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Brief Description of Course and Rules

We will first talk about,

1. Course Plan and Communication

2. Grading System, Homeworks, and Exams

please read the syllabus carefully.
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Outline (1)

e |ntroduction to Analysis of Algorithms
o Algorithm Basics

o Flowgorithm

o Pseudocode

% RTEU CE100 Week-1




CE100 Algorithms and Programming |l

Outline (2)

e RAM (Random Access Machine Model)

e Sorting Problem

e |nsertion Sort Analysis

e Algorithm Cost Calculation for Time Complexity
e Worst, Average, and Best Case Summary

e Merge Sort Analysis
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Outline (3)

e Asymptotic Notation
o Big O Notation

o Big Teta Notation
o Big Omega Notation
o Small o Notation

o Small omega Notation
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We Need Mathematical Proofs (1)

e Direct proof

e Proof by mathematical induction
e Proof by contraposition

e Proof by contradiction

e Proof by construction

e Proof by exhaustion
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We Need Mathematical Proofs (2)

e Probabilistic proof
e Combinatorial proof

e Nonconstructive proof
o Statistical proofs in pure mathematics

o Computer-assisted proofs

Mathematical proof - Wikipedia
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https://en.wikipedia.org/wiki/Mathematical_proof
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Introduction to Analysis of Algorithms

e Study two sorting algorithms as examples

o |nsertion sort: Incremental algorithm

o Merge sort: Divide-and-conquer
e |ntroduction to runtime analysis

o Best vs. worst vs. average case

o Asymptotic analysis
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What is Algorithm

Algorithm: A sequence of computational steps that transform the input to the desired
output

Procedure vs. algorithm
An algorithm must halt within finite time with the right output

We Need to Measure Performance Metrics

e Processing Time
e Allocated Memory
e Network Congestion

e Power Usage etc.
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Example Sorting Algorithms

Input: a sequence of n numbers
<CL1, a2,y ..., an>

Algorithm: Sorting / Permutation

1I=dL1L-1D
H @

Output: sorted permutation of the input sequence

<CLH(1) < Q] ST aH(n)>

% RTEU CE100 Week-1
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Pseudo-code notation (1)

e Objective: Express algorithms to humans in a clear and concise way

e Liberal use of English

e |Indentation for block structures

e Omission of error handling and other details (needed in real programs)

You can use Flowgorithm application to understand concept easily.

RTEU CE100 Week-1
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http://www.flowgorithm.org/
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Pseudo-code notation (2)

Links and Examples
Wikipedia

CS50

University of North Florida

GeeksforGeeks
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https://en.wikipedia.org/wiki/Pseudocode
https://cs50.harvard.edu/ap/2021/problems/algorithms/
https://www.unf.edu/~broggio/cop2221/2221pseu.htm
https://www.geeksforgeeks.org/how-to-write-a-pseudo-code/
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Correctness (1)

We often use a loop invariant to help us to understand why an algorithm gives the
correct answer.

Example: (Insertion Sort) at the start of each iteration of the "outer" for loop - the loop
indexed by j - the subarray A[1...j — 1] consist of the elements originally in

All...j — 1] butin sorted order.

% RTEU CE100 Week-1
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Correctness (2)

To use a loop invariant to prove correctness, we must show 3 things about it.

e |nitialization: It is true to the first iteration of the loop.

e Maintaince: If it is true before an iteration of the loop, it remains true before the
next iteration.

e Termination: When the loop terminates, the invariant - usually along with the

reason that the loop terminated - gives us a usefull property that helps show that
the algorithm is correct.
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RAM (Random Access Machine Model) = ©(1) (1)

e Operations
o Single Step
o Sequential

o No Concurrent

o Arithmetic
= add, subtract, multiply, divide, remainder, floor, ceiling,

= shift left/shift right (good by multiply/dividing D

% RTEU CE100 Week-1
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RAM (Random Access Machine Model) = ©(1) (2)

e Data Movement
o |oad, store, copy

e Control
o conditional / unconditional branch

o subroutine calls

o returns

% RTEU CE100 Week-1
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RAM (Random Access Machine Model) = ©(1) (3)

e Each instruction take a constant amount of time
e Integer will be represented by clogn ¢ > 1

e T'(n) the running time of the algorithm:

Z (cost of statement) * (number of times statement is executed) = T'(n)

all statement

% RTEU CE100 Week-1
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What is the processing time ?

1 1 1
Second | Minute | Hour

lgn

RTEU CE100 Week-1

Day

Month

Year

1
Century
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Insertion Sort Algorithm (1)

Insertion sort is a simple sorting algorithm that works similar to the way you sort playing cards in
your hands

The array is virtually split into a sorted and an unsorted part

Values from the unsorted part are picked and placed at the correct position in the sorted part.

% RTEU CE100 Week-1
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e Assume input array : A[1..n]

e |terate 7 from 2ton

already sorted _
ot J

N

insert into sorted array

sorted subarray

e

iter j

% RTEU CE100 Week-1

after iter of j
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Al

ammin

Insertion Sort Algorithm (2)

% RTEU CE100 Week-1

Insertion-Sort(A)

1.forj=2tondo

key = A[j];

=1

while i>0 and A[i]>key do
Ali+1]=Al];
| =1-1;

endwhile

7. Ali+1]=key;

endfor

SO B W
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Insertion Sort Algorithm (Pseudo-Code) (3)

Insertion-Sort(A)
1. for j=2 to A.length
key = A[]]
//insert A[j] into the sorted sequence A[1l...j-1]
i=3-1
while i>0@ and A[i]>key
A[i+1] = A[i]
i=1-1
A[i+1] = key

coNOuUVIT A~ WN
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Insertion Sort Step-By-Step Description (1)

Insertion-Sort(A)
1.forj=2tondo lterate over array
2. key=A[l

Loop invariant:
The subarray A[l..5 — 1]

is always sorted

key

already sorted |

already sorted

key
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Insertion Sort Step-By-Step Description (2)

% RTEU CE100 Week-1

R

i =j-1; ~ Shift right the
while i>0 and A[i]>key do entries in
Al T=AL; - A[l.j— 1]
i =i-1;
endwhile that are
bigger than
key = |
Already Sorted
<
<key >key | ]
<key >key |

.
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Insertion Sort Step-By-Step Description (3)

% RTEU CE100 Week-1

/.

