
CE100 Algorithms and Programming II

Week-10 (Graphs)

Spring Semester, 2021-2022

Download DOC-PDF, DOC-DOCX, SLIDE, PPTX

CE100 Algorithms and Programming II

 RTEU CE100 Week-10

file:///E:/UgurCoruh/RTEU/Lectures/2021-2022%20Bahar%20CE100%20-%20Algorithms%20and%20Programming%20II/ce100-algorithms-and-programming-II/docs/week-10/ce100-week-10-graphs.en.md_doc.pdf
file:///E:/UgurCoruh/RTEU/Lectures/2021-2022%20Bahar%20CE100%20-%20Algorithms%20and%20Programming%20II/ce100-algorithms-and-programming-II/docs/week-10/ce100-week-10-graphs.en.md_word.docx
file:///E:/UgurCoruh/RTEU/Lectures/2021-2022%20Bahar%20CE100%20-%20Algorithms%20and%20Programming%20II/ce100-algorithms-and-programming-II/docs/week-10/ce100-week-10-graphs.en.md_slide.pdf
file:///E:/UgurCoruh/RTEU/Lectures/2021-2022%20Bahar%20CE100%20-%20Algorithms%20and%20Programming%20II/ce100-algorithms-and-programming-II/docs/week-10/ce100-week-10-graphs.en.md_slide.pptx

Graphs

Outline

Introduction to Graphs
Graphs and Representation

BFS (Breath-First Search)

DFS (Depth-First Search)
in-order

post-order

pre-order

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 2

Topological Order

SCC (Strongly Connected Components)
MST

Prim

Kruskal

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 3

Introduction to Graphs

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 4

Introduction to Graphs

The graph is a non-linear data structure.

It contains a set of points known as

nodes (or vertices) and

a set of links known as edges (or Arcs).

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 5

Introduction to Graphs

Here edges are used to connect the vertices. A graph is defined as follows.

Generally, a graph is represented as , where
 is set of vertices and

 is set of edges.

CE100 Algorithms and Programming II

G G = (V ,E)
V

E

 RTEU CE100 Week-10 6

Introduction to Graphs -
Example

The following is a graph with 5
vertices () and 6 edges (
).
This graph G can be defined as

​ ​

G = (V ,E)

​ ​ ​

V = {A,B,C,D,E}

​ ​

E = {(A,B), (A,C), (A,D),

(B,D), (C,D), (B,E),

(E,D)}

CE100 Algorithms and Programming II

V E

 RTEU CE100 Week-10 7

Graph Terminology

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 8

Graph Terminology

Vertex

Individual data element of a graph is called as Vertex.
Vertex is also known as node. In above example graph,

 are known as vertices.

CE100 Algorithms and Programming II

A,B,C,D,E

 RTEU CE100 Week-10 9

Graph Terminology

Edge

An edge is a connecting link between
two vertices.

Edge is also known as Arc.
An edge is represented as

(startingVertex, endingVertex)

For example, in above graph the link
between vertices and is
represented as

(A,B)

CE100 Algorithms and Programming II

A B

 RTEU CE100 Week-10 10

Graph Terminology

Edge

In example graph, there are edges

(A,B), (A,C), (A,D),
(B,D), (B,E), (C,D), (D,E)

CE100 Algorithms and Programming II

7

 RTEU CE100 Week-10 11

Graph Terminology

Edge

Edges are three types.

Undirected Edge
Directed Edge

Weighted Edge

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 12

Graph Terminology

Edge

Undirected Edge

An undirected egde is a bidirectional
edge. If there is undirected edge
between vertices and then edge

 is equal to edge

CE100 Algorithms and Programming II

A B

(A,B) (B,A)

 RTEU CE100 Week-10 13

Graph Terminology

Edge

Directed Edge

A directed egde is a unidirectional
edge. If there is directed edge between
vertices A and B then edge is
not equal to edge .

CE100 Algorithms and Programming II

(A,B)
(B,A)

 RTEU CE100 Week-10 14

Graph Terminology

Edge

Weighted Edge

A weighted egde is a edge with value
(cost) on it.

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 15

Graph Terminology

Undirected Graph

A graph with only undirected edges is
said to be undirected graph.

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 16

Graph Terminology

Directed Graph

A graph with only directed edges is
said to be directed graph.

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 17

Graph Terminology

Mixed Graph

A graph with both undirected and
directed edges is said to be mixed
graph.

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 18

Graph Terminology

End vertices or Endpoints

The two vertices joined by edge are
called end vertices (or endpoints) of
that edge.

In graph theory, a vertex with degree 1
is called an end vertex (plural end
vertices)

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 19

Graph Terminology

Origin

If a edge is directed, its first endpoint
is said to be the origin of it.

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 20

Graph Terminology

Destination

If a edge is directed, its first endpoint
is said to be the origin of it and the
other endpoint is said to be the
destination of that edge.

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 21

Graph Terminology

Adjacent

If there is an edge between vertices
and then both and are said to
be adjacent. In other words, vertices A
and B are said to be adjacent if there is
an edge between them.

CE100 Algorithms and Programming II

A

B A B

 RTEU CE100 Week-10 22

Graph Terminology

Incident

Edge/Arc is said to be incident on a Vertex/Node
if the Vertex/Node is one of the endpoints of that
Edge/Arc.

An incidence is a pair where is a vertex
and is an edge incident to

Two distinct incidences and are
adjacent if and only if , or

 or .

CE100 Algorithms and Programming II

(B, e1) B

e1 B

(B, e1) (v, e2)
B = v e1 = e2

BB =′ e1 e2

 RTEU CE100 Week-10 23

Graph Terminology

Outgoing Edge

A directed edge is said to be outgoing
edge on its origin vertex.

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 24

Graph Terminology

Incoming Edge

A directed edge is said to be incoming
edge on its destination vertex.

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 25

Graph Terminology

Degree

Total number of edges connected to a
vertex is said to be degree of that
vertex.

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 26

Graph Terminology

Indegree

Total number of incoming edges
connected to a vertex is said to be
indegree of that vertex.

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 27

Graph Terminology

Outdegree

Total number of outgoing edges
connected to a vertex is said to be
outdegree of that vertex.

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 28

Graph Terminology

Parallel edges or Multiple edges

If there are two undirected edges with
same end vertices and two directed
edges with same origin and
destination, such edges are called
parallel edges or multiple edges.

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 29

Graph Terminology

Self-loop

Edge (undirected or directed) is a self-
loop if its two endpoints coincide with
each other.

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 30

Graph Terminology

Simple Graph

A graph is said to be simple if there are
no parallel and self-loop edges.

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 31

Graph Terminology

Complex Graph

A graph is said to be complex if there
are parallel or self-loop edges.

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 32

Graph Terminology

Path

A path is a sequence of alternate
vertices and edges that starts at a
vertex and ends at other vertex such
that each edge is incident to its
predecessor and successor vertex.

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 33

Graph Representations

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 34

Graph Representations

Graph data structure is represented using following representations
Adjacency Matrix

Incidence Matrix

Adjacency List

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 35

Graph Representations

Adjacency Matrix

In this representation, the graph is represented using a matrix of size total number of vertices by
a total number of vertices.

That means a graph with 4 vertices is represented using a matrix of size 4X4.

In this matrix, both rows and columns represent vertices.
This matrix is filled with either 1 or 0.

Here,
1 represents that there is an edge from row vertex to column vertex and
0 represents that there is no edge from row vertex to column vertex.

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 36

Graph Representations

Adjacency Matrix

Undirected Graph

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 37

Graph Representations

Adjacency Matrix

Directed Graph

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 38

Graph Representations

Incidence Matrix

In this representation, the graph is represented using a matrix of size total number of vertices
by a total number of edges.

That means graph with 4 vertices and 6 edges is represented using a matrix of size 4X6.
In this matrix, rows represent vertices and columns represents edges.

This matrix is filled with 0 or 1 or -1.
Here,

0 represents that the row edge is not connected to column vertex,
1 represents that the row edge is connected as the outgoing edge to column vertex
and

-1 represents that the row edge is connected as the incoming edge to column
vertex.

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 39

Graph Representations

Incidence Matrix

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 40

Graph Representations

Adjacency List

In this representation, every vertex of a graph contains list of its adjacent vertices.

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 41

Graph Representations

Adjacency List

Linked List Implementation

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 42

Graph Representations

Adjacency List

Reference Array Implementation

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 43

Graph Representations - Review

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 44

Graph Representations - Review

The standard two ways to represent a graph
As a collection of adjacency-lists
As an adjacency-matrix

Adjacency-list representation is usually preferred
Provides a compact way to represent sparse graphs

Those graphs for which

CE100 Algorithms and Programming II

G = (V ,E)

∣E∣ << ∣V ∣2

 RTEU CE100 Week-10 45

Graph Representations - Review

Adjacency-matrix representation may be preferred
for dense graphs for which is close to

when we need to be able to tell quickly if there is an edge connecting two
given vertices

CE100 Algorithms and Programming II

∣E∣ ∣V ∣2

 RTEU CE100 Week-10 46

Adjacency-List Representation - Review

An array of lists, one for each vertex

For each the adjacency-list contains (pointers to) all vertices
such that

That is, consists of all vertices adjacent to in

The vertices in each adjacency-list are stored in an arbitrary order

CE100 Algorithms and Programming II

Adj ∣V ∣ u ∈ V

u ∈ V Adj[u] v

(u, v) ∈ E

Adj[u] u G

 RTEU CE100 Week-10 47

Adjacency-List Representation - Review

If is a directed graph
The sum of the lengths of the adjacency lists

If is an undirected graph
The sum of the lengths of the adjacency lists

since an edge appears in both and

CE100 Algorithms and Programming II

G

= ∣E∣

G

= 2∣E∣

(u, v) Adj[u] Adj[v]

 RTEU CE100 Week-10 48

Undirected Graphs Representations - Review

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 49

Directed Graphs Representations - Review
CE100 Algorithms and Programming II

 RTEU CE100 Week-10 50

Adjacency List Representation (continued) - Review

Adjacency list representation has the desirable property
it requires memory

for both undirected and directed graphs

Adjacency lists can be adopted to represent weighted graphs
each edge has an associated weight typically given by a weight function

The weight of an edge is simply stored with
vertex in or with

vertex in or both

CE100 Algorithms and Programming II

O(max(V ,E)) = O(V + E)

w : E → R

w(u, v) (u, v) ∈ E

v Adj[u]

u Adj[v]

 RTEU CE100 Week-10 51

Adjacency List Representation (continued) - Review

A potential disadvantage of adjacency list representation
there is no quicker way to determine if a given edge is present in G
than to search in or in

This disadvantage can be remedied by an adjacency matrix representation at
the cost of using asymptotically more memory

CE100 Algorithms and Programming II

(u, v)
v Adj[u] u Adj[v]

 RTEU CE100 Week-10 52

Adjacency Matrix Representation - Review

Assume that, the vertices of are numbered as

Adjacency matrix rep. consists of a matrix

a ​ =ij ​ ​{1
0

if (i, j) ∈ E

otherwise

Requires memory independent of the number of edges

We define the transpose of a matrix to be the matrix
 given by

Since in an undirected graph, and represent the same edge for an
undirected graph

That is, adjacency matrix of an undirected graph is symmetric
Hence, in some applications, only upper triangular part is stored

CE100 Algorithms and Programming II

G = (V ,E) 1, 2, … , ∣V ∣

∣V ∣ × ∣V ∣ A = (a ​) ∍ij

Θ(V)2 ∣E∣

A = (a ​)ij

A =T (a ​)ij
T a ​ =ij

T a ​ji

(u, v) (v,u) A = AT

 RTEU CE100 Week-10 53

Adjacency Matrix Representation - Review

Adjacency matrix representation can also be used for
weighted graphs

a ​ =ij ​ ​{w(i, j)
NIL or 0 or ∞

if (i, j) ∈ E

otherwise

Adjacency matrix may also be preferable for
reasonably small graphs

Moreover, if the graph is unweighted
rather than using one word of memory for each matrix entry adjacency
matrix representation uses one bit per entry

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 54

Introduction to Graphs - Review

Adjency List Complexity

Sparse Matrix

Dense Matrix

Space Complexity

CE100 Algorithms and Programming II

G = (V ,E)

O(degree of u) (u, v) ∈ E

→ ∣E∣ < ∣V ∣2

→ ∣E∣ close to ∣V ∣2

Θ(∣V ∣ + ∣E∣)

 RTEU CE100 Week-10 55

Introduction to Graphs - Review

Many definitions for directed and undirected graphs are the same although certain terms
have slightly different meanings
If in a directed graph , we say that is incident from or
leaves vertex and is incident to or enters vertex

If in an undirected graph , we say that is incident on
vertices and

If is an edge in a graph , we say that vertex is adjacent to vertex

When the graph is undirected,the adjacency relation is symmetric

When the graph is directed
the adjacency relation is not necessarily symmetric
if is adjacent to , we sometimes write

CE100 Algorithms and Programming II

(u, v) ∈ E G = (V ,E) (u, v)
u v

(u, v) ∈ E G = (V ,E) (u, v)
u v

(u, v) G = (V ,E) v u

v u u → v

 RTEU CE100 Week-10 56

Introduction to Graphs - Review

The degree of a vertex in an undirected graph is the number of edges incident on it

In a directed graph,
out-degree of a vertex: number of edges leaving it
in-degree of a vertex: number of edges entering it

degree of a vertex: its in-degree + its out-degree
A path of length from a vertex to a vertex in a graph is a sequence

 of vertices such
that , and , for

The length of a path is the number of edges in the path

CE100 Algorithms and Programming II

k u u′ G = (V ,E)
⟨v ​, v ​, v ​, … , v ​⟩0 1 2 k

v ​ =0 u v ​ =k u′ (v ​, v ​) ∈i−1 i E i = 1, 2, … , k

 RTEU CE100 Week-10 57

Introduction to Graphs - Review

If there is a path from to , we say that is reachable from via

A path is simple if all vertices in the path are distinct
A subpath of path is a contiguous subsequence of its vertices

That is, for any , the subsequence of vertices is a
subpath of

In a directed graph, a path forms a cycle if and the path
contains at least one edge

