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Introduction to Graphs
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Introduction to Graphs

The graph is a non-linear data structure.

It contains a set of points known as

nodes (or vertices) and

a set of links known as edges (or Arcs).
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Introduction to Graphs

Here edges are used to connect the vertices. A graph is defined as follows.

Generally, a graph  is represented as , where
 is set of vertices and

 is set of edges.
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Introduction to Graphs -
Example

The following is a graph with 5
vertices  ( ) and 6 edges  (
).
This graph G can be defined as

​ ​

G = (V ,E)

​ ​ ​

V = {A,B,C,D,E}

​ ​

E = {(A,B), (A,C), (A,D),

(B,D), (C,D), (B,E),

(E,D)}
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Graph Terminology
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Graph Terminology

Vertex

Individual data element of a graph is called as Vertex.
Vertex is also known as node. In above example graph, 

 are known as vertices.
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Graph Terminology

Edge

An edge is a connecting link between
two vertices.

Edge is also known as Arc.
An edge is represented as

(startingVertex, endingVertex)

For example, in above graph the link
between vertices  and  is
represented as

(A,B)

CE100 Algorithms and Programming II
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Graph Terminology

Edge

In example graph, there are  edges

(A,B), (A,C), (A,D),
(B,D), (B,E), (C,D), (D,E)
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Graph Terminology

Edge

Edges are three types.

Undirected Edge
Directed Edge

Weighted Edge
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Graph Terminology

Edge

Undirected Edge

An undirected egde is a bidirectional
edge. If there is undirected edge
between vertices  and  then edge 

 is equal to edge 
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Graph Terminology

Edge

Directed Edge

A directed egde is a unidirectional
edge. If there is directed edge between
vertices A and B then edge  is
not equal to edge .
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Graph Terminology

Edge

Weighted Edge

A weighted egde is a edge with value
(cost) on it.
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Graph Terminology

Undirected Graph

A graph with only undirected edges is
said to be undirected graph.
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Graph Terminology

Directed Graph

A graph with only directed edges is
said to be directed graph.
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Graph Terminology

Mixed Graph

A graph with both undirected and
directed edges is said to be mixed
graph.

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 18



Graph Terminology

End vertices or Endpoints

The two vertices joined by edge are
called end vertices (or endpoints) of
that edge.

In graph theory, a vertex with degree 1
is called an end vertex (plural end
vertices)
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Graph Terminology

Origin

If a edge is directed, its first endpoint
is said to be the origin of it.
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Graph Terminology

Destination

If a edge is directed, its first endpoint
is said to be the origin of it and the
other endpoint is said to be the
destination of that edge.
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Graph Terminology

Adjacent

If there is an edge between vertices 
and  then both  and  are said to
be adjacent. In other words, vertices A
and B are said to be adjacent if there is
an edge between them.
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Graph Terminology

Incident

Edge/Arc is said to be incident on a Vertex/Node
if the Vertex/Node is one of the endpoints of that
Edge/Arc.

An incidence is a pair  where  is a vertex
and  is an edge incident to 

Two distinct incidences  and  are
adjacent if and only if ,  or 

 or .

CE100 Algorithms and Programming II
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Graph Terminology

Outgoing Edge

A directed edge is said to be outgoing
edge on its origin vertex.
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Graph Terminology

Incoming Edge

A directed edge is said to be incoming
edge on its destination vertex.
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Graph Terminology

Degree

Total number of edges connected to a
vertex is said to be degree of that
vertex.
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Graph Terminology

Indegree

Total number of incoming edges
connected to a vertex is said to be
indegree of that vertex.
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Graph Terminology

Outdegree

Total number of outgoing edges
connected to a vertex is said to be
outdegree of that vertex.
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Graph Terminology

Parallel edges or Multiple edges

If there are two undirected edges with
same end vertices and two directed
edges with same origin and
destination, such edges are called
parallel edges or multiple edges.
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Graph Terminology

Self-loop

Edge (undirected or directed) is a self-
loop if its two endpoints coincide with
each other.
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Graph Terminology

Simple Graph

A graph is said to be simple if there are
no parallel and self-loop edges.
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Graph Terminology

Complex Graph

A graph is said to be complex if there
are parallel or self-loop edges.
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Graph Terminology

Path

A path is a sequence of alternate
vertices and edges that starts at a
vertex and ends at other vertex such
that each edge is incident to its
predecessor and successor vertex.
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Graph Representations
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Graph Representations

Graph data structure is represented using following representations
Adjacency Matrix

Incidence Matrix

Adjacency List
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Graph Representations

Adjacency Matrix

In this representation, the graph is represented using a matrix of size total number of vertices by
a total number of vertices.

That means a graph with 4 vertices is represented using a matrix of size 4X4.

In this matrix, both rows and columns represent vertices.
This matrix is filled with either 1 or 0.

Here,
1 represents that there is an edge from row vertex to column vertex and
0 represents that there is no edge from row vertex to column vertex.
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Graph Representations

Adjacency Matrix

Undirected Graph
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Graph Representations

Adjacency Matrix

Directed Graph
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Graph Representations

Incidence Matrix

In this representation, the graph is represented using a matrix of size total number of vertices
by a total number of edges.

That means graph with 4 vertices and 6 edges is represented using a matrix of size 4X6.
In this matrix, rows represent vertices and columns represents edges.

This matrix is filled with 0 or 1 or -1.
Here,

0 represents that the row edge is not connected to column vertex,
1 represents that the row edge is connected as the outgoing edge to column vertex
and

-1 represents that the row edge is connected as the incoming edge to column
vertex.
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Graph Representations

Incidence Matrix
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Graph Representations

Adjacency List

In this representation, every vertex of a graph contains list of its adjacent vertices.
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Graph Representations

Adjacency List

Linked List Implementation
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Graph Representations

Adjacency List

Reference Array Implementation
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Graph Representations - Review
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Graph Representations - Review

The standard two ways to represent a graph 
As a collection of adjacency-lists
As an adjacency-matrix

Adjacency-list representation is usually preferred
Provides a compact way to represent sparse graphs

Those graphs for which 

CE100 Algorithms and Programming II
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Graph Representations - Review

Adjacency-matrix representation may be preferred
for dense graphs for which  is close to 

when we need to be able to tell quickly if there is an edge connecting two
given vertices

CE100 Algorithms and Programming II
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Adjacency-List Representation - Review

An array  of  lists, one for each vertex 

For each  the adjacency-list  contains (pointers to) all vertices 
such that 

That is,  consists of all vertices adjacent to  in 

The vertices in each adjacency-list are stored in an arbitrary order

CE100 Algorithms and Programming II

Adj ∣V ∣ u ∈ V

u ∈ V Adj[u] v

(u, v) ∈ E

Adj[u] u G

 RTEU CE100 Week-10 47



Adjacency-List Representation - Review

If  is a directed graph
The sum of the lengths of the adjacency lists 

If  is an undirected graph
The sum of the lengths of the adjacency lists 

since an edge  appears in both  and 

CE100 Algorithms and Programming II
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Undirected Graphs Representations - Review
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Directed Graphs Representations - Review
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Adjacency List Representation (continued) - Review

Adjacency list representation has the desirable property
it requires  memory

for both undirected and directed graphs

Adjacency lists can be adopted to represent weighted graphs
each edge has an associated weight typically given by a weight function 

The weight  of an edge  is simply stored with
vertex  in  or with

vertex  in  or both

CE100 Algorithms and Programming II

O(max(V ,E)) = O(V + E)

w : E → R

w(u, v) (u, v) ∈ E

v Adj[u]

u Adj[v]
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Adjacency List Representation (continued) - Review

A potential disadvantage of adjacency list representation
there is no quicker way to determine if a given edge  is present in G
than to search  in  or  in 

This disadvantage can be remedied by an adjacency matrix representation at
the cost of using asymptotically more memory

CE100 Algorithms and Programming II
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Adjacency Matrix Representation - Review

Assume that, the vertices of  are numbered as 

Adjacency matrix rep. consists of a  matrix 

a ​ =ij ​ ​{1
0

if (i, j) ∈ E

otherwise

Requires  memory independent of the number of edges 

We define the transpose of a matrix  to be the matrix
 given by 

Since in an undirected graph,  and  represent the same edge  for an
undirected graph

That is, adjacency matrix of an undirected graph is symmetric
Hence, in some applications, only upper triangular part is stored

CE100 Algorithms and Programming II

G = (V ,E) 1, 2, … , ∣V ∣

∣V ∣ × ∣V ∣ A = (a ​) ∍ij

Θ(V )2 ∣E∣

A = (a ​)ij

A =T (a ​)ij
T a ​ =ij

T a ​ji

(u, v) (v,u) A = AT
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Adjacency Matrix Representation - Review

Adjacency matrix representation can also be used for
weighted graphs

a ​ =ij ​ ​{w(i, j)
NIL or 0 or ∞

if (i, j) ∈ E

otherwise

Adjacency matrix may also be preferable for
reasonably small graphs

Moreover, if the graph is unweighted
rather than using one word of memory for each matrix entry adjacency
matrix representation uses one bit per entry

CE100 Algorithms and Programming II
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Introduction to Graphs - Review

Adjency List Complexity  

Sparse Matrix  

Dense Matrix  

Space Complexity 

CE100 Algorithms and Programming II

G = (V ,E)
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Introduction to Graphs - Review

Many definitions for directed and undirected graphs are the same although certain terms
have slightly different meanings
If  in a directed graph , we say that  is incident from or
leaves vertex  and is incident to or enters vertex 

If  in an undirected graph , we say that  is incident on
vertices  and 

If  is an edge in a graph , we say that vertex  is adjacent to vertex 

When the graph is undirected,the adjacency relation is symmetric

When the graph is directed
the adjacency relation is not necessarily symmetric
if  is adjacent to , we sometimes write 

CE100 Algorithms and Programming II

(u, v) ∈ E G = (V ,E) (u, v)
u v

(u, v) ∈ E G = (V ,E) (u, v)
u v

(u, v) G = (V ,E) v u

v u u → v
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Introduction to Graphs - Review

The degree of a vertex in an undirected graph is the number of edges incident on it

In a directed graph,
out-degree of a vertex: number of edges leaving it
in-degree of a vertex: number of edges entering it

degree of a vertex: its in-degree + its out-degree
A path of length  from a vertex  to a vertex  in a graph  is a sequence 

 of vertices such
that ,  and , for 

The length of a path is the number of edges in the path

CE100 Algorithms and Programming II

k u u′ G = (V ,E)
⟨v ​, v ​, v ​, … , v ​⟩0 1 2 k

v ​ =0 u v ​ =k u′ (v ​, v ​) ∈i−1 i E i = 1, 2, … , k
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Introduction to Graphs - Review

If there is a path  from  to , we say that  is reachable from  via 

A path is simple if all vertices in the path are distinct
A subpath of path  is a contiguous subsequence of its vertices

That is, for any , the subsequence of vertices  is a
subpath of 

In a directed graph, a path  forms a cycle if  and the path
contains at least one edge

The cycle is simple if, in addition,  are distinct

A self-loop is a cycle of length 1

CE100 Algorithms and Programming II

p u u′ u′ u p : u ​

p
u′

p = ⟨v ​, v ​, v ​, … , v ​⟩0 1 2 k

0 ≤ i ≤ j ≤ k ⟨v ​, v ​, … , v ​⟩i i+1 j

p

⟨v ​, v ​, … , v ​⟩0 1 k v ​ =0 v ​k

v ​, v ​, … , v ​0 1 k
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Introduction to Graphs - Review

Two paths  &  form the same cycle if there is an
integer  such that  for 

The path  forms the same cycles as the paths
 and 

A directed graph with no self-loops is simple
In an undirected graph a path  forms a cycle

if  and  are distinct

A graph with no cycles is acyclic

CE100 Algorithms and Programming II

⟨v ​, v ​, v ​, … , v ​⟩0 1 2 k ⟨v ​, v ​, v ​, … , v ​⟩0
′

1
′

2
′

k
′

j v ​ =i
′ v ​(i+j) mod k i = 0, 1, … , k − 1

p ​ =1 ⟨1, 2, 4, 1⟩
p ​ =2 ⟨2, 4, 1, 2⟩ p ​ =3 ⟨4, 1, 2, 4⟩

⟨v ​, v ​, … , v ​⟩0 1 k

v ​ =0 v ​k v ​, v ​, … , v ​1 2 k
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Introduction to Graphs - Review

An undirected graph is connected
if every pair of vertices is connected by a path

The connected components of a graph are the
equivalence classes of vertices under the
"is reachable from" relation

An undirected graph is connected if it has exactly one component,
i.e., if every vertex is reachable from every other vertex

CE100 Algorithms and Programming II
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Introduction to Graphs - Review

A directed graph is strongly-connected
if every two vertices are reachable from each other

The strongly-connected components of a digraph are the
equivalence classes of vertices under the
"are mutually reachable" relation

A directed graph is strongly-connected
if it has only one strongly-connected component

CE100 Algorithms and Programming II
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Introduction to Graphs - Review

Two graphs  and  are isomorphic
if there exists a bijection  such that

That is, we can relabel the vertices of  to be vertices of  maintaining the corresponding
edges in  and 
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G = (V ,E) G =′ (V ,E )′ ′

f : V → V ′

(u, v) ∈ E ⟺ (f(u), f(v)) ∈ E′

G G′

G G′
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Introduction to Graphs - Review

