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Activity Selection Problem
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Activity Selection Problem

We have:

A set of activities with fixed start and finish times

One shared resource (only one activity can use at any time)

Objective: Choose the max number of compatible activities

Note: Objective is to maximize the number of activities, not the total time of
activities.

Example:

Activities: Meetings with fixed start and finish times

Shared resource: A meeting room
Objective: Schedule the max number of meetings
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Activity Selection Problem

Input: a set  of n activities

 : Start time of activity ,

 : Finish time of activity  
Activity  takes place in 

Aim: Find max-size subset  of mutually compatible activities
Max number of activities, not max time spent in activities

Activities  and  are compatible if intervals  and  do not
overlap, i.e., either  or 
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Activity Selection Problem An Example
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Optimal Substructure Property

Consider an optimal solution  for activity set .

Let  be the activity in  with the earliest finish time
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Optimal Substructure Property

Consider an optimal solution  for activity set .

Let  be the activity in  with the earliest finish time

Now, consider the subproblem  that has the activities that start after  finishes,
i.e. 

What can we say about the optimal solution to  ?
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Optimal Substructure Property

Consider an optimal solution  for activity set .

Let  be the activity in  with the earliest finish time

Now, consider the subproblem  that has the activities that start after  finishes,
i.e. 

 is an optimal solution for . Why?
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Optimal Substructure

Theorem: Let  be the activity with the earliest finish time in an optimal soln 
 then

 is an optimal solution to subproblem

Proof (by contradiction):
 Let  be an optimal solution to  and

Then,  is compatible and

Contradiction to the optimality of  
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Optimal Substructure

Recursive formulation: Choose the first activity , and then solve the remaining
subproblem 

How to choose the first activity ?

DP, memoized recursion?
i.e. choose the  value that will have the max size for 

DP would work,

but is it necessary to try all possible values for ?
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Greedy Choice Property

Assume (without loss of generality) 

If not, sort activities according to their finish times in non-decreasing order

Greedy choice property: a sequence of locally optimal (greedy) choices  an
optimal solution

How to choose the first activity greedily without losing optimality?
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Greedy Choice Property - Theorem

Let activity set , where 

Theorem: There exists an optimal solution  such that 

In other words, the activity with the earliest finish time is guaranteed to be in an
optimal solution.
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Greedy Choice Property - Proof

Theorem: There exists an optimal solution  such that 

Proof: Consider an arbitrary optimal solution , where 

If , then  starts with , and the proof is complete

If , then create another solution  by replacing  with . Since 
,  is guaranteed to be valid, and , hence also optimal
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Greedy Algorithm

So far, we have:
Optimal substructure property: If  is an optimal solution, then

 must be optimal for subproblem , where 

Note:  is the activity with the earliest finish time in 

Greedy choice property: There is an optimal solution  that contains 
Note:  is the activity with the earliest finish time in 
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Greedy Algorithm

explained in the next slide..
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Greedy Algorithm

Theorem: There exists an optimal solution  such that 

Basic idea of the greedy algorithm:

Add  to 

Solve the remaining subproblem , and then append the result to 

Remember arbitary optimal solution explaination from previous sections (finish
time order is important for  selection with star time and overlapping
checking)

,

where 
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Greedy Algorithm for Activity Selection

Definitions in Greedy Algorithm:

: specifies the index of most recent activity added to 

, max finish time of any activity in ;

because activities are processed in non-decreasing order of finish times

Thus,  checks the compatibility of  to current 

Running time:  assuming that the activities were already sorted.

CE100 Algorithms and Programming II

j A

f  =j Max{f  :k k ∈ A} A

s  ≥i f  j i A

Θ(n)

 RTEU CE100 Week-7 18



Greedy Algorithm for Activity Selection

Pseudocode for Greedy Algorithm:
GAS(s, f ,n) {

A ← {1}

j ← 1

for i ← 2 to n do

if s  ≥ f   theni j

A ← A ∪ {i}

j ← i

endif

endfor

}
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Greedy Algorithm for Activity Selection, An Example (Step-1)
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Greedy Algorithm for Activity Selection, An Example (Step-2)
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Greedy Algorithm for Activity Selection, An Example (Step-3)
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Greedy Algorithm for Activity Selection, An Example (Step-4)
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Greedy Algorithm for Activity Selection, An Example (Step-5)
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Greedy Algorithm for Activity Selection, An Example (Step-6)
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Greedy Algorithm for Activity Selection, An Example (Step-7)

Final Solution
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Comparison of DP and Greedy Algorithms
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Reminder: DP-Based Matrix Chain Order

m  =ij  {m  +
i≤k<j
MIN ik m  +k+1,j p  p  p  }i−1 k j

We don’t know ahead of time which  value to choose.