Ali+1]=key;

key=j
<key >key ]
<key J K@J
< >

t

End of iteration

Sorted

Insert key to the correct
location

j: A[l..j] s sorted
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Insertion Sort Example

Insertion Sort Step-1 (initial)

% RTEU CE100 Week-1

Insertion-Sort(A)
1.forj=2tondo

2. key=A[]
3. i=j-1;
4. while i>0 and A[i]>key do
5. Ali+1]=A[i];
6. | =i-1;
endwhile
7. AJi+1]=key;
endfor
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Insertion Sort Step-2 (j=2)

 RTEU CE100 Week-1

Insertion-Sort(A) 5|2
1.forj=2tondo sorted €>
2. key = Al |
3. i=j1; >2]
4. whilei>0 and A[i]>keydo |5 |2
5 Ali+1]=A[i]; A
6 i =i-1;
endwhile

7. Ali+1]=key; 2|5

endfor P —

sorted

J

initial

shift

insert key
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Insertion Sort Step-3 (j=3)

~ key=4
J
Insertion-Sort(A) 512(4(6[1]|3] initial
1.forj=2tondo sorted€—>
2. key=A[];
3. 1=j1;
4. while i>0 and A[i]>key do  What are the entries at the end of
5 Afi+1]=A[i]: iteration j=3?
6 | =i-1;
endwhile
7. Ali+1]=key; 212121227
endfor
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CE100 Algorithms and Programming |l

Insertion Sort Step-4 (j=3)

 RTEU CE100 Week-1

key=4
j
Insertion-Sort(A) 215(4]|6|1
1.forj=2tondo sorted€—>
2. key=A[;
3. i=j1; diad L
4. whilei>0and A[i]>keydo |2 |5(4 |6 |1
5 Ali+1]=Alil; A
6 | =1-1;
endwhile
7. Ali+1]=key; 2141516 (1
endfor P a—
sorted

initial

shift

insert key
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Insertion Sort Step-5 (j=4)
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key=6
j
Insertion-Sort(A) 2141561
1.forj=2tondo sorted €——>
2. key=A[j]; |
3. i=j1; <6
4. while i>0 and Afi]>keydo |2 |4 |5|6 |1
5 Ali+1]=A[il;
6 | =1-1;
endwhile j
7. Alit1]=key; 2141|561
endfor < >
sorted

initial

shift

insert key
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Insertion Sort Step-6 (j=5)

key=1 _
J
Insertion-Sort(A) 512(4(6[1]|3] initial
1.forj=2tondo < >
2. key=A[] sorted
3. 1=j1;
4. while i>0 and A[i]>key do  What are the entries at the end of
5 Ali+1]=A[i]; iteration j=57
6 | =i-1;
endwhile
7. Ali+1]=key; 212121227
endfor

% RTEU CE100 Week-1
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Insertion Sort Step-7 (j=5)
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key=1
Insertion-Sort(A) 24156
1.forj=2tondo sorted <€ >
2. key = A[];
3. Q=1 >1>1 >1>1
4. whilei>0 and A[i]>keydo |2|4|5|6
5 Ali+1]=A[]; A AA_A
6 | = i-1;
endwhile
7. Ali+1]=key; 112145
endfor <
sorted

initial

shift

insert key

32



CE100 Algorithms and Programming |l

Insertion Sort Step-8 (j=6)
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key=3
]
Insertion-Sort(A) 11214(5(|6]3
1.forj=2tondo sorted <€ >
2. key=A[];
3. i=j1; <3 2323 >3] ]
4. whilei>0and Af[i]>keydo |1[(2|4[5|6|3
5 Ali+1]=A[i]; CA A A
6 | = i-1;
endwhile
7. Ali+1]=key; 1(2(3(4(5|6
endfor

initial

shift

insert key
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Insertion Sort Review (1)

e |tems sorted in-place
o Elements are rearranged within the array.

o At a most constant number of items stored outside the array at any time (e.,g.

the variable key)

o Input array A contains a sorted output sequence when the algorithm ends

% RTEU CE100 Week-1
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Insertion Sort Review (2)

e |[ncremental approach
o Having sorted A[1..j — 1], place A|j] correctly so that A[1..j] is sorted
e Running Time

o |t depends on Input Size (5 elements or 5 billion elements) and Input Itself
(partially sorted)

e Algorithm approach to upper bound of overall performance analysis

% RTEU CE100 Week-1
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Visualization of Insertion Sort

Sorting (Bubble, Selection, Insertion, Merge, Quick, Counting, Radix) - VisuAlgo
https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html

https://algorithm-visualizer.org/

HMvHTs - Online C++ Compiler & Debugging Tool - Ideone.com

iésst| RTEU CE100 Week-1
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https://visualgo.net/en/sorting
https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html
https://algorithm-visualizer.org/
https://ideone.com/HMvHTs
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Kinds of Running Time Analysis (Time Complexity)

e Worst Case (Big-O Notation)
o T'(n) = maximum processing time of any input n
o Presentation of Big-O: O(n)

e Average Case (Teta Notation)
o T'(n) = average time over all inputs of size n, inputs can have a uniform

distribution

o Presentation of Big-Theta : ©(n)

e Best Case (Omega Notation)
o T'(n) = min time on any input of size n, for example sorted array

o Presentation of Big-Omega : 2(n)