A graph  is a subgraph of  if
 and 

Given a set , the subgraph of  induced by  is the graph
 where 

CE100 Algorithms and Programming II

G =′ (V ,E )′ ′ G = (V ,E)
V ⊆ V E ⊆′ E

V ⊆′ V G V ′

G =′ (V ,E )′ ′ E =′ {(u, v) ∈ E : u, v ∈ V }′
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Introduction to Graphs - Review

Given an undirected graph , the directed version of  is the directed graph 
, where

 and 

That is, each undirected edge  in  is replaced in  by two directed edges  and 

Given a directed graph , the undirected version of G is the undirected graph 
, where

 and 

That is the undirected version contains the edges of G
"with their directions removed" and with self-loops eliminated
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G = (V ,E) G G =′

(V ,E )′ ′

(u, v) ∈ E′ (v,u) ∈ E ⟺′ (u, v) ∈ E

(u, v) G G′ (u, v)
(v,u)

G = (V ,E) G =′

(V ,E )′ ′

(u, v) ∈ E ⟺′ u = v (u, v) ∈ E
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Introduction to Graphs - Review

i.e.,  and  in  are replaced in  by the same edge 

In a directed graph , a neighbor of a vertex  is any vertex that is adjacent to  in
the undirected version of 

That, is  is a neighbor of  either  or 

 is a neighbor of  in both cases

In an undirected graph,  and  are neighbors if they are adjacent

CE100 Algorithms and Programming II

(u, v) (v,u) G G′ (u, v)

G = (V ,E) u u

G

v u ⟺ (u, v) ∈ E (v,u) ∈ E

v u

u v
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Introduction to Graphs - Review

Several kinds of graphs are given special names
Complete graph: undirected graph in which every pair of vertices is adjacent
Bipartite graph: undirected graph  in which  can be partitioned into two
disjoint sets  and  such that

 implies either  and  or  and 

CE100 Algorithms and Programming II

G = (V ,E) V

V ​1 V ​2

(u, v) ∈ E u ∈ V ​1 v ∈ V ​2 u ∈ V ​2 v ∈ V ​1
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Introduction to Graphs - Review

Forest: acyclic, undirected graph

Tree: connected, acyclic, undirected graph
Dag: directed acyclic graph

Multigraph: undirected graph with multiple edges between vertices and self-loops

CE100 Algorithms and Programming II
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Introduction to Graphs - Review

Hypergraph: like an undirected graph, but each hyperedge,
rather than connecting two vertices,

connects an arbitrary subset of vertices

CE100 Algorithms and Programming II
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Free Trees

CE100 Algorithms and Programming II
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Free Trees

A free tree is a connected, acyclic, undirected graph

We often omit the adjective "free" when we say that a graph is a tree
If an undirected graph is acyclic but possibly disconnected it is a forest

CE100 Algorithms and Programming II
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Theorem (Properties of Free Trees)

The following are equivalent for an undirected graph 

1.  is a free tree

2. Any two vertices in  are connected by a unique simple-path

3.  is connected, but if any edge is removed from E the resulting graph is
disconnected

4.  is connected, and 

5.  is acyclic, and 

6.  is acyclic, but if any edge is added to , the resulting graph contains a cycle

CE100 Algorithms and Programming II

G = (V ,E)

G

G

G

G ∣E∣ = ∣V ∣ − 1

G ∣E∣ = ∣V ∣ − 1

G E
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Properties of Free Trees 

1. G is a free tree

2. Any two vertices in G are connected by a unique simple-path

CE100 Algorithms and Programming II

(1 ⇒ 2)
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Properties of Free Trees 

Since a tree is connected, any two vertices in  are connected by a simple path
Let two vertices  are connected by two simple paths  and 

Let  and  be the first vertices at which  and  diverge and re-
converge
Let  be the subpath of  from  to 

Let  be the subpath of  from  to 

 and  share no vertices except their end points

The path  is a cycle (contradiction)

CE100 Algorithms and Programming II

(1 ⇒ 2)

G

u, v ∈ V p ​1 p ​2

w z p ​1 p ​2

p ​1
′ p ​1 w z

p ​2
′ p ​2 w z

p ​1
′ p ​2

′

p ​∣∣p ​1
′

2
′
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Properties of Free Trees 

 and  share no vertices except their end points

 is a cycle (contradiction)

Thus, if  is a tree, there can be at most one path between two vertices

CE100 Algorithms and Programming II

(1 ⇒ 2)

p ​1
′ p ​2

′

p ​∣∣p ​1
′

2
′

G
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Properties of Free Trees 

2. Any two vertices in  are connected by a unique simple-path

3.  is connected, but if any edge is removed from  the resulting graph is
disconnected

CE100 Algorithms and Programming II

(2 ⇒ 3)

G

G E

 RTEU CE100 Week-10 75



Properties of Free Trees 

If any two vertices in  are connected by a unique simple path, then  is
connected

Let  be any edge in . This edge is a path from  to . So it must be
the unique path from  to 

Thus, if we remove  from , there is no path from  to 

Hence, its removal disconnects 

CE100 Algorithms and Programming II

(2 ⇒ 3)

G G

(u, v) E u v

u v

(u, v) G u v

G

 RTEU CE100 Week-10 76



Properties of Free Trees 

Before proving  consider the following

Lemma: any connected, undirected graph 
satisfies 

Proof: Consider a graph  with  vertices and no edges.
Thus initially there are  connected components

Each isolated vertex is a connected component

Consider an edge  and let  and  denote the connected-
components of  and 
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(3 ⇒ 4)

3 ⇒ 4
G = (V ,E)

∣E∣ ≥ ∣V ∣ − 1

G′ ∣V ∣
∣C∣ = ∣V ∣

(u, v) C ​u C ​v

u v
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Properties of Free Trees (Lemma)$

If  then  connects  and  into a
connected component 

Otherwise  adds an extra edge to the
connected component 

Hence, each edge added to the graph reduces the
number of connected components by at most 

Thus, at least  edges are required to reduce the number of components
to 
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C ​ =u  C ​v (u, v) C ​u C ​v

Cuv

(u, v)
C =u Cv

1
∣V ∣ − 1

1
Q.E.D
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Properties of Free Trees 

3.  is connected, but if any edge is removed from  the resulting graph is
disconnected

4.  is connected, and 

CE100 Algorithms and Programming II

(3 ⇒ 4)

G E

G ∣E∣ = ∣V ∣ − 1
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Properties of Free Trees 

By assuming (3), the graph  is connected

We need to show both  and  in
order to show that 

: valid due previous lemma

: (proof by induction)

Basis: a connected graph with  or  vertices has  edges

IH: suppose that all graphs  satisfying (3) also
satisfy 
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(3 ⇒ 4)

G

∣E∣ ≥ ∣V ∣ − 1 ∣E∣ ≤ ∣V ∣ − 1
∣E∣ = ∣V ∣ − 1

∣E∣ ≥ ∣V ∣ − 1

∣E∣ ≤ ∣V ∣ − 1

n = 1 n = 2 n − 1

G =′ (V ,E )′ ′

∣E ∣ ≤′ ∣V ∣ −′ 1
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Properties of Free Trees 

Consider  that satisfies (3) with 

Removing an arbitrary edge  from  separates the graph into 2
connected graphs  and  such that 

 and 

Hence, connected graphs  and  both satisfy (3) else  would not satisfy 

Note that  and  since 

Hence,  and  (by IH)

Thus, 
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(3 ⇒ 4)

G = (V ,E) ∣V ∣ = n ≥ 3

(u, v) G

G ​ =u (V ​,E ​)u u G ​ =v (V ,E ​)v v V = V ​ ∪u

V ​v E = E ​ ∪u E ​v

G ​u G ​v G

(3)
∣V ​∣u ∣V ​∣ <v n ∣V ​∣ +u ∣V v∣ = n

∣E ​∣ ≤u ∣V ​∣ −u 1 ∣E ​∣ ≤v ∣V ​∣ −v 1

∣E∣ = ∣E ​∣ +u ∣E ​∣ +v 1 ≤ (∣V ​∣ −u 1) + (∣V ​∣ −v 1) + 1
⇒ ∣E∣ ≤ ∣V ∣ − 1

Q.E.D
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Properties of Free Trees 

4.  is connected, and 

5.  is acyclic, and 
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(4 ⇒ 5)

G ∣E∣ = ∣V ∣ − 1

G ∣E∣ = ∣V ∣ − 1
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Properties of Free Trees 

Suppose that  is connected, and , we must
show that  is acyclic

Suppose  has a cycle containing  vertices 

Let  be subgraph of  consisting of the cycle

If , there must be a vertex  that is adjacent to some
vertex , since  is connected
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(4 ⇒ 5)

G ∣E∣ = ∣V ∣ − 1
G

G k v ​, v ​, … , v ​1 2 k

G ​ =k (V ,E ​)k k G

k < ∣V ∣ v ​ ∈k+1 V − V ​k

v ​ ∈i V ​k G
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Properties of Free Trees 

Define  to be subgraph of  with  and 

If , we can similarly define  to be the subgraph of
 with

 and 

for some  where 

CE100 Algorithms and Programming II

(4 ⇒ 5)

G ​ =k+1 (V ​,E ​)k+1 k+1 G V ​ =k+1 V ​ ∪k v ​k+1

E ​ =k+1 E ​ ∪k (v ​, v ​)k+1 i

k + 1 < ∣V ∣ G ​ =k+2 (V ​,E ​)k+2 k+2

G

V ​ =k+2 V ​ ∪k+1 v ​k+2 E ​ =k+2 E ​ ∪k+1 (v ​, v ​)k+2 j

v ​ ∈j V ​k+1 ∣V ​∣ =k+2 ∣E ​∣k+2
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Properties of Free Trees 

We can continue defining  with  until we obtain 
 where

 and  and 

Since  is a subgraph of , we have
 which contradicts the assumption 

Hence  is acyclic

CE100 Algorithms and Programming II

(4 ⇒ 5)

G ​k+m ∣V ​∣ =k+m ∣E ​∣k+m

G ​ =n (V ​,E ​)n n

n = ∣V ∣ V ​ =n ∣V ∣ ∣V ​∣ =n ∣E ​∣ =n ∣V ∣

G ​n G

E ​ ⊆n E ⇒ ∣E∣ ≥ ∣E ​∣ =n ∣V ∣ ∣E∣ =
∣V ∣ − 1

G

Q.E.D
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Properties of Free Trees 

5.  is acyclic, and 

6.  is acyclic, but if any edge is added to , the resulting graph contains a cycle
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(5 ⇒ 6)

G ∣E∣ = ∣V ∣ − 1

G E
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Properties of Free Trees 

Suppose that  is acyclic and 

Let  be the number of connected components of 

 such that

 and 

 and 

Each connected component  is a tree by definition.
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(5 ⇒ 6)

G ∣E∣ = ∣V ∣ − 1

k G

G ​ =1 (V ​,E ​),G ​ =1 1 2 (V ​,E ​), … ,G ​ =2 2 k (V ​,E ​)k k

​V ​ =​

i=1
∪
k

i V ;V ​ ∩i V ​ =j ∅; 1 ≤ i, j ≤ k i = j

​E ​ =​

i=1
∪
k

i E;E ​ ∩i E ​ =j ∅; 1 ≤ i, j ≤ k i = j

G ​i
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Properties of Free Trees 

Since  each component  is satisfies
 for 

Thus

Therefore, we must have 
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(5 ⇒ 6)

(1 ⇒ 5) G ​i

∣E ​∣ =i ∣V ​∣ −i 1 i = 1, 2, … , k

​ ∣E ​∣ =
i=1
∑
k

i ​ ∣V ​∣ −
i=1
∑
k

i ​ 1
i=1
∑
k

∣E∣ = ∣V ∣ − k

k = 1
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Properties of Free Trees 

That is  is connected  is a tree

Since 
any two vertices in  are connected by a unique simple path

Thus,
adding any edge to  creates a cycle
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(5 ⇒ 6)

(5) ⇒ G ⇒ G

(1 ⇒ 2)
G

G

 RTEU CE100 Week-10 89



Properties of Free Trees 

6.  is acyclic, but if any edge is added to , the resulting graph contains a cycle

7.  is a free tree

CE100 Algorithms and Programming II

(6 ⇒ 1)

G E

G
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Properties of Free Trees 

Suppose that  is acyclic but if any edge is added to  a cycle is created

We must show that  is connected due to the definition

Let  and  be two arbitrary vertices in 

If  and  are not already adjacent
adding the edge  creates a cycle in

which all edges but  belong to 
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(6 ⇒ 1)

G E

G

u v G

u v

(u, v)

(u, v) G
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Properties of Free Trees 

Thus there is a path from  to , and since  and  are chosen arbitrarily  is
connected

CE100 Algorithms and Programming II

(6 ⇒ 1)

u v u v G
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Elementary Graph Algorithms

CE100 Algorithms and Programming II
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Online Visual Animations

CE100 Algorithms and Programming II
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Online Visual Animations

Graph Structures

https://visualgo.net/en/graphds?slide=1

Single-Source Shortest Paths (SSSP)

https://visualgo.net/en/sssp?slide=1

Minimum Spanning Tree (MST)

https://visualgo.net/en/mst?slide=1

Convex Hull

https://visualgo.net/en/convexhull?slide=1

CE100 Algorithms and Programming II
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Online Visual Animations

Data Structure Visualizations (University of Sout Florida-USF)
https://www.cs.usfca.edu/~galles/visualization/Algorithms.html
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Online Visual Animations

Common Graph Algorithms
https://algorithm-visualizer.org/

CE100 Algorithms and Programming II
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Graph Tools
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Graph Tools

Graphviz Tools
https://graphviz.org/download/

Graphviz (short for Graph Visualization Software) is a package of open-source tools initiated by
AT&T Labs Research for drawing graphs specified in DOT language scripts having the file name
extension "gv". It also provides libraries for software applications to use the tools. Graphviz is free
software licensed under the Eclipse Public License.

