## CE100 Algorithms and Programming II

## Week-6 (Matrix Chain Order / LCS)

Spring Semester, 2021-2022
Download DOC, SLIDE, PPTX
$\widetilde{\widetilde{x}}$
Ras RTEU CE100 Week-6

# Matrix Chain Order / Longest Common Subsequence 

Outline

- Elements of Dynamic Programming
- Optimal Substructure
- Overlapping Subproblems
- Recursive Matrix Chain Order Memoization
- Top-Down Approach
- RMC
- MemoizedMatrixChain
- LookupC
- Dynamic Programming vs Memoization Summary
- Dynamic Programming
- Problem-2 : Longest Common Subsequence
- Definitions
- LCS Problem
- Notations
- Optimal Substructure of LCS
- Proof Case-1
- Proof Case-2
- Proof Case-3
- A recursive solution to subproblems (inefficient)
- Computing the length of and LCS
- LCS Data Structure for DP
- Bottom-Up Computation
- Constructing and LCS
- PRINT-LCS
- Back-pointer space optimization for LCS length
- Most Common Dynamic Programming Interview Questions


## Elements of Dynamic Programming

- When should we look for a DP solution to an optimization problem?
- Two key ingredients for the problem
- Optimal substructure
- Overlapping subproblems


## DP Hallmark \#1

- Optimal Substructure
- A problem exhibits optimal substructure
- if an optimal solution to a problem contains within it optimal solutions to subproblems
- Example: matrix-chain-multiplication
- Optimal parenthesization of $A_{1} A_{2} \ldots A_{n}$ that splits the product between $A_{k}$ and $A_{k+1}$, contains within it optimal soln's to the problems of parenthesizing $A_{1} A_{2} \ldots A_{k}$ and $A_{k+1} A_{k+2} \ldots A_{n}$


## Optimal Substructure

- Finding a suitable space of subproblems
- Iterate on subproblem instances
- Example: matrix-chain-multiplication
- Iterate and look at the structure of optimal soln's to subproblems, subsubproblems, and so forth
- Discover that all subproblems consists of subchains of $\left\langle A_{1}, A_{2}, \ldots, A_{n}\right\rangle$
- Thus, the set of chains of the form $\left\langle A_{i}, A_{i+1}, \ldots, A_{j}\right\rangle$ for $1 \leq i \leq j \leq$ $n$
- Makes a natural and reasonable space of subproblems


## DP Hallmark \#2

- Overlapping Subproblems
- Total number of distinct subproblems should be polynomial in the input size
- When a recursive algorithm revisits the same problem over and over again,
- We say that the optimization problem has overlapping subproblems


## Overlapping Subproblems

- DP algorithms typically take advantage of overlapping subproblems
- by solving each problem once
- then storing the solutions in a table
- where it can be looked up when needed
- using constant time per lookup


## Overlapping Subproblems

- Recursive matrix-chain order

$$
\begin{aligned}
& \operatorname{RMC}(p, i, j)\{ \\
& \begin{array}{l}
\text { if } i=j \text { then } \\
\quad \text { return } 0 \\
m[i, j] \leftarrow \infty \\
\text { for } k \leftarrow i \text { to } j-1 \text { do } \\
\quad q \leftarrow \operatorname{RMC}(p, i, k)+\operatorname{RMC}(p, k+1, j)+p_{i-1} p_{k} p_{j} \\
\text { if } q<m[i, j] \text { then } \\
\quad m[i, j] \leftarrow q \\
\quad \operatorname{return} m[i, j]\}
\end{array}
\end{aligned}
$$

## Direct Recursion:

 Inefficient!- Recursion tree for $R M C(p, 1,4)$
- Nodes are labeled with $i$ and $j$ values



## Running Time of RMC

$T(1) \geq 1$

$$
T(n) \geq 1+\sum_{k=1}^{n-1}(T(k)+T(n-k)+1) \text { for } n>1
$$

- For $i=1,2, \ldots, n$ each term $T(i)$ appears twice
- Once as $T(k)$, and once as $T(n-k)$
- Collect $n-1,1$ 's in the summation together with the front 1

$$
T(n) \geq 2 \sum_{i=1}^{n-1} T(i)+n
$$

- Prove that $T(n)=\Omega(2 n)$ using the substitution method


## Running Time of RMC: Prove that $T(n)=\Omega(2 n)$

- Try to show that $T(n) \geq 2^{n-1}$ (by substitution)
- Base case: $T(1) \geq 1=2^{0}=2^{1-1}$ for $n=1$
- Ind. Hyp.:

$$
\begin{aligned}
T(i) & \geq 2^{i-1} \text { for all } i=1,2, \ldots, n-1 \text { and } n \geq 2 \\
T(n) & \geq 2 \sum_{i=1}^{n-1} 2^{i-1}+n \\
& =2 \sum_{i=1}^{n-1} 2^{i-1}+n \\
& =2\left(2^{n-1}-1\right)+n \\
& =2^{n-1}+\left(2^{n-1}-2+n\right) \\
& \Rightarrow T(n) \geq 2^{n-1} \text { Q.E.D. }
\end{aligned}
$$

## Running Time of RMC: $T(n) \geq 2^{n-1}$

- Whenever
- a recursion tree for the natural recursive solution to a problem contains the same subproblem repeatedly
- the total number of different subproblems is small
- it is a good idea to see if $D P($ Dynamic Programming $)$ can be applied


## Memoization

- Offers the efficiency of the usual $D P$ approach while maintaining top-down strategy
- Idea is to memoize the natural, but inefficient, recursive algorithm


## Memoized Recursive Algorithm

- Maintains an entry in a table for the soln to each subproblem
- Each table entry contains a special value to indicate that the entry has yet to be filled in
- When the subproblem is first encountered its solution is computed and then stored in the table
- Each subsequent time that the subproblem encountered the value stored in the table is simply looked up and returned


## Memoized Recursive Matrix-chain Order

- Shaded subtrees are looked-up rather than recomputing

MemoizedMatrixChain(p)

$$
\begin{aligned}
& n \leftarrow \text { length }[p]-1 \\
& \text { for } i \leftarrow 1 \text { to } n \text { do } \\
& \quad \text { for } j \leftarrow 1 \text { to } n \text { do } \\
& \quad m[i, j] \leftarrow \infty
\end{aligned}
$$

return $\operatorname{LookupC}(p, 1, n) \Longrightarrow$

```
\(\Longrightarrow \operatorname{LookupC}(p, i, j)\)
    if \(m[i, j]=\infty\) then
    if \(i=j\) then
        \(m[i, j] \leftarrow 0\)
    else
        for \(k \leftarrow i\) to \(j-1\) do
        \(q \leftarrow \operatorname{LookupC}(p, i, k)+\operatorname{LookupC}(p, k+1, j)+p_{i-1} p_{k} p_{j}\)
        if \(q<m[i, j]\) then
                        \(m[i, j] \leftarrow q\)
    return \(m[i, j]\)
```

च

## Memoized Recursive Algorithm

- The approach assumes that
- The set of all possible subproblem parameters are known
- The relation between the table positions and subproblems is established
- Another approach is to memoize
- by using hashing with subproblem parameters as key


## Dynamic Programming vs Memoization Summary (1)

- Matrix-chain multiplication can be solved in $O\left(n^{3}\right)$ time
- by either a top-down memoized recursive algorithm
- or a bottom-up dynamic programming algorithm
- Both methods exploit the overlapping subproblems property
- There are only $\Theta\left(n^{2}\right)$ different subproblems in total
- Both methods compute the soln to each problem once
- Without memoization the natural recursive algorithm runs in exponential time since subproblems are solved repeatedly


## Dynamic Programming vs Memoization Summary (2)

- In general practice
- If all subproblems must be solved at once
- a bottom-up DP algorithm always outperforms a top-down memoized algorithm by a constant factor
- because, bottom-up DP algorithm
- Has no overhead for recursion
- Less overhead for maintaining the table
- DP: Regular pattern of table accesses can be exploited to reduce the time and/or space requirements even further
- Memoized: If some problems need not be solved at all, it has the advantage of avoiding solutions to those subproblems


## Problem 3: Longest Common Subsequence

Definitions

- A subsequence of a given sequence is just the given sequence with some elements (possibly none) left out
- Example:
- $X=\langle A, B, C, B, D, A, B\rangle$
- $Z=\langle B, C, D, B\rangle$
- $Z$ is a subsequence of $X$


## Problem 3: Longest Common Subsequence

## Definitions

- Formal definition: Given a sequence $X=\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle$, sequence $Z=$ $\left\langle z_{1}, z_{2}, \ldots, z_{k}\right\rangle$ is a subsequence of $X$
- if $\exists$ a strictly increasing sequence $\left\langle i_{1}, i_{2}, \ldots, i_{k}\right\rangle$ of indices of $X$ such that $x_{i_{j}}=z_{j}$ for all $j=1,2, \ldots, k$, where $1 \leq k \leq m$
- Example: $Z=\langle B, C, D, B\rangle$ is a subsequence of $X=\langle A, B, C, B, D, A, B\rangle$ with the index sequence $\left\langle i_{1}, i_{2}, i_{3}, i_{4}\right\rangle=\langle 2,3,5,7\rangle$


## Problem 3: Longest Common Subsequence

## Definitions

- If $Z$ is a subsequence of both $X$ and $Y$, we denote $Z$ as a common subsequence of $X$ and $Y$.
- Example:

$$
\begin{aligned}
X & =\left\langle A, B^{*}, C^{*}, B, D, A^{*}, B\right\rangle \\
Y & =\left\langle B^{*}, D, C^{*}, A^{*}, B, A\right\rangle
\end{aligned}
$$