The cycle is simple if, in addition, are distinct

A self-loop is a cycle of length 1

CE100 Algorithms and Programming II

p u u′ u′ u p : u ​

p
u′

p = ⟨v ​, v ​, v ​, … , v ​⟩0 1 2 k

0 ≤ i ≤ j ≤ k ⟨v ​, v ​, … , v ​⟩i i+1 j

p

⟨v ​, v ​, … , v ​⟩0 1 k v ​ =0 v ​k

v ​, v ​, … , v ​0 1 k

 RTEU CE100 Week-10 58

Introduction to Graphs - Review

Two paths & form the same cycle if there is an
integer such that for

The path forms the same cycles as the paths
 and

A directed graph with no self-loops is simple
In an undirected graph a path forms a cycle

if and are distinct

A graph with no cycles is acyclic

CE100 Algorithms and Programming II

⟨v ​, v ​, v ​, … , v ​⟩0 1 2 k ⟨v ​, v ​, v ​, … , v ​⟩0
′

1
′

2
′

k
′

j v ​ =i
′ v ​(i+j) mod k i = 0, 1, … , k − 1

p ​ =1 ⟨1, 2, 4, 1⟩
p ​ =2 ⟨2, 4, 1, 2⟩ p ​ =3 ⟨4, 1, 2, 4⟩

⟨v ​, v ​, … , v ​⟩0 1 k

v ​ =0 v ​k v ​, v ​, … , v ​1 2 k

 RTEU CE100 Week-10 59

Introduction to Graphs - Review

An undirected graph is connected
if every pair of vertices is connected by a path

The connected components of a graph are the
equivalence classes of vertices under the
"is reachable from" relation

An undirected graph is connected if it has exactly one component,
i.e., if every vertex is reachable from every other vertex

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 60

Introduction to Graphs - Review

A directed graph is strongly-connected
if every two vertices are reachable from each other

The strongly-connected components of a digraph are the
equivalence classes of vertices under the
"are mutually reachable" relation

A directed graph is strongly-connected
if it has only one strongly-connected component

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 61

Introduction to Graphs - Review

Two graphs and are isomorphic
if there exists a bijection such that

That is, we can relabel the vertices of to be vertices of maintaining the corresponding
edges in and

CE100 Algorithms and Programming II

G = (V ,E) G =′ (V ,E)′ ′

f : V → V ′

(u, v) ∈ E ⟺ (f(u), f(v)) ∈ E′

G G′

G G′

 RTEU CE100 Week-10 62

Introduction to Graphs - Review

A graph is a subgraph of if
 and

Given a set , the subgraph of induced by is the graph
 where

CE100 Algorithms and Programming II

G =′ (V ,E)′ ′ G = (V ,E)
V ⊆ V E ⊆′ E

V ⊆′ V G V ′

G =′ (V ,E)′ ′ E =′ {(u, v) ∈ E : u, v ∈ V }′

 RTEU CE100 Week-10 63

Introduction to Graphs - Review

Given an undirected graph , the directed version of is the directed graph
, where

 and

That is, each undirected edge in is replaced in by two directed edges and

Given a directed graph , the undirected version of G is the undirected graph
, where

 and

That is the undirected version contains the edges of G
"with their directions removed" and with self-loops eliminated

CE100 Algorithms and Programming II

G = (V ,E) G G =′

(V ,E)′ ′

(u, v) ∈ E′ (v,u) ∈ E ⟺′ (u, v) ∈ E

(u, v) G G′ (u, v)
(v,u)

G = (V ,E) G =′

(V ,E)′ ′

(u, v) ∈ E ⟺′ u = v (u, v) ∈ E

 RTEU CE100 Week-10 64

Introduction to Graphs - Review

i.e., and in are replaced in by the same edge

In a directed graph , a neighbor of a vertex is any vertex that is adjacent to in
the undirected version of

That, is is a neighbor of either or

 is a neighbor of in both cases

In an undirected graph, and are neighbors if they are adjacent

CE100 Algorithms and Programming II

(u, v) (v,u) G G′ (u, v)

G = (V ,E) u u

G

v u ⟺ (u, v) ∈ E (v,u) ∈ E

v u

u v
 RTEU CE100 Week-10 65

Introduction to Graphs - Review

Several kinds of graphs are given special names
Complete graph: undirected graph in which every pair of vertices is adjacent
Bipartite graph: undirected graph in which can be partitioned into two
disjoint sets and such that

 implies either and or and

CE100 Algorithms and Programming II

G = (V ,E) V

V ​1 V ​2

(u, v) ∈ E u ∈ V ​1 v ∈ V ​2 u ∈ V ​2 v ∈ V ​1

 RTEU CE100 Week-10 66

Introduction to Graphs - Review

Forest: acyclic, undirected graph

Tree: connected, acyclic, undirected graph
Dag: directed acyclic graph

Multigraph: undirected graph with multiple edges between vertices and self-loops

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 67

Introduction to Graphs - Review

Hypergraph: like an undirected graph, but each hyperedge,
rather than connecting two vertices,

connects an arbitrary subset of vertices

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 68

Free Trees

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 69

Free Trees

A free tree is a connected, acyclic, undirected graph

We often omit the adjective "free" when we say that a graph is a tree
If an undirected graph is acyclic but possibly disconnected it is a forest

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 70

Theorem (Properties of Free Trees)

The following are equivalent for an undirected graph

1. is a free tree

2. Any two vertices in are connected by a unique simple-path

3. is connected, but if any edge is removed from E the resulting graph is
disconnected

4. is connected, and

5. is acyclic, and

6. is acyclic, but if any edge is added to , the resulting graph contains a cycle

CE100 Algorithms and Programming II

G = (V ,E)

G

G

G

G ∣E∣ = ∣V ∣ − 1

G ∣E∣ = ∣V ∣ − 1

G E

 RTEU CE100 Week-10 71

Properties of Free Trees

1. G is a free tree

2. Any two vertices in G are connected by a unique simple-path

CE100 Algorithms and Programming II

(1 ⇒ 2)

 RTEU CE100 Week-10 72

Properties of Free Trees

Since a tree is connected, any two vertices in are connected by a simple path
Let two vertices are connected by two simple paths and

Let and be the first vertices at which and diverge and re-
converge
Let be the subpath of from to

Let be the subpath of from to

 and share no vertices except their end points

The path is a cycle (contradiction)

CE100 Algorithms and Programming II

(1 ⇒ 2)

G

u, v ∈ V p ​1 p ​2

w z p ​1 p ​2

p ​1
′ p ​1 w z

p ​2
′ p ​2 w z

p ​1
′ p ​2

′

p ​∣∣p ​1
′

2
′

 RTEU CE100 Week-10 73

Properties of Free Trees

 and share no vertices except their end points

 is a cycle (contradiction)

Thus, if is a tree, there can be at most one path between two vertices

CE100 Algorithms and Programming II

(1 ⇒ 2)

p ​1
′ p ​2

′

p ​∣∣p ​1
′

2
′

G
 RTEU CE100 Week-10 74

Properties of Free Trees

2. Any two vertices in are connected by a unique simple-path

3. is connected, but if any edge is removed from the resulting graph is
disconnected

CE100 Algorithms and Programming II

(2 ⇒ 3)

G

G E

 RTEU CE100 Week-10 75

Properties of Free Trees

If any two vertices in are connected by a unique simple path, then is
connected

Let be any edge in . This edge is a path from to . So it must be
the unique path from to

Thus, if we remove from , there is no path from to

Hence, its removal disconnects

CE100 Algorithms and Programming II

(2 ⇒ 3)

G G

(u, v) E u v

u v

(u, v) G u v

G

 RTEU CE100 Week-10 76

Properties of Free Trees

Before proving consider the following

Lemma: any connected, undirected graph
satisfies

Proof: Consider a graph with vertices and no edges.
Thus initially there are connected components

Each isolated vertex is a connected component

Consider an edge and let and denote the connected-
components of and

CE100 Algorithms and Programming II

(3 ⇒ 4)

3 ⇒ 4
G = (V ,E)

∣E∣ ≥ ∣V ∣ − 1

G′ ∣V ∣
∣C∣ = ∣V ∣

(u, v) C ​u C ​v

u v

 RTEU CE100 Week-10 77

Properties of Free Trees (Lemma)$

If then connects and into a
connected component

Otherwise adds an extra edge to the
connected component

Hence, each edge added to the graph reduces the
number of connected components by at most

Thus, at least edges are required to reduce the number of components
to

CE100 Algorithms and Programming II

C ​ =u  C ​v (u, v) C ​u C ​v

Cuv

(u, v)
C =u Cv

1
∣V ∣ − 1

1
Q.E.D

 RTEU CE100 Week-10 78

Properties of Free Trees

3. is connected, but if any edge is removed from the resulting graph is
disconnected

4. is connected, and

CE100 Algorithms and Programming II

(3 ⇒ 4)

G E

G ∣E∣ = ∣V ∣ − 1

 RTEU CE100 Week-10 79

Properties of Free Trees

By assuming (3), the graph is connected

We need to show both and in
order to show that

: valid due previous lemma

: (proof by induction)

Basis: a connected graph with or vertices has edges

IH: suppose that all graphs satisfying (3) also
satisfy

CE100 Algorithms and Programming II

(3 ⇒ 4)

G

∣E∣ ≥ ∣V ∣ − 1 ∣E∣ ≤ ∣V ∣ − 1
∣E∣ = ∣V ∣ − 1

∣E∣ ≥ ∣V ∣ − 1

∣E∣ ≤ ∣V ∣ − 1

n = 1 n = 2 n − 1

G =′ (V ,E)′ ′

∣E ∣ ≤′ ∣V ∣ −′ 1

 RTEU CE100 Week-10 80

Properties of Free Trees

Consider that satisfies (3) with

Removing an arbitrary edge from separates the graph into 2
connected graphs and such that

 and

Hence, connected graphs and both satisfy (3) else would not satisfy

Note that and since

Hence, and (by IH)

Thus,

CE100 Algorithms and Programming II

(3 ⇒ 4)

G = (V ,E) ∣V ∣ = n ≥ 3

(u, v) G

G ​ =u (V ​,E ​)u u G ​ =v (V ,E ​)v v V = V ​ ∪u

V ​v E = E ​ ∪u E ​v

G ​u G ​v G

(3)
∣V ​∣u ∣V ​∣ <v n ∣V ​∣ +u ∣V v∣ = n

∣E ​∣ ≤u ∣V ​∣ −u 1 ∣E ​∣ ≤v ∣V ​∣ −v 1

∣E∣ = ∣E ​∣ +u ∣E ​∣ +v 1 ≤ (∣V ​∣ −u 1) + (∣V ​∣ −v 1) + 1
⇒ ∣E∣ ≤ ∣V ∣ − 1

Q.E.D
 RTEU CE100 Week-10 81

Properties of Free Trees

4. is connected, and

5. is acyclic, and

CE100 Algorithms and Programming II

(4 ⇒ 5)

G ∣E∣ = ∣V ∣ − 1

G ∣E∣ = ∣V ∣ − 1

 RTEU CE100 Week-10 82

Properties of Free Trees

Suppose that is connected, and , we must
show that is acyclic

Suppose has a cycle containing vertices

Let be subgraph of consisting of the cycle

If , there must be a vertex that is adjacent to some
vertex , since is connected

CE100 Algorithms and Programming II

(4 ⇒ 5)

G ∣E∣ = ∣V ∣ − 1
G

G k v ​, v ​, … , v ​1 2 k

G ​ =k (V ,E ​)k k G

k < ∣V ∣ v ​ ∈k+1 V − V ​k

v ​ ∈i V ​k G
 RTEU CE100 Week-10 83

Properties of Free Trees

Define to be subgraph of with and

If , we can similarly define to be the subgraph of
 with

 and

for some where

CE100 Algorithms and Programming II

(4 ⇒ 5)

G ​ =k+1 (V ​,E ​)k+1 k+1 G V ​ =k+1 V ​ ∪k v ​k+1

E ​ =k+1 E ​ ∪k (v ​, v ​)k+1 i

k + 1 < ∣V ∣ G ​ =k+2 (V ​,E ​)k+2 k+2

G

V ​ =k+2 V ​ ∪k+1 v ​k+2 E ​ =k+2 E ​ ∪k+1 (v ​, v ​)k+2 j

v ​ ∈j V ​k+1 ∣V ​∣ =k+2 ∣E ​∣k+2
 RTEU CE100 Week-10 84

Properties of Free Trees

We can continue defining with until we obtain
 where

 and and

Since is a subgraph of , we have
 which contradicts the assumption

Hence is acyclic

CE100 Algorithms and Programming II

(4 ⇒ 5)

G ​k+m ∣V ​∣ =k+m ∣E ​∣k+m

G ​ =n (V ​,E ​)n n

n = ∣V ∣ V ​ =n ∣V ∣ ∣V ​∣ =n ∣E ​∣ =n ∣V ∣

G ​n G

E ​ ⊆n E ⇒ ∣E∣ ≥ ∣E ​∣ =n ∣V ∣ ∣E∣ =
∣V ∣ − 1

G

Q.E.D

 RTEU CE100 Week-10 85

Properties of Free Trees

5. is acyclic, and

6. is acyclic, but if any edge is added to , the resulting graph contains a cycle

CE100 Algorithms and Programming II

(5 ⇒ 6)

G ∣E∣ = ∣V ∣ − 1

G E

 RTEU CE100 Week-10 86

Properties of Free Trees

Suppose that is acyclic and

Let be the number of connected components of

 such that

 and

 and

Each connected component is a tree by definition.

