Example



CE100 Algorithms and Programming II

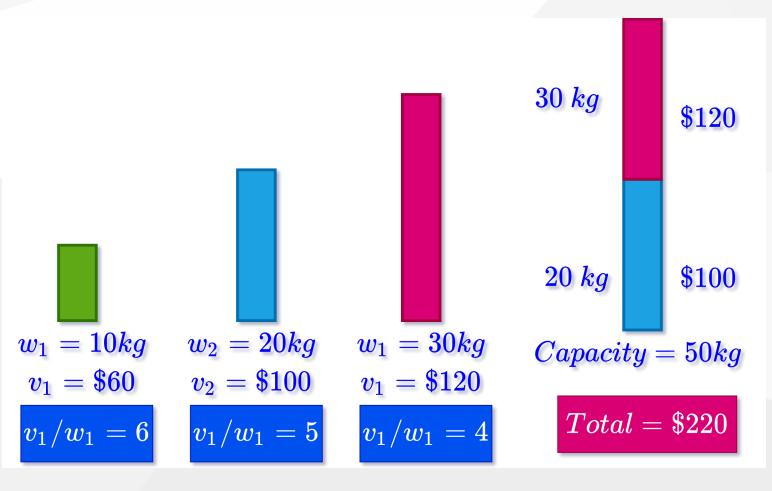
0-1 Knapsack Problem

Can we use the same greedy algorithm?
 Is there a better solution?



CE100 Algorithms and Programming II

- The optimal solution for this problem is:
 - This solution cannot be obtained using the greedy algorithm



- When we consider an item I_j for inclusion we must compare the solutions to two subproblems
 - \circ Subproblems in which I_j is included and excluded
- The problem formulated in this way gives rise to many
 - overlapping subproblems (a key ingredient of DP)
 - In fact, dynamic programming can be used to solve the 0-1 Knapsack problem

- A thief robbing a store containing *n* articles
 - $\circ \; \{a_1,a_2,\ldots,a_n\}$
- The value of i_{th} article is v_i dollars (v_i is integer)
- The weight of i_{th} article is w_i kg (w_i is integer)
- Thief can carry at most W kg in his knapsack
- Which articles should he take to maximize the value of his load?
- Let $K_{n,W} = \{a_1, a_2, \ldots, a_n: W\}$ denote 0-1 knapsack problem
- Consider the solution as a sequence of *n* decisions
 - \circ i.e., i_{th} decision: whether thief should pick a_i for optimal load.

Optimal Substructure Property

- Notation: $K_{n,W}$:
 - $\circ\;$ The items to choose from: $\{a_1,\ldots,a_n\}$
 - $\circ\,$ The knapsack capacity: W
- Consider an optimal load L for problem $K_{n,W}$
- Let's consider two cases:
 - $\circ \,\, a_n$ is in L
 - $\circ \,\, a_n$ is not in L

Optimal Substructure Property

- Case 1: If $a_n \in L$
 - What can we say about the optimal substructure?
 - $L \{a_n\}$ must be optimal for $K_{n-1,W-wn}$
 - $K_{n-1,W-wn}$:
 - The items to choose from $\{a_1, \ldots a_{n-1}\}$
 - The knapsack capacity: W wn
- Case 2: If $a_n \notin L$
 - What can we say about the optimal substructure?
 - L must be optimal for $K_{n-1,W}$
 - $K_{n-1,W}$:
 - The items to choose from $\{a_1, \ldots a_{n-1}\}$
 - The knapsack capacity: W

Optimal Substructure Property

- In other words, optimal solution to $K_{n,W}$ contains an optimal solution to:
 - \circ either: $K_{n-1,W-wn}$ (if a_n is selected)

 \circ or: $K_{n-1,W}$ (if a_n is not selected)

Recursive Formulation

$$c[i,w] = egin{cases} 0 & ext{if } i=0, ext{ or } w=0 \ c[i-1,w], & ext{if } w_i > w \ max\{v_i+c[i-1,w-w_i],c[i-1,w] & otherwise \end{cases}$$

- Recursive definition for value of optimal soln:
 - \circ This recurrence says that an optimal solution $S_{i,w}$ for $K_{i,w}$
 - either contains $a_i \Rightarrow c(S_i,w) = v_i + c(S_{i-1,w-w_i})$
 - or does not contain $a_i \Rightarrow c(Si,w) = c(S_{i-1},w)$
 - $\circ\,$ If thief decides to pick a_i
 - He takes v_i value and he can choose from $\{a_1, a_2, \ldots, a_{i-1}\}$ up to the weight limit $w w_i$ to get $c[i-1, w w_i]$
 - $\,\circ\,$ If he decides not to pick a_i
 - He can choose from $\{a_1, a_2, \ldots, a_{i-1}\}$ up to the weight limit w to get c[i-1, w]
 - $\circ~$ The better of these two choices should be made