- $Z_{1}=\left\langle B^{*}, C^{*}, A^{*}\right\rangle$ is a common subsequence (of length 3) of $X$ and $Y$.
- Two longest common subsequence (LCSs) of $X$ and $Y$ ?
- $Z 2=\langle B, C, B, A\rangle$ of length 4
- $Z 3=\langle B, D, A, B\rangle$ of length 4
- The optimal solution value $=4$


## Longest Common Subsequence (LCS) Problem

- LCS problem: Given two sequences
- $X=\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle$ and
- $Y=\left\langle y_{1}, y_{2}, \ldots, y_{n}\right\rangle$, find the LCS of $X \& Y$
- Brute force approach:
- Enumerate all subsequences of $X$
- Check if each subsequence is also a subsequence of $Y$
- Keep track of the LCS
- What is the complexity?
- There are $2^{m}$ subsequences of $X$
- Exponential runtime


## Notation

- Notation: Let $X_{i}$ denote the $i^{\text {th }}$ prefix of $X$
- i.e. $X_{i}=\left\langle x_{1}, x_{2}, \ldots, x_{i}\right\rangle$
- Example:

$$
\begin{aligned}
X & =\langle A, B, C, B, D, A, B\rangle \\
X_{4} & =\langle A, B, C, B\rangle \\
X_{0} & =\langle \rangle
\end{aligned}
$$

## Optimal Substructure of an LCS

- Let $X=<x 1, x 2, \ldots, x m>$ and $Y=\left\langle y_{1}, y_{2}, \ldots, y_{n}\right\rangle$ are given
- Let $Z=\left\langle z_{1}, z_{2}, \ldots, z_{k}\right\rangle$ be an LCS of $X$ and $Y$

- Question 1: If $x_{m}=y_{n}$, how to define the optimal substructure?
- We must have $z_{k}=x_{m}=y_{n}$ and
- $Z_{k-1}=\operatorname{LCS}\left(X_{m-1}, Y_{n-1}\right)$


## Optimal Substructure of an LCS

- Let $X=<x 1, x 2, \ldots, x m>$ and $Y=\left\langle y_{1}, y_{2}, \ldots, y_{n}\right\rangle$ are given
- Let $Z=\left\langle z_{1}, z_{2}, \ldots, z_{k}\right\rangle$ be an LCS of $X$ and $Y$

- Question 2: If $x_{m} \neq y_{n}$ and $z_{k} \neq x_{m}$, how to define the optimal substructure?
- We must have $Z=\operatorname{LCS}\left(X_{m-1}, Y\right)$


## Optimal Substructure of an LCS

- Let $X=<x 1, x 2, \ldots, x m>$ and $Y=\left\langle y_{1}, y_{2}, \ldots, y_{n}\right\rangle$ are given
- Let $Z=\left\langle z_{1}, z_{2}, \ldots, z_{k}\right\rangle$ be an LCS of $X$ and $Y$

- Question 3: If $x_{m} \neq y_{n}$ and $z_{k} \neq y_{n}$, how to define the optimal substructure?
- We must have $Z=\operatorname{LCS}\left(X, Y_{n-1}\right)$


## Theorem: Optimal Substructure of an LCS

- Let $X=\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle$ and $\mathrm{Y}=\langle\mathrm{y} 1, \mathrm{y} 2, \ldots, \mathrm{yn}\rangle$ are given
- Let $Z=\left\langle z_{1}, z_{2}, \ldots, z_{k}\right\rangle$ be an LCS of $X$ and $Y$
- Theorem: Optimal substructure of an LCS:
- If $x_{m}=y_{n}$
- then $z_{k}=x_{m}=y_{n}$ and $Z_{k-1}$ is an LCS of $X_{m-1}$ and $Y_{n-1}$
- If $x_{m} \neq y_{n}$ and $z_{k} \neq x_{m}$
- then $Z$ is an LCS of $X_{m-1}$ and $Y$
- If $x_{m} \neq y_{n}$ and $z_{k} \neq y_{n}$
- then $Z$ is an LCS of $X$ and $Y_{n-1}$


## Optimal Substructure Theorem (case 1)

- If $x_{m}=y_{n}$ then $z_{k}=x_{m}=y_{n}$ and $Z_{k-1}$ is an LCS of $X_{m-1}$ and $Y_{n-1}$



## Optimal Substructure Theorem (case 2)

- If $x_{m} \neq y_{n}$ and $z_{k} \neq x_{m}$ then $Z$ is an LCS of $X_{m-1}$ and $Y$



## Optimal Substructure Theorem (case 3)

- If $x_{m} \neq y_{n}$ and $z_{k} \neq y_{n}$ then $Z$ is an LCS of $X$ and $Y_{n-1}$



## Proof of Optimal Substructure Theorem (case 1)

- If $x_{m}=y_{n}$ then $z_{k}=x_{m}=y_{n}$ and $Z_{k-1}$ is an LCS of $X_{m-1}$ and $Y_{n-1}$
- Proof: If $z_{k} \neq x_{m}=y_{n}$ then
- we can append $x_{m}=y_{n}$ to $Z$ to obtain a common subsequence of length $k+1 \Longrightarrow$ contradiction
- Thus, we must have $z_{k}=x_{m}=y_{n}$
- Hence, the prefix $Z_{k-1}$ is a length- $(k-1) \mathrm{CS}$ of $X_{m-1}$ and $Y_{n-1}$
- We have to show that $Z_{k-1}$ is in fact an LCS of $X_{m-1}$ and $Y_{n-1}$
- Proof by contradiction:
- Assume that $\exists$ a CS $W$ of $X_{m-1}$ and $Y_{n-1}$ with $|W|=k$
- Then appending $x_{m}=y_{n}$ to $W$ produces a CS of length $k+1$


## Proof of Optimal Substructure Theorem (case 2)

- If $x_{m} \neq y_{n}$ and $z_{k} \neq x_{m}$ then $Z$ is an LCS of $X_{m-1}$ and $Y$
- Proof: If $z_{k} \neq x_{m}$ then $Z$ is a CS of $X_{m-1}$ and $Y_{n}$
- We have to show that $Z$ is in fact an LCS of $X_{m-1}$ and $Y_{n}$
- (Proof by contradiction)
- Assume that $\exists$ a CS $W$ of $X_{m-1}$ and $Y_{n}$ with $|W|>k$
- Then $W$ would also be a CS of $X$ and $Y$
- Contradiction to the assumption that
- $Z$ is an LCS of $X$ and $Y$ with $|Z|=k$
- Case 3: Dual of the proof for (case 2 )


## A Recursive Solution to Subproblems

- Theorem implies that there are one or two subproblems to examine
- if $x_{m}=y_{n}$ then
- we must solve the subproblem of finding an LCS of $X_{m-1} \& Y_{n-1}$
- appending $x_{m}=y_{n}$ to this LCS yields an LCS of $X \& Y$
- else
- we must solve two subproblems
- finding an LCS of $X_{m-1} \& Y$
- finding an LCS of $X \& Y_{n-1}$
- longer of these two LCS s is an LCS of $X \& Y$
- endif


## Recursive Algorithm (Inefficient)

$$
\begin{aligned}
& \operatorname{LCS}(X, Y) \text { \{ } \\
& m \leftarrow \text { length }[X] \\
& n \leftarrow \text { length }[Y] \\
& \text { if } x_{m}=y_{n} \text { then } \\
& Z \leftarrow \operatorname{LCS}\left(X_{m-1}, Y_{n-1}\right) \triangleright \text { solve one subproblem } \\
& \text { return }\left\langle Z, x_{m}=y_{n}\right\rangle \triangleright \text { append } x_{m}=y_{n} \text { to } Z \\
& \text { else } \\
& Z^{\prime} \leftarrow \operatorname{LCS}\left(X_{m-1}, Y\right) \triangleright \text { solve two subproblems } \\
& Z^{\prime \prime} \leftarrow \operatorname{LCS}\left(X, Y_{n-1}\right) \\
& \text { return longer of } Z^{\prime} \text { and } Z^{\prime \prime} \\
& \text { \} }
\end{aligned}
$$

## A Recursive Solution

- $c[i, j]$ : length of an LCS of $X_{i}$ and $Y_{j}$

$$
c[i, j]=\left\{\begin{array}{llc}
0 & \text { if } & i=0 \text { or } j=0 \\
c[i-1, j-1]+1 & \text { if } & i, j>0 \text { and } x_{i}=y_{j} \\
\max \{c[i, j-1], c[i-1, j]\} & \text { if } & i, j>0 \text { and } x_{i} \neq y_{j}
\end{array}\right.
$$

## Computing the Length of an LCS

- We can easily write an exponential-time recursive algorithm based on the given recurrence. $\Longrightarrow$ Inefficient!
- How many distinct subproblems to solve?
- $\Theta(m n)$
- Overlapping subproblems property: Many subproblems share the same subsubproblems.
- e.g. Finding an LCS to $X_{m-1} \& Y$ and an LCS to $X \& Y_{n-1}$
- has the sub-subproblem of finding an LCS to $X_{m-1} \& Y_{n-1}$
- Therefore, we can use dynamic programming.


