CE100 Algorithms and Programming II

Week-4 (Heap/Heap Sort)

Spring Semester, 2021-2022 Download DOC, SLIDE, PPTX

Heap/Heap Sort

Outline (1)

- Heaps
 - Max / Min Heap
- Heap Data Structure
 - Heapify
 - Iterative
 - Recursive

CE100 Algorithms and Programming II

Outline (2)

- Extract-Max
- Build Heap

Outline (3)

- Heap Sort
- Priority Queues
- Linked Lists
- Radix Sort
- Counting Sort

Heapsort

- Worst-case runtime: O(nlgn)
- Sorts in-place
- Uses a special data structure (heap) to manage information during execution of the algorithm
 - Another design paradigm

Heap Data Structure (1)

- Nearly complete binary tree
 - Completely filled on all levels except possibly the lowest level

Heap Data Structure (2)

- Height of node i: Length of the longest simple downward path from i to a leaf
- Height of the tree: height of the root

Heap Data Structures (3)

• Depth of node i: Length of the simple downward path from the root to node i

Heap Property: Min-Heap

- The smallest element in any subtree is the root element in a min-heap
- Min heap: For every node i other than root, $A[parent(i)] \leq A[i]$
 - Parent node is always smaller than the child nodes

Heap Property: Max-Heap

- The largest element in any subtree is the root element in a max-heap
 - We will focus on max-heaps
- Max heap: For every node i other than root, $A[parent(i)] \geq A[i]$
 - Parent node is always larger than the child nodes

Heap Data Structures (4)

Heap Data Structures (5)

- Computing left child, right child, and parent indices very fast
 - left(i) = $2i \implies$ binary left shift
 - \circ right(i) = 2i+1 \Longrightarrow binary left shift, then set the lowest bit to 1
 - parent(i) = floor(i/2) => right shift in binary
- A[1] is always the **root** element
- Array A has two attributes:
 - \circ length(A): The number of elements in A
 - **n** = **heap-size(A)**: The number elements in *heap*
 - $n \leq length(A)$

Heap Operations : EXTRACT-MAX (1)

```
EXTRACT-MAX(A, n)
max = A[1]
A[1] = A[n]
n = n - 1
HEAPIFY(A, 1,n)
return max
```


Heap Operations : EXTRACT-MAX (2)

• Return the max element, and reorganize the heap to maintain heap property

Heap Operations: HEAPIFY (1)

Heap Operations: HEAPIFY (2)

- Maintaining heap property:
 - $\circ\,$ Subtrees rooted at left[i] and right[i] are already heaps.
 - $\circ\,$ But, A[i] may violate the heap property (i.e., may be smaller than its children)
- Idea: Float down the value at A[i] in the heap so that subtree rooted at i becomes a heap.

Heap Operations: HEAPIFY (2)

```
HEAPIFY(A, i, n)
  largest = i
  if 2i <= n and A[2i] > A[i] then
   largest = 2i;
  endif
  if 2i+1 <= n and A[2i+1] > A[largest] then
   largest = 2i+1;
  endif
  if largest != i then
    exchange A[i] with A[largest];
    HEAPIFY(A, largest, n);
  endif
```


Heap Operations: HEAPIFY (3)

Heap Operations: HEAPIFY (4)

Heap Operations: HEAPIFY (5)

Heap Operations: HEAPIFY (6)

Heap Operations: HEAPIFY (7)

```
HEAPIFY (A, i, n)
  largest=i
  if 2i<=n and A[2i]>A[i]
   then largest=2i;
  if 2i+1<=n and A[2i+1]>A[largest]
    then largest=2i+1;
  if largest!=i then
    exchange A[i] with A[largest];
    HEAPIFY(A,largest,n);
  endif
```


Heap Operations: HEAPIFY (8)

Intuitive Analysis of HEAPIFY

- Consider HEAPIFY(A, i, n)
 - $\,\circ\,$ let h(i) be the height of node i
 - $\circ\,$ at most h(i) recursion levels
 - Constant work at each level: $\Theta(1)$
 - $\circ\;$ Therefore T(i)=O(h(i))
- Heap is almost-complete binary tree
 - $\circ h(n) = O(lgn)$
- Thus T(n) = O(lgn)

CE100 Algorithms and Programming II

Formal Analysis of HEAPIFY

- What is the recurrence?
 - Depends on the size of the subtree on which recursive call is made
 - In the next, we try to compute an upper bound for this subtree.

