
CE100 Algorithms and Programming II

Week-6 (Matrix Chain Order / LCS)

Spring Semester, 2021-2022

Download DOC, SLIDE, PPTX

CE100 Algorithms and Programming II

 RTEU CE100 Week-6

file:///E:/UgurCoruh/RTEU/Lectures/2021-2022%20Bahar%20CE100%20-%20Algorithms%20and%20Programming%20II/ce100-algorithms-and-programming-II/docs/week-6/ce100-week-6-lcs.tr.md_doc.pdf
file:///E:/UgurCoruh/RTEU/Lectures/2021-2022%20Bahar%20CE100%20-%20Algorithms%20and%20Programming%20II/ce100-algorithms-and-programming-II/docs/week-6/ce100-week-6-lcs.tr.md_slide.pdf
file:///E:/UgurCoruh/RTEU/Lectures/2021-2022%20Bahar%20CE100%20-%20Algorithms%20and%20Programming%20II/ce100-algorithms-and-programming-II/docs/week-6/ce100-week-6-lcs.tr.md_slide.pptx

Matrix Chain Order / Longest Common Subsequence

Outline

Elements of Dynamic Programming
Optimal Substructure

Overlapping Subproblems

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 2

Recursive Matrix Chain Order Memoization
Top-Down Approach

RMC

MemoizedMatrixChain
LookupC

Dynamic Programming vs Memoization Summary

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 3

Dynamic Programming
Problem-2 : Longest Common Subsequence

Definitions

LCS Problem

Notations
Optimal Substructure of LCS

Proof Case-1

Proof Case-2
Proof Case-3

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 4

A recursive solution to subproblems (inefficient)

Computing the length of and LCS
LCS Data Structure for DP
Bottom-Up Computation

Constructing and LCS
PRINT-LCS
Back-pointer space optimization for LCS length

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 5

Most Common Dynamic Programming Interview Questions

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 6

Elements of Dynamic Programming

When should we look for a DP solution to an optimization problem?

Two key ingredients for the problem
Optimal substructure

Overlapping subproblems

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 7

DP Hallmark #1

Optimal Substructure
A problem exhibits optimal substructure

if an optimal solution to a problem contains within it optimal solutions to
subproblems

Example: matrix-chain-multiplication
Optimal parenthesization of that splits the product
between and , contains within it optimal soln’s to the problems
of parenthesizing and

CE100 Algorithms and Programming II

A ​A ​ …A ​1 2 n

A ​k A ​k+1

A ​A ​ …A ​1 2 k A ​A ​ …A ​k+1 k+2 n

 RTEU CE100 Week-6 8

Optimal Substructure

Finding a suitable space of subproblems
Iterate on subproblem instances
Example: matrix-chain-multiplication

Iterate and look at the structure of optimal soln’s to subproblems, sub-
subproblems, and so forth

Discover that all subproblems consists of subchains of

Thus, the set of chains of the form for

Makes a natural and reasonable space of subproblems

CE100 Algorithms and Programming II

⟨A ​,A ​, … ,A ​⟩1 2 n

⟨A ​,A ​, … ,A ​⟩i i+1 j 1 ≤ i ≤ j ≤
n

 RTEU CE100 Week-6 9

DP Hallmark #2

Overlapping Subproblems
Total number of distinct subproblems should be polynomial in the input size

When a recursive algorithm revisits the same problem over and over again,
We say that the optimization problem has overlapping subproblems

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 10

Overlapping Subproblems

DP algorithms typically take advantage of overlapping subproblems
by solving each problem once
then storing the solutions in a table

where it can be looked up when needed

using constant time per lookup

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 11

Overlapping Subproblems

Recursive matrix-chain order

​ ​

RMC(p, i, j){

if i = j then

return 0

m[i, j] ← ∞

for k ← ito j − 1 do

q ← RMC(p, i, k) + RMC(p, k + 1, j) + p ​p ​p ​i−1 k j

if q < m[i, j] then

m[i, j] ← q

return m[i, j] }

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 12

k=1 k=1 k=2 k=2 k=3 k=3

k=2 k=2 k=3 k=3
k=1 k=1

k=2 k=2k=3 k=3

k=3 k=3
k=1

k=1 k=2 k=2

Redundant calls are
f�lled

Direct Recursion:
Inefficient!

Recursion tree for

Nodes are labeled with
 and values

CE100 Algorithms and Programming II

RMC(p, 1, 4)

i j

 RTEU CE100 Week-6 13

Running Time of RMC

For each term appears twice
Once as , and once as

Collect ’s in the summation together with the front

T (n) ≥ 2 ​T (i) + n
i=1

∑
n−1

Prove that using the substitution method

CE100 Algorithms and Programming II

T (1) ≥ 1

T (n) ≥ 1 + ​(T (k) +
k=1
∑
n−1

T (n − k) + 1) for n > 1

i = 1, 2, … ,n T (i)
T (k) T (n − k)

n − 1, 1 1

T (n) = Ω(2n)

 RTEU CE100 Week-6 14

Running Time of RMC: Prove that

Try to show that (by substitution)

Base case: for

Ind. Hyp.:

T (i)

T (n)

≥ 2 for all i = 1, 2, … ,n − 1 and n ≥ 2i−1

≥ 2 ​ 2 + n
i=1

∑
n−1

i−1

= 2 ​ 2 + n
i=1

∑
n−1

i−1

= 2(2 − 1) + nn−1

= 2 + (2 − 2 + n)n−1 n−1

⇒ T (n) ≥ 2 Q.E.D.n−1

CE100 Algorithms and Programming II

T (n) = Ω(2n)

T (n) ≥ 2n−1

T (1) ≥ 1 = 2 =0 21−1 n = 1

 RTEU CE100 Week-6 15

Running Time of RMC:

Whenever
a recursion tree for the natural recursive solution to a problem contains the same
subproblem repeatedly
the total number of different subproblems is small

it is a good idea to see if can be applied

CE100 Algorithms and Programming II

T (n) ≥ 2n−1

DP (Dynamic Programming)

 RTEU CE100 Week-6 16

Memoization

Offers the efficiency of the usual approach while maintaining top-down
strategy

Idea is to memoize the natural, but inefficient, recursive algorithm

CE100 Algorithms and Programming II

DP

 RTEU CE100 Week-6 17

Memoized Recursive Algorithm

Maintains an entry in a table for the soln to each subproblem

Each table entry contains a special value to indicate that the entry has yet to be
filled in

When the subproblem is first encountered its solution is computed and then
stored in the table
Each subsequent time that the subproblem encountered the value stored in the
table is simply looked up and returned