## Data Structures

- Let:
- $c[i, j]$ : length of an LCS of $X_{i}$ and $Y_{j}$
- $b[i, j]$ : direction towards the table entry corresponding to the optimal subproblem solution chosen when computing $c[i, j]$.
- Used to simplify the construction of an optimal solution at the end.
- Maintain the following tables:
- $c[0 \ldots m, 0 \ldots n]$
- $b[1 \ldots m, 1 \ldots n]$


## Bottom-up Computation

- Reminder:

$$
c[i, j]=\left\{\begin{array}{llc}
0 & \text { if } & i=0 \text { or } j=0 \\
c[i-1, j-1]+1 & \text { if } & i, j>0 \text { and } x_{i}=y_{j} \\
\max \{c[i, j-1], c[i-1, j]\} & \text { if } & i, j>0 \text { and } x_{i} \neq y_{j}
\end{array}\right.
$$

- How to choose the order in which we process $c[i, j]$ values?
- The values for $c[i-1, j-1], c[i, j-1]$, and $c[i-1, j]$ must be computed before computing $c[i, j]$.


## Bottom-up Computation

$$
c[i, j]=\left\{\begin{array}{llc}
0 & \text { if } & i=0 \text { or } j=0 \\
c[i-1, j-1]+1 & \text { if } & i, j>0 \text { and } x_{i}=y_{j} \\
\max \{c[i, j-1], c[i-1, j]\} & \text { if } & i, j>0 \text { and } x_{i} \neq y_{j}
\end{array}\right.
$$

Need to process:
$c[i, j]$
after computing:
$c[i-1, j-1]$,
$c[i, j-1]$,

$c[i-1, j]$

## Bottom-up Computation

$$
c[i, j]=\left\{\begin{array}{llc}
0 & \text { if } & i=0 \text { or } j=0 \\
c[i-1, j-1]+1 & \text { if } & i, j>0 \text { and } x_{i}=y_{j} \\
\max \{c[i, j-1], c[i-1, j]\} & \text { if } & i, j>0 \text { and } x_{i} \neq y_{j}
\end{array}\right.
$$

$$
\begin{gathered}
\Downarrow \\
\text { for } i \leftarrow 1 \text { to } m \\
\text { for } j \leftarrow 1 \text { to } n \\
\ldots \\
\ldots \\
c[i, j]=\cdots
\end{gathered}
$$

## Computing the Length of an LCS

$\underline{\text { Total Runtime }=\Theta(m n)}$

$$
\begin{aligned}
& L C S-L E N G T H(X, Y) \\
& m \leftarrow \text { length }[X] ; n \leftarrow \text { length }[Y] \\
& \text { for } i \leftarrow 0 \text { to } m \text { do } c[i, 0] \leftarrow 0 \\
& \text { for } j \leftarrow 0 \text { to } n \text { do } c[0, j] \leftarrow 0 \\
& \text { for } i \leftarrow 1 \text { to } m \text { do } \\
& \text { for } j \leftarrow 1 \text { to } n \text { do } \\
& \text { if } x_{i}=y_{j} \text { then } \\
& c[i, j] \leftarrow c[i-1, j-1]+1 \\
& b[i, j] \leftarrow " \nwarrow " \\
& \text { else if } c[i-1, j] \geq c[i, j-1] \\
& c[i, j] \leftarrow c[i-1, j] \\
& b[i, j] \leftarrow " \uparrow " \\
& \text { else } \\
& c[i, j] \leftarrow c[i, j-1] \\
& b[i, j] \leftarrow " \leftarrow "
\end{aligned}
$$

$$
\downarrow i / j \rightarrow 0 y_{j} \quad{ }_{B}^{1} \quad \stackrel{\underset{D}{D}}{ } \quad{ }_{C}^{3} \quad{ }_{A}^{4} \quad{ }_{B}^{5} \quad{ }_{A}^{6}
$$

## Computing the Length of an LCS-1

Operation of LCS-LENGTH on the sequences

$$
\begin{aligned}
X & =\left\langle\stackrel{1}{A}, \stackrel{2}{B}, \stackrel{3}{C}, \stackrel{4}{B}, \stackrel{5}{D},{ }_{A}^{6}, \stackrel{7}{B}\right\rangle \\
Y & =\langle\stackrel{1}{B}, \stackrel{2}{D}, \stackrel{3}{C}, \stackrel{4}{A}, \stackrel{5}{B}, \stackrel{6}{A}\rangle
\end{aligned}
$$

| $0 x_{i}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 A | 0 |  |  |  |  |  |  |
| $2 B$ | 0 |  |  |  |  |  |  |
| $3 C$ | 0 |  |  |  |  |  |  |
| $4 B$ | 0 |  |  |  |  |  |  |
| $5 D$ | 0 |  |  |  |  |  |  |
| 6 A | 0 |  |  |  |  |  |  |
| $7 B$ | 0 |  |  |  |  |  |  |

Computing the Length of an LCS-2

Operation of LCS-LENGTH on the sequences

$$
\begin{aligned}
X & =\left\langle\stackrel{1}{A}, \stackrel{2}{B}, \stackrel{3}{C}, \stackrel{4}{B}, \stackrel{5}{D},{ }_{A}^{6}, \stackrel{7}{B}\right\rangle \\
Y & =\langle\stackrel{1}{B}, \stackrel{2}{D}, \stackrel{3}{C}, \stackrel{4}{A}, \stackrel{5}{B}, \stackrel{6}{A}\rangle
\end{aligned}
$$

$$
\begin{array}{lllllll}
\downarrow i / j \rightarrow 0 y_{j} & \stackrel{1}{B} & \stackrel{2}{D} & \stackrel{3}{C} & \stackrel{4}{A} & \stackrel{5}{B} & \left.\begin{array}{c}
A \\
\end{array}\right)
\end{array}
$$

| $0 x_{i}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 A | 0 | $\uparrow$ | $\uparrow$ 0 | $\uparrow$ 0 | $\nwarrow$ | $\overleftarrow{1}$ | $\nwarrow$ 1 |
| $2 B$ | 0 |  |  |  |  |  |  |
| $3 C$ | 0 |  |  |  |  |  |  |
| $4 B$ | 0 |  |  |  |  |  |  |
| $5 D$ | 0 |  |  |  |  |  |  |
| 6 A | 0 |  |  |  |  |  |  |
| $7 B$ | 0 |  |  |  |  |  |  |

Computing the Length of an LCS-3

Operation of LCS-LENGTH on the sequences

$$
\begin{aligned}
X & =\left\langle\stackrel{1}{A}, \stackrel{2}{B}, \stackrel{3}{C}, \stackrel{4}{B}, \stackrel{5}{D},{ }_{A}^{A}, \stackrel{7}{B}\right\rangle \\
Y & =\langle\stackrel{1}{B}, \stackrel{2}{D}, \stackrel{3}{C}, \stackrel{4}{A}, \stackrel{5}{B}, \stackrel{6}{A}\rangle
\end{aligned}
$$

$$
\begin{array}{lllllll}
\downarrow i / j \rightarrow 0 y_{j} & \stackrel{1}{B} & \stackrel{2}{D} & \stackrel{3}{C} & \stackrel{4}{A} & \stackrel{5}{B} & \begin{array}{c}
A \\
\end{array}
\end{array}
$$

| $0 x_{i}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 A | 0 | $\uparrow$ 0 | $\uparrow$ 0 | $\begin{aligned} & \uparrow \\ & 0 \end{aligned}$ | $\nwarrow$ | $\overleftarrow{1}$ | $\nwarrow$ 1 |
| $2 B$ | 0 | $\nwarrow$ 1 | $\overleftarrow{1}$ | $\overleftarrow{1}$ | $\uparrow$ | $\begin{gathered} \nwarrow \\ 2 \end{gathered}$ | $\overleftarrow{2}$ |
| $3 C$ | 0 |  |  |  |  |  |  |
| $4 B$ | 0 |  |  |  |  |  |  |
| 5 D | 0 |  |  |  |  |  |  |
| 6 A | 0 |  |  |  |  |  |  |
| $7 B$ | 0 |  |  |  |  |  |  |

Computing the Length of an LCS-4

Operation of LCS-LENGTH on the sequences

$$
\begin{aligned}
X & =\left\langle\stackrel{1}{A}, \stackrel{2}{B}, \stackrel{3}{C}, \stackrel{4}{B}, \stackrel{5}{D},{ }_{A}^{A}, \stackrel{7}{B}\right\rangle \\
Y & =\langle\stackrel{1}{B}, \stackrel{2}{D}, \stackrel{3}{C}, \stackrel{4}{A}, \stackrel{5}{B}, \stackrel{6}{A}\rangle
\end{aligned}
$$

Computing the Length of an LCS-5

Operation of LCS-LENGTH on the sequences

$$
\begin{aligned}
X & =\left\langle\stackrel{1}{A}, \stackrel{2}{B}, \stackrel{3}{C}, \stackrel{4}{B}, \stackrel{5}{D},{ }_{A}^{6}, \stackrel{7}{B}\right\rangle \\
Y & =\left\langle\stackrel{1}{B}, \stackrel{2}{D}, \stackrel{3}{C}, \stackrel{4}{A}, \stackrel{5}{B},{ }_{A}^{A}\right\rangle
\end{aligned}
$$

| $\downarrow i / j \rightarrow 0 y_{j}$ |  | $\stackrel{1}{B}$ | $\stackrel{2}{D}$ | $\stackrel{3}{C}$ | $\stackrel{4}{A}$ | $\stackrel{5}{B}$ | 6 $A$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $0 x_{i}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 A | 0 | $\uparrow$ 0 | $\uparrow$ 0 | $\uparrow$ 0 | $\begin{aligned} & \nwarrow \\ & 1 \end{aligned}$ | $\overleftarrow{1}$ | $\nwarrow$ 1 |
| $2 B$ | 0 | $\begin{aligned} & \nwarrow \\ & 1 \end{aligned}$ | $\overleftarrow{1}$ | $\overleftarrow{1}$ | $\uparrow$ | $\nwarrow$ 2 | $\overleftarrow{2}$ |
| $3 C$ | 0 | $\uparrow$ | $\uparrow$ 1 | $\begin{aligned} & \nwarrow \\ & 2 \end{aligned}$ | $\overleftarrow{2}$ | $\uparrow$ | $\uparrow$ |
| $4 B$ | 0 | $\begin{aligned} & \nwarrow \\ & 1 \end{aligned}$ |  |  |  |  |  |
| 5 D | 0 |  |  |  |  |  |  |
| 6 A | 0 |  |  |  |  |  |  |
| $7 B$ | 0 |  |  |  |  |  |  |