% RTEU CE100 Week-1
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Array Sorting Algorithms Time and Space Complexity

% RTEU CE100 Week-1

very-fast Time C lexit Space_
fast Algorithm e Complexity
Best Average Worst Worst
medium
| Quick Sort Q(nlgn) O(nlgn) O(n?) O(lgn)
o Merge Sort Q(nlgn) O(nlgn) O(nlgn) O(n)
very-slow
Tim Sort Q(n) O(nlgn) O(nlgn) O(n)
Heap Sort Q(nlgn) O(nlgn) O(nlgn) 0(1)
Bubble Sort Q(n) 0(n?) O(n?) 0(1)
Insertion Sort Q(n) 0(n?) O(n?) 0(1)
Selection Sort Q(n?) 0(n?) O(n?) 0(1)
Tree Sort Q(nlgn) O(nlgn) O(n?) O(n)
Shell Sort Q(nlgn) O(n(ign)®) | O(n(lgn)?) 0(1)
Bucket Sort Q(n + k) O(n + k) O(n?) O(n)
Radix Sort Q(nk) O(nk) O(nk) O(n + k)
Counting Sort Q(n + k) O(n + k) O(n + k) O(k)
Cube Sort Q(n) O(nlgn) O(nlgn) O(n)
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Comparison of Time Analysis Cases

For insertion sort, worst-case time depends on the speed of primitive operations such
as
e Relative Speed (on the same machine)
e Absolute Speed (on different machines)
e Asymptotic Analysis
o Ignore machine-dependent constants

o Look at the growth of T'(n)|n — 0o

% RTEU CE100 Week-1
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Asymptotic Analysis (1)

% RTEU CE100 Week-1

A Number of
Steps

Worst
Case

Average
Case

Best
Case

Problem Size

40
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Asymptotic Analysis (2)

Theta-Notation (Average-Case)

e Drop low order terms

e |gnore leading constants

e.g
2n® + 5n + 3 = O(n?)
3n° +90n? — 2n + 5 = O(n®)

o Asn gets large, a ©(n?) algorithm runs faster than a ©(n?) algorithm

% RTEU CE100 Week-1
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Asymptotic Analysis (3)

For both algorithms, we can see a minimum item size in the following chart. After this point, we can
see performance differences. Some algorithms for small item size can be run faster than others but if
you increase item size you will see a reference point that notation proof performance metrics.

A T(n)

min value for ny

% RTEU CE100 Week-1
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A

Insertion Sort - Runtime Analysis (1)

Cost Times
cl n

c2 n-1
c3 n-1
c4 n-1
c5 k5

c6 k6

c7 k6

c8 n-1

Insertion-Sort(A)

. for j=2 to A.length
key = A[]]
//insert A[j] into the sorted sequence A[1...j-1]
i=3-1
while i>@ and A[i]>key do
A[i+1] = A[i]
i=1-1
A[i+1] = key

coNoouvT A WNER

we have two loops here, if we sum up costs as follow we can see big-O worst case notation.

n n
k5:thandk6:Zti—1
J=2 j=2

for operation counts

 RTEU CE100 Week-1
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Insertion Sort - Runtime Analysis (2)

cost function can be evaluated as follow;

Tn) =cin+c(n—1)+0n—1)+cs(n—1)

+C5th—|—662tz—1
j=2 j=2

+C7Zti—1+08(n—1)
j=2

% RTEU CE100 Week-1
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Insertion Sort - Runtime Analysis (3)

Z]:(n(n—l—l)/Z)—l
J and
Zj—lzn(n—l)/Q

% RTEU CE100 Week-1
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Insertion Sort - Runtime Analysis (4)

T(n) = (c5/2 + cg/2 + c7/2)n
+(c14+cot+cs+ce5/2—c6/2—c7/2+cs)n
— (c2 + ¢4 +c5 + c6)

% RTEU CE100 Week-1
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Insertion Sort - Runtime Analysis (5)

T(n) =an* +bn+c
= O(n?)

 RTEU CE100 Week-1
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Best-Case Scenario (Sorted Array) (1)

Problem-1, If A[1...7] is already sorted, what will be t; =7

t; =1

 RTEU CE100 Week-1

Insertion-Sort(A) 2(415

1.forj=2tondo sorted €——>

2. key=A[j]; |

3. i=j1; <

4. while i>0 and Afi]>keydo |2 |4 |5

5. Afi+1]=A[il;

6. i =i-1;

endwhile
7. Ali+1]=key; 21415
endfor P —

sorted

initial

shift

insert key
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Best-Case Scenario (Sorted Array) (2)

Parameters are taken from image

T(n)=cn+c(n—1)+c3(n—1)

—|—C4th —|—C5 Z(tj — ].)
j=2 j=2
+cs Y (tj—1)+er(n—1)
j=2
t; = 1forally
T(n)=(c1 +co+c3+cqg+cy)n
— (ca +c3 +cq +c7)
T(n) =an —b
= = (n)

% RTEU CE100 Week-1
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Worst-Case Scenario (Reversed Array) (1)

Problem-2 If A[j] is smaller than every entry in A[1...5 — 1], what will be t; =7

key=1
j
Insertion-Sort(A) 512[4(6[1]|3] inital
1.forj=2tondo < >
2. key=A[]; sorted
3. i=j1;
4. while i>0 and A[i]>key do  What are the entries at the end of
) Ali+1]=A]i]; iteration j=57
6 | =1-1;
endwhile
7. Ali+1]=key; 21?21?2(?212|?
endfor

t; =7

% RTEU CE100 Week-1

50



CE100 Algorithms and Programming |l

Worst-Case Scenario (Reversed Array) (2)

The input array is reverse sorted t; = j for all j after calculation worst case runtime
will be

T(n) =1/2(cy + c5 + cg)n?