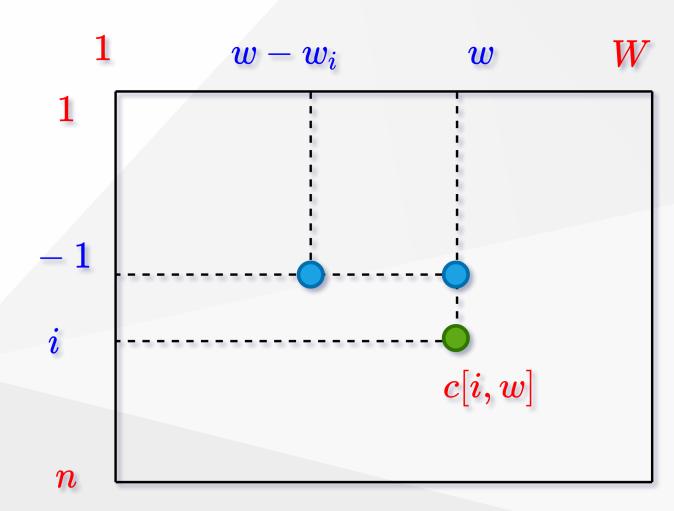
Bottom-up Computation

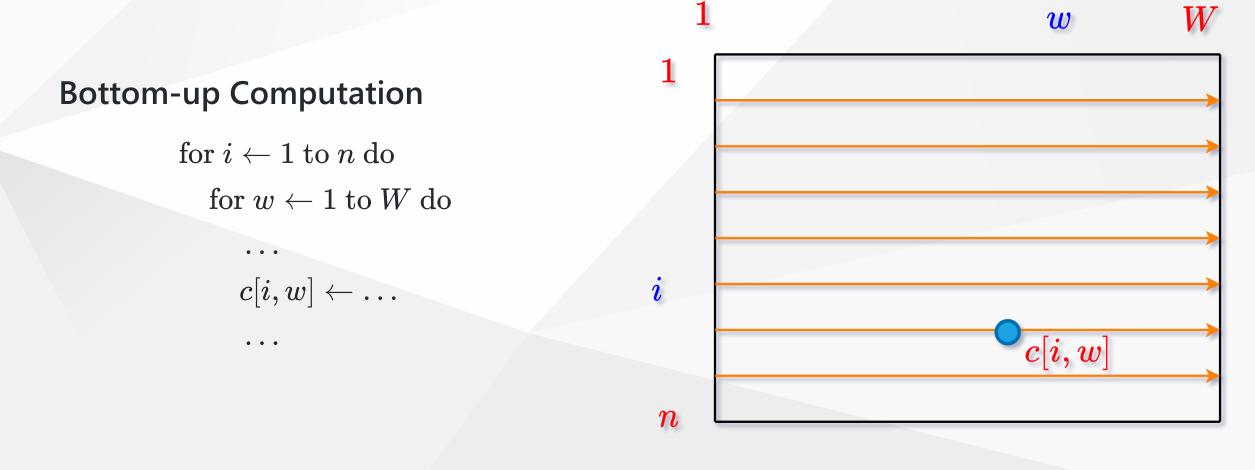
- Need to process: $\circ \ c[i,w]$
- after computing:

$$\circ \ c[i-1,w]$$
,

$$\circ \ c[i-1,w-w_i]$$

• for all $w_i < w$







DP Solution to 0-1 Knapsack

- c is an (n+1) imes (W+1) array; $c[0\dots n:0\dots W]$
- Note : table is computed in row-major order
- Run time: $T(n) = \Theta(nW)$

CE100 Algorithms and Programming II

DP Solution to 0-1 Knapsack

KNAP0-1(v, w, n, W)for $\omega \leftarrow 0$ to W do $c[0,\omega] \gets 0$ for $i \leftarrow 0$ to m do $c[i,0] \leftarrow 0$ for $i \leftarrow 0$ to m do for $\omega \leftarrow 1$ to W do if $w_i \leq \omega$ then $c[i,\omega] \leftarrow max\{v_i + c[i-1,\omega-w_i], c[i-1,\omega]\}$ else $c[i,\omega] \leftarrow c[i-1,\omega]$ return c[m, W]



Constructing an Optimal Solution

- No extra data structure is maintained to keep track of the choices made to compute c[i,w]
 - $\circ\,$ i.e. The choice of whether choosing item i or not
- Possible to understand the choice done by comparing c[i,w] with c[i-1,w] \circ If c[i,w]=c[i-1,w] then it means item i was assumed to be not chosen for the best c[i,w]

Finding the Set S of Articles in an Optimal Load

```
SOLKNAP0-1(a, v, w, n, W, c)
i \leftarrow n; \omega \leftarrow W
S \leftarrow \emptyset
while i \leftarrow 0 do
    if \ c[i,\omega] = c[i-1,\omega] \ then
        i \leftarrow i-1
    else
        S \leftarrow S \cup \{a_i\}
        \omega \leftarrow \omega - w_i
        i \leftarrow i - 1
return S
```


CE100 Algorithms and Programming II

References

- Introduction to Algorithms, Third Edition | The MIT Press
- Bilkent CS473 Course Notes (new)
- Bilkent CS473 Course Notes (old)

-End - Of - Week - 7 - Course - Module -