CE100 Algorithms and Programming II

(5 ⇒ 6)

G ∣E∣ = ∣V ∣ − 1

k G

G ​ =1 (V ​,E ​),G ​ =1 1 2 (V ​,E ​), … ,G ​ =2 2 k (V ​,E ​)k k

​V ​ =​

i=1
∪
k

i V ;V ​ ∩i V ​ =j ∅; 1 ≤ i, j ≤ k i = j

​E ​ =​

i=1
∪
k

i E;E ​ ∩i E ​ =j ∅; 1 ≤ i, j ≤ k i = j

G ​i

 RTEU CE100 Week-10 87

Properties of Free Trees

Since each component is satisfies
 for

Thus

Therefore, we must have

CE100 Algorithms and Programming II

(5 ⇒ 6)

(1 ⇒ 5) G ​i

∣E ​∣ =i ∣V ​∣ −i 1 i = 1, 2, … , k

​ ∣E ​∣ =
i=1
∑
k

i ​ ∣V ​∣ −
i=1
∑
k

i ​ 1
i=1
∑
k

∣E∣ = ∣V ∣ − k

k = 1

 RTEU CE100 Week-10 88

Properties of Free Trees

That is is connected is a tree

Since
any two vertices in are connected by a unique simple path

Thus,
adding any edge to creates a cycle

CE100 Algorithms and Programming II

(5 ⇒ 6)

(5) ⇒ G ⇒ G

(1 ⇒ 2)
G

G

 RTEU CE100 Week-10 89

Properties of Free Trees

6. is acyclic, but if any edge is added to , the resulting graph contains a cycle

7. is a free tree

CE100 Algorithms and Programming II

(6 ⇒ 1)

G E

G

 RTEU CE100 Week-10 90

Properties of Free Trees

Suppose that is acyclic but if any edge is added to a cycle is created

We must show that is connected due to the definition

Let and be two arbitrary vertices in

If and are not already adjacent
adding the edge creates a cycle in

which all edges but belong to

CE100 Algorithms and Programming II

(6 ⇒ 1)

G E

G

u v G

u v

(u, v)

(u, v) G

 RTEU CE100 Week-10 91

Properties of Free Trees

Thus there is a path from to , and since and are chosen arbitrarily is
connected

CE100 Algorithms and Programming II

(6 ⇒ 1)

u v u v G

 RTEU CE100 Week-10 92

Elementary Graph Algorithms

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 93

Online Visual Animations

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 94

Online Visual Animations

Graph Structures

https://visualgo.net/en/graphds?slide=1

Single-Source Shortest Paths (SSSP)

https://visualgo.net/en/sssp?slide=1

Minimum Spanning Tree (MST)

https://visualgo.net/en/mst?slide=1

Convex Hull

https://visualgo.net/en/convexhull?slide=1

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 95

https://visualgo.net/en/graphds?slide=1
https://visualgo.net/en/sssp?slide=1
https://visualgo.net/en/mst?slide=1
https://visualgo.net/en/convexhull?slide=1

Online Visual Animations

Data Structure Visualizations (University of Sout Florida-USF)
https://www.cs.usfca.edu/~galles/visualization/Algorithms.html

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 96

https://www.cs.usfca.edu/~galles/visualization/Algorithms.html

Online Visual Animations

Common Graph Algorithms
https://algorithm-visualizer.org/

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 97

https://algorithm-visualizer.org/

Graph Tools

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 98

Graph Tools

Graphviz Tools
https://graphviz.org/download/

Graphviz (short for Graph Visualization Software) is a package of open-source tools initiated by
AT&T Labs Research for drawing graphs specified in DOT language scripts having the file name
extension "gv". It also provides libraries for software applications to use the tools. Graphviz is free
software licensed under the Eclipse Public License.

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 99

https://graphviz.org/download/

Graph Tools

Graphviz Tools
https://graphviz.org/download/

https://graphviz.org/doc/info/command.html

https://graphviz.org/docs/outputs/svg/

http://magjac.com/graphviz-visual-editor/
https://graphs.grevian.org/graph

Graphviz Tutorials
https://graphs.grevian.org/example#example-1
https://graphs.grevian.org/reference

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 100

https://graphviz.org/download/
https://graphviz.org/doc/info/command.html
https://graphviz.org/docs/outputs/svg/
http://magjac.com/graphviz-visual-editor/
https://graphs.grevian.org/graph
https://graphs.grevian.org/example#example-1
https://graphs.grevian.org/reference

Graphviz Gallery

Family Tree

https://graphviz.org/Gallery/directed/kennedyanc.html

UML

https://graphviz.org/Gallery/directed/UML_Class_diagram.html

Data Structure

https://graphviz.org/Gallery/gradient/datastruct.html

https://graphviz.org/Gallery/directed/datastruct.html

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 101

https://graphviz.org/Gallery/directed/kennedyanc.html
https://graphviz.org/Gallery/directed/UML_Class_diagram.html
https://graphviz.org/Gallery/gradient/datastruct.html
https://graphviz.org/Gallery/directed/datastruct.html

Graphviz Gallery

Neural Network (Keras)

https://graphviz.org/Gallery/directed/neural-network.html

Linux Kernel Diagram

https://graphviz.org/Gallery/directed/Linux_kernel_diagram.html

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 102

https://graphviz.org/Gallery/directed/neural-network.html
https://graphviz.org/Gallery/directed/Linux_kernel_diagram.html

Graphviz Tools and Binaries

Graphviz consists of a graph description language named the DOT language[4] and a set of tools
that can generate and/or process DOT files:

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 103

Graphviz Layout Engines

dot

a command-line tool to produce layered drawings of directed graphs in a variety of output formats,
such as (PostScript, PDF, SVG, annotated text and so on).

Visit: https://graphviz.org/docs/layouts/dot/

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 104

https://graphviz.org/docs/layouts/dot/

Graphviz Layout Engines

neato

useful for undirected graphs. "spring model" layout, minimizes global energy. Useful for graphs up to
about 1000 nodes

Visit : https://graphviz.org/docs/layouts/neato/

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 105

https://graphviz.org/docs/layouts/neato/

Graphviz Layout Engines

fdp

useful for undirected graphs. "spring model" which minimizes forces instead of energy

Visit : https://graphviz.org/docs/layouts/fdp/

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 106

https://graphviz.org/docs/layouts/fdp/

Graphviz Layout Engines

sfdp

multiscale version of fdp for the layout of large undirected graphs

Visit : https://graphviz.org/docs/layouts/sfdp/

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 107

https://graphviz.org/docs/layouts/sfdp/

Graphviz Layout Engines

twopi

for radial graph layouts. Nodes are placed on concentric circles depending their distance from a given
root node

Visit : https://graphviz.org/docs/layouts/twopi/

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 108

https://graphviz.org/docs/layouts/twopi/

Graphviz Layout Engines

circo

circular layout. Suitable for certain diagrams of multiple cyclic structures, such as certain
telecommunications networks

Visit : https://graphviz.org/docs/layouts/circo/

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 109

https://graphviz.org/docs/layouts/circo/

Graphviz Layout Engines

osage

osage draws clustered graphs. Suitable for certain diagrams of multiple cyclic structures, such as
certain telecommunications networks

Visit : https://graphviz.org/docs/layouts/osage/

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 110

https://graphviz.org/docs/layouts/osage/

Graphviz Layout Engines

patchwork

patchwork draws clustered graphs using a squarified treemap layout.

Visit : https://graphviz.org/docs/layouts/patchwork/

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 111

https://graphviz.org/docs/layouts/patchwork/

Graphviz Layout Engines

dotty (DEPRECATED)

a graphical user interface to visualize and edit graphs.

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 112

Graphviz Tools

lefty (DEPRECATED)

a programmable (in a language inspired by EZ[5]) widget that displays DOT graphs and allows the
user to perform actions on them with the mouse. Therefore, Lefty can be used as the view in a model–
view–controller GUI application that uses graphs.

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 113

Graphviz Tools

gml2gv - gv2gml

convert to/from GML, another graph file format.

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 114

Graphviz Tools

graphml2g

convert a GraphML file to the DOT format.

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 115

Graphviz Tools

gxl2gv - gv2gxl

convert to/from GXL, another graph file format.

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 116

Graphviz Tools

for more information visit

https://graphviz.org/documentation/#tool-manual-pages

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 117

https://graphviz.org/documentation/#tool-manual-pages

Graphviz API

Visit
https://graphviz.org/documentation/#sample-programs-using-graphviz

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 118

https://graphviz.org/documentation/#sample-programs-using-graphviz

Graph Tools

Plantuml Tools (https://plantuml.com/download)
PlantUML is an open-source tool allowing users to create diagrams from a plain text
language. Besides various UML diagrams, PlantUML has support for various other software
development related formats (such as Archimate, Block diagram, BPMN, C4, Computer
network diagram, ERD, Gantt chart, Mind map, and WBD), as well as visualisation of JSON
and YAML files.

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 119

https://plantuml.com/download

Graph Tools

Plantuml Tutorials
Visit OOP Plantuml Course Notes

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 120

https://ucoruh.github.io/ce204-object-oriented-programming/week-5/ce204-week-5/

Graph Tools

Plantuml Graphs and References
https://plantuml.com/use-case-diagram

https://plantuml.com/deployment-diagram

https://plantuml.com/component-diagram
https://plantuml.com/mindmap-diagram

https://plantuml.com/object-diagram

https://plantuml.com/state-diagram

https://plantuml.com/wbs-diagram
https://plantuml.com/json

https://plantuml.com/yaml

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 121

https://plantuml.com/use-case-diagram
https://plantuml.com/deployment-diagram
https://plantuml.com/component-diagram
https://plantuml.com/mindmap-diagram
https://plantuml.com/object-diagram
https://plantuml.com/state-diagram
https://plantuml.com/wbs-diagram
https://plantuml.com/json
https://plantuml.com/yaml

Graph Tools

Plantuml API
https://plantuml.com/api

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 122

https://plantuml.com/api

Graph Tools

Microsoft Graph Layout

MSAGL is a .NET tool for graph layout and viewing.

It was developed in Microsoft by Lev Nachmanson, Sergey Pupyrev, Tim Dwyer and Ted Hart.
MSAGL is available as open source.

Demo Project
https://github.com/ucoruh/microsoft-graph-layout-cs-demo

Library
https://github.com/microsoft/automatic-graph-layout

Website
https://www.microsoft.com/en-us/research/project/microsoft-automatic-graph-layout/

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 123

https://github.com/ucoruh/microsoft-graph-layout-cs-demo
https://github.com/microsoft/automatic-graph-layout
https://www.microsoft.com/en-us/research/project/microsoft-automatic-graph-layout/

Elementary Graph Algorithms

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 124

Elementary Graph Algorithms

Graph Traversal

Breadth-first search (BFS)
Depth-first search (DFS)

Strongly connected components (SCC)

Kosaraju's algorithm

Tarjan's algorithm

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 125

Elementary Graph Algorithms

Topological sort

DFS version
BFS version (Kahn's algorithm)

Minimum spanning tree

Kruskal's algorithm

Prim's algorithm

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 126

Elementary Graph Algorithms

Cycle Detection
DFS
BFS

Bipartite Graph Check
DFS
BFS

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 127

Breadth-first search (BFS)

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 128

Graph Traversal

Breadth-first search (BFS)

Breadth-first search (BFS) is a graph traversal algorithm that starts at a vertex and explores as far
as possible along each branch before backtracking.

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 129

Graph Traversal

Breadth-first search (BFS)

Graph , directed or undirected with adjacency list repres.

GOAL: Systematically explores edges of G to
discover every vertex reachable from the source vertex

compute the shortest path distance of every vertex
from the source vertex

produce a breadth-first tree (BFT) with root
BFT contains all vertices reachable from

the unique path from any vertex to in G constitutes a shortest path from to in

IDEA: Expanding frontier across the breadth -greedy-
propagate a wave edge-distance at a time

using a FIFO queue: time to update pointers to both ends

CE100 Algorithms and Programming II

G = (V ,E)

s

s

G ​π s

s

v s s v

G

1
O(1)

 RTEU CE100 Week-10 130

Graph Traversal

Breadth-first search (BFS)

Maintains the following fields for each
 color of

 : not discovered yet

 : discovered and to be or being processed

 : discovered and processed

: parent of (of or is not discovered yet)

: distance of from

CE100 Algorithms and Programming II

u ∈ V

color[u] : u

WHITE

GRAY

BLACK

π[u] u NIL u = s u

d[u] u s

Processing a vertex = scanning its adjacency list

 RTEU CE100 Week-10 131

Graph Traversal

Breadth-first search (BFS) Algorithm
BFS(G, s)

for each u ∈ V − sdo

color[u] → WHITE

π[u] → NIL; d[u] → ∞

color[s] → GRAY

π[s] → NIL; d[s] → 0

Q → s

while Q = ∅ do

u → head[Q]

for each v in Adj[u] do

if color[v] → WHITE then

color[v] → GRAY

π[v] → u

d[v] → d[u] + 1

ENQUEUE(Q, v)

DEQUEUE(Q)

color[u] → BLACK

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 132

Graph Traversal

Breadth-first search (BFS)

In this algorithm, we use a queue to store the vertices that are yet to be visited.

Complexity of following part is

G -> Graph

s -> Source

BFS(G,s)

 // Mark all the vertices as not visited
 for each vertex u in G.V - {s}

 u.color = white;

 u.distance = infinity;

 u.parent = NIL;

...

CE100 Algorithms and Programming II

O(V)

 RTEU CE100 Week-10 133

Graph Traversal

Breadth-first search (BFS)

We enqueue the first vertex and mark it as visited.

Complexity of following part is

...

 s.color = gray;

 s.distance = 0;

 s.parent = NIL;

 // Create a queue for BFS

 Q = empty

 ENQUEUE(Q, s)

...

CE100 Algorithms and Programming II

O(1)

 RTEU CE100 Week-10 134

Graph Traversal

Breadth-first search (BFS)

We dequeue a vertex u and mark it as visited.

We enqueue all the adjacent vertices of u.

Complexity of following part is

...

 WHILE Q is not empty

 u = DEQUEUE(Q)

 for each vertex v in G.Adj[u]

 if v.color == white

 v.color = gray;

 v.distance = u.distance + 1;

 v.parent = u;

 ENQUEUE(Q, v)

 u.color = black;

CE100 Algorithms and Programming II

O(E)

 RTEU CE100 Week-10 135

Graph Traversal

Breadth-first search (BFS)

Complexity of BFS is

CE100 Algorithms and Programming II

O(V + E) = O(V) + O(E) + O(1)

 RTEU CE100 Week-10 136

Graph Traversal

Breadth-first search (BFS) Complete Algorithm

G -> Graph

s -> Source

BFS(G,s)

 // Mark all the vertices as not visited

 for each vertex u in G.V - {s}

 u.color = white;

 u.distance = infinity;

 u.parent = NIL;

 s.color = gray;

 s.distance = 0;

 s.parent = NIL;

 // Create a queue for BFS

 Q = empty

 ENQUEUE(Q, s)

 WHILE Q is not empty

 u = DEQUEUE(Q)

 for each vertex v in G.Adj[u]

 if v.color == white

 v.color = gray;

 v.distance = u.distance + 1;

 v.parent = u;

 ENQUEUE(Q, v)

 u.color = black;

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 137

Graph Traversal

Breadth-first search (BFS) Example-1

s is the source vertex.