+(c1+co+c3+1/2(cq —c5 —cg) +c7)n— (ca +c3+ ¢4 + ¢7)
T(n) =1/2an’* +bn —c

= O(n?)

% RTEU CE100 Week-1
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Asymptotic Runtime Analysis of Insertion-Sort

% RTEU CE100 Week-1

Insertion-Sort(A)
1.forj=2tondo

2. key = Al } (1)

3. i=j1;

4. while i>0 and A[i]>key do

5. Ali+1]=A[i];

6. | =i-1; } @(1)

endwhile

7. Ali+1]=key; O(1

endfor } ( )

52
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Insertion-Sort Worst-case (input reverse sorted)

Inner Loop is ©(5)

n
T(n)= Z O(j)
j=2
n
=0(> j)
j=2
— @(n2)
K
s8] RTEU CE100 Week-1
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Insertion-Sort Average-case (all permutations uniformly distributed)

Inner Loop is ©(j/2)

T(n)= Z O(j/2)
j=2
=) 0()j)
j=2
— @(nZ)
K
s8] RTEU CE100 Week-1
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Array Sorting Algorithms Time/Space Complexities

To compare this sorting algorithm please check the following map again.

% RTEU CE100 Week-1

very-fast Time C lexit Space.
fast Algorithm B Complexity
Best Average Worst Worst
medium
Quick Sort Q(nlgn) O(nlgn) O(n?) O(lgn)
slow
Merge Sort Q(nlgn) O(nlgn) O(nlgn) O(n)
very-slow
Tim Sort Q(n) O(nlgn) O(nlgn) O(n)
Heap Sort Q(nlgn) O(nlgn) O(nlgn) 0(1)
Bubble Sort Q(n) O(n?) O(n?) 0(1)
Insertion Sort Q(n) O(n?) O(n?) O(1)
Selection Sort Q(n?) 0(n?) O(n?) 0(1)
Tree Sort Q(nlgn) O(nlgn) O(n?) O(n)
Shell Sort Q(nlgn) O(n(lgn)?) | O(n(ign)?) O(1)
Bucket Sort Q(n+ k) O(n + k) O(n?) O(n)
Radix Sort Q(nk) O(nk) O(nk) O(n + k)
Counting Sort Qn + k) O(n + k) O(n+ k) O(k)
Cube Sort Q(n) O(nlgn) O(nlgn) O(n)
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Merge Sort : Divide / Conquer / Combine (1)

sort this half

sort this half

% RTEU CE100 Week-1

merge two sorted halves

Divide

Conquer

Combine
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Merge Sort : Divide / Conquer / Combine (2)

Divide: we divide the problem into a number of subproblems
Conquer: We solve the subproblems recursively
Base-Case: Solve by Brute-Force

Combine: Subproblem solutions to the original problem

% RTEU CE100 Week-1
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A

Merge Sort Example

 RTEU CE100 Week-1

5 910121524 304549 56

12|24l45|56[10] 9 [49[30] 5 [15
24la556[10 9 l49l30| 5 [15
56|10 |9 la9[30 515
56 10 olol [30] |5
9 49
4556 9 10 3049 515
9 /10/30l49
10[12/24/30/45/4956

15
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Merge Sort Algorithm (initial setup)

Merge Sort is a recursive sorting algorithm, for initial case we need to call Merge-
Sort(A,1,n) forsorting A[1..n]

initial case

A : Array

p : 1 (offset)

r : n (length)
Merge-Sort(A,1,n)

RTEU CE100 Week-1
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Merge Sort Algorithm (internal iterations)

internal iterations

A : Array
p : offset
r : length
Merge-Sort(A,p,r)
if p=r then (CHECK FOR BASE-CASE)
return
else
q = floor((p+r)/2) (DIVIDE)
Merge-Sort(A,p,q) (CONQUER)
Merge-Sort(A,g+l,r) (CONQUER)
Merge(A,p,q,r) (COMBINE)
endif

RTEU CE100 Week-1
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orithms and Pro€

CE100 Al
I\/?erge Sor

ramming ||

Algorithm (Combine-1)

p = start — point

q = mid — point

r = end — point

 RTEU CE100 Week-1

Merge-Sort(A,p,r)
1. if p==r then 6
2. return; D= 9 =3

g = floor((p+r)/2)

4
5. Merge-Sort(A,p,q); 512]4 B
6. Merge-Sort(A,g+1,r);
7 Merge(A,p,q,r) p /T p=r P=r py T
endif 5|2 4 6 1(3
. : X AP
" I5] 2T ] (3]
123 4 5 6
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Merge Sort Algorithm (Combine-2)

brute-force task, merging two sorted subarrays

The pseudo-code in the textbook (Sec. 2.3.1)

 RTEU CE100 Week-1

A=

p=r

p q r
524613
5[2]4 13| R
p f p=r p=r p\g r
52 [a 1(3
v - o X AP
5 ’ 1] (3]
A= [1]2]3]4[5]6] —

iter=1
iter=2

iter=3

iter=4

iter=5

Merge Operation

v

1

N e v e ™
O] O

f

wl€E— w|w
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Merge Sort Combine Algorithm (1)

Merge(A,p,q,r)
nl = g-p+1
n2 = r-q

//allocate left and right arrays
//increment will be from left to right
//left part will be bigger than right part

L[1...n1+1] //left array
R[1...n2+1] //right array

//copy left part of array
for i=1 to nl
L[i]=A[p+i-1]

//copy right part of array
for j=1 to n2

R[31=Ala+3]

//put end items maximum values for termination
L[n1+1]=inf
R[n2+1]=inf

i=1,j=1
for k=p to r
if L[i]«=R[]]
Alk]=L[1i]
i=i+1
else
A[k]=R[3]
j=j+1

Al

IRE
&

=
223
2

EP
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What is the complexity of merge operation?