CE100 Reminder: Binary trees

- For a complete binary tree:
 - $\circ \ \#$ of nodes at depth $d: 2^d$
 - $^\circ \ \#$ of nodes with depths less than $d: 2^d 1$

Formal Analysis of HEAPIFY (1)

- Worst case occurs when last row of the subtree S_i rooted at node i is half full
- $T(n) \leq T(|S_{L(i)}|) + \Theta(1)$
- $S_{L(i)}$ and $S_{R(i)}$ are complete binary trees of heights h(i)-1 and h(i)-2, respectively

Formal Analysis of HEAPIFY (2)

• Let m be the number of **leaf nodes** in $S_{L(i)}$

$$egin{aligned} &\circ |S_{L(i)}| = \overbrace{m}^{ext.} + \overbrace{(m-1)}^{int.} = 2m-1 \ &\circ |S_{R(i)}| = \overbrace{\frac{m}{2}}^{ext.} + \overbrace{(\frac{m}{2}-1)}^{int.} = m-1 \ &\circ |S_{L(i)}| + |S_{R(i)}| + 1 = n \end{aligned}$$

EU CE100 Week-4

Formal Analysis of HEAPIFY (2)

$$egin{aligned} (2m{-}1)+(m{-}1)+1&=n\ m&=(n+1)/3\ |S_{L(i)}|&=2m{-}1\ &=2(n+1)/3{-}1\ &=(2n/3+2/3){-}1\ &=rac{2n}{3}-rac{1}{3}\leqrac{2n}{3}\ T(n)&\leq T(2n/3)+\Theta(1)\ T(n)&=O(lgn) \end{aligned}$$

• By CASE-2 of Master Theorem $\Longrightarrow T(n) = \Theta(n^{log^a_b} lgn)$

Formal Analysis of HEAPIFY (2)

- Recurrence: T(n) = aT(n/b) + f(n)
- Case 2: $rac{f(n)}{n^{log^a_b}} = \Theta(1)$
- i.e., f(n) and $n^{log_b^a}$ grow at similar rates
- Solution: $T(n) = \Theta(n^{log^a_b} lgn)$
 - $egin{aligned} &\circ \ T(n) \leq T(2n/3) + \Theta(1) ext{ (drop constants.)} \ &\circ \ T(n) \leq \Theta(n^{log_3^1}lgn) \ &\circ \ T(n) \leq \Theta(n^0lgn) \end{aligned}$
 - $\circ \ T(n) = O(lgn)$

CE100 Algorithms and Programming II

HEAPIFY: Efficiency Issues

- Recursion vs Iteration:
 - In the absence of tail recursion, iterative version is in general more efficient because of the pop/push operations to/from stack at each level of recursion.

Heap Operations: HEAPIFY (1)

Recursive

```
HEAPIFY(A, i, n)
largest = i

if 2i <= n and A[2i] > A[i] then
largest = 2i

if 2i+1 <= n and A[2i+1] > A[largest] then
largest = 2i+1

if largest != i then
exchange A[i] with A[largest]
HEAPIFY(A, largest, n)
```


Heap Operations: HEAPIFY (2)

Iterative

```
HEAPIFY(A, i, n)
  j = i
 while(true) do
    largest = j
  if 2j <= n and A[2j] > A[j] then
    largest = 2j
  if 2j+1 <= n and A[2j+1] > A[largest] then
    largest = 2j+1
  if largest != j then
    exchange A[j] with A[largest]
    j = largest
  else return
```

Heap Operations: HEAPIFY (3)