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 138

Graph Traversal

Breadth-first search (BFS) Example-1

STEP-1

//init the graph

s.parent = NIL;

s.color = gray;

s.distance = 0;

Q = empty;

ENQUEUE(Q, s)

and

u = DEQUEUE(Q) in the while loop

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 139

Graph Traversal

Breadth-first search (BFS) Example-1

STEP-2

Q = {c,a}

s = b

c.parent = s

c.distance = 1

c.color = gray

a.parent = s

a.distance = 1

a.color = gray

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 140

Graph Traversal

Breadth-first search (BFS) Example-1

STEP-3

Q = {e,c}

a = b

e.parent = a

e.distance = 2

e.color = gray

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 141

Graph Traversal

Breadth-first search (BFS) Example-1

STEP-4

Q = {g,e}

c = b

g.parent = c

g.distance = 2

g.color = gray

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 142

Graph Traversal

Breadth-first search (BFS) Example-1

STEP-5

Q = {b,h,g}

e = b

h.parent = e

h.distance = 3

h.color = gray

b.parent = e

b.distance = 3

b.color = gray

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 143

Graph Traversal

Breadth-first search (BFS) Example-1

STEP-6

Q = {f,i,b,h}

g = b

i.parent = g

i.distance = 3

i.color = gray

f.parent = e

f.distance = 3

f.color = gray

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 144

Graph Traversal

Breadth-first search (BFS) Example-1

STEP-7

Q = {f,i,b}

h = b

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 145

Graph Traversal

Breadth-first search (BFS) Example-1

STEP-8

Q = {f,i}

b = b

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 146

Graph Traversal

Breadth-first search (BFS) Example-1

STEP-9

Q = {f}

i = b

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 147

Graph Traversal

Breadth-first search (BFS) Example-1

STEP-10

Q = {}

f = b

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 148

Graph Traversal

Breadth-first search (BFS) Example-1

BFS is done and the graph is traversed.

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 149

Graph Traversal

Breadth-first search (BFS) Print Paths

Prints out vertices on a shortest path

PRINT-PATH(G, s, v)

if v = s then print s

else if [v] = NIL then∏
print no "s → v path"

else

PRINT-PATH(G, s, [v])∏
print v

CE100 Algorithms and Programming II

s → v

 RTEU CE100 Week-10 150

Graph Traversal

Breadth-first search (BFS) Algorithm Summary

Step 1 - Define a Queue of size total number of vertices in the graph.

Step 2 - Select any vertex as starting point for traversal. Visit that vertex and insert it into the
Queue.
Step 3 - Visit all the non-visited adjacent vertices of the vertex which is at front of the Queue and
insert them into the Queue.

Step 4 - When there is no new vertex to be visited from the vertex which is at front of the Queue
then delete that vertex.

Step 5 - Repeat steps 3 and 4 until queue becomes empty.

Step 6 - When queue becomes empty, then produce final spanning tree by removing unused
edges from the graph

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 151

Graph Traversal

Breadth-first search (BFS) Running Time

Running time: considered linear time in graphs
initialization:

queue operations:
each vertex enqueued and dequeued at most once
both enqueue and dequeue operations take time

processing gray vertices:
each vertex is processed at most once and

CE100 Algorithms and Programming II

O(V + E) =
Θ(V)

O(V)

O(1)

O(E)

u ∈ V ∣Adj[u]∣ =∑ Θ(E)

 RTEU CE100 Week-10 152

CE100 Algorithms and Programming II

Begining − of − BFS − Proof

 RTEU CE100 Week-10 153

Graph Traversal

Theorems Related to BFS

DEF: shortest path distance from to

LEMMA 1: for any

For any run on

LEMMA 2:

LEMMA 3: at any time of , the queue satisfies

THM1: achieves the following
discovers every where (i.e., is reachable from)

upon termination,

for any is a

CE100 Algorithms and Programming II

δ(s, v) = s v

s ∈ V &(u, v) ∈ E; δ(s, v) ≤ δ(s,u) + 1

BFS(G, s) G = (V ,E)

d[v] ≥ δ(s, v) ∀ v ∈ V

BFS Q = ⟨v ​, v ​, … , v ​⟩1 2 r

d[v ​] ≤r d[v ​] +1 1

d[v ​] ≤i d[v ​], for i =i+1 1, 2, … , r − 1

BFS(G, s)
v ∈ V s → v v s

d[v] = δ(s, v) ∀ v ∈ V

v = s&s → v; sp(s, [v]) ∼∏ ([v], v)∏ sp(s, v)
 RTEU CE100 Week-10 154

Graph Traversal

Proofs of BFS Theorems

DEF: shortest path distance from to

 minimum number of edges in any path from
to

 if no such path exists (i.e., is not reachable from
)

L1: for any

PROOF: . Then,

consider the path

therefore,

CE100 Algorithms and Programming II

δ(s, v) s v

δ(s, v) = s

v

= ∞ v s

s ∈ V &(u, v) ∈ E; δ(s, v) ≤ δ(s,u) + 1

s → u ⇒ s → v

p(s, v) = sp(s,u) ∼ (u, v)

∣p(s, v)∣ = ∣sp(s,u)∣ + 1 = δ(s,u) + 1

δ(s, v) ≤ ∣p(s, v)∣ = δ(s,u) + 1
 RTEU CE100 Week-10 155

Graph Traversal

Proofs of BFS Theorems

DEF: shortest path distance from to

 minimum number of edges in any path from s to v

L1: for any

C1 of L1: if is undirected then

 and

 and

 differ by at most

CE100 Algorithms and Programming II

δ(s, v) s v

δ(s, v) =

s ∈ V &(u, v) ∈ E; δ(s, v) ≤ δ(s,u) + 1

G = (V ,E) (u, v) ∈ E ⇒
(v,u) ∈ E

δ(s, v) ≤ δ(s,u) + 1 δ(s,u) ≤ δ(s, v) + 1

⇒ δ(s,u) − 1 ≤ δ(s, v) ≤ δ(s,u) + 1

δ(s, v) − 1 ≤ δ(s,u) ≤ δ(s, v) + 1

⇒ δ(s,u) & δ(s, v) 1
 RTEU CE100 Week-10 156

Graph Traversal

Proofs of BFS Theorems

L2: upon termination of on ;

PROOF: by induction on the number of ENQUEUE operations
basis: immediately after 1st enqueue operation

hypothesis: for all inserted into

induction: consider a white vertex discovered during scanning
 due to the assignment statement

 due to the inductive hypothesis since

 due to

vertex is then enqueued and it is never enqueued again
 never changes again, maintaining inductive hypothesis

CE100 Algorithms and Programming II

BFS(G, s) G = (V ,E)
d[v] ≥ δ(s, v) ∀ v ∈ V

ENQ(Q, s) : d[s] = δ(s, s)

d[v] ≥ δ(s, v) v Q

v Adj[u]
d[v] = d[u] + 1

≥ δ(s,u) + 1 u ∈ Q

≥ δ(s, v) L1

v

d[v]
 RTEU CE100 Week-10 157

Graph Traversal

Proofs of BFS Theorems

L3: Let during the execution of , then,

 and for

PROOF: by induction on the number of operations

basis: lemma holds when

hypothesis: lemma holds for a particular (i.e., after a certain of operations)

induction: must prove lemma holds after both & operations

 & in in

 for in

 for in

CE100 Algorithms and Programming II

Q = ⟨v ​, v ​, … , v ​⟩1 2 r BFS(G, s)

d[v ​] ≤r d[v ​] +1 1 d[v ​] ≤i d[v ​]i+1 i = 1, 2, … , r − 1

QUEUE

Q ← s

Q # QUEUE

DEQUEUE ENQUEUE

DEQUEUE(Q) : Q = ⟨v ​, v ​, … , v ​⟩ ⇒1 2 r Q =′ ⟨v ​, v ​, … , v ​⟩2 3 r

d[v ​] ≤r d[v ​] +1 1 d[v ​] ≤1 d[v ​]2 Q ⇒ d[v ​] ≤r d[v ​] +2 1 Q′

d[v ​] ≤i d[v ​]i+1 i = 1, 2, … , r − 1 Q′

d[v ​] ≤i d[v ​]i+1 i = 2, … , r − 1 Q′

 RTEU CE100 Week-10 158

Graph Traversal

Proofs of BFS Theorems

 was encountered during scanning where

thus,
 in

but
 and in

C3 of L3 (monotonicity property):
if: the vertices are enqueued in the order

then: the sequence of distances is monotonically increasing,
i.e.,

CE100 Algorithms and Programming II

ENQUEUE(Q, v) :
Q = ⟨v ​, v ​, … , v ​⟩ ⇒1 2 r

Q =′ ⟨v ​, v ​, … , v ​, v ​ =1 2 r r+1 v⟩

v Adj[u] u = v ​1

d[v] =r+1 d[v] = d[u] + 1 = d[v ​] +1 1 ⇒
d[v ​] =r+1 d[v ​] +1 1 Q′

d[v ​] ≤r d[v ​] +1 1 = d[v ​]r+1

⇒ d[v ​] =r+1 d[v ​] +1 1 d[v ​] ≤r d[v ​]r+1 Q′

v , v ​, … , v ​1 2 n

d[v ​] ≤1 d[v ​] ≤2 ⋯ ≤ d[v ​]n RTEU CE100 Week-10 159

Graph Traversal

Proofs of BFS Theorems

THM (correctness of BFS): achieves the following on

discovers every where

upon termination:

for any

PROOF: by induction on , where

hypothesis: for each exactly one point during execution of BFS at which
, and then

basis: for since and

induction: must prove hypothesis holds for each

CE100 Algorithms and Programming II

BFS(G, s) G = (V ,E)

v ∈ V s → v

d[v] = δ(s, v) ∀v ∈ V

v = s&s → v; sp(s, [v]) ∼∏ ([v], v) =∏ sp(s, v)

k V =k {v ∈ V : δ(s, v) = k}

v ∈ V ​, ∃k

color[v] → GRAY , d[v] → k, [v] →∏ u ∈ V ​k−1 ENQUEUE(Q, v)

k = 0 V ​ =0 {s}; color[s] → GRAY , d[s] → 0
ENQUEUE(Q, s)

v ∈ V ​k+1
 RTEU CE100 Week-10 160

Graph Traversal

Proofs of BFS Theorems

Consider an arbitrary vertex , where
monotonicity inductive hypothesis

 must be discovered after all vertices in were enqueued

since such that

let be the first such vertex grayed (must happen due to hyp.)

 will be ultimately executed since enqueues every grayed vertex
 will be discovered during scanning

 since isn’t adjacent to any vertex in for

,

then, thus proving the inductive hypothesis

To conclude the proof
if then due to above inductive proof

thus is a shortest path from to

CE100 Algorithms and Programming II

v ∈ V ​k+1 k ≥ 0
(L3) + d[v] ≥ k + 1 (L2)+

⇒ v V ​k

δ(s, v) = k + 1, ∃ u ∈ V ​k (u, v) ∈ E

u ∈ V ​k

u ← head(Q) BFS

v Adj[u]
color[v] ← WHITE v V ​j j < k

color[v] ← GRAY d[v] ← d[u] + 1, [v] ←∏ u

ENQUEUE(Q, v)

v ∈ V ​k+1 [v] ∈∏ V ​k

sp(s, [v]) ∼∏ ([v], v)∏ s v RTEU CE100 Week-10 161

Graph Traversal

Theorems Related to BFS

DEF: shortest path distance from to

LEMMA 1: for any

For any run on

LEMMA 2:

LEMMA 3: at any time of , the queue satisfies

THM1: achieves the following
discovers every where (i.e., is reachable from)

upon termination,

for any is a

CE100 Algorithms and Programming II

δ(s, v) = s v

s ∈ V &(u, v) ∈ E; δ(s, v) ≤ δ(s,u) + 1

BFS(G, s) G = (V ,E)

d[v] ≥ δ(s, v)∀v ∈ V

BFS Q = ⟨v ​, v ​, … , v ​⟩1 2 r

d[v ​] ≤r d[v ​] +1 1

d[v ​] ≤i d[v ​], for i =i+1 1, 2, … , r − 1

BFS(G, s)
v ∈ V s → v v s

d[v] = δ(s, v)∀v ∈ V

v = s&s → v; sp(s, [v]) ∼∏ ([v], v)∏ sp(s, v)
 RTEU CE100 Week-10 162

Graph Traversal

Breadth-First Tree Generated by BFS

LEMMA 4: predecessor subgraph generated by , where
 and

is a breadth-first tree such that
 consists of all vertices in that are reachable from

, unique path in constitutes a in

CE100 Algorithms and Programming II

G ​ =∏ (V ​,E ​)∏ ∏ BFS(G, s)
V ​ =∏ {v ∈ V : [v] =∏  NIL} ∪ s

E ​ =∏ {([v], v) ∈∏ E : v ∈ V ​ −∏ {s}}

V ​∏ V s

∀v ∈ V ​∏ p(v, s) G ​∏ sp(s, v) G

 RTEU CE100 Week-10 163

CE100 Algorithms and Programming II

End − of − BFS − Proof

 RTEU CE100 Week-10 164

Depth-first search (DFS)

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 165

Graph Traversal

Depth-first search (DFS)

DFS is a traversal algorithm that visits each vertex in a graph in a depth-first manner.

