Week-9 (Huffman Coding)

Spring Semester, 2021-2022 Download DOC, SLIDE, PPTX

Huffman Coding

Outline

- Heap Data Structure (Review Week-4)
- Heap Sort (Review Week-4)
- Huffman Coding

Huffman Codes

Huffman Codes for Compression

- Widely used and very effective for data compression
- Savings of 20% 90% typical
 - (depending on the characteristics of the data)
- In summary: Huffman's greedy algorithm uses a table of frequencies of character occurrences to build up an optimal way of representing each character as a binary string.

Binary String Representation - Example

- Consider a data file with:
 - 100K characters
 - $\circ\;$ Each character is one of $\{a,b,c,d,e,f\}$
- Frequency of each character in the file:

- Binary character code: Each character is represented by a unique binary string.
- Intuition:
 - \circ Frequent characters \Leftrightarrow shorter codewords
 - \circ Infrequent characters \Leftrightarrow longer codewords

Binary String Representation - Example

characters	a	b	С	d	e	f
frequency	45K	13K	12K	16K	9K	5K
fixed-length	000	001	010	011	100	101
variable-length(1)	0	101	100	111	1101	1100
variable-length(2)	0	10	110	1110	11110	11111

- How many total bits needed for fixed-length codewords? $100K imes 3 = 300K \ bits$
- How many total bits needed for variable-length(1) codewords? $45K \times 1 + 13K \times 3 + 12K \times 3 + 16K \times 3 + 9K \times 4 + 5K \times 4 = 224K$
- How many total bits needed for variable-length(2) codewords? $45K \times 1 + 13K \times 2 + 12K \times 3 + 16K \times 4 + 9K \times 5 + 5K \times 5 = 241K$

Prefix Codes

- Prefix codes: No codeword is also a prefix of some other codeword
- Example:

characters	a	b	c	d	e	f
codeword	0	101	100	111	1101	1100

- It can be shown that:
 - Optimal data compression is achievable with a prefix code
- In other words, optimality is not lost due to prefix-code restriction.

Prefix Codes: Encoding

 $\begin{array}{c} \text{characters} & a & b & c & d & e & f \\ \text{codeword} & 0 & 101 & 100 & 111 & 1101 & 1100 \end{array}$

- Encoding: Concatenate the codewords representing each character of the file
- Example: Encode file "abc" using the codewords above

 $\circ abc \Rightarrow 0.101.100 \Rightarrow 0101100$

• Note: "." denotes the concatenation operation. It is just for illustration purposes, and does not exist in the encoded string.

Prefix Codes: Decoding

- Decoding is quite simple with a prefix code
- The first codeword in an encoded file is unambiguous
 - because no codeword is a prefix of any other
- Decoding algorithm:
 - Identify the initial codeword
 - Translate it back to the original character
 - Remove it from the encoded file
 - Repeat the decoding process on the remainder of the encoded file.

Prefix Codes: Decoding - Example

- Example: Decode encoded file 001011101
 - \circ 001011101
 - \circ 0.01011101
 - $\circ 0.0.1011101$
 - $\circ 0.0.101.1101$
 - $\circ 0.0.101.1101$
 - \circ aabe

Prefix Codes

- Convenient representation for the prefix code:
 - a binary tree whose leaves are the given characters
- Binary codeword for a character is the path from the root to that character in the binary tree
- "0" means "go to the left child"
- "1" means "go to the right child"

Binary Tree Representation of Prefix Codes

- Weight of an internal node: sum of weights of the leaves in its subtree
- The binary tree corresponding to the fixed-length code

Binary Tree Representation of Prefix Codes

- Weight of an internal node: sum of weights of the leaves in its subtree
- The binary tree corresponding to the optimal variable-length code
- An optimal code for a file is always represented by a **full binary tree**

Full Binary Tree Representation of Prefix Codes

- Consider an FBT corresponding to an optimal prefix code
- It has |C| leaves (external nodes)
- One for each letter of the alphabet where C is the alphabet from which the characters are drawn
- Lemma: An FBT with $\left| C
 ight|$ external nodes has exactly $\left| C
 ight| 1$ internal nodes

Full Binary Tree Representation of Prefix Codes

- Consider an FBT T, corresponding to a prefix code.
- Notation:
 - $\circ \ f(c)$: frequency of character c in the file
 - $\circ \ d_T(c)$: depth of c's leaf in the $FBT \ T$
 - $\circ \; B(T)$: the number of bits required to encode the file
- What is the length of the codeword for *c*?
 - $\circ \ d_T(c)$, same as the depth of c in T
- How to compute B(T), cost of tree T?