CE100 Algorithms and Programming II
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Graph Tools

Graphviz Tools
https://graphviz.org/download/

https://graphviz.org/doc/info/command.html

https://graphviz.org/docs/outputs/svg/

http://magjac.com/graphviz-visual-editor/
https://graphs.grevian.org/graph

Graphviz Tutorials
https://graphs.grevian.org/example#example-1
https://graphs.grevian.org/reference

CE100 Algorithms and Programming II
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Graphviz Gallery

Family Tree

https://graphviz.org/Gallery/directed/kennedyanc.html

UML

https://graphviz.org/Gallery/directed/UML_Class_diagram.html

Data Structure

https://graphviz.org/Gallery/gradient/datastruct.html

https://graphviz.org/Gallery/directed/datastruct.html

CE100 Algorithms and Programming II
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Graphviz Gallery

Neural Network (Keras)

https://graphviz.org/Gallery/directed/neural-network.html

Linux Kernel Diagram

https://graphviz.org/Gallery/directed/Linux_kernel_diagram.html
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Graphviz Tools and Binaries

Graphviz consists of a graph description language named the DOT language[4] and a set of tools
that can generate and/or process DOT files:
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Graphviz Layout Engines

dot

a command-line tool to produce layered drawings of directed graphs in a variety of output formats,
such as (PostScript, PDF, SVG, annotated text and so on).

Visit: https://graphviz.org/docs/layouts/dot/

CE100 Algorithms and Programming II
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Graphviz Layout Engines

neato

useful for undirected graphs. "spring model" layout, minimizes global energy. Useful for graphs up to
about 1000 nodes

Visit : https://graphviz.org/docs/layouts/neato/
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Graphviz Layout Engines

fdp

useful for undirected graphs. "spring model" which minimizes forces instead of energy

Visit : https://graphviz.org/docs/layouts/fdp/
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Graphviz Layout Engines

sfdp

multiscale version of fdp for the layout of large undirected graphs

Visit : https://graphviz.org/docs/layouts/sfdp/
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Graphviz Layout Engines

twopi

for radial graph layouts. Nodes are placed on concentric circles depending their distance from a given
root node

Visit : https://graphviz.org/docs/layouts/twopi/
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Graphviz Layout Engines

circo

circular layout. Suitable for certain diagrams of multiple cyclic structures, such as certain
telecommunications networks

Visit : https://graphviz.org/docs/layouts/circo/
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Graphviz Layout Engines

osage

osage draws clustered graphs. Suitable for certain diagrams of multiple cyclic structures, such as
certain telecommunications networks

Visit : https://graphviz.org/docs/layouts/osage/
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Graphviz Layout Engines

patchwork

patchwork draws clustered graphs using a squarified treemap layout.

Visit : https://graphviz.org/docs/layouts/patchwork/
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Graphviz Layout Engines

dotty (DEPRECATED)

a graphical user interface to visualize and edit graphs.

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 112



Graphviz Tools

lefty (DEPRECATED)

a programmable (in a language inspired by EZ[5]) widget that displays DOT graphs and allows the
user to perform actions on them with the mouse. Therefore, Lefty can be used as the view in a model–
view–controller GUI application that uses graphs.
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Graphviz Tools

gml2gv - gv2gml

convert to/from GML, another graph file format.
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Graphviz Tools

graphml2g

convert a GraphML file to the DOT format.
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Graphviz Tools

gxl2gv - gv2gxl

convert to/from GXL, another graph file format.
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Graphviz Tools

for more information visit

https://graphviz.org/documentation/#tool-manual-pages

CE100 Algorithms and Programming II
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Graphviz API

Visit
https://graphviz.org/documentation/#sample-programs-using-graphviz
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 RTEU CE100 Week-10 118

https://graphviz.org/documentation/#sample-programs-using-graphviz


Graph Tools

Plantuml Tools (https://plantuml.com/download)
PlantUML is an open-source tool allowing users to create diagrams from a plain text
language. Besides various UML diagrams, PlantUML has support for various other software
development related formats (such as Archimate, Block diagram, BPMN, C4, Computer
network diagram, ERD, Gantt chart, Mind map, and WBD), as well as visualisation of JSON
and YAML files.

CE100 Algorithms and Programming II
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Graph Tools

Plantuml Tutorials
Visit OOP Plantuml Course Notes

CE100 Algorithms and Programming II
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Graph Tools

Plantuml Graphs and References
https://plantuml.com/use-case-diagram

https://plantuml.com/deployment-diagram

https://plantuml.com/component-diagram
https://plantuml.com/mindmap-diagram

https://plantuml.com/object-diagram

https://plantuml.com/state-diagram

https://plantuml.com/wbs-diagram
https://plantuml.com/json

https://plantuml.com/yaml
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Graph Tools

Plantuml API
https://plantuml.com/api

CE100 Algorithms and Programming II
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Graph Tools

Microsoft Graph Layout

MSAGL is a .NET tool for graph layout and viewing.

It was developed in Microsoft by Lev Nachmanson, Sergey Pupyrev, Tim Dwyer and Ted Hart.
MSAGL is available as open source.

Demo Project
https://github.com/ucoruh/microsoft-graph-layout-cs-demo

Library
https://github.com/microsoft/automatic-graph-layout

Website
https://www.microsoft.com/en-us/research/project/microsoft-automatic-graph-layout/
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Elementary Graph Algorithms
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Elementary Graph Algorithms

Graph Traversal

Breadth-first search (BFS)
Depth-first search (DFS)

Strongly connected components (SCC)

Kosaraju's algorithm

Tarjan's algorithm

CE100 Algorithms and Programming II
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Elementary Graph Algorithms

Topological sort

DFS version
BFS version (Kahn's algorithm)

Minimum spanning tree

Kruskal's algorithm

Prim's algorithm
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Elementary Graph Algorithms

Cycle Detection
DFS
BFS

Bipartite Graph Check
DFS
BFS

CE100 Algorithms and Programming II
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Breadth-first search (BFS)

CE100 Algorithms and Programming II
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Graph Traversal

Breadth-first search (BFS)

Breadth-first search (BFS) is a graph traversal algorithm that starts at a vertex and explores as far
as possible along each branch before backtracking.
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Graph Traversal

Breadth-first search (BFS)

Graph , directed or undirected with adjacency list repres.

GOAL: Systematically explores edges of G to
discover every vertex reachable from the source vertex 

compute the shortest path distance of every vertex
from the source vertex 

produce a breadth-first tree (BFT)  with root 
BFT contains all vertices reachable from 

the unique path from any vertex  to  in G constitutes a shortest path from  to  in 

IDEA: Expanding frontier across the breadth -greedy-
propagate a wave  edge-distance at a time

using a FIFO queue:  time to update pointers to both ends

CE100 Algorithms and Programming II

G = (V ,E)

s

s

G ​π s

s

v s s v

G

1
O(1)
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Graph Traversal

Breadth-first search (BFS)

Maintains the following fields for each 
 color of 

 : not discovered yet

 : discovered and to be or being processed

 : discovered and processed

: parent of  (  of  or  is not discovered yet)

: distance of  from 

CE100 Algorithms and Programming II

u ∈ V

color[u] : u

WHITE

GRAY

BLACK

π[u] u NIL u = s u

d[u] u s

Processing a vertex = scanning its adjacency list
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Graph Traversal

Breadth-first search (BFS) Algorithm
BFS(G, s)

for each u ∈ V − sdo

color[u] → WHITE

π[u] → NIL; d[u] → ∞

color[s] → GRAY

π[s] → NIL; d[s] → 0

Q → s

while Q = ∅ do

u → head[Q]

for each v in Adj[u] do

if  color[v] → WHITE then

color[v] → GRAY

π[v] → u

d[v] → d[u] + 1

ENQUEUE(Q, v)

DEQUEUE(Q)

color[u] → BLACK

CE100 Algorithms and Programming II
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Graph Traversal

Breadth-first search (BFS)

In this algorithm, we use a queue to store the vertices that are yet to be visited.

Complexity of following part is 

G -> Graph

s -> Source

BFS(G,s)

  // Mark all the vertices as not visited
  for each vertex u in G.V - {s}

      u.color = white;

      u.distance = infinity;

      u.parent = NIL;

...
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O(V )
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Graph Traversal

Breadth-first search (BFS)

We enqueue the first vertex and mark it as visited.

Complexity of following part is 

...

  s.color = gray;

  s.distance = 0;

  s.parent = NIL;

  // Create a queue for BFS

  Q = empty

  ENQUEUE(Q, s)

...
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O(1)
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Graph Traversal

Breadth-first search (BFS)

We dequeue a vertex u and mark it as visited.

We enqueue all the adjacent vertices of u.

Complexity of following part is 

...

  WHILE Q is not empty

      u = DEQUEUE(Q)

      for each vertex v in G.Adj[u]

          if v.color == white

              v.color = gray;

              v.distance = u.distance + 1;

              v.parent = u;

              ENQUEUE(Q, v)

      u.color = black;
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O(E)
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Graph Traversal

Breadth-first search (BFS)

Complexity of BFS is 

CE100 Algorithms and Programming II

O(V + E) = O(V ) + O(E) + O(1)
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Graph Traversal

Breadth-first search (BFS) Complete Algorithm

G -> Graph

s -> Source

BFS(G,s)

    // Mark all the vertices as not visited

    for each vertex u in G.V - {s}

        u.color = white;

        u.distance = infinity;

        u.parent = NIL;

    s.color = gray;

    s.distance = 0;

    s.parent = NIL;

    // Create a queue for BFS

    Q = empty

    ENQUEUE(Q, s)

    WHILE Q is not empty

        u = DEQUEUE(Q)

        for each vertex v in G.Adj[u]

            if v.color == white

                v.color = gray;

                v.distance = u.distance + 1;

                v.parent = u;

                ENQUEUE(Q, v)

        u.color = black;
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Graph Traversal

Breadth-first search (BFS) Example-1

s is the source vertex.
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Graph Traversal

Breadth-first search (BFS) Example-1

STEP-1

//init the graph

s.parent = NIL;

s.color = gray;

s.distance = 0;

Q = empty;

ENQUEUE(Q, s)

and 

u = DEQUEUE(Q) in the while loop
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Graph Traversal

Breadth-first search (BFS) Example-1

STEP-2

----------------

Q = {c,a}

s = b

----------------

c.parent = s

c.distance = 1

c.color = gray

----------------

a.parent = s

a.distance = 1

a.color = gray

----------------
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Graph Traversal

Breadth-first search (BFS) Example-1

STEP-3

----------------

Q = {e,c}

a = b

----------------

e.parent = a

e.distance = 2

e.color = gray

----------------
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Graph Traversal

Breadth-first search (BFS) Example-1

STEP-4

----------------

Q = {g,e}

c = b

----------------

g.parent = c

g.distance = 2

g.color = gray

----------------
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Graph Traversal

Breadth-first search (BFS) Example-1

STEP-5

----------------

Q = {b,h,g}

e = b

----------------

h.parent = e

h.distance = 3

h.color = gray

----------------

b.parent = e

b.distance = 3

b.color = gray

----------------
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Graph Traversal

Breadth-first search (BFS) Example-1

STEP-6

----------------

Q = {f,i,b,h}

g = b

----------------

i.parent = g

i.distance = 3

i.color = gray

----------------

f.parent = e

f.distance = 3

f.color = gray

----------------
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Graph Traversal

Breadth-first search (BFS) Example-1

STEP-7

----------------

Q = {f,i,b}

h = b

----------------
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Graph Traversal

Breadth-first search (BFS) Example-1

STEP-8

----------------

Q = {f,i}

b = b

----------------
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Graph Traversal

Breadth-first search (BFS) Example-1

STEP-9

----------------

Q = {f}

i = b

----------------
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Graph Traversal

Breadth-first search (BFS) Example-1

STEP-10

----------------

Q = {}

f = b

----------------
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Graph Traversal

Breadth-first search (BFS) Example-1

BFS is done and the graph is traversed.


CE100 Algorithms and Programming II

 RTEU CE100 Week-10 149



Graph Traversal

Breadth-first search (BFS) Print Paths

Prints out vertices on a  shortest path

PRINT-PATH(G, s, v)

if  v = s then print s

else if [v] = NIL then∏
print no "s → v path"

else

PRINT-PATH(G, s, [v])∏
print v
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s → v
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Graph Traversal

Breadth-first search (BFS) Algorithm Summary

Step 1 - Define a Queue of size total number of vertices in the graph.

Step 2 - Select any vertex as starting point for traversal. Visit that vertex and insert it into the
Queue.
Step 3 - Visit all the non-visited adjacent vertices of the vertex which is at front of the Queue and
insert them into the Queue.