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 18

Memoized Recursive Matrix-chain Order

Shaded subtrees are looked-up rather than recomputing

MemoizedMatrixChain(p)

n ← length[p] − 1

for i ← 1 to n do

for j ← 1 to n do

m[i, j] ← ∞

return LookupC(p, 1,n) ⟹

⟹ LookupC(p, i, j)

if m[i, j] = ∞ then

if i = j then

m[i, j] ← 0

else

for k ← i to j − 1 do

q ← LookupC(p, i, k) + LookupC(p, k + 1, j) + p ​p ​p ​i−1 k j

if q < m[i, j] then

m[i, j] ← q

return m[i, j]

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 19

Memoized Recursive Algorithm

The approach assumes that
The set of all possible subproblem parameters are known
The relation between the table positions and subproblems is established

Another approach is to memoize
by using hashing with subproblem parameters as key

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 20

Dynamic Programming vs Memoization Summary (1)

Matrix-chain multiplication can be solved in time
by either a top-down memoized recursive algorithm

or a bottom-up dynamic programming algorithm

Both methods exploit the overlapping subproblems property
There are only different subproblems in total

Both methods compute the soln to each problem once
Without memoization the natural recursive algorithm runs in exponential time since
subproblems are solved repeatedly

CE100 Algorithms and Programming II

O(n)3

Θ(n)2

 RTEU CE100 Week-6 21

Dynamic Programming vs Memoization Summary (2)

In general practice
If all subproblems must be solved at once

a bottom-up DP algorithm always outperforms a top-down memoized algorithm by a
constant factor

because, bottom-up DP algorithm
Has no overhead for recursion

Less overhead for maintaining the table

DP: Regular pattern of table accesses can be exploited to reduce the time and/or space
requirements even further

Memoized: If some problems need not be solved at all, it has the advantage of avoiding
solutions to those subproblems

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 22

Problem 3: Longest Common Subsequence

Definitions

A subsequence of a given sequence is just the given sequence with some
elements (possibly none) left out

Example:

 is a subsequence of

CE100 Algorithms and Programming II

X = ⟨A,B,C,B,D,A,B⟩

Z = ⟨B,C,D,B⟩
Z X

 RTEU CE100 Week-6 23

Problem 3: Longest Common Subsequence

Definitions

Formal definition: Given a sequence , sequence
 is a subsequence of

if a strictly increasing sequence of indices of such that
 for all , where

Example: is a subsequence of
with the index sequence

CE100 Algorithms and Programming II

X = ⟨x ​,x ​, … ,x ​⟩1 2 m Z =
⟨z ​, z ​, … , z ​⟩1 2 k X

∃ ⟨i ​, i ​, … , i ​⟩1 2 k X

x ​ =i ​j z ​j j = 1, 2, … , k 1 ≤ k ≤ m

Z = ⟨B,C,D,B⟩ X = ⟨A,B,C,B,D,A,B⟩
⟨i ​, i ​, i ​, i ​⟩ =1 2 3 4 ⟨2, 3, 5, 7⟩

 RTEU CE100 Week-6 24

Problem 3: Longest Common Subsequence

Definitions

If is a subsequence of both and , we denote as a common subsequence of and .

Example:

X

Y

= ⟨A,B ,C ,B,D,A ,B⟩∗ ∗ ∗

= ⟨B ,D,C ,A ,B,A⟩∗ ∗ ∗

 is a common subsequence (of length 3) of and .

Two longest common subsequence (LCSs) of and ?
 of length

 of length
The optimal solution value = 4

CE100 Algorithms and Programming II

Z X Y Z X Y

Z ​ =1 ⟨B ,C ,A ⟩∗ ∗ ∗ X Y

X Y

Z2 = ⟨B,C,B,A⟩ 4

Z3 = ⟨B,D,A,B⟩ 4

 RTEU CE100 Week-6 25

Longest Common Subsequence (LCS) Problem

LCS problem: Given two sequences
 and

, find the LCS of

Brute force approach:
Enumerate all subsequences of

Check if each subsequence is also a subsequence of

Keep track of the LCS

What is the complexity?
There are subsequences of

Exponential runtime

CE100 Algorithms and Programming II

X = ⟨x ​,x ​, … ,x ​⟩1 2 m

Y = ⟨y ​, y ​, … , y ​⟩1 2 n X&Y

X

Y

2m X

 RTEU CE100 Week-6 26

Notation

Notation: Let denote the prefix of
i.e.

Example:

​ ​

X

X ​4

X ​0

= ⟨A,B,C,B,D,A,B⟩

= ⟨A,B,C,B⟩

= ⟨⟩

CE100 Algorithms and Programming II

X ​i ith X

X =i ⟨x ​,x ​, … ,x ​⟩1 2 i

 RTEU CE100 Week-6 27

Optimal Substructure of an LCS

Let and are given

Let be an LCS of and

Question 1: If , how to define the optimal substructure?
We must have and

CE100 Algorithms and Programming II

X =< x1,x2, … ,xm > Y = ⟨y ​, y ​, … , y ​⟩1 2 n

Z = ⟨z ​, z ​, … , z ​⟩1 2 k X Y

x ​ =m y ​n

z ​ =k x ​ =m y ​n

Z ​ =k−1 LCS(X ​,Y ​)m−1 n−1

 RTEU CE100 Week-6 28

Optimal Substructure of an LCS

Let and are given

Let be an LCS of and

Question 2: If , how to define the optimal substructure?
We must have

CE100 Algorithms and Programming II

X =< x1,x2, … ,xm > Y = ⟨y ​, y ​, … , y ​⟩1 2 n

Z = ⟨z ​, z ​, … , z ​⟩1 2 k X Y

x ​ =m  y ​ and z ​ =n k  x ​m

Z = LCS(X ​,Y)m−1

 RTEU CE100 Week-6 29

Optimal Substructure of an LCS

Let and are given

Let be an LCS of and

Question 3: If , how to define the optimal substructure?
We must have

CE100 Algorithms and Programming II

X =< x1,x2, … ,xm > Y = ⟨y ​, y ​, … , y ​⟩1 2 n

Z = ⟨z ​, z ​, … , z ​⟩1 2 k X Y

x ​ =m  y ​ and z ​ =n k  y ​n

Z = LCS(X,Y ​)n−1

 RTEU CE100 Week-6 30

Theorem: Optimal Substructure of an LCS

Let and Y = <y1, y2, …, yn> are given

Let be an LCS of and

Theorem: Optimal substructure of an LCS:
If

then and is an LCS of and

If and
then is an LCS of and

If and
then is an LCS of and

CE100 Algorithms and Programming II

X = ⟨x ​,x ​, … ,x ​⟩1 2 m

Z = ⟨z ​, z ​, … , z ​⟩1 2 k X Y

x ​ =m y ​n

z ​ =k x ​ =m y ​n Z ​k−1 X ​m−1 Y ​n−1

x ​ =m  y ​n z ​ =k  x ​m

Z X ​m−1 Y

x ​ =m  y ​n z ​ =k  y ​n

Z X Y ​n−1

 RTEU CE100 Week-6 31

Optimal Substructure Theorem (case 1)