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 166

Graph Traversal

Depth-first search (DFS)

Graph directed or undirected

Adjacency list representation

Goal: Systematically explore every vertex and every edge

Idea: search deeper whenever possible
Using a LIFO queue (Stack; FIFO queue used in BFS)

CE100 Algorithms and Programming II

G = (V ,E)

 RTEU CE100 Week-10 167

Graph Traversal

Depth-first search (DFS)

Maintains several fields for each

Like , colors the vertices to indicate their states. Each vertex is
Initially ,

 when discovered,

 when finished

Like , records discovery of a white during scanning by

CE100 Algorithms and Programming II

v ∈ V

BFS

white

grayed

blackened

BFS v Adj[u] π[v] → u

 RTEU CE100 Week-10 168

Graph Traversal

Depth-first search (DFS)

Unlike , predecessor graph produced by DFS forms spanning forest

 where

 depth-first forest (DFF) is composed of disjoint depth-first trees (DFTs)

CE100 Algorithms and Programming II

BFS G ​π

G ​ =π (V ,E ​)π
E ​ =π {(π[v], v) : v ∈ V andπ[v] = NIL}

G ​ =π

 RTEU CE100 Week-10 169

Graph Traversal

Depth-first search (DFS)

DFS also timestamps each vertex with two timestamps
: records when v is first discovered and grayed

: records when v is finished and blackened

Since there is only one discovery event and finishing event for each vertex we have

CE100 Algorithms and Programming II

d[v]

f [v]

1 ≤ d[v] ≤
f [v] ≤ 2∣V ∣

 RTEU CE100 Week-10 170

Graph Traversal

Depth-first search (DFS) Algorithm

​ ​

DFS(G)

for each u ∈ V do

color[u] ← white

π[u] ← NIL

time ← 0

for each u ∈ V do

if color[u] = white then

DFS-VISIT(G,u)

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 171

Graph Traversal

Depth-first search (DFS) Algorithm

​ ​

DFS-VISIT(G,u)

color[u] ← gray

d[u] ← time ← time + 1

for each v ∈ Adj[u] do

if color[v] = white then

π[v] ← u

DFS-VISIT(G, v)

color[u] ← black

f [u] ← time ← time + 1

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 172

Graph Traversal

Depth-first search (DFS) Algorithm

Complexity of the following part is (two sequential loops)

DFS(G)

 for each vertex u in G.V

 u.color = white

 u.parent = nil

 time = 0

 for each vertex u in G.V

 if u.color == white

 DFS-VISIT(G,u)

CE100 Algorithms and Programming II

Θ(V + V) = O(V)

 RTEU CE100 Week-10 173

Graph Traversal

Depth-first search (DFS) Algorithm

DFS-VISIT(G,u)

 time = time + 1

 u.discovery = time

 u.color = gray

 for each vertex v in G.Adj[u]

 if v.color == white

 v.parent = u

 DFS-VISIT(G,v)

 u.color = black

 time = time + 1

 u.finish = time

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 174

Graph Traversal

Depth-first search (DFS)

DFS complexity is

Note for all

CE100 Algorithms and Programming II

Θ(V + E)

v → v.discovery < v.finish
1 ≤ u.discovery < u.finish ≤ 2∣V ∣

 RTEU CE100 Week-10 175

Graph Traversal

Edge Classification in a DFF

Edge Types in DFS
Tree Edges

Back Edges

Forward Edges

Cross Edges
Colors in DFS

White -> Tree Edges

Gray -> Back Edges
Black -> Forward Edges

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 176

Graph Traversal

Edge Classification in a DFF

Tree Edge: discover a new (WHITE) vertex

Back Edge: from a descendent to an ancestor in DFT

Forward Edge: from ancestor to descendent in DFT

Cross Edge: remaining edges (btwn trees and subtrees)

Note: ancestor/descendent is wrt Tree Edges

CE100 Algorithms and Programming II

GRAY ⇒ WHITE

GRAY ⇒ GRAY

GRAY ⇒ BLACK

GRAY ⇒ BLACK

 RTEU CE100 Week-10 177

Graph Traversal

Edge Classification in a DFF

How to decide which to edges are forward, which are cross
Let vertex is encountered while processing vertex

 is a forward edge if

 is a cross edge if

CE100 Algorithms and Programming II

GRAY BLACK

BLACK v ∈ Adj[u] GRAY u

(u, v) d[u] < d[v]

(u, v) d[u] < d[v]

 RTEU CE100 Week-10 178

Graph Traversal

Depth-first search (DFS) Example-1

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 179

Graph Traversal

Depth-first search (DFS) Example-1

STEP-1

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 180

Graph Traversal

Depth-first search (DFS) Example-1

STEP-2

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 181

Graph Traversal

Depth-first search (DFS) Example-1

STEP-3

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 182

Graph Traversal

Depth-first search (DFS) Example-1

STEP-4

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 183

Graph Traversal

Depth-first search (DFS) Example-1

STEP-5

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 184

Graph Traversal

Depth-first search (DFS) Example-1

STEP-6

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 185

Graph Traversal

Depth-first search (DFS) Example-1

STEP-7

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 186

Graph Traversal

Depth-first search (DFS) Example-1

STEP-8

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 187

Graph Traversal

Depth-first search (DFS) Example-1

STEP-9

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 188

Graph Traversal

Depth-first search (DFS) Example-1

STEP-10

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 189

Graph Traversal

Depth-first search (DFS) Example-1

STEP-11

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 190

Graph Traversal

Depth-first search (DFS) Example-1

STEP-12

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 191

Graph Traversal

Depth-first search (DFS) Example-1

STEP-13

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 192

Graph Traversal

Depth-first search (DFS) Example-1

STEP-14

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 193

Graph Traversal

Depth-first search (DFS) Example-1

STEP-15

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 194

Graph Traversal

Depth-first search (DFS) Example-1

FINAL STEP-16

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 195

Graph Traversal

Depth-first search (DFS) Example-1

Edges and Clusters after DFS

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 196

Graph Traversal

Depth-first search (DFS) Example-2

Different Start Point and Different Graph

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 197

Graph Traversal

Depth-first search (DFS)

Running time:

Initialization loop in :

Main loop in : exclusive of time to execute calls to

 is called exactly once for each since

 is invoked only on white vertices and

 immediately colors u as gray

For loop of is executed time

Since , total cost of executing loop of
 is

CE100 Algorithms and Programming II

Θ(V + E)

DFS Θ(V)

DFS Θ(V) DFS-VISIT

DFS-VISIT v ∈ V

DFS-VISIT

DFS-VISIT(G,u)

DFS-VISIT(G,u) ∣Adj[u]∣

∣Adj[u]∣ =∑ E

DFS-VISIT Θ(E)

 RTEU CE100 Week-10 198

Elementary Graph Algorithms

Depth-first search (DFS) Algorithm Summary

Step 1 - Define a Stack of size total number of vertices in the graph.
Step 2 - Select any vertex as starting point for traversal. Visit that vertex and push it on to the Stack.
Step 3 - Visit any one of the non-visited adjacent vertices of a vertex which is at the top of stack and
push it on to the stack.
Step 4 - Repeat step 3 until there is no new vertex to be visited from the vertex which is at the top of
the stack.
Step 5 - When there is no new vertex to visit then use back tracking and pop one vertex from the
stack.
Step 6 - Repeat steps 3, 4 and 5 until stack becomes Empty.
Step 7 - When stack becomes Empty, then produce final spanning tree by removing unused edges
from the graph

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 199

CE100 Algorithms and Programming II

Begining − of − DFS − Proof

 RTEU CE100 Week-10 200

Elementary Graph Algorithms

DFS: Parenthesis Theorem

Thm: In any DFS of , let then exactly one of the following
holds
for any and

 and are entirely disjoint

 is entirely contained in and

 is a descendant of in a

 is entirely contained in and

 is a descendant of in a

CE100 Algorithms and Programming II

G = (V ,E) int[v] = [d[v], f [v]]

u v ∈ V

int[u] int[v]

int[v] int[u]
v u DFT

int[u] int[v]
u v DFT

 RTEU CE100 Week-10 201

Elementary Graph Algorithms

Parenthesis Thm (proof for the case)

Subcase (and are overlapping)
 was discovered while was still

This implies that is a descendant of

So search returns back to and finishes after finishing

i.e., is entirely contained in

Subcase and are entirely disjoint

Proof for the case is similar (dual)

CE100 Algorithms and Programming II

d[u] < d[v]

d[v] < f [u] int[u] int[v]
v u GRAY

v u

u u v

d[v] < f [u] ⇒ int[v] int[u]

d[v] > f [u] ⇒ int[v] int[u]

d[v] < d[u]
Q.E.D

 RTEU CE100 Week-10 202

Elementary Graph Algorithms

Nesting of Descendents’ Intervals

Corollary 1 (Nesting of Descendents’ Intervals):
 is a descendant of u if and only if

Proof: immediate from the Parenthesis Thrm

CE100 Algorithms and Programming II

v

d[u] < d[v] < f [v] < f [u]

Q.E.D

 RTEU CE100 Week-10 203

Elementary Graph Algorithms

DFS Parenthesis Theorem

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 204

Elementary Graph Algorithms

DFS on Undirected Graphs
Ambiguity in edge classification, since and are the same edge

First classification is valid (whichever of or is explored first)

Lemma 1: any on an undirected graph produces only and

CE100 Algorithms and Programming II

(u, v) (v,u)
(u, v) (v,u)

DFS Tree

Backedges

 RTEU CE100 Week-10 205

Elementary Graph Algorithms

DFS on Undirected Graphs - Lemma 1: Proof

Assume is a (Figure-1)
But must be a , since must finish before resuming

Assume is a btw subtrees (Figure-2-4)
But cannot be both ; one must be a and must be a

If is first explored while processing must be a (Figure-2-4)

CE100 Algorithms and Programming II

(x, z) F (F?)
(x, z) B DFS z x

(u, v) C(C?)
(y,u)&(y, v) T B (u, v) T

(u, v) u/v, (y, v)/(y,u) B

 RTEU CE100 Week-10 206

Elementary Graph Algorithms

DFS on Undirected Graphs
Lemma 2: an undirected graph is acyclic (i.e. a forest) iff DFS yields no

Proof
(acyclic no Back edges; by contradiction):

Let be a then
 there exists a path between and

So, will complete a cycle ()

():
If there are no then there are only edges by

Lemma 1 forest \Rightarrow acyclic

CE100 Algorithms and Programming II

Backedges

⇒
(u, v) B color[u] = color[v] = GRAY

⇒ u v

(u, v) Backedge ⇒ cycle

noBackedges ⇒ acyclic

Backedges T

⇒
Q.E.D RTEU CE100 Week-10 207

Elementary Graph Algorithms

DFS on Undirected Graphs (Cycle Detection)

How to determine whether an undirected graph is acyclic
Run a on :

if a is found then there is a cycle

Running time: , not

If ever seen distinct edges,
must have seen a back edge (in a forest)

CE100 Algorithms and Programming II

G = (V ,E)
DFS G

Backedge

O(V) O(V + E)

∣V ∣
∣E∣ ≤ ∣V ∣ − 1

 RTEU CE100 Week-10 208

DFS: White Path Theorem

WPT: In a of , is a descendent of iff at time , can be reached from along a
 path

Proof (): assume is a descendent of
Let be any vertex on the path from to in the

So, is a descendent of
(by Corollary 1 nesting of descendents’ intervals)

Hence, is white at time

CE100 Algorithms and Programming II

DFS G v u d[u] v u

WHITE

⇒ v u

w u v DFT

w u ⇒ d[u] < d[w]

w d[u]

 RTEU CE100 Week-10 209

DFS: White Path Theorem

Proof () assume a white path at time but does not become a descendent of
in the (contradiction):

Assume every other vertex along becomes a descendent of in the

CE100 Algorithms and Programming II

⇐ p(u, v) d[u] v u

DFT

p u DFT

 RTEU CE100 Week-10 210

DFS: White Path Theorem

otherwise let be the closest vertex to along that does
not become a descendent

Let w be predecessor of along :
 by Corollary 1

Since, was at time (was)

Since, is a descendent of but is not

By (1)–(3):

So by Parenthesis Thm is within , is descendent of

CE100 Algorithms and Programming II

v u p

v p(u, v)
d[u] < d[w] < f [w] < f [u]

v WHITE d[u] u GRAY d[u] < d[v]

w u v

d[w] < d[v] ⇒ d[v] < f [w]

d[u] < d[v] < f [w] < f [u] ⇒ d[u] < d[v] < f [w]

int[v] int[u] v u

Q.E.D

 RTEU CE100 Week-10 211

CE100 Algorithms and Programming II

End − of − DFS − Proof

 RTEU CE100 Week-10 212

Strongly Connected Components (SCC)

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 213

Graph Segmentation - SCC (Strongly Connected Components)

SCC Algorithm is used to find the connected components in a graph.

Has two version
Kosaraju's algorithm

Tarjan's algorithm

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 214

Graph Segmentation - SCC (Strongly Connected Components)

Definition: a strongly connected component () of a
directed graph is a maximal set of vertices such that

For each we have both and

i.e., and are mutually reachable from each other ()

Let be the transpose of where

i.e., consists of edges of with their directions reversed

Constructing from takes time (adjacency list rep)

Note: and have the same s (in in)

CE100 Algorithms and Programming II

SCC

G = (V ,E) U ⊆ V

u, v ∈ U u ↦ v v ↦ u

u v u⇋ v

G =T (V ,E ​)T G = (V ,E)
E =T {(u, v) : (v,u) ∈ E}

ET G

GT G O(V + E)

G GT SCC u⇋ v G ⟺ u⇋ v GT

 RTEU CE100 Week-10 215

Graph Segmentation - SCC (Strongly Connected Components)

 can create adjency list.

 complexity is

CE100 Algorithms and Programming II

G =T (V ,E)T GT → Θ(V + E)

SCC(G) O(V + E)

 RTEU CE100 Week-10 216

Graph Segmentation - SCC Algorithm

KOSARAJU-SCC(G)

call DFS(G) compute all u.finishT ime values

compute G = (V ,E) and reverse edge directionsT T

call DFS(G) but in the main loop,T

consider vertices in order of decreasing u.finishT ime

(as computed in DFS)

output each DFTcomponent

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 217

Graph Segmentation - SCC - Kosaraju's algorithm

1- call DFS(G) compute all u.finishTime values

2- compute G^T = (V,E^T) and reverse edge directions

3- call DFS(G^T) but in the main loop,

consider vertices

in order of decreasing u.finishTime

(as computed in DFS)