Computing the Length of an LCS-6

Operation of LCS-LENGTH on the sequences

$$
\begin{aligned}
X & =\left\langle\stackrel{1}{A}, \stackrel{2}{B}, \stackrel{3}{C}, \stackrel{4}{B}, \stackrel{5}{D},{ }_{A}^{A}, \stackrel{7}{B}\right\rangle \\
Y & =\langle\stackrel{1}{B}, \stackrel{2}{D}, \stackrel{3}{C}, \stackrel{4}{A}, \stackrel{5}{B}, \stackrel{6}{A}\rangle
\end{aligned}
$$

| $\downarrow i / j \rightarrow 0 y_{j}$ |  | $\stackrel{1}{B}$ | $\stackrel{2}{D}$ | $\stackrel{3}{C}$ | $\stackrel{4}{A}$ | $\stackrel{5}{B}$ | 6 $A$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $0 x_{i}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 A | 0 | $\uparrow$ | $\uparrow$ 0 | $\uparrow$ | $\begin{aligned} & \nwarrow \\ & 1 \end{aligned}$ | $\overleftarrow{1}$ | $K$ 1 |
| $2 B$ | 0 | $\nwarrow$ 1 | $\overleftarrow{1}$ | $\overleftarrow{1}$ | $\uparrow$ | K 2 | $\overleftarrow{2}$ |
| $3 C$ | 0 | $\uparrow$ | $\uparrow$ 1 | $\begin{gathered} \nwarrow \\ 2 \end{gathered}$ | $\overleftarrow{2}$ | $\uparrow$ | $\uparrow$ |
| $4 B$ | 0 | $\begin{aligned} & \nwarrow \\ & 1 \end{aligned}$ | $\uparrow$ |  |  |  |  |
| 5 D | 0 |  |  |  |  |  |  |
| 6 A | 0 |  |  |  |  |  |  |
| 7 B | 0 |  |  |  |  |  |  |

Computing the Length of an LCS-7

Operation of LCS-LENGTH on the sequences

$$
\begin{aligned}
X & =\left\langle\stackrel{1}{A}, \stackrel{2}{B}, \stackrel{3}{C}, \stackrel{4}{B}, \stackrel{5}{D},{ }_{A}^{6}, \stackrel{7}{B}\right\rangle \\
Y & =\left\langle\stackrel{1}{B}, \stackrel{2}{D}, \stackrel{3}{C}, \stackrel{4}{A}, \stackrel{5}{B},{ }_{A}^{A}\right\rangle
\end{aligned}
$$

| $\downarrow i / j \rightarrow 0 y_{j}$ |  | $\stackrel{1}{B}$ | $\stackrel{2}{D}$ | $\stackrel{3}{C}$ | $\stackrel{4}{A}$ | 5 $B$ | 6 $A$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $0 x_{i}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 A | 0 | $\uparrow$ | $\begin{aligned} & \uparrow \\ & 0 \end{aligned}$ | $\begin{aligned} & \uparrow \\ & 0 \end{aligned}$ | $\begin{aligned} & \nwarrow \\ & 1 \end{aligned}$ | $\overleftarrow{1}$ | $\nwarrow$ 1 |
| $2 B$ | 0 | $\begin{gathered} \nwarrow \\ 1 \end{gathered}$ | $\overleftarrow{1}$ | $\overleftarrow{1}$ | $\uparrow$ | K 2 | $\overleftarrow{2}$ |
| $3 C$ | 0 | $\uparrow$ | $\uparrow$ | $\begin{aligned} & \nwarrow \\ & 2 \end{aligned}$ | $\overleftarrow{2}$ | $\uparrow$ | $\uparrow$ |
| $4 B$ | 0 | $\begin{aligned} & \nwarrow \\ & 1 \end{aligned}$ | $\begin{aligned} & \uparrow \\ & 1 \end{aligned}$ | $\uparrow$ |  |  |  |
| 5 D | 0 |  |  |  |  |  |  |
| 6 A | 0 |  |  |  |  |  |  |
| 7 B | 0 |  |  |  |  |  |  |

Computing the Length of an LCS－8

Operation of LCS－LENGTH on the sequences

$$
\begin{aligned}
X & =\left\langle\stackrel{1}{A}, \stackrel{2}{B}, \stackrel{3}{C}, \stackrel{4}{B}, \stackrel{5}{D},{ }_{A}^{6}, \stackrel{7}{B}\right\rangle \\
Y & =\left\langle\stackrel{1}{B}, \stackrel{2}{D}, \stackrel{3}{C}, \stackrel{4}{A}, \stackrel{5}{B},{ }_{A}^{A}\right\rangle
\end{aligned}
$$

| $\downarrow i / j \rightarrow 0 y_{j}$ |  | $\stackrel{1}{B}$ | $\stackrel{2}{D}$ | $\stackrel{3}{C}$ | $\begin{aligned} & 4 \\ & A \end{aligned}$ | $\stackrel{5}{B}$ | 6 $A$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $0 x_{i}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 A | 0 | $\begin{aligned} & \uparrow \\ & 0 \end{aligned}$ | $\begin{aligned} & \uparrow \\ & 0 \end{aligned}$ | $\begin{aligned} & \uparrow \\ & 0 \end{aligned}$ | $\begin{gathered} K \\ 1 \end{gathered}$ | $\overleftarrow{1}$ | $\nwarrow$ 1 |
| $2 B$ | 0 | $\begin{gathered} K \\ 1 \end{gathered}$ | $\overleftarrow{1}$ | $\overleftarrow{1}$ | 个 1 | K 2 | $\overleftarrow{2}$ |
| $3 C$ | 0 | $\uparrow$ | $\uparrow$ 1 | $\begin{aligned} & \nwarrow \\ & 2 \end{aligned}$ | $\stackrel{\leftarrow}{2}$ | 个 | 个 |
| $4 B$ | 0 | $\begin{aligned} & \nwarrow \\ & 1 \end{aligned}$ | $\begin{aligned} & \uparrow \\ & 1 \end{aligned}$ | $\begin{aligned} & \uparrow \\ & 2 \end{aligned}$ | 个 |  |  |
| 5 D | 0 |  |  |  |  |  |  |
| 6 A | 0 |  |  |  |  |  |  |
| 7 B | 0 |  |  |  |  |  |  |

Computing the Length of an LCS－9

Operation of LCS－LENGTH on the sequences

$$
\begin{aligned}
X & =\left\langle\stackrel{1}{A}, \stackrel{2}{B}, \stackrel{3}{C}, \stackrel{4}{B}, \stackrel{5}{D},{ }_{A}^{6}, \stackrel{7}{B}\right\rangle \\
Y & =\left\langle\stackrel{1}{B}, \stackrel{2}{D}, \stackrel{3}{C}, \stackrel{4}{A}, \stackrel{5}{B},{ }_{A}^{A}\right\rangle
\end{aligned}
$$

| $\downarrow i / j \rightarrow 0 y_{j}$ |  | $\stackrel{1}{B}$ | $\stackrel{2}{D}$ | $\stackrel{3}{C}$ | $\begin{aligned} & 4 \\ & A \end{aligned}$ | $\stackrel{5}{B}$ | 6 $A$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $0 x_{i}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 A | 0 | $\begin{aligned} & \uparrow \\ & 0 \end{aligned}$ | $\begin{aligned} & \uparrow \\ & 0 \end{aligned}$ | $\begin{aligned} & \uparrow \\ & 0 \end{aligned}$ | $\begin{gathered} K \\ 1 \end{gathered}$ | $\overleftarrow{1}$ | $\nwarrow$ 1 |
| $2 B$ | 0 | $\begin{gathered} K \\ 1 \end{gathered}$ | $\overleftarrow{1}$ | $\overleftarrow{1}$ | 个 1 | K 2 | $\overleftarrow{2}$ |
| $3 C$ | 0 | $\begin{aligned} & \uparrow \\ & 1 \end{aligned}$ | $\uparrow$ 1 | $\begin{aligned} & \nwarrow \\ & 2 \end{aligned}$ | $\overleftarrow{2}$ | 个 | 个 |
| $4 B$ | 0 | $\begin{aligned} & \nwarrow \\ & 1 \end{aligned}$ | $\begin{aligned} & \uparrow \\ & 1 \end{aligned}$ | $\begin{aligned} & \uparrow \\ & 2 \end{aligned}$ | $\begin{aligned} & \uparrow \\ & 2 \end{aligned}$ | $\begin{aligned} & \nwarrow \\ & 3 \end{aligned}$ |  |
| 5 D | 0 |  |  |  |  |  |  |
| 6 A | 0 |  |  |  |  |  |  |
| 7 B | 0 |  |  |  |  |  |  |