If then and is an LCS of and

CE100 Algorithms and Programming II

x ​ =m y ​n z ​ =k x ​ =m y ​n Z ​k−1 X ​m−1 Y ​n−1

 RTEU CE100 Week-6 32

Optimal Substructure Theorem (case 2)

If and then is an LCS of and

CE100 Algorithms and Programming II

x ​ =m  y ​n z ​ =k  x ​m Z X ​m−1 Y

 RTEU CE100 Week-6 33

Optimal Substructure Theorem (case 3)

If and then is an LCS of and

CE100 Algorithms and Programming II

x ​ =m  y ​n z ​ =k  y ​n Z X Y ​n−1

 RTEU CE100 Week-6 34

Proof of Optimal Substructure Theorem (case 1)

If then and is an LCS of and

Proof: If then
we can append to to obtain a common subsequence of length

 contradiction

Thus, we must have

Hence, the prefix is a length-() CS of and

We have to show that is in fact an LCS of and

Proof by contradiction:
Assume that a CS of and with

Then appending to produces a CS of length

CE100 Algorithms and Programming II

x ​ =m y ​n z ​ =k x ​ =m y ​n Z ​k−1 X ​m−1 Y ​n−1

z ​ =k  x ​ =m y ​n

x ​ =m y ​n Z

k + 1 ⟹

z ​ =k x ​ =m y ​n

Z ​k−1 k − 1 X ​m−1 Y ​n−1

Z ​k−1 X ​m−1 Y ​n−1

∃ W X ​m−1 Y ​n−1 ∣W ∣ = k

x ​ =m y ​n W k + 1

 RTEU CE100 Week-6 35

Proof of Optimal Substructure Theorem (case 2)

If and then is an LCS of and

Proof : If then is a CS of and
We have to show that is in fact an LCS of and

(Proof by contradiction)
Assume that a CS of and with

Then would also be a CS of and

Contradiction to the assumption that
 is an LCS of and with

Case 3: Dual of the proof for (case 2)

CE100 Algorithms and Programming II

x ​ =m  y ​n z ​ =k  x ​m Z X ​m−1 Y

z ​ =k  x ​m Z X ​m−1 Y ​n

Z X ​m−1 Y ​n

∃ W X ​m−1 Y ​n ∣W ∣ > k

W X Y

Z X Y ∣Z∣ = k

 RTEU CE100 Week-6 36

A Recursive Solution to Subproblems

Theorem implies that there are one or two subproblems to examine

if then
we must solve the subproblem of finding an LCS of

appending to this LCS yields an LCS of

else
we must solve two subproblems

finding an LCS of

finding an LCS of

longer of these two LCS s is an LCS of

endif

CE100 Algorithms and Programming II

x ​ =m y ​n

X ​&Y ​m−1 n−1

x ​ =m y ​n X&Y

X ​&Ym−1

X&Y ​n−1

X&Y

 RTEU CE100 Week-6 37

Recursive Algorithm (Inefficient)

​ ​

LCS(X,Y) {

m ← length[X]

n ← length[Y]

if x ​ = y ​ thenm n

Z ← LCS(X ​,Y ​) ▹ solve one subproblemm−1 n−1

return ⟨Z,x ​ = y ​⟩ ▹ append x ​ = y ​ to Zm n m n

else

Z ← LCS(X ​,Y) ▹ solve two subproblems
′

m−1

Z ← LCS(X,Y ​)
′′

n−1

return longer of Z and Z
′ ′′

}

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 38

A Recursive Solution

 length of an LCS of and

c[i, j] = ​​ ​ ​ ​

⎩
⎨
⎧ 0

c[i − 1, j − 1] + 1
max{c[i, j − 1], c[i − 1, j]}

if
if
if

 i = 0 or j = 0
 i, j > 0 and x ​ = y ​i j

 i, j > 0 and x ​ = y ​i  j

CE100 Algorithms and Programming II

c[i, j] : X ​i Yj

 RTEU CE100 Week-6 39

Computing the Length of an LCS

We can easily write an exponential-time recursive algorithm based on the given
recurrence. Inefficient!
How many distinct subproblems to solve?

Overlapping subproblems property: Many subproblems share the same sub-
subproblems.

e.g. Finding an LCS to and an LCS to

has the sub-subproblem of finding an LCS to

Therefore, we can use dynamic programming.

CE100 Algorithms and Programming II

⟹

Θ(mn)

X ​&Ym−1 X&Y ​n−1

X ​&Y ​m−1 n−1

 RTEU CE100 Week-6 40

Data Structures

Let:
 length of an LCS of and

 direction towards the table entry corresponding to the optimal
subproblem solution chosen when computing .

Used to simplify the construction of an optimal solution at the end.
Maintain the following tables:

CE100 Algorithms and Programming II

c[i, j] : X ​i Yj

b[i, j] :
c[i, j]

c[0 …m, 0 …n]

b[1 …m, 1 …n]

 RTEU CE100 Week-6 41

Bottom-up Computation

Reminder:

c[i, j] = ​​ ​ ​ ​

⎩
⎨
⎧ 0

c[i − 1, j − 1] + 1
max{c[i, j − 1], c[i − 1, j]}

if
if
if

 i = 0 or j = 0
 i, j > 0 and x ​ = y ​i j

 i, j > 0 and x ​ = y ​i  j

How to choose the order in which we process values?

The values for , , and must be computed
before computing .