Step 4 - When there is no new vertex to be visited from the vertex which is at front of the Queue
then delete that vertex.

Step 5 - Repeat steps 3 and 4 until queue becomes empty.

Step 6 - When queue becomes empty, then produce final spanning tree by removing unused
edges from the graph

CE100 Algorithms and Programming II
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Graph Traversal

Breadth-first search (BFS) Running Time

Running time:  considered linear time in graphs
initialization: 

queue operations: 
each vertex enqueued and dequeued at most once
both enqueue and dequeue operations take  time

processing gray vertices: 
each vertex is processed at most once and

CE100 Algorithms and Programming II

O(V + E) =
Θ(V )

O(V )

O(1)

O(E)

u ∈ V ∣Adj[u]∣ =∑ Θ(E)
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Begining − of − BFS − Proof
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Graph Traversal

Theorems Related to BFS

DEF:  shortest path distance from  to 

LEMMA 1: for any 

For any  run on 

LEMMA 2: 

LEMMA 3: at any time of , the queue  satisfies

THM1:  achieves the following
discovers every  where  (i.e.,  is reachable from )

upon termination, 

for any  is a 

CE100 Algorithms and Programming II

δ(s, v) = s v

s ∈ V &(u, v) ∈ E; δ(s, v) ≤ δ(s,u) + 1

BFS(G, s) G = (V ,E)

d[v] ≥ δ(s, v) ∀ v ∈ V

BFS Q = ⟨v ​, v ​, … , v ​⟩1 2 r

d[v ​] ≤r d[v ​] +1 1

d[v ​] ≤i d[v ​],  for i =i+1 1, 2, … , r − 1

BFS(G, s)
v ∈ V s → v v s

d[v] = δ(s, v) ∀ v ∈ V

v = s&s → v; sp(s, [v]) ∼∏ ( [v], v)∏ sp(s, v)
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Graph Traversal

Proofs of BFS Theorems

DEF: shortest path distance  from  to 

 minimum number of edges in any path from 
to 

 if no such path exists (i.e.,  is not reachable from 
)

L1: for any 

PROOF: . Then,

consider the path 

therefore, 

CE100 Algorithms and Programming II

δ(s, v) s v

δ(s, v) = s

v

= ∞ v s

s ∈ V &(u, v) ∈ E; δ(s, v) ≤ δ(s,u) + 1

s → u ⇒ s → v

p(s, v) = sp(s,u) ∼ (u, v)

∣p(s, v)∣ = ∣sp(s,u)∣ + 1 = δ(s,u) + 1

δ(s, v) ≤ ∣p(s, v)∣ = δ(s,u) + 1
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Graph Traversal

Proofs of BFS Theorems

DEF: shortest path distance  from  to 

 minimum number of edges in any path from s to v

L1: for any 

C1 of L1: if  is undirected then 

 and 

 and

 differ by at most 

CE100 Algorithms and Programming II

δ(s, v) s v

δ(s, v) =

s ∈ V &(u, v) ∈ E; δ(s, v) ≤ δ(s,u) + 1

G = (V ,E) (u, v) ∈ E ⇒
(v,u) ∈ E

δ(s, v) ≤ δ(s,u) + 1 δ(s,u) ≤ δ(s, v) + 1

⇒ δ(s,u) − 1 ≤ δ(s, v) ≤ δ(s,u) + 1

δ(s, v) − 1 ≤ δ(s,u) ≤ δ(s, v) + 1

⇒ δ(s,u) & δ(s, v) 1
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Graph Traversal

Proofs of BFS Theorems

L2: upon termination of  on ;

PROOF: by induction on the number of ENQUEUE operations
basis: immediately after 1st enqueue operation

hypothesis:  for all  inserted into 

induction: consider a white vertex  discovered during scanning 
 due to the assignment statement

 due to the inductive hypothesis since 

 due to 

vertex  is then enqueued and it is never enqueued again
 never changes again, maintaining inductive hypothesis

CE100 Algorithms and Programming II

BFS(G, s) G = (V ,E)
d[v] ≥ δ(s, v) ∀ v ∈ V

ENQ(Q, s) : d[s] = δ(s, s)

d[v] ≥ δ(s, v) v Q

v Adj[u]
d[v] = d[u] + 1

≥ δ(s,u) + 1 u ∈ Q

≥ δ(s, v) L1

v

d[v]
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Graph Traversal

Proofs of BFS Theorems

L3: Let  during the execution of , then,

 and  for 

PROOF: by induction on the number of  operations

basis: lemma holds when 

hypothesis: lemma holds for a particular  (i.e., after a certain  of  operations)

induction: must prove lemma holds after both  &  operations

 &  in  in 

 for  in 

 for  in 

CE100 Algorithms and Programming II

Q = ⟨v ​, v ​, … , v ​⟩1 2 r BFS(G, s)

d[v ​] ≤r d[v ​] +1 1 d[v ​] ≤i d[v ​]i+1 i = 1, 2, … , r − 1

QUEUE

Q ← s

Q # QUEUE

DEQUEUE ENQUEUE

DEQUEUE(Q) : Q = ⟨v ​, v ​, … , v ​⟩ ⇒1 2 r Q =′ ⟨v ​, v ​, … , v ​⟩2 3 r

d[v ​] ≤r d[v ​] +1 1 d[v ​] ≤1 d[v ​]2 Q ⇒ d[v ​] ≤r d[v ​] +2 1 Q′

d[v ​] ≤i d[v ​]i+1 i = 1, 2, … , r − 1 Q′

d[v ​] ≤i d[v ​]i+1 i = 2, … , r − 1 Q′
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Graph Traversal

Proofs of BFS Theorems

 was encountered during scanning  where 

thus, 
 in 

but 
 and  in 

C3 of L3 (monotonicity property):
if: the vertices are enqueued in the order 

then: the sequence of distances is monotonically increasing,
i.e., 

CE100 Algorithms and Programming II

ENQUEUE(Q, v) :
Q = ⟨v ​, v ​, … , v ​⟩ ⇒1 2 r

Q =′ ⟨v ​, v ​, … , v ​, v ​ =1 2 r r+1 v⟩

v Adj[u] u = v ​1

d[v ] =r+1 d[v] = d[u] + 1 = d[v ​] +1 1 ⇒
d[v ​] =r+1 d[v ​] +1 1 Q′

d[v ​] ≤r d[v ​] +1 1 = d[v ​]r+1

⇒ d[v ​] =r+1 d[v ​] +1 1 d[v ​] ≤r d[v ​]r+1 Q′

v , v ​, … , v ​1 2 n

d[v ​] ≤1 d[v ​] ≤2 ⋯ ≤ d[v ​]n RTEU CE100 Week-10 159



Graph Traversal

Proofs of BFS Theorems

THM (correctness of BFS):  achieves the following on 

discovers every  where 

upon termination: 

for any 

PROOF: by induction on , where 

hypothesis: for each  exactly one point during execution of BFS at which 
, and then 

basis: for  since  and 

induction: must prove hypothesis holds for each 

CE100 Algorithms and Programming II

BFS(G, s) G = (V ,E)

v ∈ V s → v

d[v] = δ(s, v) ∀v ∈ V

v = s&s → v; sp(s, [v]) ∼∏ ( [v], v) =∏ sp(s, v)

k V =k {v ∈ V : δ(s, v) = k}

v ∈ V ​, ∃k

color[v] → GRAY , d[v] → k, [v] →∏ u ∈ V ​k−1 ENQUEUE(Q, v)

k = 0 V ​ =0 {s}; color[s] → GRAY , d[s] → 0
ENQUEUE(Q, s)

v ∈ V ​k+1
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Graph Traversal

Proofs of BFS Theorems

Consider an arbitrary vertex , where 
monotonicity  inductive hypothesis

  must be discovered after all vertices in  were enqueued

since  such that 

let  be the first such vertex grayed (must happen due to hyp.)

 will be ultimately executed since  enqueues every grayed vertex
 will be discovered during scanning 

 since  isn’t adjacent to any vertex in  for 

, 

then,  thus proving the inductive hypothesis

To conclude the proof
if  then due to above inductive proof 

thus  is a shortest path from  to 

CE100 Algorithms and Programming II

v ∈ V ​k+1 k ≥ 0
(L3) + d[v] ≥ k + 1 (L2)+

⇒ v V ​k

δ(s, v) = k + 1, ∃ u ∈ V ​k (u, v) ∈ E

u ∈ V ​k

u ← head(Q) BFS

v Adj[u]
color[v] ← WHITE v V ​j j < k

color[v] ← GRAY d[v] ← d[u] + 1, [v] ←∏ u

ENQUEUE(Q, v)

v ∈ V ​k+1 [v] ∈∏ V ​k

sp(s, [v]) ∼∏ ( [v], v)∏ s v RTEU CE100 Week-10 161



Graph Traversal

Theorems Related to BFS

DEF:  shortest path distance from  to 

LEMMA 1: for any 

For any  run on 

LEMMA 2: 

LEMMA 3: at any time of , the queue  satisfies

THM1:  achieves the following
discovers every  where  (i.e.,  is reachable from )

upon termination, 

for any  is a 

CE100 Algorithms and Programming II

δ(s, v) = s v

s ∈ V &(u, v) ∈ E; δ(s, v) ≤ δ(s,u) + 1

BFS(G, s) G = (V ,E)

d[v] ≥ δ(s, v)∀v ∈ V

BFS Q = ⟨v ​, v ​, … , v ​⟩1 2 r

d[v ​] ≤r d[v ​] +1 1

d[v ​] ≤i d[v ​],  for i =i+1 1, 2, … , r − 1

BFS(G, s)
v ∈ V s → v v s

d[v] = δ(s, v)∀v ∈ V

v = s&s → v; sp(s, [v]) ∼∏ ( [v], v)∏ sp(s, v)
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Graph Traversal

Breadth-First Tree Generated by BFS

LEMMA 4: predecessor subgraph  generated by , where
 and

is a breadth-first tree such that
 consists of all vertices in  that are reachable from 

, unique path  in  constitutes a  in 

CE100 Algorithms and Programming II

G ​ =∏ (V ​,E ​)∏ ∏ BFS(G, s)
V ​ =∏ {v ∈ V : [v] =∏  NIL} ∪ s

E ​ =∏ {( [v], v) ∈∏ E : v ∈ V ​ −∏ {s}}

V ​∏ V s

∀v ∈ V ​∏ p(v, s) G ​∏ sp(s, v) G
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CE100 Algorithms and Programming II

End − of − BFS − Proof
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Depth-first search (DFS)

CE100 Algorithms and Programming II
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Graph Traversal

Depth-first search (DFS)

DFS is a traversal algorithm that visits each vertex in a graph in a depth-first manner.

CE100 Algorithms and Programming II
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Graph Traversal

Depth-first search (DFS)

Graph  directed or undirected

Adjacency list representation

Goal: Systematically explore every vertex and every edge

Idea: search deeper whenever possible
Using a LIFO queue (Stack; FIFO queue used in BFS)

CE100 Algorithms and Programming II

G = (V ,E)
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Graph Traversal

Depth-first search (DFS)

Maintains several fields for each 

Like , colors the vertices to indicate their states. Each vertex is
Initially ,

 when discovered,

 when finished

Like , records discovery of a white  during scanning  by 

CE100 Algorithms and Programming II

v ∈ V

BFS

white

grayed

blackened

BFS v Adj[u] π[v] → u

 RTEU CE100 Week-10 168



Graph Traversal

Depth-first search (DFS)

Unlike , predecessor graph  produced by DFS forms spanning forest

 where

 depth-first forest (DFF) is composed of disjoint depth-first trees (DFTs)

CE100 Algorithms and Programming II

BFS G ​π

G ​ =π (V ,E ​)π
E ​ =π {(π[v], v) : v ∈ V andπ[v] = NIL}

G ​ =π
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Graph Traversal

Depth-first search (DFS)

DFS also timestamps each vertex with two timestamps
: records when v is first discovered and grayed

: records when v is finished and blackened

Since there is only one discovery event and finishing event for each vertex we have 

CE100 Algorithms and Programming II

d[v]

f [v]

1 ≤ d[v] ≤
f [v] ≤ 2∣V ∣
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Graph Traversal

Depth-first search (DFS) Algorithm

​ ​

DFS(G)

for each u ∈ V  do

color[u] ← white

π[u] ← NIL

time ← 0

for each u ∈ V  do

if  color[u] = white then

DFS-VISIT(G,u)

CE100 Algorithms and Programming II
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Graph Traversal

Depth-first search (DFS) Algorithm

​ ​

DFS-VISIT(G,u)

color[u] ← gray

d[u] ← time ← time + 1

for each v ∈ Adj[u] do

if  color[v] = white then

π[v] ← u

DFS-VISIT(G, v)

color[u] ← black

f [u] ← time ← time + 1

CE100 Algorithms and Programming II
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Graph Traversal

Depth-first search (DFS) Algorithm

Complexity of the following part is  (two sequential loops)

DFS(G)

 for each vertex u in G.V

    u.color = white

    u.parent = nil

 time = 0

  for each vertex u in G.V

    if u.color == white

      DFS-VISIT(G,u)


CE100 Algorithms and Programming II

Θ(V + V ) = O(V )
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Graph Traversal