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 218

Graph Segmentation - SCC - Kosaraju's algorithm

for each unvisited vertex u, DFS(u)

 try all free neighbor v of u, DFS(v)

 finish DFS(u), add u to the front of list

transpose the graph

DFS in order of the list, DFS(u)

 try all free neighbor v of u, DFS(v)

each time we complete a DFS, we get an SCC

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 219

Graph Segmentation - SCC - Tarjan's algorithm

for each unvisited vertex u

 DFS(u), s.push(u), num[u] = low[u] = DFSCount

 for each neighbor v of u

 if v is unvisited, DFS(v)

 low[u] = min(low[u], low[v])

 if low[u] == num[u] // root of an SCC

 pop from stack s until we get u

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 220

Graph Segmentation - SCC Algorithm - Example-1

Kosaraju's algorithm

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 221

Graph Segmentation - SCC Algorithm - Ex-1 / Step - 1

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 222

Graph Segmentation

SCC Algorithm - Ex-1 / Step - 2

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 223

Graph Segmentation

SCC Algorithm - Example-1 / Step - 3

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 224

Graph Segmentation

SCC Algorithm - Example-1/ Step - 4

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 225

Graph Segmentation

SCC Algorithm - Example-1/ Step - 5

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 226

Graph Segmentation

SCC Algorithm - Example-1/ Step - 6

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 227

Graph Segmentation

SCC Algorithm - Example-1/ Step - 7

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 228

Graph Segmentation

SCC Algorithm - Example-1/ Step - 8

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 229

Graph Segmentation

SCC Algorithm - Example-1/ Step - 9

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 230

Graph Segmentation

SCC Algorithm - Example-1/ Step - 10

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 231

Graph Segmentation

SCC Algorithm - Example-1/ Step - 11

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 232

Graph Segmentation

SCC Algorithm - Example-1/ Step - 12

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 233

Graph Segmentation

SCC Algorithm - Example-1/ Step - 13

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 234

Graph Segmentation

SCC Algorithm - Example-1/ Step - 14

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 235

Graph Segmentation

SCC Algorithm - Example-1/ Step - 15

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 236

Graph Segmentation

SCC Algorithm - Example-1/ Step - 16

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 237

Graph Segmentation

SCC Algorithm - Example-1/ Step - 17

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 238

Graph Segmentation

SCC Algorithm - Example-1/ Step - 18

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 239

Graph Segmentation

SCC Algorithm - Example-1/ Step - 19

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 240

Graph Segmentation

SCC Algorithm - Example-1/ Step - 20

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 241

Graph Segmentation

SCC Algorithm - Example-1/ Step - 21

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 242

Graph Segmentation

SCC Algorithm - Example-1/ Step - 22

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 243

Graph Segmentation

SCC Algorithm - Example-1/ Step - 23

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 244

Graph Segmentation

SCC Algorithm - Example-1/ Step - 24

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 245

Graph Segmentation

SCC Algorithm - Example-1/ Step - 25

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 246

Graph Segmentation

SCC Algorithm - Example-1/ Step - 26

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 247

Graph Segmentation

SCC Algorithm - Example-1/ Step - 27

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 248

Graph Segmentation

SCC Algorithm - Example-1/ Step - 28

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 249

Graph Segmentation

SCC Algorithm - Example-1/ Step - 29

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 250

Graph Segmentation

SCC Algorithm - Example-1/ Step - 30

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 251

Graph Segmentation

SCC Algorithm - Example-1/ Step - 31

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 252

Graph Segmentation

SCC Algorithm - Example-1/ Step - 32

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 253

Graph Segmentation

SCC Algorithm - Example-1/ Step - 33

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 254

Graph Segmentation

SCC Algorithm - Example-1/ Step - 34

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 255

Graph Segmentation

SCC Algorithm - Example-1/ Step - 35

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 256

Graph Segmentation

SCC Algorithm - Example-1/ Step - 36

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 257

Graph Segmentation

SCC Algorithm - Example-1/ Step - 37

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 258

Graph Segmentation

SCC Algorithm - Example-1/ Step - 38

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 259

Graph Segmentation

SCC Algorithm - Example-1/ Step - 39

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 260

Graph Segmentation

SCC Algorithm - Example-1/ Step - 40

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 261

Graph Segmentation

SCC Algorithm - Example-1/ Step - 41

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 262

Graph Segmentation

SCC Algorithm - Example-1/ Step - 42

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 263

Graph Segmentation

Strongly Connected Components Generate Acyclic Component Graph

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 264

CE100 Algorithms and Programming II

Begining − of − SCC − Proof

 RTEU CE100 Week-10 265

Strongly Connected Components

Lemma 1: no path between a pair of vertices in the same , ever leaves the

Proof: let and be in the same

let be on some path

but a path

therefore and are in the same ()

CE100 Algorithms and Programming II

SCC SCC

u v SCC ⇒ u⇋ v

w u ↦ w ↦ v ⇒ u ↦ w

v ↦ u ⇒ ∃ w ↦ v ↦ u ⇒ w ↦ u

u w SCC ⟹ Q.E.D

 RTEU CE100 Week-10 266

Strongly Connected Components

Theorem 1: in any , all vertices in the same are placed in the same

Proof: let be the first vertex discovered in

because is first, at time

So all vertices are on each path
since these paths never leave Sr

Hence each vertex in becomes a descendent of (White-path Theorem) ()

CE100 Algorithms and Programming II

DFS SCC DFT

r SCC S ​r

r color[x] = WHITE ∀x ∈ S ​ −r r d[r]

WHITE r ↦ x ∀x ∈ S ​ −r r

S ​ −r r r ⟹ Q.E.D

 RTEU CE100 Week-10 267

Notation for the Strongly Connected Components

 and refer to those values computed by at step (1)

 refers to not

Definition: forefather of vertex

1. That vertex such that and is maximized

2. possible because

CE100 Algorithms and Programming II

d[u] f [u] DFS(G)

u ↦ v G GT

ϕ(u) u

ϕ(u) = w u ↦ w f [w]

ϕ(u) = u u ↦ u ⇒ f [u] ≤ f [ϕ(u)]

 RTEU CE100 Week-10 268

Strongly Connected Components

Lemma 2:

Proof try to show that

For any

So,

Due to definition of we have

Therefore

 (same vertex)

CE100 Algorithms and Programming II

ϕ(ϕ(u)) = ϕ(u)

f [ϕ(ϕ(u))] = f [ϕ(u)] :

u, v ∈ V ;u ↦ v ⇒ R ​ ⊆v R ​ ⇒u f [ϕ(v)] ≤ f [ϕ(u)]

u ↦ ϕ(u) ⇒ f [ϕ(ϕ(u))] ≤ f [ϕ(u)]

ϕ(u) f [ϕ(ϕ(u))] ≥ f [ϕ(u)]

f [ϕ(ϕ(u))] = f [ϕ(u)]

f [x] = f [y] ⇒ x = y

 RTEU CE100 Week-10 269

Strongly Connected Components

Properties of forefather:
Every vertex in an has the same forefather which is in the

Forefather of an is the representative vertex of the

In the of , forefather of an is the
first vertex discovered in the

last vertex finished in the

CE100 Algorithms and Programming II

SCC SCC

SCC SCC

DFS G SCC

SCC

SCC

 RTEU CE100 Week-10 270

Strongly Connected Components

Theorem 2: of any in any of is an ancestor of

Proof: Trivial if .

If , consider color of at time

 is : is an ancestor of proving the theorem

 is : contradiction to def. of

 is : cases according to colors of intermediate vertices on

Path at time :

CE100 Algorithms and Programming II

ϕ(u) u ∈ V DFS G u

ϕ(u) = u

ϕ(u) = u ϕ(u) d[u]

ϕ(u) GRAY ϕ(u) u ⇒

ϕ(u) BLACK f [ϕ(u)] < f [u] ⇒ ϕ(u)

ϕ(u) WHITE exist 2
p(u,ϕ(u))

p(u,ϕ(u)) d[u]

 RTEU CE100 Week-10 271

Strongly Connected Components

Case 1: every intermediate vertex is
 becomes a descendant of ()

 contradiction

Case 2: some intermediate vertices on
Let be the last vertex on

Then, must be since edge () cannot exist

But then, is a white path

 is a descendant of (by white-path theorem)

contradicting our choice for

CE100 Algorithms and Programming II

x ​ ∈i p(u,ϕ(u)) WHITE

⇒ ϕ(u) u White − Path − Theorem

⇒ f [ϕ(u)] < f [u]

⇒
∃ non − WHITE p(u,ϕ(u))
x ​t non − WHITE

p(u,ϕ(u)) = ⟨u,x ​,x ​, … ,x ​,ϕ(u)⟩1 2 r

x ​t GRAY BLACK − to − WHITE x ​,x ​t t+1

p(x ​,ϕ(u)) =t ⟨x ​,x ​, … ,x ​,ϕ(u)⟩t+1 t+2 r

⇒ ϕ(u) x ​t

f [x ​] >t f [ϕ(u)]

ϕ(u) ⟹ Q.E.D.
 RTEU CE100 Week-10 272

Strongly Connected Components

C1: in any of vertices and lie in the same ,

Proof: (by definition) and since is an ancestor of (by Theorem 2)

Theorem 3: two vertices lie in the same in a of

Proof: let and be in the same

CE100 Algorithms and Programming II

DFS G = (V ,E) u ϕ(u) SCC ∀u ∈ V

u ↦ ϕ(u) ϕ(u) ↦ u ϕ(u) u

u, v ∈ V SCC ⟺ ϕ(u) = ϕ(v) DFS

G = (V ,E)

u v SCC C ​ ⇒uv u⇋ v

 RTEU CE100 Week-10 273

Strongly Connected Components

 and , i.e.,
every vertex reachable from is reachable from and vice-versa

So, and by definition of forefather

Proof: Let by and by

By Theorem 3: s are sets of vertices with the same forefather

By Theorem 2 and parenthesis Theorem: A forefather is the first vertex discovered and the last
vertex finished in its

CE100 Algorithms and Programming II

∀w : v ↦ w ⇒ u ↦ w ∀w : u ↦ w ⇒ v ↦ w

u v

w = ϕ(u) ⇒ w = ϕ(v) w = ϕ(v) ⇒ w = ϕ(u)

ϕ(u) = ϕ(v) = w ∈ C ​ ⇒w u ∈ C ​w C1 v ∈ C ​w C1

SCC

SCC

 RTEU CE100 Week-10 274

: Why do we Run on ?

Consider with largest finishing time computed by on

 must be a forefather by definition since and is maximum in

 vertices in ’s SCC

where

 since is maximum

 reachability set of

i.e., those vertices reachable from

Thus identifies all vertices in and
blackens them

CE100 Algorithms and Programming II

SCC DFS GT

r ∈ V DFS G

r r ↦ r f [r] V

C ​ =r ? : Cr = r = {u ∈ V : ϕ(u) = r}
⇒ C ​ =r {u ∈ V : u ↦ r and f [x] ≤ f [r]∀x ∈ R ​}u

R ​ =u {v ∈ V : u ↦ v}

⇒ C ​ =r {u ∈ V : u ↦ r} f [r]

⇒ C ​ =r R ​ =r
T {u ∈ V : r ↦ u ∈ G } =T r ∈ GT

C ​ =r r ∈ GT

DFS-VISIT(G , r)T C ​r

 RTEU CE100 Week-10 275

: Why do we Run on ?

 can also be used to identify

Then, on continues with $DFS-VISIT(G^T, r')
where

 must be a forefather by definition since and
 is maximum in

CE100 Algorithms and Programming II

SCC DFS GT

BFS(G , r)T C ​r

DFS GT

f [r] >′ f [w]∀w ∈ V − C ​r

r r ↦′ r′

f [r]′ V − C ​r

 RTEU CE100 Week-10 276

: Why do we Run on ?

Hence by similar reasoning identifies

Thus, each in
identifies an with

CE100 Algorithms and Programming II

SCC DFS GT

DFS-VISIT(G , r)T ′ C ​r′

DFS-VISIT(G ,x)T DFS(G)T

SCC C ​x ϕ = x

 RTEU CE100 Week-10 277

CE100 Algorithms and Programming II

End − of − SCC − Proof

 RTEU CE100 Week-10 278

Directed Acyclic Graphs (DAG)

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 279

Directed Acyclic Graphs (DAG)

No Directed Cycles

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 280

Directed Acyclic Graphs (DAG)

Theorem: a directed graph G is acyclic iff on yields no Back edges

Proof (acyclic  no Back edges; by contradiction):

Let (v,u) be a Back edge visited during scanning
 and

 is contained in is descendent of

 a path from to in a and hence in

 edge will create a cycle (Back edge cycle)

CE100 Algorithms and Programming II

DFS G

Adj[v]
⇒ color[v] = color[u] = GRAY d[u] < d[v]

⇒ int[v] int[u] ⇒ v u

⇒ ∃ u v DFT G

∴ (v,u) ⇒

 RTEU CE100 Week-10 281

Directed Acyclic Graphs (DAG) - aAcyclic iff no Back edges

Proof (no Back edges acyclic):
Suppose contains a cycle (Show that a on yields a ; proof by
contradiction)
Let be the first vertex discovered in and let be proceeding edge in

At time a white path from to along

By Thrm becomes a descendent of in a

Therefore is a (descendent to ancestor)

CE100 Algorithms and Programming II

⇒
G C DFS G BackEdge

v C (u, v) C

d[v] : ∃ v u C

WhitePath u v DFT

(u, v) BackEdge

 RTEU CE100 Week-10 282

Topological Sort of a DAG

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 283

Graph Traversal - Topological Sort of a DAG

When we are scheduling jobs or tasks, they may have dependencies.

For example, before we finish task a, we have to finish b first.

In this case, given a set of tasks and their dependencies, how shall we arrange our
schedules? There comes an interesting graph algorithm: Topological Sort.

According to Introduction to Algorithms, given a directed acyclic graph (DAG),

a topological sort is a linear ordering of all vertices such that for any edge (u, v), u comes before
v.

Another way to describe it is that when you put all vertices horizontally on a line, all of the edges
are pointing from left to right.

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 284

Graph Traversal - Topological Sort of a DAG

Topological sort is a linear ordering of a directed acyclic graph.

If a graph has a cycle, it is not a directed acyclic graph.

A graph is acyclic if it has no cycles.

Linear ordering " " of such that

 in ordering
Ordering may not be unique

i.e., mapping the partial ordering to total ordering may yield more than one orderings

CE100 Algorithms and Programming II

< V

(u, v) ∈ E ⇒ u < v

 RTEU CE100 Week-10 285

Graph Traversal -Topological Sort of a DAG

DFS version

The key observation is that, leaf nodes should always come after their parents and ancestors.
Following this intuition we can apply DFS and output nodes from leaves to the root.

We need to implement a boolean array visited so that visited[i] indicates if we have visited vertex
i.

For each unvisited node, we would first mark it as visited and call DFS() to start searching its
neighbours.

After finishing this, we can insert it to the front of a list. After visiting all nodes, we can return that
list.