 $\circ \; B(T) = \sum\limits_{c \in C} f(c) d_T(c)$

Cost Computation - Example

$$B(T) = \sum_{c \in C} f(c) d_T(c)$$

 $egin{aligned} B(T) =& (45 imes 1) + (12 imes 3) + \ & (13 imes 3) + (16 imes 3) + \ & (5 imes 4) + (9 imes 4) \ & = 224 \end{aligned}$

Prefix Codes

• Lemma: Let each internal node i is labeled with the sum of the weight w(i) of the leaves in its subtree

• Then

$$B(T) = \sum_{c \in C} f(c) d_T(c) = \sum_{i \in I_T} w(i)$$

- where I_T is the set of internal nodes of T
- **Proof**: Consider a leaf node c with $f(c) \otimes d_T(c)$
 - $\circ\;$ Then, f(c) appears in the weights of $d_T(c)$ internal node
 - $^{\circ}\,$ along the path from c to the root
 - $\circ\,$ Hence, f(c) appears $d_T(c)$ times in the above summation

Cost Computation - **Example**

 $egin{aligned} B(T) &= \sum_{i \in I_T} w(i) \ B(T) = &100 + 55 + \ &25 + 30 + 14 \ = &224 \end{aligned}$

Constructing a Huffman Code

- **Problem Formulation:** For a given character set C, construct an optimal prefix code with the minimum total cost
- Huffman invented a greedy algorithm that constructs an optimal prefix code called a Huffman code
- The greedy algorithm
 - builds the FBT corresponding to the optimal code in a bottom-up manner
 - $\,\circ\,$ begins with a set of |C| leaves
 - $^\circ\,$ performs a sequence of |C|-1 "merges" to create the final tree

Constructing a Huffman Code

- A priority queue Q, keyed on f, is used to identify the two **least-frequent** objects to merge
- The result of the merger of two objects is a new object
 - inserted into the priority queue according to its frequency
 - which is the sum of the frequencies of the two objects merged

Constructing a Huffman Code

- Priority queue is implemented as a binary heap
- Initiation of Q (BUILD-HEAP): O(n) time
- EXTRACT-MIN & INSERT take O(lgn) time on Q with n objects

Constructing a Huffman Code

HUFFMAN(c) $n \leftarrow |C|$ $Q \leftarrow \text{BUILD-HEAP}(c)$ for $i \leftarrow 1$ to n - 1 do $z \leftarrow \text{ALLOCATE-NODE}()$ $x \leftarrow left[z] \leftarrow \text{EXTRACT-MIN}(Q)$ $y \leftarrow right[z] \leftarrow ext{EXTRACT-MIN}(Q)$ $f[z] \leftarrow f[x] \leftarrow f[y]$ INSERT(Q, z) $return \text{ EXTRACT-MIN}(Q) \lhd \text{ one object left in } Q$

Constructing a Huffman Code - Example

- Start with one leaf node for each character
- The 2 nodes with the least frequencies: f&e
- Merge f&e and create an internal node
- Set the internal node frequency to 5+9=14

Constructing a Huffman Code - Example

• The 2 nodes with least frequencies: b&c

Constructing a Huffman Code - Example

Constructing a Huffman Code -Example

Constructing a Huffman Code -Example

Constructing a Huffman Code -Example

Correctness Proof of Huffman's Algorithm

- We need to prove:
 - $\circ~$ The greedy choice property
 - The optimal substructure property
- What is the greedy step in Huffman's algorithm?
 - Merging the two characters with the lowest frequencies
- We will first prove the greedy choice property

Greedy Choice Property

- Lemma 1: Let x & y be two characters in C having the lowest frequencies.
- Then, \exists an optimal prefix code for C in which the codewords for x & y have the same length and differ only in the last bit
- Note: If x & y are merged in Huffman's algorithm, their codewords are guaranteed to have the same length and they will differ only in the last bit.
 - Lemma 1 states that there exists an optimal solution where this is the case.

- Outline of the proof:
 - Start with an arbitrary optimal solution
 - Convert it to an optimal solution that satisfies the greedy choice property.
- **Proof:** Let T be an arbitrary optimal solution where:
 - $\circ b\&c$ are the sibling leaves with the max depth
 - $\circ x \& y$ are the characters with the **lowest frequencies**

Greedy Choice Property -Proof

- Reminder:
 - $\circ b\&c$ are the nodes with max depth
 - $\circ \ x \& y$ are the nodes with min freq.
- Without loss of generality, assume: $\circ \ f(x) \leq f(y) \ \circ \ f(b) \leq f(c)$
 - $\int (0) \leq \int (0)$
- Then, it must be the case that:
 - $\circ \ f(x) \leq f(b)$

- $T \Rightarrow T'$: exchange the positions of the leaves b&x
- $T' \Rightarrow T''$: exchange the positions of the leaves c&y

• Reminder: Cost of tree T'

 $B(T) = \sum_{c \in C} f(c) d_{T'}(c)$

- How does $B(T^{\prime})$ compare to B(T)?
- Reminder: $f(x) \leq f(b)$ $\circ \ d_{T'}(x) = d_T(b)$ and $d_{T'}(b) = d_T(x)$