CE100 Algorithms and Programming II

c[i, j]

c[i − 1, j − 1] c[i, j − 1] c[i − 1, j]
c[i, j]

 RTEU CE100 Week-6 42

Bottom-up Computation

c[i, j] = ​​ ​ ​

⎩
⎨
⎧ 0

c[i − 1, j − 1] + 1
max{c[i, j − 1], c[i − 1, j]}

if
if
if

 i = 0 or j = 0
 i, j > 0 and x ​ = y ​i j

 i, j > 0 and x ​ = y ​i  j

Need to process:

after computing:

,

,

CE100 Algorithms and Programming II

c[i, j]

c[i − 1, j − 1]
c[i, j − 1]
c[i − 1, j]

 RTEU CE100 Week-6 43

Bottom-up Computation

c[i, j] = ​​ ​ ​

⎩
⎨
⎧ 0

c[i − 1, j − 1] + 1
max{c[i, j − 1], c[i − 1, j]}

if
if
if

 i = 0 or j = 0
 i, j > 0 and x ​ = y ​i j

 i, j > 0 and x ​ = y ​i  j

⇓

for i ← 1 to m

for j ← 1 to n

…

…

c[i, j] = ⋯

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 44

Computing the Length of an LCS

​

​ ​​ ​

Total Space = Θ(mn)
Total Runtime = Θ(mn)

⎩

⎨

⎧ LCS − LENGTH(X,Y)
m ← length[X];n ← length[Y]
for i ← 0 to m do c[i, 0] ← 0
for j ← 0 to n do c[0, j] ← 0
for i ← 1 to m do

for j ← 1 to n do
if x ​ = y ​ theni j

c[i, j] ← c[i − 1, j − 1] + 1
b[i, j] ← " ↖ "

else if c[i − 1, j] ≥ c[i, j − 1]
c[i, j] ← c[i − 1, j]
b[i, j] ← " ↑ "

else
c[i, j] ← c[i, j − 1]
b[i, j] ← " ← "

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 45

Computing the Length
of an LCS-1

Operation of LCS-LENGTH on
the sequences

​ ​

X

Y

= ⟨ , , , , , , ⟩A
1
B
2
C
3
B
4
D
5
A
6
B
7

= ⟨ , , , , , ⟩B
1
D
2
C
3
A
4
B
5
A
6

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 46

Computing the Length
of an LCS-2

Operation of LCS-LENGTH on
the sequences

​ ​

X

Y

= ⟨ , , , , , , ⟩A
1
B
2
C
3
B
4
D
5
A
6
B
7

= ⟨ , , , , , ⟩B
1
D
2
C
3
A
4
B
5
A
6

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 47

Computing the Length
of an LCS-3

Operation of LCS-LENGTH on
the sequences

​ ​

X

Y

= ⟨ , , , , , , ⟩A
1
B
2
C
3
B
4
D
5
A
6
B
7

= ⟨ , , , , , ⟩B
1
D
2
C
3
A
4
B
5
A
6

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 48

Computing the Length
of an LCS-4

Operation of LCS-LENGTH on
the sequences

​ ​

X

Y

= ⟨ , , , , , , ⟩A
1
B
2
C
3
B
4
D
5
A
6
B
7

= ⟨ , , , , , ⟩B
1
D
2
C
3
A
4
B
5
A
6

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 49

Computing the Length
of an LCS-5

Operation of LCS-LENGTH on
the sequences

​ ​

X

Y

= ⟨ , , , , , , ⟩A
1
B
2
C
3
B
4
D
5
A
6
B
7

= ⟨ , , , , , ⟩B
1
D
2
C
3
A
4
B
5
A
6

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 50

Computing the Length
of an LCS-6

Operation of LCS-LENGTH on
the sequences

​ ​

X

Y

= ⟨ , , , , , , ⟩A
1
B
2
C
3
B
4
D
5
A
6
B
7

= ⟨ , , , , , ⟩B
1
D
2
C
3
A
4
B
5
A
6

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 51

Computing the Length
of an LCS-7

Operation of LCS-LENGTH on
the sequences

​ ​

X

Y

= ⟨ , , , , , , ⟩A
1
B
2
C
3
B
4
D
5
A
6
B
7

= ⟨ , , , , , ⟩B
1
D
2
C
3
A
4
B
5
A
6

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 52

Computing the Length
of an LCS-8

Operation of LCS-LENGTH on
the sequences

​ ​

X

Y

= ⟨ , , , , , , ⟩A
1
B
2
C
3
B
4
D
5
A
6
B
7

= ⟨ , , , , , ⟩B
1
D
2
C
3
A
4
B
5
A
6

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 53

Computing the Length
of an LCS-9

Operation of LCS-LENGTH on
the sequences

​ ​

X

Y

= ⟨ , , , , , , ⟩A
1
B
2
C
3
B
4
D
5
A
6
B
7

= ⟨ , , , , , ⟩B
1
D
2
C
3
A
4
B
5
A
6

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 54

Computing the Length
of an LCS-10

Operation of LCS-LENGTH on
the sequences

​ ​

X

Y

= ⟨ , , , , , , ⟩A
1
B
2
C
3
B
4
D
5
A
6
B
7

= ⟨ , , , , , ⟩B
1
D
2
C
3
A
4
B
5
A
6

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 55

Computing the Length
of an LCS-11

Operation of LCS-LENGTH on
the sequences

​ ​

X

Y

= ⟨ , , , , , , ⟩A
1
B
2
C
3
B
4
D
5
A
6
B
7

= ⟨ , , , , , ⟩B
1
D
2
C
3
A
4
B
5
A
6

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 56

Computing the Length
of an LCS-12

Operation of LCS-LENGTH on
the sequences

​ ​

X

Y

= ⟨ , , , , , , ⟩A
1
B
2
C
3
B
4
D
5
A
6
B
7

= ⟨ , , , , , ⟩B
1
D
2
C
3
A
4
B
5
A
6

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 57

Computing the Length
of an LCS-13

Operation of LCS-LENGTH on
the sequences

​ ​

X

Y

= ⟨ , , , , , , ⟩A
1
B
2
C
3
B
4
D
5
A
6
B
7

= ⟨ , , , , , ⟩B
1
D
2
C
3
A
4
B
5
A
6

Running-time =
since each table entry takes

 time to compute

CE100 Algorithms and Programming II

O(mn)

O(1)

 RTEU CE100 Week-6 58

Computing the Length
of an LCS-14

Operation of LCS-LENGTH on
the sequences

​ ​

X

Y

= ⟨ , , , , , , ⟩A
1
B
2
C
3
B
4
D
5
A
6
B
7

= ⟨ , , , , , ⟩B
1
D
2
C
3
A
4
B
5
A
6

Running-time =
since each table entry takes

 time to compute

LCS of

CE100 Algorithms and Programming II

O(mn)

O(1)

X&Y =
⟨B,C,B,A⟩

 RTEU CE100 Week-6 59

Constructing an LCS

The table returned by LCS-LENGTH can be used to quickly construct an LCS of

Begin at and trace through the table following arrows

Whenever you encounter a " " in entry it implies that is an
element of LCS
The elements of LCS are encountered in reverse order

CE100 Algorithms and Programming II

b

X&Y

b[m,n]

↖ b[i, j] x ​ =i y ​j

 RTEU CE100 Week-6 60

Constructing an LCS

The recursive procedure prints out in proper order

This procedure takes time since at least one of and is decremented in each stage of the recursion

PRINT-LCS(b,X, i, j)

if i = 0 orj = 0 then

return

if b[i, j] = " ↖ " then

PRINT-LCS(b,X, i − 1, j − 1)

print x ​i

else if b[i, j] = " ↑ " then

PRINT-LCS(b,X, i − 1, j)

else

PRINT-LCS(b,X, i, j − 1)

The initial invocation:

CE100 Algorithms and Programming II

PRINT-LCS LCS
O(m + n) i j

PRINT-LCS(b,X, length[X], length[Y])

 RTEU CE100 Week-6 61

Do we really need the b table
(back-pointers)?