Depth-first search (DFS) Algorithm

DFS-VISIT(G,u)

  time = time + 1

  u.discovery = time

  u.color = gray

  for each vertex v in G.Adj[u]

    if v.color == white

      v.parent = u

      DFS-VISIT(G,v)

  u.color = black

  time = time + 1

  u.finish = time


CE100 Algorithms and Programming II
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Graph Traversal

Depth-first search (DFS)

DFS complexity is 

Note for all 

CE100 Algorithms and Programming II

Θ(V + E)

v → v.discovery < v.finish
1 ≤ u.discovery < u.finish ≤ 2∣V ∣
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Graph Traversal

Edge Classification in a DFF

Edge Types in DFS
Tree Edges

Back Edges

Forward Edges

Cross Edges
Colors in DFS

White -> Tree Edges

Gray -> Back Edges
Black -> Forward Edges

CE100 Algorithms and Programming II
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Graph Traversal

Edge Classification in a DFF

Tree Edge: discover a new (WHITE) vertex

Back Edge: from a descendent to an ancestor in DFT

Forward Edge: from ancestor to descendent in DFT

Cross Edge: remaining edges (btwn trees and subtrees)

Note: ancestor/descendent is wrt Tree Edges

CE100 Algorithms and Programming II

GRAY ⇒ WHITE

GRAY ⇒ GRAY

GRAY ⇒ BLACK

GRAY ⇒ BLACK
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Graph Traversal

Edge Classification in a DFF

How to decide which  to  edges are forward, which are cross
Let  vertex  is encountered while processing  vertex 

 is a forward edge if 

 is a cross edge if 

CE100 Algorithms and Programming II

GRAY BLACK

BLACK v ∈ Adj[u] GRAY u

(u, v) d[u] < d[v]

(u, v) d[u] < d[v]
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Graph Traversal

Depth-first search (DFS) Example-1

CE100 Algorithms and Programming II
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Graph Traversal

Depth-first search (DFS) Example-1

STEP-1

CE100 Algorithms and Programming II
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Graph Traversal

Depth-first search (DFS) Example-1

STEP-2

CE100 Algorithms and Programming II
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Graph Traversal

Depth-first search (DFS) Example-1

STEP-3

CE100 Algorithms and Programming II
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Graph Traversal

Depth-first search (DFS) Example-1

STEP-4

CE100 Algorithms and Programming II
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Graph Traversal

Depth-first search (DFS) Example-1

STEP-5

CE100 Algorithms and Programming II
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Graph Traversal

Depth-first search (DFS) Example-1

STEP-6

CE100 Algorithms and Programming II
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Graph Traversal

Depth-first search (DFS) Example-1

STEP-7

CE100 Algorithms and Programming II
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Graph Traversal

Depth-first search (DFS) Example-1

STEP-8

CE100 Algorithms and Programming II
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Graph Traversal

Depth-first search (DFS) Example-1

STEP-9

CE100 Algorithms and Programming II
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Graph Traversal

Depth-first search (DFS) Example-1

STEP-10


CE100 Algorithms and Programming II
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Graph Traversal

Depth-first search (DFS) Example-1

STEP-11


CE100 Algorithms and Programming II
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Graph Traversal

Depth-first search (DFS) Example-1

STEP-12


CE100 Algorithms and Programming II

 RTEU CE100 Week-10 191



Graph Traversal

Depth-first search (DFS) Example-1

STEP-13


CE100 Algorithms and Programming II
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Graph Traversal

Depth-first search (DFS) Example-1

STEP-14


CE100 Algorithms and Programming II

 RTEU CE100 Week-10 193



Graph Traversal

Depth-first search (DFS) Example-1

STEP-15


CE100 Algorithms and Programming II
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Graph Traversal

Depth-first search (DFS) Example-1

FINAL STEP-16


CE100 Algorithms and Programming II
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Graph Traversal

Depth-first search (DFS) Example-1

Edges and Clusters after DFS


CE100 Algorithms and Programming II
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Graph Traversal

Depth-first search (DFS) Example-2

Different Start Point and Different Graph


CE100 Algorithms and Programming II
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Graph Traversal

Depth-first search (DFS)

Running time: 

Initialization loop in  : 

Main loop in :  exclusive of time to execute calls to 

 is called exactly once for each  since

 is invoked only on white vertices and

 immediately colors u as gray

For loop of  is executed  time

Since , total cost of executing loop of
 is 

CE100 Algorithms and Programming II

Θ(V + E)

DFS Θ(V )

DFS Θ(V ) DFS-VISIT

DFS-VISIT v ∈ V

DFS-VISIT

DFS-VISIT(G,u)

DFS-VISIT(G,u) ∣Adj[u]∣

∣Adj[u]∣ =∑ E

DFS-VISIT Θ(E)
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Elementary Graph Algorithms

Depth-first search (DFS) Algorithm Summary

Step 1 - Define a Stack of size total number of vertices in the graph.
Step 2 - Select any vertex as starting point for traversal. Visit that vertex and push it on to the Stack.
Step 3 - Visit any one of the non-visited adjacent vertices of a vertex which is at the top of stack and
push it on to the stack.
Step 4 - Repeat step 3 until there is no new vertex to be visited from the vertex which is at the top of
the stack.
Step 5 - When there is no new vertex to visit then use back tracking and pop one vertex from the
stack.
Step 6 - Repeat steps 3, 4 and 5 until stack becomes Empty.
Step 7 - When stack becomes Empty, then produce final spanning tree by removing unused edges
from the graph

CE100 Algorithms and Programming II
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Begining − of − DFS − Proof
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Elementary Graph Algorithms

DFS: Parenthesis Theorem

Thm: In any DFS of , let  then exactly one of the following
holds
for any  and 

 and  are entirely disjoint

 is entirely contained in  and

 is a descendant of  in a 

 is entirely contained in  and

 is a descendant of  in a 

CE100 Algorithms and Programming II

G = (V ,E) int[v] = [d[v], f [v]]

u v ∈ V

int[u] int[v]

int[v] int[u]
v u DFT

int[u] int[v]
u v DFT
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Elementary Graph Algorithms

Parenthesis Thm (proof for the case )

Subcase  (  and  are overlapping)
 was discovered while  was still 

This implies that  is a descendant of 

So search returns back to  and finishes  after finishing 

i.e.,  is entirely contained in 

Subcase  and  are entirely disjoint

Proof for the case  is similar (dual)


CE100 Algorithms and Programming II

d[u] < d[v]

d[v] < f [u] int[u] int[v]
v u GRAY

v u

u u v

d[v] < f [u] ⇒ int[v] int[u]

d[v] > f [u] ⇒ int[v] int[u]

d[v] < d[u]
Q.E.D
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Elementary Graph Algorithms

Nesting of Descendents’ Intervals

Corollary 1 (Nesting of Descendents’ Intervals):
 is a descendant of u if and only if

Proof: immediate from the Parenthesis Thrm
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v

d[u] < d[v] < f [v] < f [u]

Q.E.D
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Elementary Graph Algorithms

DFS Parenthesis Theorem

CE100 Algorithms and Programming II
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Elementary Graph Algorithms

DFS on Undirected Graphs
Ambiguity in edge classification, since  and  are the same edge

First classification is valid (whichever of  or  is explored first)

Lemma 1: any  on an undirected graph produces only  and 

CE100 Algorithms and Programming II

(u, v) (v,u)
(u, v) (v,u)

DFS Tree

Backedges
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Elementary Graph Algorithms

DFS on Undirected Graphs - Lemma 1: Proof

Assume  is a  (Figure-1)
But  must be a , since  must finish  before resuming 

Assume  is a  btw subtrees (Figure-2-4)
But  cannot be both ; one must be a  and  must be a 

If  is first explored while processing  must be a  (Figure-2-4)

CE100 Algorithms and Programming II

(x, z) F (F?)
(x, z) B DFS z x

(u, v) C(C?)
(y,u)&(y, v) T B (u, v) T

(u, v) u/v, (y, v)/(y,u) B
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Elementary Graph Algorithms

DFS on Undirected Graphs
Lemma 2: an undirected graph is acyclic (i.e. a forest) iff DFS yields no 

Proof
(acyclic  no Back edges; by contradiction):

Let  be a  then 
 there exists a path between  and 

So,  will complete a cycle ( )

( ):
If there are no  then there are only  edges by

Lemma 1  forest \Rightarrow acyclic


CE100 Algorithms and Programming II

Backedges

⇒
(u, v) B color[u] = color[v] = GRAY

⇒ u v

(u, v) Backedge ⇒ cycle

noBackedges ⇒ acyclic

Backedges T

⇒
Q.E.D RTEU CE100 Week-10 207



Elementary Graph Algorithms

DFS on Undirected Graphs (Cycle Detection)

How to determine whether an undirected graph  is acyclic
Run a  on :

if a  is found then there is a cycle

Running time: , not 

If ever seen  distinct edges,
must have seen a back edge (  in a forest)

CE100 Algorithms and Programming II

G = (V ,E)
DFS G

Backedge

O(V ) O(V + E)

∣V ∣
∣E∣ ≤ ∣V ∣ − 1
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DFS: White Path Theorem

WPT: In a  of ,  is a descendent of  iff at time ,  can be reached from  along a 
 path

Proof ( ): assume  is a descendent of 
Let  be any vertex on the path from  to  in the 

So,  is a descendent of 
(by Corollary 1 nesting of descendents’ intervals)

Hence,  is white at time 

CE100 Algorithms and Programming II

DFS G v u d[u] v u

WHITE

⇒ v u

w u v DFT

w u ⇒ d[u] < d[w]

w d[u]
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DFS: White Path Theorem

Proof ( ) assume a white path  at time  but  does not become a descendent of 
in the  (contradiction):

Assume every other vertex along  becomes a descendent of  in the 

CE100 Algorithms and Programming II

⇐ p(u, v) d[u] v u

DFT

p u DFT
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DFS: White Path Theorem

otherwise let  be the closest vertex to  along  that does
not become a descendent

Let w be predecessor of  along :
 by Corollary 1

Since,  was  at time  (  was ) 

Since,  is a descendent of  but  is not

By (1)–(3): 

So by Parenthesis Thm  is within ,  is descendent of 

CE100 Algorithms and Programming II

v u p

v p(u, v)
d[u] < d[w] < f [w] < f [u]

v WHITE d[u] u GRAY d[u] < d[v]

w u v

d[w] < d[v] ⇒ d[v] < f [w]

d[u] < d[v] < f [w] < f [u] ⇒ d[u] < d[v] < f [w]

int[v] int[u] v u

Q.E.D
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End − of − DFS − Proof
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Strongly Connected Components (SCC)

CE100 Algorithms and Programming II
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Graph Segmentation - SCC (Strongly Connected Components)

SCC Algorithm is used to find the connected components in a graph.

Has two version
Kosaraju's algorithm

Tarjan's algorithm

CE100 Algorithms and Programming II
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Graph Segmentation - SCC (Strongly Connected Components)

Definition: a strongly connected component ( ) of a
directed graph  is a maximal set of vertices  such that

For each  we have both  and 

i.e.,  and  are mutually reachable from each other ( )

Let  be the transpose of  where

i.e.,  consists of edges of  with their directions reversed

Constructing  from  takes  time (adjacency list rep)

Note:  and  have the same s (  in  in )

CE100 Algorithms and Programming II

SCC

G = (V ,E) U ⊆ V

u, v ∈ U u ↦ v v ↦ u

u v u⇋ v

G =T (V ,E ​)T G = (V ,E)
E =T {(u, v) : (v,u) ∈ E}

ET G

GT G O(V + E)

G GT SCC u⇋ v G ⟺ u⇋ v GT
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Graph Segmentation - SCC (Strongly Connected Components)

 can create    adjency list.

 complexity is 

CE100 Algorithms and Programming II

G =T (V ,E )T GT → Θ(V + E)

SCC(G) O(V + E)
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Graph Segmentation - SCC Algorithm

KOSARAJU-SCC(G)

call DFS(G) compute all u.finishT ime values

compute G = (V ,E ) and reverse edge directionsT T

call DFS(G ) but in the main loop,T

consider vertices in order of  decreasing u.finishT ime

(as computed in DFS)

output each DFTcomponent

CE100 Algorithms and Programming II
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Graph Segmentation - SCC - Kosaraju's algorithm

1- call DFS(G) compute all u.finishTime values

2- compute G^T = (V,E^T) and reverse edge directions

3- call DFS(G^T) but in the main loop, 

consider vertices 

in order of decreasing u.finishTime 

(as computed in DFS)


CE100 Algorithms and Programming II

 RTEU CE100 Week-10 218



Graph Segmentation - SCC - Kosaraju's algorithm

for each unvisited vertex u, DFS(u)

  try all free neighbor v of u, DFS(v)

  finish DFS(u), add u to the front of list

transpose the graph

DFS in order of the list, DFS(u)

  try all free neighbor v of u, DFS(v)

each time we complete a DFS, we get an SCC


CE100 Algorithms and Programming II
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Graph Segmentation - SCC - Tarjan's algorithm

for each unvisited vertex u

  DFS(u), s.push(u), num[u] = low[u] = DFSCount

    for each neighbor v of u

      if v is unvisited, DFS(v)

      low[u] = min(low[u], low[v])

    if low[u] == num[u] // root of an SCC

      pop from stack s until we get u


CE100 Algorithms and Programming II
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Graph Segmentation - SCC Algorithm - Example-1