Recursive	Iterative
$\frac{HEAPIFY(A, i, n)}{\text{largest} \leftarrow i}$ $\text{if } 2i \leq n \text{ and } A[2i] > A[i] \text{ then } \text{largest} \leftarrow 2i$ $\text{if } 2i + 1 \leq n \text{ and } A[2i+1] > A[\text{largest}] \text{ then } \text{largest} \leftarrow 2i + 1$ $\text{if } \text{largest} \neq i \text{ then}$ $\text{exchange } A[i] \leftrightarrow A[\text{largest}]$ $\frac{HEAPIFY}{A}(A, \text{largest}, n)$	$HEAPIFY(A, i, n)$ $j \leftarrow i$ while (true) dolargest $\leftarrow j$ if $2j \leq n$ and $A[2j] > A[j]$ then largest $\leftarrow 2j$ if $2j + 1 \leq n$ and $A[2j+1] > A[largest]$ then largest $\leftarrow 2j + 1$ if largest $\neq j$ thenexchange $A[j] \leftrightarrow A[largest]$ $j \leftarrow$ largestelse return

Heap Operations: Building Heap

- Given an arbitrary array, how to build a heap from scratch?
- Basic idea: Call HEAPIFY on each node bottom up
 - Start from the leaves (which trivially satisfy the heap property)
 - Process nodes in bottom up order.
 - When *HEAPIFY* is called on node *i*, the subtrees connected to the *left* and *right* subtrees already satisfy the heap property.

Storage of the leaves (Lemma)

> Lemma: The last $\left\lceil \frac{n}{2} \right\rceil$ nodes of a heap are all leaves.

CF100 Week-4

8

2

9

10
Storage of the leaves (Proof of Lemma) (1)

- Lemma: last $\lceil n/2 \rceil$ nodes of a heap are all leaves
- Proof :

CF100 Week-4

- $\circ m = 2^{d-1}$: # nodes at level d-1
- $\circ f$: # nodes at level d (last level)
- ullet # of nodes with depth d-1 : m
- ullet # of nodes with depth < d-1 : m-1
- # of nodes with depth d : f
- Total # of nodes :n=f+2m-1

37

Storage of the leaves (Proof of Lemma) (2)

• Total # of nodes :
$$f = n - 2m + 1$$

of leaves: $= f + m - \lceil f/2 \rceil$
 $= m + \lfloor f/2 \rfloor$
 $= m + \lfloor (n - 2m + 1)/2$
 $= \lfloor (n + 1)/2 \rfloor$
 $= \lceil n/2 \rceil$

d-1 $\lceil f/2 \rceil$ leaf nodes $m - \lceil f/2 ceil$ leaf nodes leaf nodes

Proof is Completed

Heap Operations: Building Heap

```
BUILD-HEAP (A, n)
for i = ceil(n/2) downto 1 do
HEAPIFY(A, i, n)
```

• Reminder: The last $\lceil n/2 \rceil$ nodes of a heap are all leaves, which trivially satisfy the heap property

Build-Heap Example (Step-1)

Build-Heap Example (Step-2)

Build-Heap Example (Step-3)

Build-Heap Example (Step-4)

Build-Heap Example (Step-5)

Build-Heap Example (Step-6)

Build-Heap Example (Step-7)

Build-Heap Example (Step-8)

Build-Heap Example (Step-9)

Build-Heap: Runtime Analysis

- Simple analysis:
 - $\circ~O(n)$ calls to HEAPIFY, each of which takes O(lgn) time
 - $\circ \ O(nlgn) \Longrightarrow$ loose bound
- In general, a good approach:
 - Start by proving an easy bound
 - $\circ~$ Then, try to tighten it
- Is there a tighter bound?