Question: From which neighbor did we
expand to the highlighted cell?

Answer: Upper-left neighbor,because
.

CE100 Algorithms and Programming II

X[i] = Y [j]

 RTEU CE100 Week-6 62

Do we really need the b table
(back-pointers)?

Question: From which neighbor did we
expand to the highlighted cell?

Answer: Left neighbor, because
 and

.

CE100 Algorithms and Programming II

X[i] = Y [j] LCS[i, j − 1] >
LCS[i − 1, j]

 RTEU CE100 Week-6 63

Do we really need the b table
(back-pointers)?

Question: From which neighbor did we
expand to the highlighted cell?

Answer: Upper neighbor,because
 and

.

(See pseudo-code to see how ties are
handled.)

CE100 Algorithms and Programming II

X[i] = Y [j]
LCS[i, j − 1] = LCS[i − 1, j]

 RTEU CE100 Week-6 64

Improving the Space Requirements

We can eliminate the b table altogether
each entry depends only on other table entries: , and

Given the value of :
We can determine in time which of these values was used to compute
without inspecting table

We save space by this method

However, space requirement is still since we need space for the table
anyway

CE100 Algorithms and Programming II

c[i, j] 3 c c[i − 1, j − 1] c[i − 1, j]
c[i, j − 1]

c[i, j]
O(1) 3 c[i, j]

b

Θ(mn)

Θ(mn) Θ(mn) c

 RTEU CE100 Week-6 65

What if we store the last 2 rows
only?

To compute , we only need
, ,and

So, we can store only the last two rows.

CE100 Algorithms and Programming II

c[i, j]
c[i − 1, j − 1] c[i − 1, j] c[i −
1, j − 1]

 RTEU CE100 Week-6 66

What if we store the last 2 rows
only?

To compute , we only need
, , and

So, we can store only the last two rows.

CE100 Algorithms and Programming II

c[i, j]
c[i − 1, j − 1] c[i − 1, j]
c[i − 1, j − 1]

 RTEU CE100 Week-6 67

What if we store the last 2 rows
only?

To compute , we only need
, , and

So, we can store only the last two rows.

This reduces space complexity from
 to .

Is there a problem with this approach?

CE100 Algorithms and Programming II

c[i, j]
c[i − 1, j − 1] c[i − 1, j]
c[i − 1, j − 1]

Θ(mn) Θ(n)

 RTEU CE100 Week-6 68

What if we store the last 2 rows
only?

Is there a problem with this
approach?

We cannot construct the optimal
solution because we cannot
backtrace anymore.

This approach works if we only
need the length of an LCS, not the
actual LCS.

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 69

Problem 4 Optimal Binary Search Tree

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 70

Reminder: Binary Search Tree (BST)

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 71

ASCII Value

Binary Search Tree Example

Example: English-to-French translation
Organize (English, French) word pairs
in a BST

Keyword: English word

Satellite Data: French word

We can search for an English word (node
key) efficiently, and return the
corresponding French word (satellite data).

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 72

ASCII Table
CE100 Algorithms and Programming II

 RTEU CE100 Week-6 73

Binary Search Tree Example

Suppose we know the frequency of
each keyword in texts:

​, ​, ​, ​, ​, ​, ​,
5%

​begin
40%

​do
8%

​else
4%

​end
10%

​if
10%

​then
23%

​while

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 74

Cost of a Binary Search Tree

Example: If we search for keyword "while",
we need

to access nodes. So, of the queries will
have cost of .

Total Cost = ​(depth(i) + 1)freq(i)
i

∑

= 1 × 0.04 + 2 × 0.4+

2 × 0.1 + 3 × 0.05+

3 × 0.08 + 3 × 0.1+

3 × 0.23

= 2.42

CE100 Algorithms and Programming II

3 23
3

 RTEU CE100 Week-6 75

Cost of a Binary Search Tree

Example: If we search for keyword "while", we need

to access nodes. So, of the queries will have cost
of .

​ ​

Total Cost = ​(depth(i) + 1)freq(i)
i

∑

= 1 × 0.4 + 2 × 0.05 + 2 × 0.23+

3 × 0.1 + 4 × 0.08+

4 × 0.1 + 5 × 0.04

= 2.18

This is in fact an optimal BST.

CE100 Algorithms and Programming II

3 23
3

 RTEU CE100 Week-6 76

Optimal Binary Search Tree Problem

Given:
A collection of keys to be stored in a BST.

The corresponding values for
: probability of searching for key

Find:
An optimal BST with minimum total cost:

​ ​

Total Cost = ​(depth(i) + 1)freq(i)
i

∑

Note: The BST will be static. Only search operations will be performed. No insert, no delete, etc.

CE100 Algorithms and Programming II

n K ​ <1 K ​ <2 …K ​n

p ​i 1 ≤ i ≤ n

p ​i K ​i

 RTEU CE100 Week-6 77

Cost of a Binary Search Tree

Lemma 1: Let be a BST containing keys
. Let and

be the left and right subtrees of . Then we
have:

cost(T ​) = cost(T ​) + cost(T ​) + ​pij L R

h=i

∑
j

h

Intuition: When we add the root node, the depth
of each node in and increases by . So,
the cost of node increases by . In addition,
the cost of root node is . That’s why, we have
the last term at the end of the formula above.

CE100 Algorithms and Programming II

Tij

K ​ <i K ​ <i+1 ⋯ < K ​j T ​L T ​R

T

T ​L T ​R 1
h p ​h

r p ​r

 RTEU CE100 Week-6 78

Optimal Substructure Property

Lemma 2: Optimal substructure property
Consider an optimal BST for keys

Let be the key at the root of

Then:
 is an optimal BST for subproblem containing

keys:

 is an optimal BST for subproblem containing
keys:

cost(T ​) = cost(T ​) + cost(T ​) + ​pij i,m−1 m+1,j
h=i

∑
j

h

CE100 Algorithms and Programming II

T ​ij K ​ <i K ​ <i+1

⋯ < K ​j

K ​m T ​ij

T ​i,m−1

K ​ <i ⋯ < K ​m−1

T ​m+1,j

K ​ <m+1 ⋯ < K ​j

 RTEU CE100 Week-6 79

Recursive Formulation

Note: We don’t know which root vertex leads to the minimum total cost. So, we need to try each
vertex , and choose the one with minimum total cost.