• Reminder: $f(x) \leq f(b)$

$$\circ \ d_{T'}(x) = d_T(b)$$
 and $d_{T'}(b) = d_T(x)$

• The difference in cost between T and T':

$$egin{aligned} B(T)-B(T') &= \sum_{c\in C} f(c)d_T(c) - \sum_{c\in C} f(c)d_{T'}(c) \ &= f[x]d_T(x) + f[b]d_T(b) - f[x]d_{T'}(x) - f[b]d_{T'}(b) \ &= f[x]d_T(x) + f[b]d_T(b) - f[x]d_T(x) - f[b]d_T(b) \ &= f[b](d_T(b) + d_T(x)) - f[x](d_T(b) - d_T(x)) \ &= (f[b]-f[x])(d_T(b) + d_T(x)) \end{aligned}$$

$B(T) - B(T') = (f[b] - f[x])(d_T(b) + d_T(x))$

- Since $f[b] f[x] \geq 0$ and $d_T(b) \geq d_T(x)$ \circ therefore $B(T') \leq B(T)$
- In other words, T^\prime is also optimal

- We can similarly show that
- $B(T') B(T'') \ge 0 \Rightarrow B(T'') \le B(T')$

 $^\circ\,$ which implies $B(T'')\leq B(T)$

- Since T is optimal $\Rightarrow B(T'') = B(T) \Rightarrow T''$ is also optimal
- Note: T'' contains our greedy choice:
 - $\,\circ\,$ Characters x&y appear as sibling leaves of max-depth in T''
- Hence, the proof for the greedy choice property is complete

Greedy-Choice Property of Determining an Optimal Code

- Lemma 1 implies that
 - \circ process of building an optimal tree
 - $\circ~$ by mergers can begin with the greedy choice of merging
 - those two characters with the lowest frequency
- We have already proved that $B(T) = \sum\limits_{i \in I_T} w(i)$, that is,
 - the total cost of the tree constructed
 - is the sum of the costs of its mergers (internal nodes) of all possible mergers
- At each step Huffman chooses the merger that incurs the least cost

Optimal Substructure Property

- Consider an optimal solution T for alphabet C. Let x and y be any two sibling leaf nodes in T. Let z be the parent node of x and y in T.
- Consider the subtree T' where T' = T-{x, y}.
 Here, consider z as a new character, where
 f[z] = f[x] + f[y]
- Optimal substructure property: T' must be optimal for the alphabet C', where $C' = C \{x, y\} \cup \{z\}$

Optimal Substructure Property - Proof

Reminder:

$$B(T) = \sum_{c \in C} f[c] d_T(c)$$

Try to express B(T) in terms of B(T').

Note: All characters in C' have the same depth in T and T'.

B(T) = B(T') - cost(z) + cost(x) + cost(y)

Optimal Substructure Property - Proof

Reminder:

$$B(T) = \sum_{c \in C} f[c] d_T(c)$$

$$egin{aligned} B(T) &= B(T') - cost(z) + cost(x) + cost(y) \ &= B(T') - f[z].d_T(z) + f[x].d_T(x) + f[y].d_T(y) \ &= B(T') - f[z].d_T(z) + (f[x] + f[y])(d_T(z) + 1) \ &= B(T') - f[z].d_T(z) + f[z](d_T(z) + 1) \ &= B(T') - f[z].d_T(z) + f[z](d_T(z) + 1) \ &= B(T') - f[z] \end{aligned}$$

$$egin{aligned} d_T(x) &= d_T(z) + 1 \ d_T(y) &= d_T(z) + 1 \end{aligned}$$

B(T) = B(T') + f[x] + f[y]

Optimal Substructure Property - Proof

- We want to prove that T^\prime is optimal for
 - $\circ \ C' = C ext{-} \{x,y\} \cup \{z\}$
- Assume by contradiction that that there exists another solution for C' with smaller cost than T'. Call this solution R':
- B(R') < B(T')
- Let us construct another prefix tree R by adding x&y as children of z in R^\prime

$$B(T) = B(T') + f[x] + f[y]$$

Optimal Substructure Property - Proof

- Let us construct another prefix tree R by adding x&y as children of z in R'.
- We have:
 - $\circ \ B(R)=B(R')+f[x]+f[y]$
- In the beginning, we assumed that: $\circ \ B(R') < B(T')$
- So, we have:
 - $\circ \ B(R) < B(T') + f[x] + f[y] = B(T)$

Contradiction! Proof complete

Greedy Algorithm for Huffman Coding - Summary

- For the greedy algorithm, we have proven that:
 - The greedy choice property holds.
 - The optimal substructure property holds.
- So, the greedy algorithm is optimal.

References

- Introduction to Algorithms, Third Edition | The MIT Press
- Bilkent CS473 Course Notes (new)
- Bilkent CS473 Course Notes (old)

-End - Of - Week - 9 - Course - Module -