Computing the Length of an LCS-10

Operation of LCS-LENGTH on the sequences

$$
\begin{aligned}
X & =\left\langle\stackrel{1}{A}, \stackrel{2}{B}, \stackrel{3}{C}, \stackrel{4}{B}, \stackrel{5}{D},{ }_{A}^{6}, \stackrel{7}{B}\right\rangle \\
Y & =\left\langle\stackrel{1}{B}, \stackrel{2}{D}, \stackrel{3}{C}, \stackrel{4}{A}, \stackrel{5}{B},{ }_{A}^{A}\right\rangle
\end{aligned}
$$

| $\downarrow i / j \rightarrow 0 y_{j}$ |  | $\stackrel{1}{B}$ | $\stackrel{2}{D}$ | $\stackrel{3}{C}$ | $\stackrel{4}{A}$ | $\stackrel{5}{B}$ | ${ }_{6}^{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $0 x_{i}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 A | 0 | $\uparrow$ 0 | $\begin{aligned} & \uparrow \\ & 0 \end{aligned}$ | $\uparrow$ 0 | $\begin{aligned} & \nwarrow \\ & 1 \end{aligned}$ | $\overleftarrow{1}$ | $\nwarrow$ 1 |
| $2 B$ | 0 | $\begin{aligned} & \nwarrow \\ & 1 \end{aligned}$ | $\overleftarrow{1}$ | $\overleftarrow{1}$ | $\uparrow$ | K 2 | $\overleftarrow{2}$ |
| $3 C$ | 0 | $\begin{aligned} & \uparrow \\ & 1 \end{aligned}$ | $\begin{aligned} & \uparrow \\ & 1 \end{aligned}$ | $\begin{gathered} \nwarrow \\ 2 \end{gathered}$ | $\overleftarrow{2}$ | 个 | 个 |
| $4 B$ | 0 | $\begin{aligned} & \nwarrow \\ & 1 \end{aligned}$ | $\begin{aligned} & \uparrow \\ & 1 \end{aligned}$ | $\begin{aligned} & \uparrow \\ & 2 \end{aligned}$ | $\begin{aligned} & \uparrow \\ & 2 \end{aligned}$ | $\begin{gathered} \nwarrow \\ 3 \end{gathered}$ | $\overleftarrow{3}$ |
| 5 D | 0 |  |  |  |  |  |  |
| 6 A | 0 |  |  |  |  |  |  |
| 7 B | 0 |  |  |  |  |  |  |

Computing the Length of an LCS-11

Operation of LCS-LENGTH on the sequences

$$
\begin{aligned}
X & =\left\langle\stackrel{1}{A}, \stackrel{2}{B}, \stackrel{3}{C}, \stackrel{4}{B}, \stackrel{5}{D},{ }_{A}^{A}, \stackrel{7}{B}\right\rangle \\
Y & =\langle\stackrel{1}{B}, \stackrel{2}{D}, \stackrel{3}{C}, \stackrel{4}{A}, \stackrel{5}{B}, \stackrel{6}{A}\rangle
\end{aligned}
$$

$$
\downarrow i / j \rightarrow 0 y_{j} \quad{ }_{B}^{1} \quad \stackrel{2}{D} \quad{ }_{C}^{3} \quad{ }_{A}^{4} \quad{ }_{B}^{5} \quad{ }_{A}^{6}
$$

| $0 \mid$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Computing the Length of an LCS-12

Operation of LCS-LENGTH on the sequences

$$
\begin{aligned}
X & =\left\langle\stackrel{1}{A}, \stackrel{2}{B}, \stackrel{3}{C}, \stackrel{4}{B}, \stackrel{5}{D},{ }_{A}^{6}, \stackrel{7}{B}\right\rangle \\
Y & =\langle\stackrel{1}{B}, \stackrel{2}{D}, \stackrel{3}{C}, \stackrel{4}{A}, \stackrel{5}{B}, \stackrel{6}{A}\rangle
\end{aligned}
$$

$$
\begin{array}{lllllll}
\downarrow i / j \rightarrow 0 y_{j} & \stackrel{1}{B} & \stackrel{2}{D} & \stackrel{3}{C} & \stackrel{4}{A} & \stackrel{5}{B} & \begin{array}{c}
A
\end{array}
\end{array}
$$

## Computing the Length

 of an LCS-13Operation of LCS-LENGTH on the sequences

$$
\begin{aligned}
X & =\left\langle\stackrel{1}{A}, \stackrel{2}{B}, \stackrel{3}{C}, \stackrel{4}{B}, \stackrel{5}{D},{ }_{A}^{A}, \stackrel{7}{B}\right\rangle \\
Y & =\left\langle\stackrel{1}{B}, \stackrel{2}{D}, \stackrel{3}{C}, \stackrel{4}{A}, \stackrel{5}{B},{ }_{A}^{A}\right\rangle
\end{aligned}
$$

- Running-time $=O(m n)$ since each table entry takes $O(1)$ time to compute


## Computing the Length

 of an LCS－14Operation of LCS－LENGTH on the sequences

$$
\begin{aligned}
X & =\left\langle\stackrel{1}{A}, \stackrel{2}{B}, \stackrel{3}{C}, \stackrel{4}{B}, \stackrel{5}{D},{ }_{A}^{A},{ }_{B}^{B}\right. \\
Y & =\langle\stackrel{1}{B}, \stackrel{2}{D}, \stackrel{3}{C}, \stackrel{4}{A}, \stackrel{5}{B}, \stackrel{6}{A}\rangle
\end{aligned}
$$

－ Running－time $=O(m n)$ since each table entry takes $O(1)$ time to compute
－LCS of $X \& Y=$ $\langle B, C, B, A\rangle$

| $\downarrow i / j \rightarrow 0 y_{j}$ |  | $\stackrel{1}{B}$ | $\stackrel{2}{D}$ | $\stackrel{3}{C}$ | 4 $A$ | $\stackrel{5}{B}$ | 6 $A$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $0 x_{i}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 A | 0 | 个 0 | $\uparrow$ 0 | $\uparrow$ 0 | $\begin{aligned} & \nwarrow \\ & 1 \end{aligned}$ | $\overleftarrow{1}$ | $\nwarrow$ 1 |
| $2 B$ | 0 | $\nwarrow$ 1 | $\overleftarrow{1}$ | $\overleftarrow{1}$ | $\uparrow$ 1 | 5 2 | $\overleftarrow{2}$ |
| $3 C$ | 0 | $\uparrow$ | $\uparrow$ | $\begin{aligned} & \nwarrow \\ & 2 \end{aligned}$ | $\overleftarrow{2}$ | $\uparrow$ | $\uparrow$ |
| $4 B$ | 0 | $\nwarrow$ 1 | $\uparrow$ | $\uparrow$ | $\uparrow$ | K 3 | $\overleftarrow{3}$ |
| 5 D | 0 | $\uparrow$ | K 2 | $\uparrow$ 2 | $\uparrow$ 2 | $\uparrow$ 3 | $\uparrow$ |
| 6 A | 0 | $\uparrow$ | $\uparrow$ | $\uparrow$ 2 | $\nwarrow$ 3 | $\uparrow$ | K 4 |
| $7 B$ | 0 | $\begin{aligned} & \nwarrow \\ & 1 \end{aligned}$ | $\uparrow$ | $\uparrow$ | 个 | $\nwarrow$ 4 | $\uparrow$ |

## Constructing an LCS

- The $b$ table returned by LCS-LENGTH can be used to quickly construct an LCS of $X \& Y$
- Begin at $b[m, n]$ and trace through the table following arrows
- Whenever you encounter a " $\nwarrow$ " in entry $b[i, j]$ it implies that $x_{i}=y_{j}$ is an element of LCS
- The elements of LCS are encountered in reverse order


## Constructing an LCS

- The recursive procedure PRINT-LCS prints out LCS in proper order
- This procedure takes $O(m+n)$ time since at least one of $i$ and $j$ is decremented in each stage of the recursion

```
PRINT-LCS \((b, X, i, j)\)
    if \(i=0\) or \(j=0\) then
    return
    if \(b[i, j]=" \nwarrow "\) then
        PRINT-LCS \((b, X, i-1, j-1)\)
        print \(x_{i}\)
    else if \(b[i, j]=" \uparrow "\) then
        PRINT-LCS \((b, X, i-1, j)\)
    else
        PRINT-LCS( \(b, X, i, j-1)\)
```

- The initial invocation: PRINT-LCS $(b, X$, length $[X]$, length $[Y])$

$$
\begin{array}{lllllll}
\downarrow i / j \rightarrow 0 y_{j} & \stackrel{1}{B} & \stackrel{2}{D} & \stackrel{3}{C} & \stackrel{4}{A} & \stackrel{5}{B} & \stackrel{6}{A}
\end{array}
$$

## Do we really need the $b$ table

 (back-pointers)?- Question: From which neighbor did we expand to the highlighted cell?
- Answer: Upper-left neighbor,because $X[i]=Y[j]$.

|  | $0 x_{i}$ | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $1 A$ | 0 | $\uparrow$ | $\uparrow$ | $\uparrow$ | $\nwarrow$ | $\overleftarrow{y}$ |  |

$$
\begin{array}{lllllll}
\downarrow i / j \rightarrow 0 y_{j} & \stackrel{1}{B} & \stackrel{2}{D} & \stackrel{3}{C} & \stackrel{4}{A} & \stackrel{5}{B} & \stackrel{6}{A}
\end{array}
$$

## Do we really need the $b$ table (back-pointers)?

- Question: From which neighbor did we expand to the highlighted cell?
- Answer: Left neighbor, because $X[i] \neq Y[j]$ and $L C S[i, j-1]>$ $L C S[i-1, j]$.

$$
\begin{array}{lllllll}
\downarrow i / j \rightarrow 0 y_{j} & \stackrel{1}{B} & \stackrel{2}{D} & \stackrel{3}{C} & \stackrel{4}{A} & \stackrel{5}{B} & \stackrel{6}{A}
\end{array}
$$

Do we really need the $b$ table (back-pointers)?