Build-Heap: Tighter Running Time Analysis

- If the heap is complete binary tree then $h_\ell = d\!-\!\ell$
- Otherwise, nodes at a given level do not all have the same height, But we have $d\!-\!\ell\!-\!1 \leq h_\ell \leq d\!-\!\ell$

Build-Heap: Tighter Running Time Analysis

• Assume that all nodes at level $\ell = d - 1$ are processed

$$T(n) = \sum_{\ell=0}^{d-1} n_\ell O(h_\ell) = O(\sum_{\ell=0}^{d-1} n_\ell h_\ell) \begin{cases} n_\ell = 2^\ell = \# ext{ of nodes at level } \ell \ h_\ell = ext{height of nodes at level } \ell \end{cases}$$
 $\therefore T(n) = Oigg(\sum_{\ell=0}^{d-1} 2^\ell (d-\ell)igg)$ Let $h = d - \ell \Longrightarrow \ell = d - h$ change of variables

$$T(n) = O\left(\sum_{h=1}^d h 2^{d-h}
ight) = O\left(\sum_{h=1}^d h \frac{2^d}{2^h}
ight) = O\left(2^d \sum_{h=1}^d h (1/2)^h
ight)$$

but $2^d = \Theta(n) \Longrightarrow O\left(n \sum_{h=1}^d h (1/2)^h
ight)$

Build-Heap: Tighter Running Time Analysis

$$\sum_{h=1}^d h(1/2)^h \leq \sum_{h=0}^d h(1/2)^h \leq \sum_{h=0}^\infty h(1/2)^h$$

• recall infinite decreasing geometric series

$$\sum_{k=0}^\infty x^k = rac{1}{1-x} ext{ where } |x| < 1$$

• differentiate both sides

$$\sum_{k=0}^\infty k x^{k-1} = rac{1}{(1-x)^2}$$

CE100 Algorithms and Programming II Build-Heap: Tighter Running Time Analysis

$$\sum_{k=0}^\infty k x^{k-1} = rac{1}{(1-x)^2}$$

• then, multiply both sides by x

$$\sum_{k=0}^\infty kx^k = rac{x}{(1-x)^2}$$

$$ullet$$
 in our case: $x=1/2$ and $k=h$

$$egin{aligned} &\therefore \sum_{h=0}^\infty h(1/2)^h = rac{1/2}{(1-(1/2))^2} = 2 = O(1) \ &\therefore T(n) = O(n\sum_{h=1}^d h(1/2)^h) = O(n) \end{aligned}$$

Heapsort Algorithm Steps

- (1) Build a heap on array $A[1 \dots n]$ by calling BUILD HEAP(A,n)
- (2) The largest element is stored at the root A[1]
 - $\circ\,$ Put it into its correct final position A[n] by $A[1] \longleftrightarrow A[n]$
- (3) Discard node *n* from the heap
- (4) Subtrees (S2&S3) rooted at children of root remain as heaps, but the new root element may violate the heap property.
 - $\circ\;$ Make $A[1 \ldots n-1]$ a heap by calling HEAPIFY(A,1,n-1)
- (5) $n \leftarrow n-1$
- (6) Repeat steps (2-4) until n=2

Heapsort Algorithm Example (Step-1)

Heapsort Algorithm Example (Step-2)

Heapsort Algorithm Example (Step-3)

Heapsort Algorithm Example (Step-4)

Heapsort Algorithm Example (Step-5)

Heapsort Algorithm Example (Step-6)

Heapsort Algorithm Example (Step-7)

Heapsort Algorithm Example (Step-8)

Heapsort Algorithm Example (Step-9)

Heapsort Algorithm Example (Step-10)

Heapsort Algorithm Example (Step-11)

Heapsort Algorithm Example (Step-12)

Heapsort Algorithm Example (Step-13)

Heapsort Algorithm Example (Step-14)

Heapsort Algorithm Example (Step-15)

Heapsort Algorithm Example (Step-16)

Heapsort Algorithm Example (Step-17)

Heapsort Algorithm Example (Step-18)

Heapsort Algorithm Example (Step-19)

Heapsort Algorithm: Runtime Analysis

 $\begin{array}{l} \underline{HEAPSORT(A, n)} \\ & \text{BUILD-HEAP}(A, n) \cdots \Theta(n) \\ & \text{for } i \leftarrow n \text{ downto 2 do} \\ & \text{exchange A}[1] \leftrightarrow A[i] \cdots \Theta(1) \\ & \text{HEAPIFY}(A, 1, i - 1) \cdots O(lg(i - 1)) \end{array}$

$$egin{aligned} T(n) &= \Theta(n) + \sum_{i=2}^n O(lgi) \ &= \Theta(n) + Oigg(\sum_{i=2}^n O(lgn)igg) \ &= O(nlgn) \end{aligned}$$