: cost of an optimal BST for the subproblem

​ ​

c[i, j] = ​ ​ ​{
0

​{c[i, r − 1] + c[r + 1, j] + P ​}
i≤r≤j
min ij

if i > j

otherwise

where P ​ = ​p ​ij

h=i

∑
j

h

CE100 Algorithms and Programming II

m

c[i, j] T ​ij K ​ <i ⋯ < K ​j

 RTEU CE100 Week-6 80

Bottom-up computation

​ ​

c[i, j] = ​ ​ ​{
0

​{c[i, r − 1] + c[r + 1, j] + P ​}
i≤r≤j
min ij

if i > j

otherwise

How to choose the order in which we process values?

Before computing , we have to make sure that the values for and
have been computed for all .

CE100 Algorithms and Programming II

c[i, j]

c[i, j] c[i, r − 1] c[r + 1, j]
r

 RTEU CE100 Week-6 81

Bottom-up computation

c[i, j] = ​ ​{
0

​{c[i, r − 1] + c[r + 1, j] + P ​}
i≤r≤j
min ij

if i > j

otherwise

 must be processed after and

CE100 Algorithms and Programming II

c[i, j] c[i, r − 1]
c[r + 1, j]

 RTEU CE100 Week-6 82

Bottom-up computation

c[i, j] = ​ ​{
0

​{c[i, r − 1] + c[r + 1, j] + P ​}
i≤r≤j
min ij

if i > j

otherwise

If the entries are computed in the shown
order, then and values are
guaranteed to be computed before .

CE100 Algorithms and Programming II

c[i, j]
c[i, r − 1] c[r + 1, j]

c[i, j]

 RTEU CE100 Week-6 83

Computing the Optimal BST Cost

​ ​

OPTIMAL-BST-COST(p,n)

for i ← 1 to n do

c[i, i − 1] ← 0

c[i, i] ← p[i]

R[i, j] ← i

PS[1] ← p[1] ⟸ PS[i] → prefix-sum (i) : Sum of all p[j] values for j ≤ i

for i ← 2 to n do

PS[i] ← p[i] + PS[i − 1] ⟸ compute the prefix sum

for d ← 1 to n − 1 do ⟸ BSTs with d + 1 consecutive keys

for i ← 1 to n–d do

j ← i + d

c[i, j] ← ∞

for r ← i to j do

q ← min{c[i, r − 1] + c[r + 1, j]} + PS[j]–PS[i − 1]}

if q < c[i, j] then

c[i, j] ← q

R[i, j] ← r

return c[1,n],R

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 84

Note on Prefix Sum

We need values for each , where:

​

P ​ = ​p ​ij

h=i

∑
j

h

If we compute the summation directly for every pair, the runtime would be .

Instead, we spend time in preprocessing to compute the prefix sum array PS. Then we can
compute each in time using PS.

CE100 Algorithms and Programming II

P ​ij i, j(1 ≤ i ≤ n and 1 ≤ j ≤ n)

(i, j) Θ(n)3

O(n)
P ​ij O(1)

 RTEU CE100 Week-6 85

Note on Prefix Sum

In preprocessing, compute for each :
: the sum of values for

Then, we can compute in time as follows:

Example:

​ ​

p

PS

P ​27

P ​36

: 0.05
1

0.02
2

0.06
3

0.07
4

0.20
5

0.05
6

0.08
7

0.02
8

: 0.05
1

0.07
2

0.13
3

0.20
4

0.40
5

0.45
6

0.53
7

0.55
8

= PS[7]–PS[1] = 0.53–0.05 = 0.48

= PS[6]–PS[2] = 0.45–0.07 = 0.38

CE100 Algorithms and Programming II

i

PS[i] p[j] 1 ≤ j ≤ i

P ​ij O(1)
P ​ =ij PS[i]–PS[j − 1]

 RTEU CE100 Week-6 86

REVIEW

Overlapping Subproblems Property in Dynamic Programming

Dynamic Programming is an algorithmic paradigm that solves a given complex problem
by breaking it into subproblems and stores the results of subproblems to avoid
computing the same results again.

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 87

Overlapping Subproblems Property in Dynamic Programming

Following are the two main properties of a problem that suggests that the given
problem can be solved using Dynamic programming.

1. Overlapping Subproblems
2. Optimal Substructure

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 88

Overlapping Subproblems

Like Divide and Conquer, Dynamic Programming combines solutions to sub-
problems.

Dynamic Programming is mainly used when solutions of the same subproblems are
needed again and again.

In dynamic programming, computed solutions to subproblems are stored in a table
so that these don’t have to be recomputed.
So Dynamic Programming is not useful when there are no common (overlapping)
subproblems because there is no point storing the solutions if they are not needed
again.

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 89

Overlapping Subproblems

For example, Binary Search doesn’t have common subproblems.

If we take an example of following recursive program for Fibonacci Numbers, there
are many subproblems that are solved again and again.

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 90

Simple Recursion

C sample code:

#include <stdio.h>

// a simple recursive program to compute fibonacci numbers

int fib(int n)

{

 if (n <= 1)

 return n;

 else

 return fib(n-1) + fib(n-2);

}

int main()

{

 int n = 5;

 printf("Fibonacci number is %d ", fib(n));

 return 0;

}

CE100 Algorithms and Programming II

f(n) = f(n − 1) + f(n − 2)

 RTEU CE100 Week-6 91

Simple Recursion

Output

Fibonacci number is 5

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 92

Simple Recursion

/* a simple recursive program for Fibonacci numbers */

public class Fibonacci {

 public static void main(String[] args) {

 int n = Integer.parseInt(args[0]);

 System.out.println(fib(n));

 }

 public static int fib(int n) {

 if (n <= 1)

 return n;

 return fib(n - 1) + fib(n - 2);

 }

}

CE100 Algorithms and Programming II

f(n) = f(n − 1) + f(n − 2)

 RTEU CE100 Week-6 93

Simple Recursion

public class Fibonacci {

 public static void Main(string[] args) {

 int n = int.Parse(args[0]);

 Console.WriteLine(fib(n));

 }

 public static int fib(int n) {

 if (n <= 1)

 return n;

 return fib(n - 1) + fib(n - 2);

 }

}

CE100 Algorithms and Programming II

f(n) = f(n − 1) + f(n − 2)

 RTEU CE100 Week-6 94

Recursion tree for execution of fib(5)

 fib(5)

 / \

 fib(4) fib(3)

 / \ / \

 fib(3) fib(2) fib(2) fib(1)

 / \ / \ / \

 fib(2) fib(1) fib(1) fib(0) fib(1) fib(0)

 / \

fib(1) fib(0)

We can see that the function fib(3) is being called 2 times.