You can find by counting loops will provide you base constant nested level will provide
you exponent of this constant, if you drop constants you will have complexity

we have 3 for loops

it will look like 3n and ©(n) will be merge complexity

% RTEU CE100 Week-1
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Merge Sort Correctness

* Base case
o p = 7 (Trivially correct)
e Inductive hypothesis

o MERGE-SORT is correct for any subarray that is a strict (smaller) subset of
Alp, ql.

e General Case

o MERGE-SORT is correct for A|p, g|. From inductive hypothesis and correctness
of Merge.

% RTEU CE100 Week-1
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Merge Sort Algorithm (Pseudo-Code)

A : Array
p : offset
r : length
Merge-Sort(A,p,r)
it p=r then
return
else

g = floor((p+r)/2)

Merge-Sort(A,p,q)

Merge-Sort(A,q+1,r)

Merge(A,p,q,r)
endif

(CHECK FOR BASE-CASE)

(DIVIDE)

(CONQUER)
(CONQUER)
(COMBINE)

RTEU CE100 Week-1
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Merge Sort Algorithm Complexity

A : Array
p : offset
r : length
MEFgE=SAPt (A0, P )===rrmamn=sae > T(n)
if p=r then----------—----- >Theta(1)
return
else
q = floor((p+r)/2)---->Theta(1)
Merge-Sort(A,p,q)----- > T(n/2)
Merge-Sort(A,g+1l,r)---> T(n/2)
Merge(A,p,q,r)-------- >Theta(n)
endif

RTEU CE100 Week-1
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Merge Sort Algorithm Recurrence

We can describe a function recursively in terms of itself, to analyze the performance of
recursive algorithms

T(n) — O(1) if n=1

2T(n/2) + O(n) otherwise

% RTEU CE100 Week-1
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How To Solve Recurrence (1)

Tn) = { o)
2T (n/2) + O(n)

% RTEU CE100 Week-1

if n=1

otherwise
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How To Solve Recurrence (2)

We will assume T'(n) = ©(1) for sufficiently small n to rewrite equation as
T(n)=2T(n/2) + O(n)

Solution for this equation will be ©(nlgn) with following recursion tree.
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How To Solve Recurrence (3)

Multiply by height ©(lgn) with each level cost ©(n) we can found ©(nlgn)

% RTEU CE100 Week-1
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How To Solve Recurrence (4)

This tree Is binary-tree and binary-tree height is related with item size.

D S —

leaf count:
Total:

219" = n

O(n) x lgn = ©(nlgn)

 RTEU CE100 Week-1
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How Height of a Binary Tree is Equal to logn ? (1)

Merge-Sort recursion tree is a perfect binary tree, a binary tree is a tree which every
node has at most two children, A perfect binary tree is binary tree in which all internal
nodes have exactly two children and all leaves are at the same level.

% RTEU CE100 Week-1
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How Height of a Binary Tree is Equal to logn ? (2)

Let n be the number of nodes in the tree and let [;, denote the number of nodes on

level k. According to this;

e [ = 2l}_1 i.e. each level has exactly twice as many nodes as the previous level
e [p = 1,i.e. on the first level we have only one node (the root node)

e The leaves are at the last level, [, where h is the height of the tree.

% RTEU CE100 Week-1
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How Height of a Binary Tree is Equal to logn ? (3)

The total number of nodes in the tree is equal to the sum of the nodes on all the levels:

nodes n
1+2t 422425+ .. 420 =n
1421422423 4 . 4 2h =2/l 1
2l —1=n
2h+1 —n4+1
092" = loga(n + 1)
h+1=logs(n+1)
h =loga(n+1)—1
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How Height of a Binary Tree is Equal to logn ? (3)

If we write it as asymptotic approach, we will have the following result
height of tree is h = loga(n + 1) — 1 = O(logn)

also

number of leavesisl, = (n+1)/2

nearly half of the nodes are at the leaves

% RTEU CE100 Week-1
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Review

©(nlgn) grows more slowly than ©(n?)
Therefore Merge-Sort beats Insertion-Sort in the worst case

In practice Merge-Sort beats Insertion-Sort for n > 30 or so
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Asymptotic Notations
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Big-O / O- Notation : Asymptotic Upper Bound (Worst-Case) (1)
f(n) = O(g(n)) if 3 positive constants ¢, ng such that
0 < f(n) <cg(n),Vn > nyg

% RTEU CE100 Week-1
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Big-O / O- Notation : Asymptotic Upper Bound (Worst-Case) (2)

A T(n)

min value for 7y
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Big-O / O- Notation : Asymptotic Upper Bound (Worst-Case) (3)

Asymptotic running times of algorithms are usually defined by functions whose domain
are N =0,1,2,... (natural numbers)
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Big-O / O- Notation : Asymptotic Upper Bound (Worst-Case) (4)

Example-1

Show that 2n? = O(n?)
we need to find two positive constant ¢ and 1y such that:

0 < 2n? <en’foralln > ng
Choosec=2andnyg =1

on® < 2n3 for alln > 1

Or, choosec = 1 and ng = 2

on? < n? for alln > 2

% RTEU CE100 Week-1
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Big-O / O- Notation : Asymptotic Upper Bound (Worst-Case) (5)

Example-2
Show that 2n° + n = O(n?)
We need to find two positive constant ¢ and ng such that:
0<2n?+n <ecn’foralln > ng
2+ (1/n) < cforalln > ny
Choosec =3 andnyg =1

on® +n<3n’foralln >1

% RTEU CE100 Week-1
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Big-O / O- Notation : Asymptotic Upper Bound (Worst-Case) (6)
We can say the followings about f(n) = O(g(n)) equation

The notation is a little sloppy

One-way equation, e.q. n° = O(n?) but we cannot say O(n?) = n?