We first need to compute the results of subproblems  and  before
computing 

The selection of  is done based on the results of the subproblems.
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Greedy Algorithm for Activity Selection

explained in the next slide..
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Greedy Algorithm for Activity Selection

Make a greedy selection in the beginning:
Choose  (the activity with the earliest finish time)

Solve the remaining subproblem  (all activities that start after a1)
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Greedy vs Dynamic Programming

Optimal substructure property exploited by both Greedy and DP strategies

Greedy Choice Property: A sequence of locally optimal choices  an optimal solution
We make the choice that seems best at the moment

Then solve the subproblem arising after the choice is made

DP: We also make a choice/decision at each step, but the choice may depend on the optimal
solutions to subproblems

Greedy: The choice may depend on the choices made so far, but it cannot depend on any future
choices or on the solutions to subproblems

CE100 Algorithms and Programming II
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Greedy vs Dynamic Programming

DP is a bottom-up strategy (use memory to store the results of subproblems)

Greedy is a top-down strategy (make choices at each step)
each greedy choice in the sequence iteratively reduces each problem to a similar but smaller
problem
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Proof of Correctness of Greedy Algorithms

Examine a globally optimal solution

Show that this soln can be modified so that
(1) A greedy choice is made as the first step
(2) This choice reduces the problem to a similar but smaller problem

Apply induction to show that a greedy choice can be used at every step

Showing (2) reduces the proof of correctness to proving that the problem exhibits optimal
substructure property

CE100 Algorithms and Programming II
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Greedy Choice Property - Proof

Theorem: There exists an optimal solution  such that 

Proof: Consider an arbitrary optimal solution , where 

If , then  starts with , and the proof is complete

If , then create another solution  by replacing  with . Since ,  is
guaranteed to be valid, and , hence also optimal
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Elements of Greedy Strategy

How can you judge whether

A greedy algorithm will solve a particular optimization problem?

Two key ingredients

Greedy choice property

Optimal substructure property
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Key Ingredients of Greedy Strategy

Greedy Choice Property: A globally optimal solution can be arrived at by making locally optimal
(greedy) choices

In DP,we make a choice at each step but the choice may depend on the solutions to
subproblems

In Greedy Algorithms, we make the choice that seems best at that moment then solve the
subproblems arising after the choice is made

The choice may depend on choices so far, but it cannot depend on any future choice or on
the solutions to subproblems

DP solves the problem bottom-up

Greedy usually progresses in a top-down fashion by making one greedy choice after another
reducing each given problem instance to a smaller one

CE100 Algorithms and Programming II
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Key Ingredients: Greedy Choice Property

We must prove that a greedy choice at each step yields a globally optimal solution

The proof examines a globally optimal solution

Shows that the soln can be modified so that a greedy choice made as the first step reduces the
problem to a similar but smaller subproblem

Then induction is applied to show that a greedy choice can be used at each step

Hence, this induction proof reduces the proof of correctness to demonstrating that an optimal
solution must exhibit optimal substructure property
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Key Ingredients: Greedy Choice Property

How to prove the greedy choice property?
Consider the greedy choice 

Assume that there is an optimal solution  that doesn’t contain .

Show that it is possible to convert  to another optimal solution , where  contains .