- Question: From which neighbor did we expand to the highlighted cell?
- Answer: Upper neighbor,because $X[i] \neq Y[j]$ and
$L C S[i, j-1]=L C S[i-1, j]$.
(See pseudo-code to see how ties are handled.)


## Improving the Space Requirements

- We can eliminate the $b$ table altogether
- each $c[i, j]$ entry depends only on 3 other $c$ table entries: $c[i-1, j-1], c[i-1, j]$ and $c[i, j-1]$
- Given the value of $c[i, j]$ :
- We can determine in $O(1)$ time which of these 3 values was used to compute $c[i, j]$ without inspecting table $b$
- We save $\Theta(m n)$ space by this method
- However, space requirement is still $\Theta(m n)$ since we need $\Theta(m n)$ space for the $c$ table anyway

$$
\begin{array}{lllllll}
\downarrow i / j \rightarrow 0 y_{j} & \stackrel{1}{B} & \stackrel{2}{D} & \stackrel{3}{C} & \stackrel{4}{A} & \stackrel{5}{B} & \stackrel{6}{A}
\end{array}
$$

What if we store the last 2 rows only?

- To compute $c[i, j]$, we only need $c[i-1, j-1], c[i-1, j]$, and $c[i-$ $1, j-1]$
- So, we can store only the last two rows.

$$
\begin{array}{lllllll}
\downarrow i / j \rightarrow 0 y_{j} & \stackrel{1}{B} & \stackrel{2}{D} & \stackrel{3}{C} & \stackrel{4}{A} & \stackrel{5}{B} & { }_{A}^{6}
\end{array}
$$

What if we store the last 2 rows only?

- To compute $c[i, j]$, we only need $c[i-1, j-1], c[i-1, j]$, and $c[i-1, j-1]$
- So, we can store only the last two rows.

$$
\begin{array}{lllllll}
\downarrow i / j \rightarrow 0 y_{j} & \stackrel{1}{B} & \stackrel{2}{D} & \stackrel{3}{C} & \stackrel{4}{A} & \stackrel{5}{B} & { }_{A}^{6}
\end{array}
$$

- To compute $c[i, j]$, we only need $c[i-1, j-1], c[i-1, j]$, and $c[i-1, j-1]$
- So, we can store only the last two rows.
- This reduces space complexity from $\Theta(m n)$ to $\Theta(n)$.
- Is there a problem with this approach?

$$
\begin{array}{lllllll}
\downarrow i / j \rightarrow 0 y_{j} & \stackrel{1}{B} & \stackrel{2}{D} & \stackrel{3}{C} & \stackrel{4}{A} & \stackrel{5}{B} & { }_{A}^{6}
\end{array}
$$

What if we store the last 2 rows only?

- Is there a problem with this approach?
- We cannot construct the optimal solution because we cannot backtrace anymore.
- This approach works if we only need the length of an LCS, not the actual LCS.


# Problem 4 Optimal Binary Search Tree 

## Reminder: Binary Search Tree (BST)



This property holds for all nodes

## Binary Search Tree Example

- Example: English-to-French translation
- Organize (English, French) word pairs in a BST
- Keyword: English word
- Satellite Data: French word
- We can search for an English word (node key) efficiently, and return the corresponding French word (satellite data).



## CE100 Algorithms and Programming II

## ASCII Table

| Dec | Hex | Oct Char | Dec | Hex | Oct | Char | Dec | Hex | Oct | Char | Dec | Hex | Oct | Char |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 32 | 20 | 40 | [space] | 64 | 40 | 100 | @ | 96 | 60 | 140 | , |
| 1 | 1 | 1 | 33 | 21 | 41 | ! | 65 | 41 | 101 | A | 97 | 61 | 141 | a |
| 2 | 2 | 2 | 34 | 22 | 42 | " | 66 | 42 | 102 | B | 98 | 62 | 142 | b |
| 3 | 3 | 3 | 35 | 23 | 43 | \# | 67 | 43 | 103 | C | 99 | 63 | 143 | c |
| 4 | 4 | 4 | 36 | 24 | 44 | \$ | 68 | 44 | 104 | D | 100 | 64 | 144 | d |
| 5 | 5 | 5 | 37 | 25 | 45 | \% | 69 | 45 | 105 | E | 101 | 65 | 145 | e |
| 6 | 6 | 6 | 38 | 26 | 46 | \& | 70 | 46 | 106 | F | 102 | 66 | 146 | f |
| 7 | 7 | 7 | 39 | 27 | 47 | ' | 71 | 47 | 107 | G | 103 | 67 | 147 | g |
| 8 | 8 | 10 | 40 | 28 | 50 | ( | 72 | 48 | 110 | H | 104 | 68 | 150 | h |
| 9 | 9 | 11 | 41 | 29 | 51 | ) | 73 | 49 | 111 | I | 105 | 69 | 151 | i |
| 10 | A | 12 | 42 | 2A | 52 | * | 74 | 4A | 112 | J | 106 | 6A | 152 | J |
| 11 | B | 13 | 43 | 2B | 53 | + | 75 | 4B | 113 | K | 107 | 6B | 153 | k |
| 12 | C | 14 | 44 | 2C | 54 |  | 76 | 4C | 114 | L | 108 | 6C | 154 | , |
| 13 | D | 15 | 45 | 2D | 55 | - | 77 | 4D | 115 | M | 109 | 6D | 155 | m |
| 14 | E | 16 | 46 | 2E | 56 | . | 78 | 4E | 116 | N | 110 | 6E | 156 | n |
| 15 | F | 17 | 47 | 2F | 57 | 1 | 79 | 4F | 117 | 0 | 111 | 6F | 157 | 0 |
| 16 | 10 | 20 | 48 | 30 | 60 | 0 | 80 | 50 | 120 | P | 112 | 70 | 160 | p |
| 17 | 11 | 21 | 49 | 31 | 61 | 1 | 81 | 51 | 121 | Q | 113 | 71 | 161 | q |
| 18 | 12 | 22 | 50 | 32 | 62 | 2 | 82 | 52 | 122 | R | 114 | 72 | 162 | r |
| 19 | 13 | 23 | 51 | 33 | 63 | 3 | 83 | 53 | 123 | S | 115 | 73 | 163 | S |
| 20 | 14 | 24 | 52 | 34 | 64 | 4 | 84 | 54 | 124 | T | 116 | 74 | 164 | t |
| 21 | 15 | 25 | 53 | 35 | 65 | 5 | 85 | 55 | 125 | U | 117 | 75 | 165 | u |
| 22 | 16 | 26 | 54 | 36 | 66 | 6 | 86 | 56 | 126 | V | 118 | 76 | 166 | v |
| 23 | 17 | 27 | 55 | 37 | 67 | 7 | 87 | 57 | 127 | W | 119 | 77 | 167 | w |
| 24 | 18 | 30 | 56 | 38 | 70 | 8 | 88 | 58 | 130 | X | 120 | 78 | 170 | x |
| 25 | 19 | 31 | 57 | 39 | 71 | 9 | 89 | 59 | 131 | Y | 121 | 79 | 171 | y |
| 26 | 1A | 32 | 58 | 3 A | 72 | : | 90 | 5A | 132 | Z | 122 | 7A | 172 | z |
| 27 | 1B | 33 | 59 | 3B | 73 | ; | 91 | 5B | 133 | [ | 123 | 7B | 173 | \{ |
| 28 | 1 C | 34 | 60 | 3C | 74 | < | 92 | 5 C | 134 | 1 | 124 | 7 C | 174 | 1 |
| 29 | 1D | 35 | 61 | 3D | 75 | = | 93 | 5D | 135 | ] | 125 | 7D | 175 | \} |
| 30 | 1E | 36 | 62 | 3E | 76 | > | 94 | 5E | 136 | ヘ | 126 | 7E | 176 | $\sim$ |
| 31 | 1 F | 37 | 63 | 3 F | 77 | ? | 95 | 5 F | 137 | - | 127 | 7F | 177 |  |

## Binary Search Tree Example

Suppose we know the frequency of each keyword in texts:
$\frac{\text { begin }}{5 \%}, \frac{\text { do }}{40 \%}, \frac{\text { else }}{8 \%}, \frac{\text { end }}{4 \%}, \frac{\text { if }}{10 \%}, \frac{\text { then }}{10 \%}, \frac{\text { while }}{23 \%}$,


## Cost of a Binary Search Tree

Example: If we search for keyword "while", we need
to access 3 nodes. So, 23 of the queries will have cost of 3 .

$$
\begin{aligned}
& \text { Total Cost }=\sum_{i}(\operatorname{depth}(i)+1) \text { freq }(i) \\
&=1 \times 0.04+2 \times 0.4+ \\
& 2 \times 0.1+3 \times 0.05+ \\
& 3 \times 0.08+3 \times 0.1+ \\
& 3 \times 0.23 \\
&=2.42
\end{aligned}
$$

## Cost of a Binary Search Tree

Example: If we search for keyword "while", we need to access 3 nodes. So, 23 of the queries will have cost of 3 .

$$
\begin{aligned}
\text { Total Cost } & =\sum_{i}(\operatorname{depth}(i)+1) \text { freq }(i) \\
& =1 \times 0.4+2 \times 0.05+2 \times 0.23+ \\
3 & \times 0.1+4 \times 0.08+ \\
4 & \times 0.1+5 \times 0.04 \\
& =2.18
\end{aligned}
$$

- This is in fact an optimal BST.