Heapsort - Notes

- Heapsort is a very good algorithm but, a good implementation of quicksort always beats heapsort in practice
- However, heap data structure has many popular applications, and it can be efficiently used for implementing priority queues

Data structures for Dynamic Sets

• Consider sets of records having key and satellite data

Operations on Dynamic Sets

- Queries: Simply return info;
 - $\circ \; MAX(S)/MIN(S)$: (Query) return $x \in S$ with the <code>largest/smallest</code> key
 - $\circ \; SEARCH(S,k):$ (Query) return $x \in S$ with key[x]=k
 - $\circ \ SUCCESSOR(S,x)/PREDECESSOR(S,x):$ (Query) return $y \in S$ which is the next larger/smaller element after x
- Modifying operations: Change the set
 - $\circ \ INSERT(S,x)$: (Modifying) $S \leftarrow S \cup \{x\}$
 - $\circ \; DELETE(S,x):$ (Modifying) $S \leftarrow S \{x\}$
 - $\circ \ \mathrm{EXTRACT}\operatorname{-MAX}(S)/\mathrm{EXTRACT}\operatorname{-MIN}(S):$ (Modifying) return and delete $x\in S$ with the largest/smallest key
- Different data structures support/optimize different operations
 RTEU CE100 Week-4

Priority Queues (PQ)

- Supports
 - \circ INSERT
 - $\circ MAX/MIN$
 - EXTRACT-MAX/EXTRACT-MIN

Priority Queues (PQ)

- One application: Schedule jobs on a shared resource
 - PQ keeps track of jobs and their relative priorities
 - When a job is finished or interrupted, highest priority job is selected from those pending using EXTRACT-MAX
 - $\circ\,$ A new job can be added at any time using INSERT

Priority Queues (PQ)

- Another application: Event-driven simulation
 - Events to be simulated are the items in the PQ
 - $\circ\,$ Each event is associated with a time of occurrence which serves as a key
 - Simulation of an event can cause other events to be simulated in the future
 - Use EXTRACT-MIN at each step to choose the next event to simulate
 - $\circ\,$ As new events are produced insert them into the PQ using INSERT

Implementation of Priority Queue

- Sorted linked list: Simplest implementation
 - \circ INSERT
 - O(n) time
 - Scan the list to find place and splice in the new item
 - EXTRACT-MAX
 - O(1) time
 - Take the first element
 - Fast extraction but slow insertion.

CE100 Algorithms and Programming II Implementation of Priority Queue

- Unsorted linked list: Simplest implementation
 - \circ INSERT
 - O(1) time
 - Put the new item at front
 - EXTRACT-MAX
 - *O*(*n*) time
 - Scan the whole list
 - Fast insertion but slow extraction.
- Sorted linked list is better on the average
 - $\circ\,$ Sorted list: on the average, scans n/2 element per insertion

 \circ Unsorted list: always scans n element at each extraction

Heap Implementation of PQ

- INSERT and EXTRACT-MAX are both O(lgn)
 - good compromise between fast insertion but slow extraction and vice versa
- EXTRACT-MAX: already discussed HEAP-EXTRACT-MAX
- INSERT: Insertion is like that of Insertion-Sort.

```
HEAP-INSERT(A, key, n)
n = n+1
i=n
while i>1 and A[floor(i/2)] < key do
        A[i]=A[floor(i/2)]
        i= floor(i/2)
        A[i]=key</pre>
```


Heap Implementation of PQ

- Traverses O(lgn) nodes, as HEAPIFY does but makes fewer comparisons and assignments
 - *HEAPIFY*: compares parent with both children
 - \circ HEAP INSERT: with only one

HEAP-INSERT Example (Step-1)