Example: Activity selection algorithm
Greedy choice:  (the activity with the earliest finish time)

Consider an optimal solution  without 

Replace the first activity in  with  to construct 

Prove that  must be an optimal solution

CE100 Algorithms and Programming II
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Key Ingredients: Optimal Substructure

A problem exhibits optimal substructure if an optimal solution to the problem contains within it
optimal solutions to subproblems

Example: Activity selection problem 

If an optimal solution A to S begins with activity a1 then the set of activities

A =′ A − {a  }1

is an optimal solution to the activity selection problem

S =′ {a  ∈i S : s  ≥i f  }1

where  is the start time of activity  and  is the finish time of activity 

CE100 Algorithms and Programming II
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Key Ingredients: Optimal Substructure

Optimal substructure property is exploited by both Greedy and dynamic programming strategies

Hence one may
Try to generate a dynamic programming soln to a problem when a greedy strategy suffices 
inefficient

Or, may mistakenly think that a greedy soln works when in fact a DP soln is required 
incorrect

Example: Knapsack Problems(S, w)
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Knapsack Problems
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Knapsack Problem

Each item  has:

weight 

value 

A thief has a knapsack of weight capacity 

Which items to choose to maximize the value of
the items in the knapsack?
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Knapsack Problem: Two Versions

The 0-1 knapsack problem:

Each item is discrete.

Each item either chosen as a whole or not chosen.

Examples: TV, laptop, gold bricks, etc.

The fractional knapsack problem:

Can choose fractional part of each item.
If item i has weight wi, we can choose any amount ≤ wi

Examples: Gold dust, silver dust, rice, etc.

CE100 Algorithms and Programming II
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Knapsack Problems

The 0-1 Knapsack Problem( )
A thief robbing a store finds  items , the ith item is worth  dollars
and weighs  pounds, where vi and wi are integers

He wants to take as valuable a load as possible, but he can carry at most  pounds in his
knapsack, where  is an integer

The thief cannot take a fractional amount of an item

The Fractional Knapsack Problem ( )
The scenario is the same

But, the thief can take fractions of items rather than having to make binary ( ) choice
for each item

CE100 Algorithms and Programming II
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Optimal Substructure Property for the 0-1 Knapsack Problem (S, W)

Consider an optimal load L for the problem (S, W).

Let Ij be an item chosen in L with weight wj

Assume we remove Ij from L, and let:

L  = L–{I  }j
′

j

S  = S–{I  }j
′

j

W  = W–w  j
′

j

Q: What can we say about the optimal substructure property?
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Optimal Substructure Property for the 0-1 Knapsack Problem (S, W)

L  = L–{I  }j
′

j

S  = S–{I  }j
′

j

W  = W–w  j
′

j

Optimal substructure property:
 must be an optimal solution for 

Why?
If we remove item  from , we can construct a new optimal solution  for 

If  is optimal, then  must be optimal
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Optimal Substructure Property for the 0-1 Knapsack Problem (S, W)

L  = L–{I  }j
′

j

S  = S–{I  }j
′

j

W  = W–w  j
′

j

Optimal substructure:  must be an optimal solution for 

Proof: By contradiction, assume there is a solution  for , which is better than .

We can construct a solution B for the original problem ( ) as: .

The total value of  is now higher than , which is a contradiction because  is optimal for 
.
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Optimal Substructure Property for the Fractional Knapsack Problem (S, W)

Consider an optimal solution L for (S, W)

If we remove a weight  of item  from optimal load  and let:

The remaining load

L  =j
′ L − {w pounds of I  }j

must be a most valuable load weighing at most

W  =j
′ W − w

pounds that the thief can take from

S  =j
′ S − {I  } ∪j {w  −j w pounds of I  }j

That is, Lj´ should be an optimal soln to the

Fractional Knapsack Problem(S  ,W  )j
′

j
′
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Knapsack Problems

Two different problems:

0-1 knapsack problem

Fractional knapsack problem

The problems are similar.

Both problems have optimal substructure property.

Which algorithm to solve each problem?
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Fractional Knapsack Problem

Can we use a greedy algorithm?

Greedy choice: Take as much as possible from the item with the largest value per pound 

Does the greedy choice property hold?

Let  be the item with the largest value per pound 

Need to prove that there is an optimal load that has as much  as possible.