% RTEU CE100 Week-1
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Big-O / O- Notation : Asymptotic Upper Bound (Worst-Case) (7)

O(g(n)) is in fact a set of functions as follow

O(g(n)) = {f(n) : 3 positive constant ¢, ng such that 0 < f(n) <
cg(n),vn > ng}

% RTEU CE100 Week-1
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Big-O / O- Notation : Asymptotic Upper Bound (Worst-Case) (8)

In other words O(g(n)) is in fact, the set of functions that have asymptotic upper
bound g(n)

e.q2n’® = O(n?) means 2n? € O(n?)

% RTEU CE100 Week-1
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Big-O / O- Notation : Asymptotic Upper Bound (Worst-Case) (9)

Example-1

10°n2 = O(n?)

0 < 10°n? < cn? for n > nyg
choose ¢ = 10° and ny = 1
0<10°n% <10°n?forn > 1

CORRECT
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Big-O / O- Notation : Asymptotic Upper Bound (Worst-Case) (10)

Example-2

100n19999 = O(n?)

0 < 100n1?7?? < en? for n > nyg
choosec = 100 and g = 1

0 < 10019992 < 100n2 forn > 1

CORRECT

% RTEU CE100 Week-1
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Big-O / O- Notation : Asymptotic Upper Bound (Worst-Case) (11)

Example-3

10—9n2.0001 — O(nZ)

0 < 102020001 < en? forn > ng
1079000001 < ¢ for n > n,

INCORRECT (Contradiction)

% RTEU CE100 Week-1
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Big-O / O- Notation : Asymptotic Upper Bound (Worst-Case) (12)

If we analysis O(n2) case, O-notation is an upper bound notation and the runtime
T'(n) of algorithm A is at least O (n?).

O(n?): The set of functions with asymptotic upper bound n?
T(n) > O(n?) means T'(n) > h(n) for some h(n) € O(n?)

h(n) = 0 function is also in O(n?). Hence : T'(n) > 0, runtime must be

nonnegative.
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Big-Omega / {2-Notation : Asymptotic Lower Bound (Best-Case) (1)

f(n) = Q(g(n)) if 3 positive constants ¢, ng such that 0 < cg(n) < f(n),Vn >
no

% RTEU CE100 Week-1
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Big-Omega / {2-Notation : Asymptotic Lower Bound (Best-Case) (2)

A T(n)

min value for ny
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Big-Omega / {2-Notation : Asymptotic Lower Bound (Best-Case) (3)

Example-1
Show that 2n° = Q(n?)
We need to find two positive constants ¢ and 1 such that:

0 < en? < 2n° forall n > ny

Choosec =1andnyg =1

n® < 2n3 foralln > 1
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Big-Omega / {2-Notation : Asymptotic Lower Bound (Best-Case) (4)

Example-4
Show that 4/n = Q(Ign)
We need to find two positive constants ¢ and 1 such that:

clgn < +/n for all n > ny

Choosec = 1 and ng = 16

lgn < y/n for alln > 16
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Big-Omega / {2-Notation : Asymptotic Lower Bound (Best-Case) (5)

(2(g(n)) is the set of functions that have asymptotic lower bound g(n)

(g(n)) = {f(n) : 3 positive constants c, ny such that
0 < cg(n) < f(n),Vn > no}

% RTEU CE100 Week-1
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Big-Omega / {2-Notation : Asymptotic Lower Bound (Best-Case) (6)

Example-1

10°n2 = Q(n?)

0 < cn? < 10°n? for n > nyg
Choose ¢ = 10° and ny = 1

0 <10°n* <10°n° forn > 1

CORRECT

% RTEU CE100 Week-1
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Big-Omega / {2-Notation : Asymptotic Lower Bound (Best-Case) (7)

Example-2
100n1.9999 — Q(n2)

0 < cn? < 100n1?7% for n > ny
n?-0091 < (100/c) for n > ny

INCORRECT(Contradiction)
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Big-Omega / {2-Notation : Asymptotic Lower Bound (Best-Case) (8)

Example-3

10-9n20001 — )(n?)

0 < cn? < 1079020001 for n > ng
Choose ¢ = 1072 and ny = 1
0<107n% <107 7020001 for n > 1

CORRECT
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Comparison of Notations (1)

min value for ny
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min value for ny

99



CE100 Algorithms and Programming |l

Comparison of Notations (2)

% RTEU CE100 Week-1

A T(n)

f(n) = O(g(n))

cg(n)

f(n)

min value for nop

min value for ny

f(n) = ©(g(n)) c29(n)

f(n)

c19(n)

)n

min value for ng
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Big-Theta /©-Notation : Asymptotically tight bound (Average Case) (1)

f(n) = 0O(g(n)) if 3 positive constants cy, c2, ngsuch that
0 < ag(n) < f(n) < cag(n),¥n = no
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Big-Theta /®-Notation : Asymptotically tight bound (Average Case) (2)

A T(n)

min value for ny
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Big-Theta /®-Notation : Asymptotically tight bound (Average Case) (3)

Example-1

Show that 2n? + n = ©(n?)