HEAP-INSERT Example (Step-2)

HEAP-INSERT Example (Step-3)

HEAP-INSERT Example (Step-4)

HEAP-INSERT Example (Step-5)

Heap Increase Key

• Key value of i^{th} element of heap is increased from A[i] to key

```
HEAP-INCREASE-KEY(A, i, key)

if key < A[i] then
  return error

while i > 1 and A[floor(i/2)] < key do
  A[i] = A[floor(i/2)]
  i = floor(i/2)

A[i] = key</pre>
```


HEAP-INCREASE-KEY Example (Step-1)

HEAP-INCREASE-KEY Example (Step-2)

HEAP-INCREASE-KEY Example (Step-3)

HEAP-INCREASE-KEY Example (Step-4)

HEAP-INCREASE-KEY Example (Step-5)

Heap Implementat ion of Priority Queue (PQ)

Summary: Max Heap

- Heapify(A, i)
 - Works when both child subtrees of node i are heaps
 - "Floats down" node i to satisfy the heap property
 - \circ Runtime: O(lgn)
- Max(A, n)
 - Returns the max element of the heap (no modification)
 - \circ Runtime: O(1)
- Extract-Max(A, n)
 - Returns and removes the max element of the heap
 - $\circ\;$ Fills the gap in A[1] with A[n], then calls Heapify(A,1)
 - $\circ\;$ Runtime: O(lgn)

Summary: Max Heap

- Build-Heap(A, n)
 - Given an arbitrary array, builds a heap from scratch
 - \circ Runtime: O(n)
- Min(A, n)
 - How to return the min element in a max-heap?
 - \circ Worst case runtime: O(n)
 - because ~half of the heap elements are leaf nodes
 - Instead, use a min-heap for efficient min operations
- Search(A, x)
 - $\circ~$ For an arbitrary x value, the worst-case runtime: O(n)
 - $\circ~$ Use a sorted array instead for efficient search operations

Summary: Max Heap

- Increase-Key(A, i, x)
 - $\circ\,$ Increase the key of node i (from A[i] to x)
 - \circ "Float up" x until heap property is satisfied
 - \circ Runtime: O(lgn)
- Decrease-Key(A, i, x)
 - $\circ\,$ Decrease the key of node i (from A[i] to x)
 - Call Heapify(A, i)
 - $\circ\,$ Runtime: O(lgn)

Phone Operator Problem

- A phone operator answering *n* phones
- Each phone i has x_i people waiting in line for their calls to be answered.
- Phone operator needs to answer the phone with the largest number of people waiting in line.
- New calls come continuously, and some people hang up after waiting.

Phone Operator Solution

- **Step 1**: Define the following array:
- A[i]: the ith element in heap
- A[i].id: the index of the corresponding phone
- A[i].key: # of people waiting in line for phone with index A[i].id

Phone Operator Solution

- Step 2: Build-Max-Heap(A, n)
 - Execution:
 - When the operator wants to answer a phone:
 - $\bullet \ id = A[1].id$
 - Decrease-Key(A, 1, A[1].key 1)
 - answer phone with index id
 - When a new call comes in to phone i:
 - Increase-Key(A, i, A[i].key + 1)
 - When a call drops from phone i:
 - Decrease-Key(A, i, A[i].key 1)

Linked Lists

- Like arrays, Linked List is a linear data structure.
- Unlike arrays, linked list elements are not stored at a contiguous location; the elements are linked using pointers.

Linked Lists - C Definition

• C

```
// A linked list node
struct Node {
    int data;
    struct Node* next;
};
```


Linked Lists - Cpp Definition

• Срр

```
class Node {
public:
    int data;
    Node* next;
};
```


Linked Lists - Java Definition

• Java

```
class LinkedList {
 Node head; // head of the list
 /* Linked list Node*/
 class Node {
      int data;
      Node next;
      // Constructor to create a new node
      // Next is by default initialized
      // as null
      Node(int d) { data = d; }
  }
```


Linked Lists - Csharp Definition

Csharp

```
class LinkedList {
 // The first node(head) of the linked list
 // Will be an object of type Node (null by default)
 Node head;
 class Node {
      int data;
      Node next;
      // Constructor to create a new node
      Node(int d) { data = d; }
```


Priority Queue using Linked List Methods

- Implement Priority Queue using Linked Lists.
 - push(): This function is used to insert a new data into the queue.
 - pop(): This function removes the element with the highest priority from the queue.
 - peek()/top(): This function is used to get the highest priority element in the queue without removing it from the queue.