Kosaraju's algorithm

CE100 Algorithms and Programming II
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Graph Segmentation - SCC Algorithm - Ex-1 / Step - 1

CE100 Algorithms and Programming II
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Graph Segmentation

SCC Algorithm - Ex-1 / Step - 2

CE100 Algorithms and Programming II
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Graph Segmentation

SCC Algorithm - Example-1 / Step - 3

CE100 Algorithms and Programming II
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Graph Segmentation

SCC Algorithm - Example-1/ Step - 4

CE100 Algorithms and Programming II
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Graph Segmentation

SCC Algorithm - Example-1/ Step - 5

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 226



Graph Segmentation

SCC Algorithm - Example-1/ Step - 6

CE100 Algorithms and Programming II
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Graph Segmentation

SCC Algorithm - Example-1/ Step - 7

CE100 Algorithms and Programming II
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Graph Segmentation

SCC Algorithm - Example-1/ Step - 8

CE100 Algorithms and Programming II
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Graph Segmentation

SCC Algorithm - Example-1/ Step - 9

CE100 Algorithms and Programming II
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Graph Segmentation

SCC Algorithm - Example-1/ Step - 10

CE100 Algorithms and Programming II
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Graph Segmentation

SCC Algorithm - Example-1/ Step - 11

CE100 Algorithms and Programming II
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Graph Segmentation

SCC Algorithm - Example-1/ Step - 12

CE100 Algorithms and Programming II
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Graph Segmentation

SCC Algorithm - Example-1/ Step - 13

CE100 Algorithms and Programming II
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Graph Segmentation

SCC Algorithm - Example-1/ Step - 14

CE100 Algorithms and Programming II
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Graph Segmentation

SCC Algorithm - Example-1/ Step - 15

CE100 Algorithms and Programming II
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Graph Segmentation

SCC Algorithm - Example-1/ Step - 16

CE100 Algorithms and Programming II
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Graph Segmentation

SCC Algorithm - Example-1/ Step - 17
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Graph Segmentation

SCC Algorithm - Example-1/ Step - 18
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Graph Segmentation

SCC Algorithm - Example-1/ Step - 19

CE100 Algorithms and Programming II
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Graph Segmentation

SCC Algorithm - Example-1/ Step - 20
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Graph Segmentation

SCC Algorithm - Example-1/ Step - 21

CE100 Algorithms and Programming II
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Graph Segmentation

SCC Algorithm - Example-1/ Step - 22
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Graph Segmentation

SCC Algorithm - Example-1/ Step - 23
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Graph Segmentation

SCC Algorithm - Example-1/ Step - 24

CE100 Algorithms and Programming II
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Graph Segmentation

SCC Algorithm - Example-1/ Step - 25
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Graph Segmentation

SCC Algorithm - Example-1/ Step - 26
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Graph Segmentation

SCC Algorithm - Example-1/ Step - 27
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Graph Segmentation

SCC Algorithm - Example-1/ Step - 28
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Graph Segmentation

SCC Algorithm - Example-1/ Step - 29
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Graph Segmentation

SCC Algorithm - Example-1/ Step - 30
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Graph Segmentation

SCC Algorithm - Example-1/ Step - 31
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Graph Segmentation

SCC Algorithm - Example-1/ Step - 32
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Graph Segmentation

SCC Algorithm - Example-1/ Step - 33
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Graph Segmentation

SCC Algorithm - Example-1/ Step - 34
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Graph Segmentation

SCC Algorithm - Example-1/ Step - 35
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Graph Segmentation

SCC Algorithm - Example-1/ Step - 36
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Graph Segmentation

SCC Algorithm - Example-1/ Step - 37
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Graph Segmentation

SCC Algorithm - Example-1/ Step - 38

CE100 Algorithms and Programming II
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Graph Segmentation

SCC Algorithm - Example-1/ Step - 39

CE100 Algorithms and Programming II
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Graph Segmentation

SCC Algorithm - Example-1/ Step - 40
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Graph Segmentation

SCC Algorithm - Example-1/ Step - 41
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Graph Segmentation

SCC Algorithm - Example-1/ Step - 42

CE100 Algorithms and Programming II
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Graph Segmentation

Strongly Connected Components Generate Acyclic Component Graph

CE100 Algorithms and Programming II
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CE100 Algorithms and Programming II

Begining − of − SCC − Proof
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Strongly Connected Components

Lemma 1: no path between a pair of vertices in the same , ever leaves the 

Proof: let  and  be in the same 

let  be on some path 

but  a path 

therefore  and  are in the same  ( )

CE100 Algorithms and Programming II

SCC SCC

u v SCC ⇒ u⇋ v

w u ↦ w ↦ v ⇒ u ↦ w

v ↦ u ⇒ ∃ w ↦ v ↦ u ⇒ w ↦ u

u w SCC ⟹ Q.E.D
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Strongly Connected Components

Theorem 1: in any , all vertices in the same  are placed in the same 

Proof: let  be the first vertex discovered in  

because  is first,  at time 

So all vertices are  on each  path 
since these paths never leave Sr

Hence each vertex in  becomes a descendent of  (White-path Theorem)  ( )

CE100 Algorithms and Programming II

DFS SCC DFT

r SCC S ​r

r color[x] = WHITE ∀x ∈ S ​ −r r d[r]

WHITE r ↦ x ∀x ∈ S ​ −r r

S ​ −r r r ⟹ Q.E.D
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Notation for the Strongly Connected Components

 and  refer to those values computed by  at step (1)

 refers to  not 

Definition: forefather  of vertex 

1.  That vertex  such that  and  is maximized

2.  possible because 

CE100 Algorithms and Programming II

d[u] f [u] DFS(G)

u ↦ v G GT

ϕ(u) u

ϕ(u) = w u ↦ w f [w]

ϕ(u) = u u ↦ u ⇒ f [u] ≤ f [ϕ(u)]
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Strongly Connected Components

Lemma 2: 

Proof try to show that 

For any 

So, 

Due to definition of  we have 

Therefore 

 (same vertex)

CE100 Algorithms and Programming II

ϕ(ϕ(u)) = ϕ(u)

f [ϕ(ϕ(u))] = f [ϕ(u)] :

u, v ∈ V ;u ↦ v ⇒ R ​ ⊆v R ​ ⇒u f [ϕ(v)] ≤ f [ϕ(u)]

u ↦ ϕ(u) ⇒ f [ϕ(ϕ(u))] ≤ f [ϕ(u)]

ϕ(u) f [ϕ(ϕ(u))] ≥ f [ϕ(u)]

f [ϕ(ϕ(u))] = f [ϕ(u)]

f [x] = f [y] ⇒ x = y
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Strongly Connected Components

Properties of forefather:
Every vertex in an  has the same forefather which is in the 

Forefather of an  is the representative vertex of the 

In the  of , forefather of an  is the
first vertex discovered in the 

last vertex finished in the 

CE100 Algorithms and Programming II

SCC SCC

SCC SCC

DFS G SCC

SCC

SCC
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Strongly Connected Components

Theorem 2:  of any  in any  of  is an ancestor of 

Proof: Trivial if .

If , consider color of  at time 

 is :  is an ancestor of  proving the theorem

 is :  contradiction to def. of 

 is :   cases according to colors of intermediate vertices on 

Path  at time :

CE100 Algorithms and Programming II

ϕ(u) u ∈ V DFS G u

ϕ(u) = u

ϕ(u) = u ϕ(u) d[u]

ϕ(u) GRAY ϕ(u) u ⇒

ϕ(u) BLACK f [ϕ(u)] < f [u] ⇒ ϕ(u)

ϕ(u) WHITE exist 2
p(u,ϕ(u))

p(u,ϕ(u)) d[u]

 RTEU CE100 Week-10 271



Strongly Connected Components

Case 1: every intermediate vertex  is 
 becomes a descendant of  ( )

 contradiction

Case 2:  some  intermediate vertices on 
Let  be the last  vertex on

Then,  must be  since  edge ( ) cannot exist

But then,  is a white path

 is a descendant of  (by white-path theorem)

contradicting our choice for   

CE100 Algorithms and Programming II

x ​ ∈i p(u,ϕ(u)) WHITE

⇒ ϕ(u) u White − Path − Theorem

⇒ f [ϕ(u)] < f [u]

⇒
∃ non − WHITE p(u,ϕ(u))
x ​t non − WHITE

p(u,ϕ(u)) = ⟨u,x ​,x ​, … ,x ​,ϕ(u)⟩1 2 r

x ​t GRAY BLACK − to − WHITE x ​,x ​t t+1

p(x ​,ϕ(u)) =t ⟨x ​,x ​, … ,x ​,ϕ(u)⟩t+1 t+2 r

⇒ ϕ(u) x ​t

f [x ​] >t f [ϕ(u)]

ϕ(u) ⟹ Q.E.D.
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Strongly Connected Components

C1: in any  of  vertices  and  lie in the same , 

Proof:  (by definition) and  since  is an ancestor of  (by Theorem 2)

Theorem 3: two vertices  lie in the same  in a  of 

Proof: let  and  be in the same  

CE100 Algorithms and Programming II

DFS G = (V ,E) u ϕ(u) SCC ∀u ∈ V

u ↦ ϕ(u) ϕ(u) ↦ u ϕ(u) u

u, v ∈ V SCC ⟺ ϕ(u) = ϕ(v) DFS

G = (V ,E)

u v SCC C ​ ⇒uv u⇋ v
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Strongly Connected Components

 and , i.e.,
every vertex reachable from  is reachable from  and vice-versa

So,  and  by definition of forefather

Proof: Let  by  and  by 

By Theorem 3: s are sets of vertices with the same forefather

By Theorem 2 and parenthesis Theorem: A forefather is the first vertex discovered and the last
vertex finished in its 

CE100 Algorithms and Programming II

∀w : v ↦ w ⇒ u ↦ w ∀w : u ↦ w ⇒ v ↦ w

u v

w = ϕ(u) ⇒ w = ϕ(v) w = ϕ(v) ⇒ w = ϕ(u)

ϕ(u) = ϕ(v) = w ∈ C ​ ⇒w u ∈ C ​w C1 v ∈ C ​w C1

SCC

SCC
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: Why do we Run  on ?

Consider  with largest finishing time computed by  on 

 must be a forefather by definition since  and  is maximum in 

 vertices in ’s SCC 

where 

 since  is maximum

 reachability set of 

i.e.,  those vertices reachable from 

Thus  identifies all vertices in  and
blackens them

CE100 Algorithms and Programming II

SCC DFS GT

r ∈ V DFS G

r r ↦ r f [r] V

C ​ =r ? : Cr = r = {u ∈ V : ϕ(u) = r}
⇒ C ​ =r {u ∈ V : u ↦ r and f [x] ≤ f [r]∀x ∈ R ​}u

R ​ =u {v ∈ V : u ↦ v}

⇒ C ​ =r {u ∈ V : u ↦ r} f [r]

⇒ C ​ =r R ​ =r
T {u ∈ V : r ↦ u ∈ G } =T r ∈ GT

C ​ =r r ∈ GT

DFS-VISIT(G , r)T C ​r
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: Why do we Run  on ?

 can also be used to identify 

Then,  on  continues with $DFS-VISIT(G^T, r')
where 

 must be a forefather by definition since  and
 is maximum in 

CE100 Algorithms and Programming II

SCC DFS GT

BFS(G , r)T C ​r

DFS GT

f [r ] >′ f [w]∀w ∈ V − C ​r

r r ↦′ r′

f [r ]′ V − C ​r
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: Why do we Run  on ?

Hence by similar reasoning  identifies 

Thus, each  in 
identifies an   with 

CE100 Algorithms and Programming II

SCC DFS GT

DFS-VISIT(G , r )T ′ C ​r′

DFS-VISIT(G ,x)T DFS(G )T

SCC C ​x ϕ = x
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End − of − SCC − Proof
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Directed Acyclic Graphs (DAG)

CE100 Algorithms and Programming II
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Directed Acyclic Graphs (DAG)

No Directed Cycles

CE100 Algorithms and Programming II
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Directed Acyclic Graphs (DAG)

Theorem: a directed graph G is acyclic iff  on  yields no Back edges

Proof (acyclic  no Back edges; by contradiction):

Let (v,u) be a Back edge visited during scanning 
 and 

 is contained in  is descendent of 

 a path from  to  in a  and hence in 

 edge  will create a cycle (Back edge  cycle)

CE100 Algorithms and Programming II

DFS G

Adj[v]
⇒ color[v] = color[u] = GRAY d[u] < d[v]

⇒ int[v] int[u] ⇒ v u

⇒ ∃ u v DFT G

∴ (v,u) ⇒
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Directed Acyclic Graphs (DAG) - aAcyclic iff no Back edges

Proof (no Back edges  acyclic):
Suppose  contains a cycle  (Show that a  on  yields a ; proof by
contradiction)
Let  be the first vertex discovered in  and let  be proceeding edge in 

At time  a white path from  to  along 

By  Thrm  becomes a descendent of  in a 

Therefore  is a  (descendent to ancestor)

CE100 Algorithms and Programming II

⇒
G C DFS G BackEdge

v C (u, v) C

d[v] : ∃ v u C

WhitePath u v DFT

(u, v) BackEdge
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Topological Sort of a DAG

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 283



Graph Traversal - Topological Sort of a DAG

When we are scheduling jobs or tasks, they may have dependencies.