If we would have stored the value of fib(3) , then instead of computing it again,
we could have reused the old stored value.

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 95

Recursion tree for execution of fib(5)

There are following two different ways to store the values so that these values can be
reused:

1. Memoization (Top Down)

2. Tabulation (Bottom Up)

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 96

Memoization (Top Down)

The memoized program for a problem is similar to the recursive version with a
small modification that looks into a lookup table before computing solutions.

We initialize a lookup array with all initial values as NIL . Whenever we need the
solution to a subproblem, we first look into the lookup table.

If the precomputed value is there then we return that value, otherwise, we calculate
the value and put the result in the lookup table so that it can be reused later.

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 97

Memoization (Top Down)

Following is the memoized version for the nth Fibonacci Number.

C++ Version:

/* C++ program for Memoized version

for nth Fibonacci number */

#include <bits/stdc++.h>

using namespace std;

#define NIL -1

#define MAX 100

int lookup[MAX];

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 98

Memoization (Top Down)

C++ Version:

/* Function to initialize NIL

values in lookup table */

void _initialize()

{

 int i;

 for (i = 0; i < MAX; i++)
 lookup[i] = NIL;

}

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 99

Memoization (Top Down)

C++ Version:

/* function for nth Fibonacci number */

int fib(int n)

{

 if (lookup[n] == NIL) {

 if (n <= 1)

 lookup[n] = n;

 else

 lookup[n] = fib(n - 1) + fib(n - 2);

 }

 return lookup[n];

}

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 100

Memoization (Top Down)

C++ Version:

// Driver code

int main()

{

 int n = 40;

 _initialize();

 cout << "Fibonacci number is " << fib(n);

 return 0;

}

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 101

Memoization (Top Down)

Java Version:

/* Java program for Memoized version */

public class Fibonacci {

 final int MAX = 100;

 final int NIL = -1;

 int lookup[] = new int[MAX];

 /* Function to initialize NIL values in lookup table */

 void _initialize()

 {

 for (int i = 0; i < MAX; i++)

 lookup[i] = NIL;

 }

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 102

Memoization (Top Down)

Java Version:

 /* function for nth Fibonacci number */

 int fib(int n)

 {

 if (lookup[n] == NIL) {

 if (n <= 1)

 lookup[n] = n;

 else

 lookup[n] = fib(n - 1) + fib(n - 2);

 }

 return lookup[n];

 }

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 103

Memoization (Top Down)

Java Version:

 public static void main(String[] args)

 {

 Fibonacci f = new Fibonacci();

 int n = 40;

 f._initialize();

 System.out.println("Fibonacci number is"

 + " " + f.fib(n));

 }

}

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 104

Memoization (Top Down)

C# Version:

// C# program for Memoized versionof nth Fibonacci number

using System;

class FiboCalcMemoized {

 static int MAX = 100;

 static int NIL = -1;

 static int[] lookup = new int[MAX];

 /* Function to initialize NIL

 values in lookup table */

 static void initialize()

 {

 for (int i = 0; i < MAX; i++)

 lookup[i] = NIL;

 }

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 105

Memoization (Top Down)

C# Version:

 /* function for nth Fibonacci number */

 static int fib(int n)

 {

 if (lookup[n] == NIL) {

 if (n <= 1)

 lookup[n] = n;

 else

 lookup[n] = fib(n - 1) + fib(n - 2);

 }

 return lookup[n];

 }

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 106

Memoization (Top Down)

C# Version:

 // Driver code

 public static void Main()

 {

 int n = 40;

 initialize();

 Console.Write("Fibonacci number is"

 + " " + fib(n));

 }

}

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 107

Tabulation (Bottom Up)

The tabulated program for a given problem builds a table in bottom-up fashion
and returns the last entry from the table.

For example, for the same Fibonacci number,
we first calculate fib(0) then fib(1) then fib(2) then fib(3) , and so on.
So literally, we are building the solutions of subproblems bottom-up.

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 108

Tabulation (Bottom Up)

C++ Version:

/* C program for Tabulated version */

#include <stdio.h>

int fib(int n)

{

 int f[n + 1];

 int i;

 f[0] = 0;

 f[1] = 1;

 for (i = 2; i <= n; i++)

 f[i] = f[i - 1] + f[i - 2];

 return f[n];

}

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 109

Tabulation (Bottom Up)

C++ Version:

...

int main()

{

 int n = 9;

 printf("Fibonacci number is %d ", fib(n));

 return 0;

}

Output:

Fibonacci number is 34

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 110

Tabulation (Bottom Up)

Java Version:

/* Java program for Tabulated version */

public class Fibonacci {

 public static void main(String[] args)

 {

 int n = 9;

 System.out.println("Fibonacci number is " + fib(n));

 }

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 111

Tabulation (Bottom Up)

Java Version:

 /* Function to calculate nth Fibonacci number */

 static int fib(int n)

 {

 int f[] = new int[n + 1];

 f[0] = 0;

 f[1] = 1;

 for (int i = 2; i <= n; i++)

 f[i] = f[i - 1] + f[i - 2];

 return f[n];

 }

}

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 112

Tabulation (Bottom Up)

C# Version:

// C# program for Tabulated version

using System;

class Fibonacci {

 static int fib(int n)

 {

 int[] f = new int[n + 1];

 f[0] = 0;

 f[1] = 1;

 for (int i = 2; i <= n; i++)

 f[i] = f[i - 1] + f[i - 2];

 return f[n];

 }

 public static void Main()

 {

 int n = 9;

 Console.Write("Fibonacci number is"

 + " " + fib(n));

 }

}

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 113

Both Tabulated and Memoized store the solutions of subproblems.

In Memoized version, the table is filled on demand while in the Tabulated version,
starting from the first entry, all entries are filled one by one.

Unlike the Tabulated version, all entries of the lookup table are not necessarily filled
in Memoized version.

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 114

To see the optimization achieved by Memoized and Tabulated solutions over the
basic Recursive solution, see the time taken by following runs for calculating the
40th Fibonacci number:

Recursive Solution:

https://ide.geeksforgeeks.org/vHt6ly

Memoized Solution:

https://ide.geeksforgeeks.org/Z94jYR

Tabulated Solution:

https://ide.geeksforgeeks.org/12C5bP

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 115

https://ide.geeksforgeeks.org/vHt6ly
https://ide.geeksforgeeks.org/Z94jYR
https://ide.geeksforgeeks.org/12C5bP

Optimal Substructure Property in Dynamic Programming

A given problems has Optimal Substructure Property if optimal solution of the
given problem can be obtained by using optimal solutions of its subproblems.