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 286

Graph Traversal

Topological Sort of a DAG

DFS version

run DFS(G)

when a vertex finished, output it

vertices output in **reverse** topologically sorted order

Runs in O(V+E) time

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 287

Graph Traversal

Topological Sort of a DAG

DFS version

def topological_sort():

 for each node:

 if visited[node] is False:

 dfs(node)

def dfs(node):

 visited[node] = True

 for nei in neighbours[node]:

 dfs(node)

	 if visited(node) = false:

	 	 ret.insert_at_the_front(node)

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 288

Graph Traversal

Topological Sort of a DAG

DFS version

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 289

Graph Traversal

Topological Sort - DFS Version STEP-1

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 290

Graph Traversal

Topological Sort - DFS Version STEP-2

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 291

Graph Traversal

Topological Sort - DFS Version STEP-3

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 292

Graph Traversal

Topological Sort - DFS Version STEP-4

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 293

Graph Traversal

Topological Sort - DFS Version STEP-5

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 294

Graph Traversal

Topological Sort - DFS Version STEP-6

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 295

Graph Traversal

Topological Sort - DFS Version STEP-7

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 296

Graph Traversal

Topological Sort - DFS Version STEP-8

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 297

Graph Traversal

Topological Sort - DFS Version STEP-9

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 298

Graph Traversal

Topological Sort - DFS Version STEP-10

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 299

Graph Traversal

Topological Sort - DFS Version

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 300

Graph Traversal

Topological Sort of a DAG

BFS version (Kahn's algorithm)

For BFS, we need an array indegree to keep the track of indegrees. Then we will try to output all
nodes with 0 indegree, and remove the edges coming out of them at the same time. Besides,
remember to put the nodes that become 0 indegree in the queue.

Then, we can keep doing this until all nodes are visited. To implement it, we can store the graph
in an adjacent list (a hashmap or a dictionary in Python) and a queue to loop.

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 301

Graph Traversal

Topological Sort of a DAG

BFS version (Kahn's algorithm)

indegree = an array indicating indegrees for each node

neighbours = a HashMap recording neighbours of each node

queue = []

for i in indegree:

 if indegree[i] == 0:

 queue.append(i)

	 	

while !queue.empty():

 node = queue.dequeue()

 for neighbour in neighbours[node]:

 indegree[neighbour] -= 1

 if indegree[neighbour] == 0:

 queue.append(neighbour)

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 302

Graph Traversal

Topological Sort - BFS version (Kahn's algorithm)

STEP-1

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 303

Graph Traversal

Topological Sort - BFS version (Kahn's algorithm)

STEP-2

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 304

Graph Traversal

Topological Sort - BFS version (Kahn's algorithm)

STEP-3

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 305

Graph Traversal

Topological Sort - BFS version (Kahn's algorithm)

STEP-4

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 306

Graph Traversal

Topological Sort - BFS version (Kahn's algorithm)

STEP-5

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 307

Graph Traversal

Topological Sort - BFS version (Kahn's algorithm)

STEP-6

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 308

Graph Traversal

Topological Sort - BFS version (Kahn's algorithm)

STEP-7

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 309

Graph Traversal

Topological Sort - BFS version (Kahn's algorithm)

STEP-8

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 310

Graph Traversal

Topological Sort - BFS version (Kahn's algorithm)

STEP-9

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 311

Graph Traversal

Topological Sort - BFS version (Kahn's algorithm)

STEP-10

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 312

Graph Traversal

Topological Sort - BFS version (Kahn's algorithm)

STEP-11 (Final)

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 313

Graph Traversal

Topological Sort of a DAG

Correctness of the Algorithm

Claim:

Proof: consider any edge explored by

when is explored, is
if is , is a Back edge (contradicting acyclic theorem)

if is , becomes a descendent of (b WPT)

if is ,

CE100 Algorithms and Programming II

(u, v) ∈ E ⇒ f [u] > f [v]

(u, v) DFS

(u, v) u GRAY

v GRAY (u, v)

v WHITE v u ⇒ f [v] < f [u]

v BLACK f [v] < d[u] ⇒ f [v] < f [u]
Q.E.D

 RTEU CE100 Week-10 314

Topological Sort of a DAG - Getting Dressed ExampleCE100 Algorithms and Programming II

 RTEU CE100 Week-10 315

Cycle Detection

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 316

Detect Cycle in a Directed Graph

Approach:

Depth First Traversal can be used to detect a cycle in a Graph.
DFS for a connected graph produces a tree.

There is a cycle in a graph only if there is a back edge present in the graph.
A back edge is an edge that is

from a node to itself (self-loop) or

one of its ancestors in the tree produced by DFS.

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 317

Detect Cycle in a Directed Graph

Algorithm:

Create the graph using the given number of edges and vertices.

Create a recursive function that initializes the current index or vertex, visited, and recursion stack.

Mark the current node as visited and also mark the index in recursion stack.

Find all the vertices which are not visited and are adjacent to the current node. Recursively call
the function for those vertices, If the recursive function returns true, return true.

If the adjacent vertices are already marked in the recursion stack then return true.

Create a wrapper class, that calls the recursive function for all the vertices and if any function
returns true return true. Else if for all vertices the function returns false return false.

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 318

Detect Cycle in a Directed Graph

Complexity Analysis:
Time Complexity: .

Time Complexity of this method is same as time complexity of traversal which is
.

Space Complexity: .
To store the visited and recursion stack space is needed.

CE100 Algorithms and Programming II

O(V + E)
DFS

O(V + E)

O(V)
O(V)

 RTEU CE100 Week-10 319

Detect cycle in an undirected graph

Approach:

Run a DFS from every unvisited node.
Depth First Traversal can be used to detect a cycle in a Graph.

DFS for a connected graph produces a tree.

There is a cycle in a graph only if there is a back edge present in the graph.

A back edge is an edge that is joining a node to
itself (self-loop) or

one of its ancestor in the tree produced by DFS.

To find the back edge to any of its ancestors
keep a visited array and if there is a back edge to any visited node

then there is a loop and return true.

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 320

Detect cycle in an undirected graph

Algorithm:

Create the graph using the given number of edges and vertices.
Create a recursive function that have current index or vertex, visited array and parent node.

Mark the current node as visited .

Find all the vertices which are not visited and are adjacent to the current node.
Recursively call the function for those vertices, If the recursive function returns true return
true.

If the adjacent node is not parent and already visited then return true.
Create a wrapper class, that calls the recursive function for all the vertices and if any function
returns true, return true.

Else if for all vertices the function returns false return false.

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 321

Detect cycle in an undirected graph

Complexity Analysis:

Time Complexity: .
The program does a simple DFS Traversal of the graph which is represented
using adjacency list. So the time complexity is .

Space Complexity: .
To store the visited array space is required.

CE100 Algorithms and Programming II

O(V + E)

O(V + E)

O(V)
O(V)

 RTEU CE100 Week-10 322

Graph Coloring

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 323

Graph Coloring

Given an undirected graph and a number
m,
determine if the graph can be coloured
with at most m colours such that no two
adjacent vertices of the graph are colored
with the same color.

Here coloring of a graph means the
assignment of colors to all vertices.

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 324

Graph Coloring

Naive Approach:
Generate all possible configurations of colors.
Since each node can be coloured using any of the m available colours,

the total number of colour configurations possible are .

After generating a configuration of colour,
check if the adjacent vertices have the

same colour or not.
If the conditions are met,

print the combination and break the loop.

CE100 Algorithms and Programming II

mV

 RTEU CE100 Week-10 325

Graph Coloring

Naive Algorithm:

Create a recursive function that takes current index, number of vertices and output color array.

If the current index is equal to number of vertices.
Check if the output color configuration is safe,

i.e check if the adjacent vertices do not have same color.

If the conditions are met,
print the configuration and break.

Assign a color to a vertex (1 to m).

For every assigned color
recursively call the function with next index and number of vertices

If any recursive function returns true break the loop and returns true.

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 326

Graph Coloring

Naive Complexity Analysis:

Time Complexity: .
There is a total combination of colors. So the time complexity is

.

Space Complexity: .
Recursive Stack of function will require
space.

CE100 Algorithms and Programming II

O(m)V

O(m)V

O(m)V

O(V)
graphColoring(…) O(V)

 RTEU CE100 Week-10 327

Graph Coloring

Backtracking Approach:
The idea is to assign colors one by one to different vertices,

starting from the vertex 0.
Before assigning a color, check for safety by considering already assigned colors
to the adjacent vertices

i.e check if the adjacent vertices have the same color or not.

If there is any color assignment that does not violate the conditions,
mark the color assignment as part of the solution.

If no assignment of color is possible then backtrack and return false.

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 328

Graph Coloring

Backtracking Algorithm:

Create a recursive function that takes the graph, current index, number of vertices, and output
color array.

If the current index is equal to the number of vertices. Print the color configuration in output
array.

Assign a color to a vertex (1 to m).

For every assigned color,
check if the configuration is safe,

(i.e. check if the adjacent vertices do not have the same color)
recursively call the function with next index and number of vertices

If any recursive function returns true break the loop and return true.

If no recursive function returns true then return false.

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 329

Graph Coloring

Using BFS Approach / Algorithm

The approach here is to color each node from 1 to n

initially by color 1.

And start travelling BFS from an unvisited starting node to cover all connected components in
one go.

On reaching each node during BFS traversal, do the following:

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 330

Graph Coloring

Using BFS Approach / Algorithm

Check all edges of the given node.

For each vertex connected to our node via an edge:
check if the color of the nodes is the same.

If same,
increase the color of the other node (not the current) by one.

check if it visited or unvisited.
If not visited,

mark it as visited and push it in a queue.

Check condition for maxColors till now.
If it exceeds M, return false

After visiting all nodes,
return true (As no violating condition could be found while travelling).

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 331

Graph Coloring

Using BFS Complexity Analysis:
Time Complexity: .

Space Complexity: .
For Storing Visited List.

CE100 Algorithms and Programming II

O(V + E)

O(V)

 RTEU CE100 Week-10 332

Biparitite Checker

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 333

Biparitite Checker

A Bipartite Graph is a graph
whose vertices can be divided into

two independent sets,
U and V such that every edge (u, v) either connects a vertex from U to
V or a vertex from V to U.

In other words, for every edge (u, v),
either u belongs to U and v to V,

or u belongs to V and v to U.
We can also say that there is no edge that connects vertices of same set.

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 334

Biparitite Checker

A bipartite graph is possible if the graph coloring is possible using two colors
such that vertices in a set are colored with the same color.

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 335

Biparitite Checker

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 336

Biparitite Checker

Note that it is possible to color a cycle graph with even cycle using two colors.

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 337

Biparitite Checker

It is not possible to color a cycle graph with odd cycle using two colors.

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 338

Biparitite Checker Algorithm

One approach is to check whether the graph is 2-colorable or not using
backtracking algorithm m coloring problem.

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 339

Biparitite Checker Algorithm

Following is a simple algorithm to find out whether a given graph is Bipartite or
not using

Breadth First Search (BFS).

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 340

Biparitite Checker Algorithm

1. Assign RED color to the source vertex (putting into set U).

2. Color all the neighbors with BLUE color (putting into set V).
3. Color all neighbor’s neighbor with RED color (putting into set U).

4. This way, assign color to all vertices such that it satisfies all the constraints of m
way coloring problem where m = 2.

5. While assigning colors, if we find a neighbor which is colored with same color as
current vertex, then the graph cannot be colored with 2 vertices (or graph is not
Bipartite)

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 341

Disjoint Set Operations

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 342

Disjoint Set Operations

A disjoint-set data structure
Maintains a collection of disjoint dynamic sets

Each set is identified by a representative which is some member of the set

In some applications,
It doesn't matter which member is used as the representative
We only care that,

if we ask for the representative of a set twice without
modifying the set between the requests,

we get the same answer both times

CE100 Algorithms and Programming II

S = {s ​, … , s ​}1 k

 RTEU CE100 Week-10 343

Disjoint Set Operations

In other applications,
There may be a prescribed rule for choosing the representative

E.G. Choosing the smallest member in the set

Each element of a set is represented by an object " "

 creates a new set whose only member is
Object is the representative of the set

 is not already a member of any other set

 unites the dynamic sets that contain
 are assumed to be disjoint prior to the operation

The new representative is some member of

CE100 Algorithms and Programming II

x

MAKE-SET(x) x

x

x

UNION(x, y) S ​&S ​x y x&y
S ​&S ​x y

S ​ ∪x S ​y

 RTEU CE100 Week-10 344

Disjoint Set Operations

Usually, the representative of either or is chosen as the new
representative

We destroy sets and , removing them from the collection since we
require the sets in the collection to be disjoint

 returns a pointer to the representative of the unique set
containing x
We will analyze the running times in terms of two parameters

 : The number of operations

 : The total number of , and
operations

CE100 Algorithms and Programming II

S ​x S ​y

S ​x S ​y S

FIND-SET(x)

n MAKE-SET

m MAKE-SET UNION FIND-SET

 RTEU CE100 Week-10 345

Disjoint Set Operations

Each union operation reduces the number of sets by one
since the sets are disjoint
Therefore, only one set remains after union operations

Thus, the number of union operations is $ \leq n – 1$

Also note that, always hold
since operations are included in the total number of
operations

CE100 Algorithms and Programming II

n − 1

m ≥ n

MAKE-SET

 RTEU CE100 Week-10 346

An Application of Disjoint-Set Data Structures

Determining the connected components of an undirected graph

CONNECTED-COMPONENTS(G)

for each vertex v ∈ V [G] do

MAKE-SET(v)

endfor

for each edge (u, v) ∈ E[G] do

if FIND-SET(u) = FIND-SET(v) then

UNION(u, v)

endif

endfor

end

CE100 Algorithms and Programming II

G = (V ,E)

 RTEU CE100 Week-10 347

An Application of Disjoint-Set Data Structures

SAME-COMPONENT(u, v)

if FIND-SET(u) = FIND-SET(v) then

return TRUE

else

return FALSE

endif

end

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 348

An Application of Disjoint-Set Data Structures
CE100 Algorithms and Programming II

 RTEU CE100 Week-10 349

Linked-List Representation of Disjoint Sets

Represent each set by a linked-list

The first object in the linked-list serves as its set representative
Each object in the linked-list contains

A set member

A pointer to the object containing the next set member
A pointer back to the representative

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 350

Linked-List Representation of Disjoint Sets

 :

 : We return the representative pointer of

CE100 Algorithms and Programming II

MAKE-SET(x) O(1)

FIND-SET(x) x

 RTEU CE100 Week-10 351

Linked-List Representation of
Disjoint Sets

A Simple Implementation of Union :