For example, before we finish task a, we have to finish b first.

In this case, given a set of tasks and their dependencies, how shall we arrange our
schedules? There comes an interesting graph algorithm: Topological Sort.

According to Introduction to Algorithms, given a directed acyclic graph (DAG),

a topological sort is a linear ordering of all vertices such that for any edge (u, v), u comes before
v.

Another way to describe it is that when you put all vertices horizontally on a line, all of the edges
are pointing from left to right.

CE100 Algorithms and Programming II
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Graph Traversal - Topological Sort of a DAG

Topological sort is a linear ordering of a directed acyclic graph.

If a graph has a cycle, it is not a directed acyclic graph.

A graph is acyclic if it has no cycles.

Linear ordering " " of  such that

 in ordering
Ordering may not be unique

i.e., mapping the partial ordering to total ordering may yield more than one orderings

CE100 Algorithms and Programming II

< V

(u, v) ∈ E ⇒ u < v
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Graph Traversal -Topological Sort of a DAG

DFS version

The key observation is that, leaf nodes should always come after their parents and ancestors.
Following this intuition we can apply DFS and output nodes from leaves to the root.

We need to implement a boolean array visited so that visited[i] indicates if we have visited vertex
i.

For each unvisited node, we would first mark it as visited and call DFS() to start searching its
neighbours.

After finishing this, we can insert it to the front of a list. After visiting all nodes, we can return that
list.

CE100 Algorithms and Programming II
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Graph Traversal

Topological Sort of a DAG

DFS version

run DFS(G)

when a vertex finished, output it

vertices output in **reverse** topologically sorted order


Runs in O(V+E) time

CE100 Algorithms and Programming II
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Graph Traversal

Topological Sort of a DAG

DFS version

def topological_sort():

    for each node:

        if visited[node] is False:

            dfs(node)


def dfs(node):

    visited[node] = True

    for nei in neighbours[node]:

        dfs(node)

	 if visited(node) = false:

	 	 ret.insert_at_the_front(node)


CE100 Algorithms and Programming II
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Graph Traversal

Topological Sort of a DAG

DFS version

CE100 Algorithms and Programming II
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Graph Traversal

Topological Sort - DFS Version STEP-1

CE100 Algorithms and Programming II
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Graph Traversal

Topological Sort - DFS Version STEP-2
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Graph Traversal

Topological Sort - DFS Version STEP-3
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Graph Traversal

Topological Sort - DFS Version STEP-4
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Graph Traversal

Topological Sort - DFS Version STEP-5
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Graph Traversal

Topological Sort - DFS Version STEP-6
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Graph Traversal

Topological Sort - DFS Version STEP-7
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Graph Traversal

Topological Sort - DFS Version STEP-8
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Graph Traversal

Topological Sort - DFS Version STEP-9
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Graph Traversal

Topological Sort - DFS Version STEP-10
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Graph Traversal

Topological Sort - DFS Version

CE100 Algorithms and Programming II
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Graph Traversal

Topological Sort of a DAG

BFS version (Kahn's algorithm)

For BFS, we need an array indegree to keep the track of indegrees. Then we will try to output all
nodes with 0 indegree, and remove the edges coming out of them at the same time. Besides,
remember to put the nodes that become 0 indegree in the queue.

Then, we can keep doing this until all nodes are visited. To implement it, we can store the graph
in an adjacent list (a hashmap or a dictionary in Python) and a queue to loop.

CE100 Algorithms and Programming II
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Graph Traversal

Topological Sort of a DAG

BFS version (Kahn's algorithm)

indegree = an array indicating indegrees for each node

neighbours = a HashMap recording neighbours of each node

queue = []

for i in indegree:

    if indegree[i] == 0:

        queue.append(i)

	 	 

while !queue.empty():

    node = queue.dequeue()

    for neighbour in neighbours[node]:

        indegree[neighbour] -= 1

        if indegree[neighbour] == 0:

            queue.append(neighbour)


CE100 Algorithms and Programming II
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Graph Traversal

Topological Sort - BFS version (Kahn's algorithm)

STEP-1

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 303



Graph Traversal

Topological Sort - BFS version (Kahn's algorithm)

STEP-2
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Graph Traversal

Topological Sort - BFS version (Kahn's algorithm)

STEP-3
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Graph Traversal

Topological Sort - BFS version (Kahn's algorithm)

STEP-4
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Graph Traversal

Topological Sort - BFS version (Kahn's algorithm)

STEP-5

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 307



Graph Traversal

Topological Sort - BFS version (Kahn's algorithm)

STEP-6
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Graph Traversal

Topological Sort - BFS version (Kahn's algorithm)

STEP-7
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Graph Traversal

Topological Sort - BFS version (Kahn's algorithm)

STEP-8
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Graph Traversal

Topological Sort - BFS version (Kahn's algorithm)

STEP-9
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Graph Traversal

Topological Sort - BFS version (Kahn's algorithm)

STEP-10
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Graph Traversal

Topological Sort - BFS version (Kahn's algorithm)

STEP-11 (Final)

CE100 Algorithms and Programming II
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Graph Traversal

Topological Sort of a DAG

Correctness of the Algorithm

Claim: 

Proof: consider any edge  explored by 

when  is explored,  is 
if  is ,  is a Back edge (contradicting acyclic theorem)

if  is ,  becomes a descendent of  (b WPT) 

if  is , 


CE100 Algorithms and Programming II

(u, v) ∈ E ⇒ f [u] > f [v]

(u, v) DFS

(u, v) u GRAY

v GRAY (u, v)

v WHITE v u ⇒ f [v] < f [u]

v BLACK f [v] < d[u] ⇒ f [v] < f [u]
Q.E.D
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Topological Sort of a DAG - Getting Dressed ExampleCE100 Algorithms and Programming II

 RTEU CE100 Week-10 315



Cycle Detection

CE100 Algorithms and Programming II
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Detect Cycle in a Directed Graph

Approach:

Depth First Traversal can be used to detect a cycle in a Graph.
DFS for a connected graph produces a tree.

There is a cycle in a graph only if there is a back edge present in the graph.
A back edge is an edge that is

from a node to itself (self-loop) or

one of its ancestors in the tree produced by DFS.

CE100 Algorithms and Programming II
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Detect Cycle in a Directed Graph

Algorithm:

Create the graph using the given number of edges and vertices.

Create a recursive function that initializes the current index or vertex, visited, and recursion stack.

Mark the current node as visited and also mark the index in recursion stack.

Find all the vertices which are not visited and are adjacent to the current node. Recursively call
the function for those vertices, If the recursive function returns true, return true.

If the adjacent vertices are already marked in the recursion stack then return true.

Create a wrapper class, that calls the recursive function for all the vertices and if any function
returns true return true. Else if for all vertices the function returns false return false.
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Detect Cycle in a Directed Graph

Complexity Analysis:
Time Complexity: .

Time Complexity of this method is same as time complexity of  traversal which is 
.

Space Complexity: .
To store the visited and recursion stack  space is needed.
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Detect cycle in an undirected graph

Approach:

Run a DFS from every unvisited node.
Depth First Traversal can be used to detect a cycle in a Graph.

DFS for a connected graph produces a tree.

There is a cycle in a graph only if there is a back edge present in the graph.

A back edge is an edge that is joining a node to
itself (self-loop) or

one of its ancestor in the tree produced by DFS.

To find the back edge to any of its ancestors
keep a visited array and if there is a back edge to any visited node

then there is a loop and return true.
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Detect cycle in an undirected graph

Algorithm:

Create the graph using the given number of edges and vertices.
Create a recursive function that have current index or vertex, visited array and parent node.

Mark the current node as visited .

Find all the vertices which are not visited and are adjacent to the current node.
Recursively call the function for those vertices, If the recursive function returns true return
true.

If the adjacent node is not parent and already visited then return true.
Create a wrapper class, that calls the recursive function for all the vertices and if any function
returns true, return true.

Else if for all vertices the function returns false return false.
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Detect cycle in an undirected graph

Complexity Analysis:

Time Complexity: .
The program does a simple DFS Traversal of the graph which is represented
using adjacency list. So the time complexity is .

Space Complexity: .
To store the visited array  space is required.
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Graph Coloring
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Graph Coloring

Given an undirected graph and a number
m,
determine if the graph can be coloured
with at most m colours such that no two
adjacent vertices of the graph are colored
with the same color.

Here coloring of a graph means the
assignment of colors to all vertices.
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Graph Coloring

Naive Approach:
Generate all possible configurations of colors.
Since each node can be coloured using any of the m available colours,

the total number of colour configurations possible are .

After generating a configuration of colour,
check if the adjacent vertices have the

same colour or not.
If the conditions are met,

print the combination and break the loop.
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Graph Coloring

Naive Algorithm:

Create a recursive function that takes current index, number of vertices and output color array.

If the current index is equal to number of vertices.
Check if the output color configuration is safe,

i.e check if the adjacent vertices do not have same color.

If the conditions are met,
print the configuration and break.

Assign a color to a vertex (1 to m).

For every assigned color
recursively call the function with next index and number of vertices

If any recursive function returns true break the loop and returns true.
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Graph Coloring

Naive Complexity Analysis:

Time Complexity: .
There is a total  combination of colors. So the time complexity is 

.

Space Complexity: .
Recursive Stack of  function will require 
space.
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Graph Coloring

Backtracking Approach:
The idea is to assign colors one by one to different vertices,

starting from the vertex 0.
Before assigning a color, check for safety by considering already assigned colors
to the adjacent vertices

i.e check if the adjacent vertices have the same color or not.

If there is any color assignment that does not violate the conditions,
mark the color assignment as part of the solution.

If no assignment of color is possible then backtrack and return false.
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Graph Coloring

Backtracking Algorithm:

Create a recursive function that takes the graph, current index, number of vertices, and output
color array.

If the current index is equal to the number of vertices. Print the color configuration in output
array.

Assign a color to a vertex (1 to m).

For every assigned color,
check if the configuration is safe,

(i.e. check if the adjacent vertices do not have the same color)
recursively call the function with next index and number of vertices

If any recursive function returns true break the loop and return true.

If no recursive function returns true then return false.
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Graph Coloring

Using BFS Approach / Algorithm

The approach here is to color each node from 1 to n

initially by color 1.

And start travelling BFS from an unvisited starting node to cover all connected components in
one go.

On reaching each node during BFS traversal, do the following:
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Graph Coloring

Using BFS Approach / Algorithm

Check all edges of the given node.

For each vertex connected to our node via an edge:
check if the color of the nodes is the same.

If same,
increase the color of the other node (not the current) by one.

check if it visited or unvisited.
If not visited,

mark it as visited and push it in a queue.

Check condition for maxColors till now.
If it exceeds M, return false

After visiting all nodes,
return true (As no violating condition could be found while travelling).
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Graph Coloring

Using BFS Complexity Analysis:
Time Complexity: .

Space Complexity: .
For Storing Visited List.
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Biparitite Checker
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Biparitite Checker

A Bipartite Graph is a graph
whose vertices can be divided into

two independent sets,
U and V such that every edge (u, v) either connects a vertex from U to
V or a vertex from V to U.

In other words, for every edge (u, v),
either u belongs to U and v to V,

or u belongs to V and v to U.
We can also say that there is no edge that connects vertices of same set.
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Biparitite Checker

A bipartite graph is possible if the graph coloring is possible using two colors
such that vertices in a set are colored with the same color.
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Biparitite Checker
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Biparitite Checker

Note that it is possible to color a cycle graph with even cycle using two colors.
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Biparitite Checker

It is not possible to color a cycle graph with odd cycle using two colors.
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Biparitite Checker Algorithm

One approach is to check whether the graph is 2-colorable or not using
backtracking algorithm m coloring problem.
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Biparitite Checker Algorithm

Following is a simple algorithm to find out whether a given graph is Bipartite or
not using

Breadth First Search (BFS).
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Biparitite Checker Algorithm

1. Assign RED color to the source vertex (putting into set U).

2. Color all the neighbors with BLUE color (putting into set V).
3. Color all neighbor’s neighbor with RED color (putting into set U).

4. This way, assign color to all vertices such that it satisfies all the constraints of m
way coloring problem where m = 2.