Proof: Consider an optimal solution L that does not have the maximum amount of item . We
could replace the items in  with item  until  has maximum amount of .  would still be
optimal, because item  has the highest value per pound.
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Greedy Solution to Fractional Knapsack

(1) Compute the value per pound  for each item

(2) The thief begins by taking, as much as possible, of the item with the greatest value per pound

(3) If the supply of that item is exhausted before filling the knapsack, then he takes, as much as
possible, of the item with the next greatest value per pound

(4) Repeat (2-3) until his knapsack becomes full

Thus, by sorting the items by value per pound the greedy algorithm runs in  time

CE100 Algorithms and Programming II
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Fractional Knapsack Problem: Example
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0-1 Knapsack Problem

Can we use the same greedy algorithm?
Is there a better solution?
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0-1 Knapsack Problem

The optimal solution for this problem is:
This solution cannot be obtained using the greedy algorithm
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0-1 Knapsack Problem

When we consider an item  for inclusion we must compare the solutions to two subproblems
Subproblems in which  is included and excluded

The problem formulated in this way gives rise to many
overlapping subproblems (a key ingredient of DP)

In fact, dynamic programming can be used to solve the 0-1 Knapsack problem

CE100 Algorithms and Programming II
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0-1 Knapsack Problem

A thief robbing a store containing  articles

The value of  article is  dollars (  is integer)

The weight of  article is  kg (  is integer)

Thief can carry at most  kg in his knapsack

Which articles should he take to maximize the value of his load?

Let  denote 0-1 knapsack problem

Consider the solution as a sequence of  decisions
i.e.,  decision: whether thief should pick  for optimal load.
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Optimal Substructure Property

Notation: :

The items to choose from: 

The knapsack capacity: 

Consider an optimal load  for problem 

Let’s consider two cases:

 is in 

 is not in 
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Optimal Substructure Property

Case 1: If 
What can we say about the optimal substructure?

 must be optimal for 

:
The items to choose from 

The knapsack capacity: 

Case 2: If 
What can we say about the optimal substructure?

 must be optimal for 
:

The items to choose from 

The knapsack capacity: 

CE100 Algorithms and Programming II
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Optimal Substructure Property
In other words, optimal solution to  contains an
optimal solution to:

either:  (if  is selected)

or:  (if  is not selected)
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Recursive Formulation

c[i,w] =    

⎩
⎨
⎧0
c[i − 1,w],
max{v  + c[i − 1,w − w  ], c[i − 1,w]i i

 if i = 0,  or w = 0
 if w  > wi

otherwise

CE100 Algorithms and Programming II
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0-1 Knapsack Problem

Recursive definition for value of optimal soln:
This recurrence says that an optimal solution  for 

either contains 

or does not contain 

If thief decides to pick 
He takes  value and he can choose from  up to the weight limit 

 to get 

If he decides not to pick 
He can choose from  up to the weight limit  to get 

The better of these two choices should be made
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Bottom-up Computation

Need to process:

after computing:
,

for all 
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Bottom-up Computation

  

for i ← 1 to n do

for w ← 1 to W  do

…

c[i,w] ← …

…

CE100 Algorithms and Programming II
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DP Solution to 0-1 Knapsack

 is an  array; 

Note : table is computed in row-major order

Run time: 

CE100 Algorithms and Programming II
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DP Solution to 0-1 Knapsack

  

KNAP0-1(v,w,n,W )

for ω ← 0 to W  do

c[0,ω] ← 0

for i ← 0 to m do

c[i, 0] ← 0

for i ← 0 to m do

for ω ← 1 to W  do

if w  ≤ ω theni

c[i,ω] ← max{v  + c[i − 1,ω − w  ], c[i − 1,ω]}i i

else

c[i,ω] ← c[i − 1,ω]

return c[m,W ]
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Constructing an Optimal Solution

No extra data structure is maintained to keep track of the choices made to
compute 

i.e. The choice of whether choosing item i or not
Possible to understand the choice done by comparing  with 

If  then it means item i was assumed to be not
chosen for the best 
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Finding the Set S of Articles in an Optimal Load

  

SOLKNAP0-1(a, v,w,n,W , c)

i ← n;ω ← W

S ← ∅

while i ← 0 do

if  c[i,ω] = c[i − 1,ω] then

i ← i − 1

else

S ← S ∪ {a  }i
ω ← ω − w  i

i ← i − 1

return S
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