 's list to the end of 's
list

The representative of 's list
becomes the new representative

 the representative
pointer of each object originally on

's list which takes time linear in the
length of 's list

CE100 Algorithms and Programming II

UNION(x, y)
APPEND x y

y

UPDATE

x

x

 RTEU CE100 Week-10 352

Linked-List Representation of Disjoint Sets

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 353

Analysis of the Simple Union Implementation

​ ​ ​

Operation

− − −
MAKE-SET(X)1

MAKE-SET(X)2

⋮
MAKE-SET(X ​)n
UNION(X ​,X ​)1 2

UNION(X ​,X ​)2 3

UNION(X ​,X ​)3 4

⋮
UNION(X ​,X ​)n−1 n

NumberofObjectstUpdated

− − −
1
1

⋮
1
1
2
3

⋮
n − 1

UpdatedObjects∗

− − −
{x ​}1

∗

{x ​}2
∗

⋮
{x ​}n

∗

{x ​} ∪ {x ​} ← {x ​,x ​}1 2 1
∗

2

{x ​,x ​} ∪ {x ​} ← {x ​,x ​,x ​}1 2 3 1
∗

2
∗

3

{x ​,x ​,x ​} ∪ {x ​} ← {x ​,x ​,x ​,x ​}1 2 3 4 1
∗

2
∗

3
∗

4

⋮
{x ​,x ​, … ,x ​} ∪ {x ​} ← {x ​,x ​,x ​, … ,x ​,x ​}1 2 n−1 n 1

∗
2
∗

3
∗

n−1
∗

n

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 354

Analysis of the Simple Union Implementation

The total number of representative pointer updates

 since

Thus, on the average, each operation requires time

That is, the amortized time of an operation is

CE100 Algorithms and Programming II

+n

MAKE−SET

​ =​
​ i

i=1

∑
n−1

UNION

n + ​ (n −2
1 1)n = ​n +2

1 2
​n =2

1 Θ(n)2

= Θ(m)2 n = ⌈m/2⌉

Θ(m)

Θ(m)

 RTEU CE100 Week-10 355

A Weighted-Union Heuristic

The simple implementation is inefficient because

We may be appending a longer list to a shorter list during a
operation

so that we must update the representative pointer of each member of
the longer list

Maintain the length of each list

Always append the smaller list to the longer list

With ties broken arbitrarily

A single can still take time if both sets have members

CE100 Algorithms and Programming II

UNION

UNION Ω(m) Ω(m)

 RTEU CE100 Week-10 356

A Weighted-Union Heuristic

Theorem: A sequence of operations, of which are
 operations, takes time

Proof: Try to compute an upper bound on the number of representative pointer updates for each
object in a set of size

Consider a fixed object

Each time ’s was updated, was a member of the smaller set

CE100 Algorithms and Programming II

m MAKE-SET, UNION&FIND-SET n

MAKE-SET O(m + nlgn)

n

x

x R − PTR x

{x} ∪ {v} → {x , v} ⟹ ∗ 1-st update ∣S ​∣ ≥x 2

{x, v} ∪ {w ​,w ​} →1 2 {x , v ,w ​,w ​} ⟹ ∗ ∗
1 2 2-nd update ∣S ​∣ ≥x 4

{x, v,w ,w ​} ∪1 2 {z ​, z ​, z ​, z ​} →1 2 3 4 {x , v ,,w ​,w , z ​, z ​, z ​, z ​}; ∣S ​∣ ≥∗ ∗
1
∗

2
∗

1 2 3 4 x 4

3-rd update ∣S∣ ≥ 8

 RTEU CE100 Week-10 357

A Weighted-Union Heuristic

For any , after ’s has been updated times	the resulting set must have at
least members

 of each object can be updated at most time over all operations

Analysis of The Weighted-Union Heuristic
The below illustrates a worst case sequence for a set with objects

The total number of updates

​ ​

= ​ × 1 + ​ × 2 + ​ × 4 + ​ × 8
2
16

4
16

8
16

16
16

= 8 × 1 + 4 × 2 + 2 × 4 + 1 × 8

= 8 × 4

= 32

= ​ = ​lgn = O(nlgn)

lgn

​​ + ​ + ⋯ + ​

2
n

2
n

2
n

2
n

CE100 Algorithms and Programming II

k ≤ n x R − PTR ⌈lgk⌉
k

R − PTR ⌈lgk⌉ UNION

n = 16

R − PTR

 RTEU CE100 Week-10 358

Analysis of The Weighted-Union Heuristic

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 359

Analysis of The Weighted-Union Heuristic

Each operation takes time, and there are of them

The total time for the entire sequence

CE100 Algorithms and Programming II

MAKE-SET&FIND-SET O(1) O(m)

= O(m + nlgn)

 RTEU CE100 Week-10 360

Disjoint Set Forests

In a faster implementation, we represent sets by rooted trees
Each node contains one member
Each tree represents one set

Each member points only to its parent

The root of each tree contains the representative

Each root is its own parent

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 361

Disjoint Set Forests

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 362

Disjoint Set Forests - Straightforward Implementation

 : Simply creates a tree with just one node :

 : Follows parent pointers until the root node is found
The nodes visited on this path toward the root constitute the

: Makes the root of one tree to point to the other one

CE100 Algorithms and Programming II

MAKE-SET O(1)

FIND-SET
FIND-PATH

UNION

 RTEU CE100 Week-10 363

Disjoint Set Forests - Heuristics To Improve the Running Time

Straightforward implementation is no faster than ones that use the linked-list representation

A sequence of 's, following a sequence of n 's, may create a tree,
which is just a linear chain of nodes

CE100 Algorithms and Programming II

n–1 UNION MAKE-SET
n

 RTEU CE100 Week-10 364

Disjoint Set Forests - Heuristics To Improve the Running Time

First Heuristic : UNION by Rank

Similar to the weighted-union used for the linked-list representation

The idea is to make the root of the tree with fewer nodes point to the root of the tree with more
nodes
Rather than explicitly keeping the size of the subtree

rooted at each node
We maintain a rank

that approximates the logarithm of the subtree size

and is also an upperbound on the height of the node

During a operation
make the root with smaller rank to point to the root with larger rank

CE100 Algorithms and Programming II

UNION

 RTEU CE100 Week-10 365

Disjoint Set Forests - Heuristics To Improve the Running Time

Second Heuristic : Path Compression

Use it during the operations
Make each node on the to point directly to the root

CE100 Algorithms and Programming II

FIND-SET
FIND-PATH

 RTEU CE100 Week-10 366

Disjoint Set Forests - Heuristics To Improve the Running Time

Path Compression During FIND-SET(b) Operation

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 367

Disjoint Set Forests - Pseudocodes For the Heuristics

Implementation of UNION-BY-RANK Heuristic

: Pointer to the parent of the node

: An upperbound on the height of node in the tree

​ ​ ​

MAKE-SET(x)

p[x] → x

rank[x] → 0 end

…

​ ​

UNION(x, y)

LINK(FIND-SET(x), FIND-SET(y))

end

CE100 Algorithms and Programming II

p[x] x

rank[x] x

 RTEU CE100 Week-10 368

Disjoint Set Forests - Pseudocodes For the Heuristics

Implementation of UNION-BY-RANK Heuristic

LINK(x, y)

if rank[x] > rank[y] then

p[y] → x

else

p[x] → y

if rank[x] = rank[y] then

rank[y] = rank[y] + 1

endif

endif

end

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 369

Implementation of UNION-BY-RANK Heuristic

When a singleton set is created by a
the initial rank of the single node in the tree is zero

Each operation leaves all ranks unchanged

When applying a to two trees,
we make the root of tree with higher rank

the parent of the root of lower rank

**Ties are broken arbitrarily **

CE100 Algorithms and Programming II

MAKE-SET

FIND-SET

UNION

 RTEU CE100 Week-10 370

Implementation of the Path-Compression Heuristic

The FIND-SET procedure with Path-Compression

Iterative Version

FIND-SET(x)

y ← x

while y = p[y] do

y ← p[y]

endwhile

root ← y

while x = p[x] do

parent ← p[x]

p[x] ← root

x ← parent

endwhile

return root

end

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 371

Implementation of the Path-Compression Heuristic

The FIND-SET procedure with Path-Compression

Recursive Version

​ ​

FIND-SET(x)

if x = p[x] then

p[x] ← FIND-SET(p[x])

endif

return p[x]

end

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 372

Analysis Of Union By Rank With Path Compression

When we use both union-by-rank and path-compression the worst case running time is
 where is the very slowly growing inverse of the Ackerman’s function.

-In any conceivable application of disjoint-set data structure .

Thus, we can view the running time as linear in practical situations.

CE100 Algorithms and Programming II

O(mα(m,n)) α(m,n)

α(m,n) ≤ 4

 RTEU CE100 Week-10 373

Minimum Spanning Tree (MST)
Kruskal
Prim

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 374

Minimum Spanning Tree

One of the most famous greedy algorithms.
Weight is minimum over all

It has edges

It has no cycles
It might not be unique

Undirected Graph

Connected
Weight Function

Spanning Tree : Tree that connects all vertices

CE100 Algorithms and Programming II

∣V ∣ − 1

G = (V ,E)

ω : E → R

 RTEU CE100 Week-10 375

Minimum Spanning Tree

MST :

Note : MST is not unique.

CE100 Algorithms and Programming II

ω(T) = (u, v) ∈∑ Tω(u, v)

 RTEU CE100 Week-10 376

MST-Optimal Structure

Optimal Structure: Optimal tree has optimal subtrees.
Let be an of

Removing any edge of partitions into two subtrees :

Where

CE100 Algorithms and Programming II

T MST G = (V ,E)

(u, v) T T T ​&T ​1 2

T ​ =1 (V ​,E ​)&T ​ =1 T ​1 2 (V ​,E ​)2 T ​2

 RTEU CE100 Week-10 377

MST-Optimal Structure

Let be
subgraphs induced by

i.e.

Claim : are s of respectively

Proof :

There can’t be better trees than for

Otherwise, would be suboptimal for

CE100 Algorithms and Programming II

G ​ =1 (V ,E ​)&G ​ =1 1 2 (V ​,E ​)2 2

V ​&V ​1 2

E ​ =i {(x, y) ∈ E : x, y ∈ V ​}i
T ​&T ​1 2 MST G ​&G ​1 2

ω(T) = ω(u, v) + ω(T1) + ω(T2)

T ​&T ​1 2 G ​&G ​1 2

T G

 RTEU CE100 Week-10 378

Generic MST Algorithm

 is always a subset of some

 is a safe edge for if is also a subtree of some

GENERIC-MST(G,ω)

A ← ∅

while A does not form a spanning tree do

find a safe edge (u, v) for A

A ← A ∪ {(u, v)}

return A

end

CE100 Algorithms and Programming II

A MST (s)

(u, v) A A ∪ {(u, v)} MST

 RTEU CE100 Week-10 379

Generic MST Algorithm

One safe edge must exist at each step since :

 where is an

Let is safe for

A cut of is a Partition of

An edge crosses the cut
if or vice versa

A cut respects the set of edges if no edge in crosses the cut

An edge is a light edge crossing a cut
If its weight is the minimum of any edges crossing the cut
There can be more than one light edge crossing the cut in the case of ties.

CE100 Algorithms and Programming II

A ⊂ T T MST

(u, v) ∈ T (u, v) ∍ A ⇒ (u, v) A

(S,V − S) G = (V ,E) V

(u, v) ∈ E (S,V − S)
u ∈ S&v ∈ V − S

A A

 RTEU CE100 Week-10 380

TODO - Missing Parts...

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 381

MST - Kruskal Algorithm

Sort the graph edges with weight
Add from minimum weights

Only add edges which doesn't form a cycle
Disjoint Sets

MAKE-SET

FIND-SET
UNION

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 382

MST - Kruskal Algorithm
MST-KRUSKAL(G,ω)

A ← ∅

for each vertex v ∈ V [G] do

MAKE-SET(v)

SORT the edges of E by nondecreasing weight ω

for each edge (u, v) ∈ E in nondecreasing order do

ifFIND-SET(u) = FIND − SET (v) then

A ← A ∪ {(u, v)}

UNION(u, v)

returnA

end

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 383

MST - Kruskal Analysis of Algorithm

Depends on Implementation of Disjoint Sets
init set take

sort edge

for loop FIND-SET and UNION

Total Time =

CE100 Algorithms and Programming II

O(1)

O(ElogE)

O(E)

∣V ∣

O((V + E)α(V))

∣E∣ ≤ ∣V ∣ − 1
logE = O(logV)

O(ElgV)

O(ElgE)
 RTEU CE100 Week-10 384

MST - Prim

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 385

CE100 Algorithms and Programming II

TBD

 RTEU CE100 Week-10 386

References

Introduction to Algorithms, Third Edition | The MIT Press

Bilkent CS473 Course Notes (new)

Bilkent CS473 Course Notes (old)

BtechSmartClass-Introduction to Graphs

BtechSmartClass-Graph Representations

Leetcode - Topological Sort

GeeksforGeeks-Detect Cycle in a Directed Graph

GeeksforGeeks-Detect Cycle in a Undirected Graph

GeeksforGeeks-m Coloring Problem | Backtracking-5

GeeksforGeeks-Check whether a given graph is Bipartite or not

CE100 Algorithms and Programming II

 RTEU CE100 Week-10 387

https://mitpress.mit.edu/books/introduction-algorithms-third-edition
http://nabil.abubaker.bilkent.edu.tr/473/
http://cs.bilkent.edu.tr/~ugur/teaching/cs473/
http://www.btechsmartclass.com/data_structures/introduction-to-graphs.html
http://www.btechsmartclass.com/data_structures/graph-representations.html
https://leetcode.com/discuss/general-discussion/1078072/introduction-to-topological-sort#:~:text=According%20to%20Introduction%20to%20Algorithms,pointing%20from%20left%20to%20right.
https://www.geeksforgeeks.org/detect-cycle-in-a-graph/?ref=leftbar-rightbar
https://www.geeksforgeeks.org/detect-cycle-undirected-graph/
https://www.geeksforgeeks.org/m-coloring-problem-backtracking-5/
https://www.geeksforgeeks.org/bipartite-graph/?ref=leftbar-rightbar

CE100 Algorithms and Programming II

End − Of − Week − 10 − Course − Notes

 RTEU CE100 Week-10 388