5. While assigning colors, if we find a neighbor which is colored with same color as
current vertex, then the graph cannot be colored with 2 vertices (or graph is not
Bipartite)
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Disjoint Set Operations
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Disjoint Set Operations

A disjoint-set data structure
Maintains a collection  of disjoint dynamic sets

Each set is identified by a representative which is some member of the set

In some applications,
It doesn't matter which member is used as the representative
We only care that,

if we ask for the representative of a set twice without
modifying the set between the requests,

we get the same answer both times
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Disjoint Set Operations

In other applications,
There may be a prescribed rule for choosing the representative

E.G. Choosing the smallest member in the set

Each element of a set is represented by an object " "

 creates a new set whose only member is 
Object  is the representative of the set

 is not already a member of any other set

 unites the dynamic sets  that contain 
 are assumed to be disjoint prior to the operation

The new representative is some member of 
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Disjoint Set Operations

Usually, the representative of either  or  is chosen as the new
representative

We destroy sets  and , removing them from the collection  since we
require the sets in the collection to be disjoint

 returns a pointer to the representative of the unique set
containing x
We will analyze the running times in terms of two parameters

 : The number of  operations

 : The total number of ,  and 
operations
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Disjoint Set Operations

Each union operation reduces the number of sets by one
since the sets are disjoint
Therefore, only one set remains after  union operations

Thus, the number of union operations is $ \leq n – 1$

Also note that,  always hold
since  operations are included in the total number of
operations
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An Application of Disjoint-Set Data Structures

Determining the connected components of an undirected graph 

CONNECTED-COMPONENTS(G)

for each vertex v ∈ V [G] do

MAKE-SET(v)

endfor

for each edge (u, v) ∈ E[G] do

if  FIND-SET(u) = FIND-SET(v) then

UNION(u, v)

endif

endfor

end
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An Application of Disjoint-Set Data Structures

SAME-COMPONENT(u, v)

if  FIND-SET(u) = FIND-SET(v) then

return TRUE

else

return FALSE

endif

end
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An Application of Disjoint-Set Data Structures
CE100 Algorithms and Programming II
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Linked-List Representation of Disjoint Sets

Represent each set by a linked-list

The first object in the linked-list serves as its set representative
Each object in the linked-list contains

A set member

A pointer to the object containing the next set member
A pointer back to the representative

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 350



Linked-List Representation of Disjoint Sets

 : 

 : We return the representative pointer of 

CE100 Algorithms and Programming II

MAKE-SET(x) O(1)

FIND-SET(x) x
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Linked-List Representation of
Disjoint Sets

A Simple Implementation of Union : 

 's list to the end of 's
list

The representative of 's list
becomes the new representative

 the representative
pointer of each object originally on 

's list which takes time linear in the
length of 's list
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Linked-List Representation of Disjoint Sets
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Analysis of the Simple Union Implementation

​ ​ ​

Operation

− − −
MAKE-SET(X )1

MAKE-SET(X )2

⋮
MAKE-SET(X ​)n
UNION(X ​,X ​)1 2

UNION(X ​,X ​)2 3

UNION(X ​,X ​)3 4

⋮
UNION(X ​,X ​)n−1 n

NumberofObjectstUpdated

− − −
1
1

⋮
1
1
2
3

⋮
n − 1

UpdatedObjects∗

− − −
{x ​}1

∗

{x ​}2
∗

⋮
{x ​}n

∗

{x ​} ∪ {x ​} ← {x ​,x ​}1 2 1
∗

2

{x ​,x ​} ∪ {x ​} ← {x ​,x ​,x ​}1 2 3 1
∗

2
∗

3

{x ​,x ​,x ​} ∪ {x ​} ← {x ​,x ​,x ​,x ​}1 2 3 4 1
∗

2
∗

3
∗

4

⋮
{x ​,x ​, … ,x ​} ∪ {x ​} ← {x ​,x ​,x ​, … ,x ​,x ​}1 2 n−1 n 1

∗
2
∗

3
∗

n−1
∗

n
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Analysis of the Simple Union Implementation

The total number of representative pointer updates

 since 

Thus, on the average, each operation requires  time

That is, the amortized time of an operation is 
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+n

MAKE−SET

​ =​
​ i

i=1

∑
n−1

UNION

n + ​ (n −2
1 1)n = ​n +2

1 2
​n =2

1 Θ(n )2

= Θ(m )2 n = ⌈m/2⌉

Θ(m)

Θ(m)
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A Weighted-Union Heuristic

The simple implementation is inefficient because

We may be appending a longer list to a shorter list during a 
operation

so that we must update the representative pointer of each member of
the longer list

Maintain the length of each list

Always append the smaller list to the longer list

With ties broken arbitrarily

A single  can still take  time if both sets have  members
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A Weighted-Union Heuristic

Theorem: A sequence of   operations,  of which are 
 operations, takes  time

Proof: Try to compute an upper bound on the number of representative pointer updates for each
object in a set of size 

Consider a fixed object 

Each time ’s  was updated,  was a member of the smaller set
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m MAKE-SET, UNION&FIND-SET n

MAKE-SET O(m + nlgn)

n

x

x R − PTR x

{x} ∪ {v} → {x , v} ⟹ ∗ 1-st update ∣S ​∣ ≥x 2

{x, v} ∪ {w ​,w ​} →1 2 {x , v ,w ​,w ​} ⟹ ∗ ∗
1 2 2-nd update ∣S ​∣ ≥x 4

{x, v,w ,w ​} ∪1 2 {z ​, z ​, z ​, z ​} →1 2 3 4 {x , v ,,w ​,w , z ​, z ​, z ​, z ​}; ∣S ​∣ ≥∗ ∗
1
∗

2
∗

1 2 3 4 x 4

3-rd update ∣S∣ ≥ 8
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A Weighted-Union Heuristic

For any , after ’s  has been updated  times	the resulting set must have at
least  members

 of each object can be updated at most  time over all  operations

Analysis of The Weighted-Union Heuristic
The below illustrates a worst case sequence for a set with  objects

The total number of  updates

​ ​

= ​ × 1 + ​ × 2 + ​ × 4 + ​ × 8
2
16

4
16

8
16

16
16

= 8 × 1 + 4 × 2 + 2 × 4 + 1 × 8

= 8 × 4

= 32

= ​ = ​lgn = O(nlgn)

lgn

​​ + ​ + ⋯ + ​

2
n

2
n

2
n

2
n
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Analysis of The Weighted-Union Heuristic
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Analysis of The Weighted-Union Heuristic

Each  operation takes  time, and there are  of them

The total time for the entire sequence 

CE100 Algorithms and Programming II

MAKE-SET&FIND-SET O(1) O(m)
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Disjoint Set Forests

In a faster implementation, we represent sets by rooted trees
Each node contains one member
Each tree represents one set

Each member points only to its parent

The root of each tree contains the representative

Each root is its own parent

CE100 Algorithms and Programming II
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Disjoint Set Forests

CE100 Algorithms and Programming II
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Disjoint Set Forests - Straightforward Implementation

 : Simply creates a tree with just one node : 

 : Follows parent pointers until the root node is found
The nodes visited on this path toward the root constitute the 

: Makes the root of one tree to point to the other one
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MAKE-SET O(1)
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Disjoint Set Forests - Heuristics To Improve the Running Time

Straightforward implementation is no faster than ones that use the linked-list representation

A sequence of  's, following a sequence of n 's, may create a tree,
which is just a linear chain of  nodes
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n–1 UNION MAKE-SET
n
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Disjoint Set Forests - Heuristics To Improve the Running Time

First Heuristic : UNION by Rank

Similar to the weighted-union used for the linked-list representation

The idea is to make the root of the tree with fewer nodes point to the root of the tree with more
nodes
Rather than explicitly keeping the size of the subtree

rooted at each node
We maintain a rank

that approximates the logarithm of the subtree size

and is also an upperbound on the height of the node

During a  operation
make the root with smaller rank to point to the root with larger rank
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Disjoint Set Forests - Heuristics To Improve the Running Time

Second Heuristic : Path Compression

Use it during the  operations
Make each node on the  to point directly to the root

CE100 Algorithms and Programming II
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FIND-PATH
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Disjoint Set Forests - Heuristics To Improve the Running Time

Path Compression During FIND-SET(b) Operation

CE100 Algorithms and Programming II
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Disjoint Set Forests - Pseudocodes For the Heuristics

Implementation of UNION-BY-RANK Heuristic

: Pointer to the parent of the node 

: An upperbound on the height of node  in the tree

​ ​ ​

MAKE-SET(x)

p[x] → x

rank[x] → 0 end

…

​ ​

UNION(x, y)

LINK(FIND-SET(x), FIND-SET(y))

end
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Disjoint Set Forests - Pseudocodes For the Heuristics

Implementation of UNION-BY-RANK Heuristic

LINK(x, y)

if  rank[x] > rank[y] then

p[y] → x

else

p[x] → y

if  rank[x] = rank[y] then

rank[y] = rank[y] + 1

endif

endif

end
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Implementation of UNION-BY-RANK Heuristic

When a singleton set is created by a 
the initial rank of the single node in the tree is zero

Each  operation leaves all ranks unchanged

When applying a  to two trees,
we make the root of tree with higher rank

the parent of the root of lower rank

**Ties are broken arbitrarily **
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Implementation of the Path-Compression Heuristic

The FIND-SET procedure with Path-Compression

Iterative Version

FIND-SET(x)

y ← x

while y = p[y] do

y ← p[y]

endwhile

root ← y

while x = p[x] do

parent ← p[x]

p[x] ← root

x ← parent

endwhile

return root

end

CE100 Algorithms and Programming II
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Implementation of the Path-Compression Heuristic

The FIND-SET procedure with Path-Compression

Recursive Version

​ ​

FIND-SET(x)

if  x = p[x] then

p[x] ← FIND-SET(p[x])

endif

return p[x]

end
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Analysis Of Union By Rank With Path Compression

When we use both union-by-rank and path-compression the worst case running time is 
 where  is the very slowly growing inverse of the Ackerman’s function.

-In any conceivable application of disjoint-set data structure .

Thus, we can view the running time as linear in practical situations.
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Minimum Spanning Tree (MST)
Kruskal
Prim
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Minimum Spanning Tree

One of the most famous greedy algorithms.
Weight is minimum over all

It has  edges

It has no cycles
It might not be unique

Undirected Graph 

Connected
Weight Function 

Spanning Tree : Tree that connects all vertices
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∣V ∣ − 1

G = (V ,E)

ω : E → R
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Minimum Spanning Tree

MST : 

Note : MST is not unique.
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ω(T ) = (u, v) ∈∑ Tω(u, v)
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MST-Optimal Structure

Optimal Structure: Optimal tree has optimal subtrees.
Let  be an  of 

Removing any edge  of  partitions  into two subtrees : 

Where 
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T MST G = (V ,E)

(u, v) T T T ​&T ​1 2
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MST-Optimal Structure

Let  be
subgraphs induced by 

i.e. 

Claim :  are s of  respectively

Proof : 

There can’t be better trees than  for 

Otherwise,  would be suboptimal for 
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G ​ =1 (V ,E ​)&G ​ =1 1 2 (V ​,E ​)2 2

V ​&V ​1 2

E ​ =i {(x, y) ∈ E : x, y ∈ V ​}i
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ω(T ) = ω(u, v) + ω(T1) + ω(T2)
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Generic MST Algorithm

 is always a subset of some 

 is a safe edge for  if  is also a subtree of some 

GENERIC-MST(G,ω)

A ← ∅

while A does not form a spanning tree do

find a safe edge (u, v) for A

A ← A ∪ {(u, v)}

return A

end
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Generic MST Algorithm

One safe edge must exist at each step since :

 where  is an 

Let  is safe for 

A cut  of  is a Partition of 

An edge  crosses the cut 
if  or vice versa

A cut respects the set  of edges if no edge in  crosses the cut

An edge is a light edge crossing a cut
If its weight is the minimum of any edges crossing the cut
There can be more than one light edge crossing the cut in the case of ties.
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A ⊂ T T MST

(u, v) ∈ T (u, v) ∍ A ⇒ (u, v) A

(S,V − S) G = (V ,E) V

(u, v) ∈ E (S,V − S)
u ∈ S&v ∈ V − S

A A
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TODO - Missing Parts...
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MST - Kruskal Algorithm

Sort the graph edges with weight
Add from minimum weights

Only add edges which doesn't form a cycle
Disjoint Sets

MAKE-SET

FIND-SET
UNION
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MST - Kruskal Algorithm
MST-KRUSKAL(G,ω)

A ← ∅

for each vertex v ∈ V [G] do

MAKE-SET(v)

SORT  the edges of  E by nondecreasing weight ω

for each edge (u, v) ∈ E in nondecreasing order do

ifFIND-SET(u) = FIND − SET (v) then

A ← A ∪ {(u, v)}

UNION(u, v)

returnA

end
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MST - Kruskal Analysis of Algorithm

Depends on Implementation of Disjoint Sets
init set take 

sort edge 

for loop FIND-SET and UNION 

Total Time = 
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O(ElogE)

O(E)

∣V ∣

O((V + E)α(V ))

∣E∣ ≤ ∣V ∣ − 1
logE = O(logV )
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MST - Prim
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GeeksforGeeks-m Coloring Problem | Backtracking-5

GeeksforGeeks-Check whether a given graph is Bipartite or not
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https://mitpress.mit.edu/books/introduction-algorithms-third-edition
http://nabil.abubaker.bilkent.edu.tr/473/
http://cs.bilkent.edu.tr/~ugur/teaching/cs473/
http://www.btechsmartclass.com/data_structures/introduction-to-graphs.html
http://www.btechsmartclass.com/data_structures/graph-representations.html
https://leetcode.com/discuss/general-discussion/1078072/introduction-to-topological-sort#:~:text=According%20to%20Introduction%20to%20Algorithms,pointing%20from%20left%20to%20right.
https://www.geeksforgeeks.org/detect-cycle-in-a-graph/?ref=leftbar-rightbar
https://www.geeksforgeeks.org/detect-cycle-undirected-graph/
https://www.geeksforgeeks.org/m-coloring-problem-backtracking-5/
https://www.geeksforgeeks.org/bipartite-graph/?ref=leftbar-rightbar
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