We need to find 3 positive constants ¢y, ¢ and ng such that:
0 <cin?® < 2n?2 +n < con? foralln > nyg

c1 <2+ (1/n) < cyforalln > ny

Choosecy = 2,co = 3andng =1

2n? < 2n? +n < 3n’foralln>1

R
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Big-Theta /©-Notation : Asymptotically tight bound (Average Case) (4)

Example-2.1

Show that 1/2n? — 2n = ©(n?)

We need to find 3 positive constants ¢y, ¢ and ng such that:
0 < cin? <1/2n% — 2n < cyn? for all n > ng

c1 <1/2—2/n < ¢ for all n > ny

Choose 3 positive constants ¢y, ca, ng that satisfy c; < 1/2 — 2/n < ¢y foralln >

no

R
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Big-Theta /®-Notation : Asymptotically tight bound (Average Case) (5)

Example-2.2

min value for
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Big-Theta /®-Notation : Asymptotically tight bound (Average Case) (6)

Example-2.3
1/10<1/2—2/nforn >5
1/2—-2/n<1/2forn >0

Therefore we can choose ¢; = 1/10,¢c2 = 1/2,n9 =5
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Big-Theta /®-Notation : Asymptotically tight bound (Average Case) (7)

Theorem: leading constants & low-order terms don’t matter

Justification: can choose the leading constant large enough to make high-order term

dominate other terms

w
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Big-Theta /®-Notation : Asymptotically tight bound (Average Case) (8)

Example-1

10°n% = ©(n?) CORRECT
100n'99% = ©(n?) INCORRECT
10972990 — ©(n?) INCORRECT
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Big-Theta /®-Notation : Asymptotically tight bound (Average Case) (9)
©(g(n)) is the set of functions that have asymptotically tight bound g(n)
©(g(n)) ={f(n) : 3

positive constants ¢y, ¢ca, g such that
0 < cig(n) < f(n) < c2g(n),Vn > no}

w
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Big-Theta /©-Notation : Asymptotically tight bound (Average Case) (10)

Theorem:

F(n) = ©(g(n)) if and only i £(n) = O(g(n)) and f(n) = Ag(n))
O is stronger than both O and ()

O(g(n)) € O(g(n)) and O(g(n)) C 2(g(n))

T 110
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Big-Theta /®-Notation : Asymptotically tight bound (Average Case) (11)

Example-1.1
Prove that 10 3n? # @(n)

We can check that 10~ °n? = Q(n) and 10~°n? # O(n)

Proof by contradiction for O(n notation

)
O(g(n )) { f(n) : 9 positive constant ¢, ng such that
) <

f(n) < cg(n),vn > no}
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Big-Theta /©-Notation : Asymptotically tight bound (Average Case) (12)

Example-1.2

Suppose positive constants co and 1y exist such that:
1073n? < can, Vn > ng
1073n < ¢9, VN > nyg

Contradiction: ¢ is a constant

ﬁ 112
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Summary of O, () and © notations (1)
O(g(n)) : The set of functions with asymptotic upper bound g(n)
2(g(n)) : The set of functions with asymptotic lower bound g(n)

©(n): The set of functions with asymptotically tight bound g(n)

f(n) = B(g(n)) & f(n) = O(g(n)) and f(n) = Q(g(n))
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Summary of O, {2 and © notations (2)

A T(n) A T'(n)
f(n) = O(g(n)) cg(n) f(n) = Q(g(n))
: f(n) | f(n)
I . cg(n)
min value for ng > min value for nlo >
A T(n)
f(n) = (g(n)) ¢29(n)
: f(n)
E c19(n)

min value for ng
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Small-o / o-Notation : Asymptotic upper bound that is not tight (1)
Remember, upper bound provided by big- O notation can be tight or not tight
Tight mean values are close the original function

e.g. followings are true

2n* = O(n?) is asymptotically tight

2n = O(n?) is not asymptotically tight

According to this small-o notation is an upper bound that is not asymptotically tight

T 115
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Small-o / o-Notation : Asymptotic upper bound that is not tight (2)

Note that in equations equality is removed in small notations
o(g(n)) = {f(n) : for any constantc > 0,3 a constant ny > 0,
such that 0 < f(n) < cg(n),
Vn > ng}

1m @ =

e.g 2n = o(n?) any positive ¢ satisfies but 2n? = o(n?) ¢ = 2 does not satisfy
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Small-omega / w-Notation: Asymptotic lower bound that is not tight (1)

w(g(n)) = {f(n) : for any constant ¢ > 0,3 a constant ny > 0,
such that 0 < cg(n) < f(n),
Vn > ng

lim _f(n) =
e.g.n?/2 = w(n), any positive ¢ satisfies but n? /2 # w(n?), ¢ = 1/2 does not

satisfy
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(Important) Analogy to compare of two real numbers (1)

f(n) =0(g(n)) <> a<b
f(n) =Q(g(n)) <> a=b
f(n) =0O(g(n)) <+ a=1b
f(n) =o(g(n)) <> a <b
f(n) = w(g(n)) <> a>b

il RTEU CE100 Week-1 118



CE100 Algorithms and Programming |l

(Important) Analogy to compare of two real numbers (2)

% RTEU CE100 Week-1

O ~<

Ny ——
Ny —

QO ~>
w >

0 ~<
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(Important) Trichotomy property for real numbers
For any two real numbers a and b, we have either
a <bora=0>bora>b

Trichotomy property does not hold for asymptotic notation, for two functions f(n) and
g(m), it may be the case that neither f(n) = O(g(n)) nor f(n) = 2(g(n)) holds.

e.g. n and n' 5™ cannot be compared asymptotically

w
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Examples

5n? = O(n?)
5n? = Q(n?)
5n? = ©(n?)

on — O(3")
on — Q(3)
on — O(3")

% RTEU CE100 Week-1

TRUE
TRUE
TRUE
FALSE
FALSE
TRUE
FALSE
FALSE

n?lgn = O(n?)
n?lgn = Q(n?)
n’lgn = ©(n?)