Priority Queue using Linked List Algorithm

```
PUSH(HEAD, DATA, PRIORITY)
  Create NEW.Data = DATA & NEW.Priority = PRIORITY
  If HEAD.priority < NEW.Priority</pre>
    NEW \rightarrow NEXT = HEAD
    HEAD = NEW
  Else
    Set TEMP to head of the list
  Endif
  WHILE TEMP -> NEXT != NULL and TEMP -> NEXT -> PRIORITY > PRIORITY THEN
    TEMP = TEMP \rightarrow NEXT
  ENDWHILE
  NEW -> NEXT = TEMP -> NEXT
  TEMP \rightarrow NEXT = NEW
```


Priority Queue using Linked List Algorithm

POP(HEAD)
//Set the head of the list to the next node in the list.
HEAD = HEAD -> NEXT.
Free the node at the head of the list

PEEK(HEAD):
Return HEAD -> DATA

Priority Queue using Linked List Notes

- LinkedList is already sorted.
- Time Complexities and Comparison with Binary Heap

	peek()	push()	pop()
Linked List	O(1)	O(n)	O(1)
Binary Heap	O(1)	O(lgn)	O(lgn)

CE100 Algorithms and Programming II

Sorting in Linear Time

How Fast Can We Sort?

- The algorithms we have seen so far:
 - Based on comparison of elements
 - We only care about the relative ordering between the elements (not the actual values)
 - $\circ\,$ The smallest worst-case runtime we have seen so far: O(nlgn)
 - \circ Is O(nlgn) the best we can do?
- **Comparison sorts:** Only use comparisons to determine the relative order of elements.

Decision Trees for Comparison Sorts

- Represent a sorting algorithm abstractly in terms of a decision tree
 - A binary tree that represents the comparisons between elements in the sorting algorithm
 - Control, data movement, and other aspects are ignored
- One decision tree corresponds to one sorting algorithm and one value of *n* (*input size*)

Reminder: Insertion Sort Step-By-Step Description (1)

Insertion-Sort(A) 1. **for** j = 2 **to** n **do** Iterate over array 2. key = A[j];Loop invariant: The subarray A[1..j-1]is always sorted

key

already sorted	j	

Reminder: Insertion Sort Step-By-Step Description (2)

Shift right the 3. i = j-1; entries in while i>0 and A[i]>key do 4. 5. A[i+1]=A[i]; A[1..j-1]i = i - 1;6. endwhile that are bigger than key = j **Already Sorted** <key >key <key >key 116

Reminder: Insertion Sort Step-By-Step Description (3)

Different Outcomes for Insertion Sort and n=3

• Input : $< a_1, a_2, a_3 >$

Decision Tree for Insertion Sort and n=3

Decision Tree Model for Comparison Sorts

- Internal node (i:j): Comparison between elements a_i and a_j
- Leaf node: An output of the sorting algorithm
- Path from root to a leaf: The execution of the sorting algorithm for a given input
- All possible executions are captured by the decision tree
- All possible outcomes (permutations) are in the leaf nodes

Decision Tree Model

- A decision tree can model the execution of any comparison sort:
 - \circ One tree for each input size n
 - View the algorithm as **splitting** whenever it compares two elements
 - The tree contains the **comparisons along all possible** instruction traces
- The running time of the algorithm = the length of the path taken
- Worst case running time = *height of the tree*