For example, the Shortest Path problem has following optimal substructure
property:

If a node x lies in the shortest path from a source node u to destination node v
then the shortest path from u to v is combination of shortest path from u to x
and shortest path from x to v. The standard All Pair Shortest Path algorithm
like Floyd–Warshall and Single Source Shortest path algorithm for negative
weight edges like Bellman–Ford are typical examples of Dynamic
Programming.

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 116

Optimal Substructure Property in Dynamic Programming

On the other hand, the Longest Path problem doesn’t have the Optimal
Substructure property. Here by Longest Path we mean longest simple path (path
without cycle) between two nodes

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 117

Optimal Substructure Property in Dynamic Programming

There are two longest paths from q to t: q→r→t and q→s→t. Unlike shortest paths,
these longest paths do not have the optimal substructure property. For example,
the longest path q→r→t is not a combination of longest path from q to r and
longest path from r to t, because the longest path from q to r is q→s→t→r and the
longest path from r to t is r→q→s→t.

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 118

Most Common Dynamic Programming Interview Questions

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 119

Problem-1: Longest Increasing Subsequence

Problem-1: Longest Increasing Subsequence

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 120

https://www.geeksforgeeks.org/longest-increasing-subsequence-dp-3/

Problem-1: Longest Increasing Subsequence

Longest Increasing Subsequence O(n log n) dynamic progrLongest Increasing Subsequence O(n log n) dynamic progr……

Problem-2: Edit Distance

Problem-2: Edit Distance

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 121

https://www.youtube.com/watch?v=22s1xxRvy28
https://www.geeksforgeeks.org/edit-distance-dp-5/

Problem-2: Edit Distance (Recursive)

ADS1: Solving the edit distance problemADS1: Solving the edit distance problem

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 122

https://www.youtube.com/watch?v=8Q2IEIY2pDU

Problem-2: Edit Distance (DP)

https://www.coursera.org/learn/dna-sequencing

ADS1: Using dynamic programming for edit distanceADS1: Using dynamic programming for edit distance

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 123

https://www.coursera.org/learn/dna-sequencing
https://www.youtube.com/watch?v=0KzWq118UNI

Problem-2: Edit Distance (DP)

ADS1: Using dynamic programming for edit distanceADS1: Using dynamic programming for edit distance

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 124

https://www.youtube.com/watch?v=eAVGRWSryGo

Problem-2: Edit Distance (Other)

Edit Distance Problem | Dynamic Programming Edit Distance Problem | Dynamic Programming | Optimal S| Optimal S……

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 125

https://www.youtube.com/watch?v=tU2f2JwHmfQ

Problem-3: Partition a set into two subsets such that the difference of subset
sums is minimum

Problem-3: Partition a set into two subsets such that the difference of subset sums
is minimum

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 126

https://www.geeksforgeeks.org/partition-a-set-into-two-subsets-such-that-the-difference-of-subset-sums-is-minimum/

Problem-4: Count number of ways to cover a distance

Problem-4: Count number of ways to cover a distance

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 127

https://www.geeksforgeeks.org/count-number-of-ways-to-cover-a-distance/

Problem-5: Find the longest path in a matrix with given constraints

Problem-5: Find the longest path in a matrix with given constraints

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 128

https://www.geeksforgeeks.org/find-the-longest-path-in-a-matrix-with-given-constraints/

Problem-6: Subset Sum Problem

Problem-6: Subset Sum Problem

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 129

https://www.geeksforgeeks.org/subset-sum-problem-dp-25/

Problem-7: Optimal Strategy for a Game

Problem-7: Optimal Strategy for a Game

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 130

https://www.geeksforgeeks.org/optimal-strategy-for-a-game-dp-31/

Problem-8: 0-1 Knapsack Problem

Problem-8: 0-1 Knapsack Problem

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 131

https://www.geeksforgeeks.org/0-1-knapsack-problem-dp-10/

Problem-9: Boolean Parenthesization Problem

Problem-9: Boolean Parenthesization Problem

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 132

https://www.geeksforgeeks.org/boolean-parenthesization-problem-dp-37/

Problem-10: Shortest Common Supersequence

Problem-10: Shortest Common Supersequence

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 133

https://www.geeksforgeeks.org/shortest-common-supersequence/

Problem-11: Partition Problem

Problem-11: Partition Problem

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 134

https://www.geeksforgeeks.org/partition-problem-dp-18/

Problem-12: Cutting a Rod

Problem-12: Cutting a Rod

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 135

https://www.geeksforgeeks.org/cutting-a-rod-dp-13/

Problem-13: Coin Change

Problem-13: Coin Change

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 136

https://www.geeksforgeeks.org/coin-change-dp-7

Problem-14: Word Break Problem

Problem-14: Word Break Problem

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 137

https://www.geeksforgeeks.org/word-break-problem-dp-32/

Problem-15: Maximum Product Cutting

Problem-15: Maximum Product Cutting

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 138

https://www.geeksforgeeks.org/maximum-product-cutting-dp-36/

Problem-16: Dice Throw

Problem-16: Dice Throw

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 139

https://www.geeksforgeeks.org/dice-throw-dp-30/

Problem-16: Dice Throw

How to Count Dice Rolls - An Introduction to Dynamic ProgrHow to Count Dice Rolls - An Introduction to Dynamic Progr……

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 140

https://www.youtube.com/watch?v=oifN-YVlrq8

Problem-17: Box Stacking Problem

Problem-17: Box Stacking Problem

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 141

https://www.geeksforgeeks.org/box-stacking-problem-dp-22/

Problem-18: Egg Dropping Puzzle

Problem-18: Egg Dropping Puzzle

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 142

https://www.geeksforgeeks.org/egg-dropping-puzzle-dp-11/

References

Introduction to Algorithms, Third Edition | The MIT Press

CLRS

Bilkent CS473 Course Notes (new)

Bilkent CS473 Course Notes (old)

CE100 Algorithms and Programming II

 RTEU CE100 Week-6 143

https://mitpress.mit.edu/books/introduction-algorithms-third-edition
https://ressources.unisciel.fr/algoprog/s00aaroot/aa00module1/res/%5BCormen-AL2011%5DIntroduction_To_Algorithms-A3.pdf
http://nabil.abubaker.bilkent.edu.tr/473/
http://cs.bilkent.edu.tr/~ugur/teaching/cs473/

CE100 Algorithms and Programming II

−End − Of − Week − 6 − Course − Module−

 RTEU CE100 Week-6 144