FALSE
TRUE
FALSE
FALSE
TRUE

TRUE
FALSE
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Asymptotic Function Properties

Transitivity: holds for all

eg. f(n) = O(g(n))&g(n) = O(h(n)) = f(n) = O(h(n))
Reflexivity: holds for ©, O, 2

eg. f(n) = O(f(n))

Symmetry: hold only for ©

eg. f(n) = 0O(g(n)) & g(n) = 6(f(n))

Transpose Symmetry: holds for (O <> 2) and (0 <> w)

eg. f(n) = O(g(n)) & g(n) = Q(f(n))
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Using O-Notation to Describe Running Times (1)

Used to bound worst-case running times, Implies an upper bound runtime for arbitrary inputs as well
Example:
Insertion sort has worst-case runtime of O(n?)

Note:

e This O(n?) upper bound also applies to its running time on every input
o Abuse to say “running time of insertion sort is O(n?)"

® For a given mn, the actual running time depends on the particular input of size n
© l.e., running time is not only a function of n

* However, worst-case running time is only a function of n
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Using O-Notation to Describe Running Times (2)

e When we say:

o Running time of insertion sort is O(n?)
e What we really mean is

o Worst-case running time of insertion sort is O(n2)
e or equivalently

o No matter what particular input of size n is chosen, the running time on that
set of inputs is O(n?)
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Using {2-Notation to Describe Running Times (1)

Used to bound best-case running times, Implies a lower bound runtime for arbitrary
inputs as well

Example:
Insertion sort has best-case runtime of £2(n)
Note:

e This {2(m) lower bound also applies to its running time on every input
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Using {2-Notation to Describe Running Times (2)

e When we say
o Running time of algorithm A'is 2(g(n))
e What we mean is

o For any input of size n, the runtime of A is at least a constant times g(n) for
sufficiently large n

e |t's not contradictory to say

o worst-case running time of insertion sort is (n?)

o Because there exists an input that causes the algorithm to take Q(nz)
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Using ©-Notation to Describe Running Times (1)

Consider 2 cases about the runtime of an algorithm

e Case 1: Worst-case and best-case not asymptotically equal
o Use ©-notation to bound worst-case and best-case runtimes separately
e Case 2: Worst-case and best-case asymptotically equal

o Use ©-notation to bound the runtime for any input
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Using ©-Notation to Describe Running Times (2)
e Case 1: Worst-case and best-case not asymptotically equal

o Use ©-notation to bound the worst-case and best-case runtimes separately

o We can say:
= "The worst-case runtime of insertion sort is ©(n?)"

= "The best-case runtime of insertion sort is (n)"

o But, we can't say:
= "The runtime of insertion sort is @(nz) for every input"

o A ®-bound on worst/best-case running time does not apply to its running
time on arbitrary inputs
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Worst-Case and Best-Case Equation for Merge-Sort

e.g. for merge-sort, we have:

T(n) = O(nlgn) <
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Using Asymptotic Notation to Describe Runtimes Summary (1)

e "The worst case runtime of Insertion Sort is O(n2)"
o Also implies: "The runtime of Insertion Sort is O(n2)"
e "The best-case runtime of Insertion Sort is £2(7)"

o Also implies: "The runtime of Insertion Sort is Q(n)
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Using Asymptotic Notation to Describe Runtimes Summary (2)

e "The worst case runtime of Insertion Sort is @(n2)"
o But: "The runtime of Insertion Sort is not @(n2)"
e "The best case runtime of Insertion Sort is @(n)

o But: "The runtime of Insertion Sort is not @ ()"
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Using Asymptotic Notation to Describe Runtimes Summary (3)

Which one is true?

e FALSE "The worst case runtime of Merge Sort is @(nlgn)"
e FALSE "The best case runtime of Merge Sort is @(nlgn)"
e TRUE "The runtime of Merge Sort is ©(nlgn)"

o This is true, because the best and worst case runtimes have asymptotically the
same tight bound ©(nlgn)
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Asymptotic Notation in Equations (RHS)

e Asymptotic notation appears alone on the RHS of an equation:

o implies set membership
= eg,n = 0(n?) meansn € O(n?)

Asymptotic notation appears on the RHS of an equation
stands for some anonymous function in the set

e eg,2n’ 4+ 3n+ 1= 2n% + O(n) means:

e 2n% + 3n + 1 = 2n? + h(n), for some h(n) € O(n)
o ie, h(n) =3n+1
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Asymptotic Notation in Equations (LHS)

e Asymptotic notation appears on the LHS of an equation:
o stands for any anonymous function in the set
= eg., 2n? + ©(n) = O(n?) means:
o for any function g(n) € ©(n)
o 3 some function h(n) € O(n?)
= such that 2n” + g(n) = h(n)

e RHS provides coarser level of detail than LHS
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References

e Introduction to Algorithms, Third Edition | The MIT Press
e Bilkent CS473 Course Notes (new)

e Bilkent CS473 Course Notes (old)

e |nsertion Sort - GeeksforGeeks

e NIST Dictionary of Algorithms and Data Structures

e NIST - Dictionary of Algorithms and Data Structures

e NIST - big-O notation

e NIST - big-Omega notation
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—FEnd — Of — Week — 1 — Course — Module—
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