## Optimal Binary Search Tree Problem

- Given:
- A collection of $n$ keys $K_{1}<K_{2}<\ldots K_{n}$ to be stored in a BST.
- The corresponding $p_{i}$ values for $1 \leq i \leq n$
- $p_{i}$ : probability of searching for key $K_{i}$
- Find:
- An optimal BST with minimum total cost:

$$
\text { Total Cost }=\sum_{i}(\operatorname{depth}(i)+1) \operatorname{freq}(i)
$$

- Note: The BST will be static. Only search operations will be performed. No insert, no delete, etc.


## Cost of a Binary Search Tree

- Lemma 1: Let Tij be a BST containing keys $K_{i}<K_{i+1}<\cdots<K_{j}$. Let $T_{L}$ and $T_{R}$ be the left and right subtrees of $T$. Then we have:

$$
\operatorname{cost}\left(T_{i j}\right)=\operatorname{cost}\left(T_{L}\right)+\operatorname{cost}\left(T_{R}\right)+\sum_{h=i}^{j} p_{h}
$$

Intuition: When we add the root node, the depth of each node in $T_{L}$ and $T_{R}$ increases by 1 . So, the cost of node $h$ increases by $p_{h}$. In addition, the cost of root node $r$ is $p_{r}$. That's why, we have the last term at the end of the formula above.


## Optimal Substructure Property

- Lemma 2: Optimal substructure property
- Consider an optimal BST $T_{i j}$ for keys $K_{i}<K_{i+1}<$ $\cdots<K_{j}$
- Let $K_{m}$ be the key at the root of $T_{i j}$
- Then:
- $T_{i, m-1}$ is an optimal BST for subproblem containing keys:
- $K_{i}<\cdots<K_{m-1}$
- $T_{m+1, j}$ is an optimal BST for subproblem containing keys:
- $K_{m+1}<\cdots<K_{j}$

$T_{i, m-1} \quad T_{m+1, j}$

$$
\operatorname{cost}\left(T_{i j}\right)=\operatorname{cost}\left(T_{i, m-1}\right)+\operatorname{cost}\left(T_{m+1, j}\right)+\sum_{h=i}^{j} p_{h}
$$

## Recursive Formulation

- Note: We don't know which root vertex leads to the minimum total cost. So, we need to try each vertex $m$, and choose the one with minimum total cost.
- $c[i, j]$ : cost of an optimal BST $T_{i j}$ for the subproblem $K_{i}<\cdots<K_{j}$

$$
\begin{aligned}
& c[i, j]=\left\{\begin{array}{lc}
0 & \text { if } i>j \\
\min _{i \leq r \leq j}\left\{c[i, r-1]+c[r+1, j]+P_{i j}\right\} & \text { otherwise }
\end{array}\right. \\
& \text { where } P_{i j}=\sum_{h=i}^{j} p_{h}
\end{aligned}
$$

## Bottom-up computation

$$
c[i, j]=\left\{\begin{array}{lc}
0 & \text { if } i>j \\
\min _{i \leq r \leq j}\left\{c[i, r-1]+c[r+1, j]+P_{i j}\right\} & \text { otherwise }
\end{array}\right.
$$

- How to choose the order in which we process $c[i, j]$ values?
- Before computing $c[i, j]$, we have to make sure that the values for $c[i, r-1]$ and $c[r+1, j]$ have been computed for all $r$.


## Bottom-up computation

$c[i, j]=\left\{\begin{array}{lc}0 & \text { if } i>j \\ \min _{i \leq r \leq j}\left\{c[i, r-1]+c[r+1, j]+P_{i j}\right\} & \text { otherwise }\end{array}\right.$

- $c[i, j]$ must be processed after $c[i, r-1]$ and $c[r+1, j]$



## Bottom-up computation

$$
c[i, j]=\left\{\begin{array}{lc}
0 & \text { if } i>j \\
\min _{i \leq r \leq j}\left\{c[i, r-1]+c[r+1, j]+P_{i j}\right\} & \text { otherwise }
\end{array}\right.
$$

- If the entries $c[i, j]$ are computed in the shown order, then $c[i, r-1]$ and $c[r+1, j]$ values are guaranteed to be computed before $c[i, j]$.



## Computing the Optimal BST Cost

```
OPTIMAL-BST-COST \((p, n)\)
for \(i \leftarrow 1\) to \(n\) do
    \(c[i, i-1] \leftarrow 0\)
    \(c[i, i] \leftarrow p[i]\)
    \(R[i, j] \leftarrow i\)
\(P S[1] \leftarrow p[1] \Longleftarrow P S[i] \rightarrow\) prefix-sum \((i):\) Sum of all \(p[j]\) values for \(j \leq i\)
for \(i \leftarrow 2\) to \(n\) do
    \(P S[i] \leftarrow p[i]+P S[i-1] \Longleftarrow\) compute the prefix sum
for \(d \leftarrow 1\) to \(n-1\) do \(\Longleftarrow\) BSTs with \(d+1\) consecutive keys
    for \(i \leftarrow 1\) to \(n-d\) do
        \(j \leftarrow i+d\)
        \(c[i, j] \leftarrow \infty\)
        for \(r \leftarrow i\) to \(j\) do
            \(q \leftarrow \min \{c[i, r-1]+c[r+1, j]\}+P S[j]-P S[i-1]\}\)
            if \(q<c[i, j]\) then
            \(c[i, j] \leftarrow q\)
            \(R[i, j] \leftarrow r\)
return \(c[1, n], R\)
```


## Note on Prefix Sum

- We need $P_{i j}$ values for each $i, j(1 \leq i \leq n$ and $1 \leq j \leq n)$, where:

$$
P_{i j}=\sum_{h=i}^{j} p_{h}
$$

- If we compute the summation directly for every $(i, j)$ pair, the runtime would be $\Theta\left(n^{3}\right)$.
- Instead, we spend $O(n)$ time in preprocessing to compute the prefix sum array PS. Then we can compute each $P_{i j}$ in $O(1)$ time using PS.


## Note on Prefix Sum

- In preprocessing, compute for each $i$ :
- $P S[i]$ : the sum of $p[j]$ values for $1 \leq j \leq i$
- Then, we can compute $P_{i j}$ in $O(1)$ time as follows:
- $P_{i j}=P S[i]-P S[j-1]$
- Example:

$$
\begin{aligned}
& P_{27}=P S[7]-P S[1]=0.53-0.05=0.48 \\
& P_{36}=P S[6]-P S[2]=0.45-0.07=0.38
\end{aligned}
$$

## REVIEW

## Overlapping Subproblems Property in Dynamic Programming

Dynamic Programming is an algorithmic paradigm that solves a given complex problem by breaking it into subproblems and stores the results of subproblems to avoid computing the same results again.

## Overlapping Subproblems Property in Dynamic Programming

Following are the two main properties of a problem that suggests that the given problem can be solved using Dynamic programming.

1. Overlapping Subproblems
2. Optimal Substructure

## Overlapping Subproblems

- Like Divide and Conquer, Dynamic Programming combines solutions to subproblems.
- Dynamic Programming is mainly used when solutions of the same subproblems are needed again and again.
- In dynamic programming, computed solutions to subproblems are stored in a table so that these don't have to be recomputed.
- So Dynamic Programming is not useful when there are no common (overlapping) subproblems because there is no point storing the solutions if they are not needed again.


## Overlapping Subproblems

- For example, Binary Search doesn't have common subproblems.
- If we take an example of following recursive program for Fibonacci Numbers, there are many subproblems that are solved again and again.
- $f(n)=f(n-1)+f(n-2)$
- C sample code:

```
#include <stdio.h>
// a simple recursive program to compute fibonacci numbers
int fib(int n)
{
        if (n<= 1)
            return n;
        else
            return fib(n-1) + fib(n-2);
}
int main()
{
            int n = 5;
        printf("Fibonacci number is %d ", fib(n));
        return 0;
}
```


## Simple Recursion

- Output

Fibonacci number is 5

气

## Simple Recursion

- $f(n)=f(n-1)+f(n-2)$

```
/* a simple recursive program for Fibonacci numbers */
public class Fibonacci {
    public static void main(String[] args) {
            int n = Integer.parseInt(args[0]);
            System.out.println(fib(n));
    }
    public static int fib(int n) {
            if (n <= 1)
            return n;
        return fib(n - 1) + fib(n - 2);
    }
}
```


## Simple Recursion

- $f(n)=f(n-1)+f(n-2)$

```
public class Fibonacci {
    public static void Main(string[] args) {
        int n = int.Parse(args[0]);
        Console.WriteLine(fib(n));
    }
    public static int fib(int n) {
        if (n <= 1)
            return n;
        return fib(n - 1) + fib(n - 2);
    }
}
```


## Recursion tree for execution of fib(5)



- We can see that the function $\mathrm{fib}(3)$ is being called 2 times.
- If we would have stored the value of fib(3), then instead of computing it again, we could have reused the old stored value.


## Recursion tree for execution of fib(5)

There are following two different ways to store the values so that these values can be reused:

1. Memoization (Top Down)
2. Tabulation (Bottom Up)

RTEU CE100 Week-6

## Memoization (Top Down)

- The memoized program for a problem is similar to the recursive version with a small modification that looks into a lookup table before computing solutions.
- We initialize a lookup array with all initial values as NIL. Whenever we need the solution to a subproblem, we first look into the lookup table.
- If the precomputed value is there then we return that value, otherwise, we calculate the value and put the result in the lookup table so that it can be reused later.


## Memoization (Top Down)

- Following is the memoized version for the nth Fibonacci Number.
- C++ Version:

```
/* C++ program for Memoized version
for nth Fibonacci number */
#include <bits/stdc++.h>
using namespace std;
#define NIL -1
#define MAX 100
int lookup[MAX];
```


## Memoization (Top Down)

- C++ Version:

```
/* Function to initialize NIL
values in lookup table */
void _initialize()
{
    int i;
    for (i = 0; i < MAX; i++)
            lookup[i] = NIL;
}
```


## Memoization (Top Down)

- C++ Version:

```
/* function for nth Fibonacci number */
int fib(int n)
{
    if (lookup[n] == NIL) {
        if (n <= 1)
            lookup[n] = n;
        else
            lookup[n] = fib(n - 1) + fib(n - 2);
    }
    return lookup[n];
}
```


## Memoization (Top Down)

- C++ Version:

```
// Driver code
int main()
{
    int n = 40;
    _initialize();
    cout << "Fibonacci number is " << fib(n);
    return 0;
}
```


## Memoization (Top Down)

- Java Version:

```
/* Java program for Memoized version */
public class Fibonacci {
    final int MAX = 100;
    final int NIL = -1;
    int lookup[] = new int[MAX];
    /* Function to initialize NIL values in lookup table */
    void _initialize()
    {
        for (int i = 0; i < MAX; i++)
            lookup[i] = NIL;
    }
```


## Memoization (Top Down)

- Java Version:

```
/* function for nth Fibonacci number */
int fib(int n)
{
    if (lookup[n] == NIL) {
        if (n <= 1)
                            lookup[n] = n;
        else
                        lookup[n] = fib(n - 1) + fib(n - 2);
        }
        return lookup[n];
}
```


## Memoization (Top Down)

- Java Version:

```
    public static void main(String[] args)
    {
        Fibonacci f = new Fibonacci();
        int n = 40;
        f._initialize();
        System.out.println("Fibonacci number is"
            + " " + f.fib(n));
    }
```

\}

## Memoization (Top Down)

- C\# Version:

```
// C# program for Memoized versionof nth Fibonacci number
using System;
class FiboCalcMemoized {
    static int MAX = 100;
    static int NIL = -1;
    static int[] lookup = new int[MAX];
    /* Function to initialize NIL
    values in lookup table */
    static void initialize()
{
    for (int i = 0; i < MAX; i++)
        lookup[i] = NIL;
}
```


## Memoization (Top Down)

- C\# Version:

```
/* function for nth Fibonacci number */
static int fib(int n)
{
            if (lookup[n] == NIL) {
                if (n <= 1)
                            lookup[n] = n;
            else
                        lookup[n] = fib(n - 1) + fib(n - 2);
            }
            return lookup[n];
}
```

Memoization (Top Down)

- C\# Version:

```
    // Driver code
    public static void Main()
    {
        int n = 40;
        initialize();
        Console.Write("Fibonacci number is"
            + " " + fib(n));
    }
}
```


## Tabulation (Bottom Up)

- The tabulated program for a given problem builds a table in bottom-up fashion and returns the last entry from the table.
- For example, for the same Fibonacci number,
- we first calculate $f i b(0)$ then $f i b(1)$ then $f i b(2)$ then $f i b(3)$, and so on. So literally, we are building the solutions of subproblems bottom-up.


## Tabulation (Bottom Up)

- C++ Version:

```
/* C program for Tabulated version */
#include <stdio.h>
int fib(int n)
{
    int f[n + 1];
    int i;
    f[0] = 0;
    f[1] = 1;
    for (i = 2; i <= n; i++)
            f[i] = f[i - 1] + f[i - 2];
    return f[n];
}
```

Tabulation (Bottom Up)

- C++ Version:

```
int main()
{
    int n = 9;
    printf("Fibonacci number is %d ", fib(n));
    return 0;
}
```

Output:
Fibonacci number is 34

## Tabulation (Bottom Up)

- Java Version:

```
/* Java program for Tabulated version */
public class Fibonacci {
    public static void main(String[] args)
    {
        int n = 9;
        System.out.println("Fibonacci number is " + fib(n));
    }
```

Tabulation (Bottom Up)

- Java Version:

```
    /* Function to calculate nth Fibonacci number */
    static int fib(int n)
    {
        int f[] = new int[n + 1];
        f[0] = 0;
        f[1] = 1;
        for (int i = 2; i <= n; i++)
            f[i] = f[i - 1] + f[i - 2];
        return f[n];
    }
```

\}

## ${ }^{\text {CE100 Tabatulation }}$ (Bottom Up)

- C\# Version:

```
// C# program for Tabulated version
using System;
class Fibonacci {
    static int fib(int n)
    {
        int[] f = new int[n + 1];
        f[0] = 0;
        f[1] = 1;
        for (int i = 2; i <= n; i++)
            f[i] = f[i - 1] + f[i - 2];
        return f[n];
    }
    public static void Main()
    {
        int n = 9;
        Console.Write("Fibonacci number is"
                    + " " + fib(n));
    }
- Both Tabulated and Memoized store the solutions of subproblems.
- In Memoized version, the table is filled on demand while in the Tabulated version, starting from the first entry, all entries are filled one by one.
- Unlike the Tabulated version, all entries of the lookup table are not necessarily filled in Memoized version.
- To see the optimization achieved by Memoized and Tabulated solutions over the basic Recursive solution, see the time taken by following runs for calculating the 40th Fibonacci number:
- Recursive Solution:
- https://ide.geeksforgeeks.org/vHt6ly
- Memoized Solution:
- https://ide.geeksforgeeks.org/Z94jYR
- Tabulated Solution:
- https://ide.geeksforgeeks.org/12C5bP

\section*{Optimal Substructure Property in Dynamic Programming}
- A given problems has Optimal Substructure Property if optimal solution of the given problem can be obtained by using optimal solutions of its subproblems.
- For example, the Shortest Path problem has following optimal substructure property:
- If a node \(x\) lies in the shortest path from a source node \(u\) to destination node \(v\) then the shortest path from \(u\) to \(v\) is combination of shortest path from \(u\) to \(x\) and shortest path from x to v . The standard All Pair Shortest Path algorithm like Floyd-Warshall and Single Source Shortest path algorithm for negative weight edges like Bellman-Ford are typical examples of Dynamic Programming.

\section*{Optimal Substructure Property in Dynamic Programming}
- On the other hand, the Longest Path problem doesn't have the Optimal Substructure property. Here by Longest Path we mean longest simple path (path without cycle) between two nodes

\section*{Optimal Substructure Property in Dynamic Programming}
- There are two longest paths from \(q\) to \(t: q \rightarrow r \rightarrow t\) and \(q \rightarrow s \rightarrow t\). Unlike shortest paths, these longest paths do not have the optimal substructure property. For example, the longest path \(q \rightarrow r \rightarrow t\) is not a combination of longest path from \(q\) to \(r\) and longest path from \(r\) to \(t\), because the longest path from \(q\) to \(r\) is \(q \rightarrow s \rightarrow t \rightarrow r\) and the longest path from \(r\) to \(t\) is \(r \rightarrow q \rightarrow s \rightarrow t\).


\title{
Most Common Dynamic Programming Interview Questions
}

\title{
Problem-1: Longest Increasing Subsequence
}
- Problem-1: Longest Increasing Subsequence

Problem-1: Longest Increasing Subsequence


Problem-2: Edit Distance
- Problem-2: Edit Distance

Problem-2: Edit Distance (Recursive)


\section*{Problem-2: Edit Distance (DP)}
https://www.coursera.org/learn/dna-sequencing


Problem-2: Edit Distance (DP)


Problem-2: Edit Distance (Other)


Problem-3: Partition a set into two subsets such that the difference of subset sums is minimum
- Problem-3: Partition a set into two subsets such that the difference of subset sums is minimum

\section*{Problem-4: Count number of ways to cover a distance}
- Problem-4: Count number of ways to cover a distance

\section*{Problem-5: Find the longest path in a matrix with given constraints}
- Problem-5: Find the longest path in a matrix with given constraints

\title{
Problem-6: Subset Sum Problem
}
- Problem-6: Subset Sum Problem

\title{
Problem-7: Optimal Strategy for a Game
}
- Problem-7: Optimal Strategy for a Game

\title{
Problem-8: 0-1 Knapsack Problem
}
- Problem-8: 0-1 Knapsack Problem

\section*{Problem-9: Boolean Parenthesization Problem}
- Problem-9: Boolean Parenthesization Problem

\title{
Problem-10: Shortest Common Supersequence
}
- Problem-10: Shortest Common Supersequence

\section*{Problem-11: Partition Problem}
- Problem-11: Partition Problem

\section*{Problem-12: Cutting a Rod}
- Problem-12: Cutting a Rod

\title{
Problem-13: Coin Change
}
- Problem-13: Coin Change

\title{
Problem-14: Word Break Problem
}
- Problem-14: Word Break Problem

\section*{Problem-15: Maximum Product Cutting}
- Problem-15: Maximum Product Cutting

\title{
Problem-16: Dice Throw
}
- Problem-16: Dice Throw

\section*{Problem-16: Dice Throw}


\title{
Problem-17: Box Stacking Problem
}
- Problem-17: Box Stacking Problem

\title{
Problem-18: Egg Dropping Puzzle
}
- Problem-18: Egg Dropping Puzzle

\section*{References}
- Introduction to Algorithms, Third Edition | The MIT Press
- CLRS
- Bilkent CS473 Course Notes (new)
- Bilkent CS473 Course Notes (old)
-End - Of - Week - 6 - Course - Module-```