CE100 Algorithms and Programming II

Counting Sort

Lower Bound for Comparison Sorts

- Let *n* be the number of elements in the input array.
- What is the *min* number of leaves in the decision tree?
 - $\circ n!$ (because there are n! permutations of the input array, and all possible outputs must be captured in the leaves)
- What is the max number of leaves in a binary tree of height $h? \Longrightarrow 2^h$
- So, we must have:

$$2^h \ge n!$$

Lower Bound for Decision Tree Sorting

- Theorem: Any comparison sort algorithm requires $\Omega(nlgn)$ comparisons in the worst case.
- **Proof:** We'll prove that any decision tree corresponding to a comparison sort algorithm must have height $\Omega(nlgn)$

$$egin{aligned} 2^h &\geq n! \ h &\geq lg(n!) \ &\geq lg((n/e)^n)(StirlingApproximation) \ &= nlgn-nlge \ &= \Omega(nlgn) \end{aligned}$$

Lower Bound for Decision Tree Sorting

Corollary: Heapsort and merge sort are asymptotically optimal comparison sorts. **Proof:** The O(nlgn) upper bounds on the runtimes for heapsort and merge sort match the $\Omega(nlgn)$ worst-case lower bound from the previous theorem.

Sorting in Linear Time

- Counting sort: No comparisons between elements
 - \circ Input: $A[1 \ldots n]$, where $A[j] \in \{1, 2, \ldots, k\}$
 - \circ Output: $B[1 \dots n]$, sorted
 - $\circ\,$ Auxiliary storage: $C[1 \dots k]$

CE100 Algorithms and Programming II

Counting Sort-1

for $i \leftarrow 1$ to k do $C[i] \leftarrow 0$ for $j \leftarrow 1$ to n do $C[A[j]] \leftarrow C[A[j]] + 1$ $// C[i] = |\{key = i\}|$ for $i \leftarrow 2$ to k do $C[i] \leftarrow C[i] + C[i-1]$ $// C[i] = |\{key \le i\}|$ for $j \leftarrow n$ downto 1 do $B[C[A[j]]] \leftarrow A[j]$ $C[A[j]] \leftarrow C[A[j]] - 1$

• Step 1: Initialize all counts to 0

for $i \leftarrow 1$ to k do $C[i] \leftarrow 0$ for $j \leftarrow 1$ to n do $C[A[j]] \leftarrow C[A[j]] + 1$ $// C[i] = |\{key = i\}|$ for $i \leftarrow 2$ to k do $C[i] \leftarrow C[i] + C[i-1]$ $// C[i] = |\{ key \le i \}|$ for $j \leftarrow n$ downto 1 do $B[C[A[j]]] \leftarrow A[j]$ $C[A[j]] \leftarrow C[A[j]] - 1$

 Step 2: Count the number of occurrences of each value in the input array

for $i \leftarrow 1$ to k do $C[i] \leftarrow 0$ for $j \leftarrow 1$ to n do $C[A[j]] \leftarrow C[A[j]] + 1$ $// C[i] = |\{key = i\}|$ for $i \leftarrow 2$ to k do $C[i] \leftarrow C[i] + C[i-1]$ $// C[i] = |\{key \le i\}|$ for $j \leftarrow n$ downto 1 do $B[C[A[j]]] \leftarrow A[j]$ $C[A[j]] \leftarrow C[A[j]] - 1$

• Step 3: Compute the number of elements less than or equal to each value

for $i \leftarrow 1$ to k do $C[i] \leftarrow 0$ for $j \leftarrow 1$ to n do $C[A[j]] \leftarrow C[A[j]] + 1$ $// C[i] = |\{key = i\}|$ for $i \leftarrow 2$ to k do $C[i] \leftarrow C[i] + C[i-1]$ $// C[i] = |\{key \le i\}|$ for $j \leftarrow n$ downto 1 do $B[C[A[j]]] \leftarrow A[j]$ $C[A[j]] \leftarrow C[A[j]] - 1$

 $A = \begin{bmatrix} 4 & 1 & 3 & 4 & 3 \\ & & & \\ &$

- Step 4: Populate the output array \circ There are C[3] =
 - 3 elements that
 - $\mathsf{are} \leq 3$

for $i \leftarrow 1$ to k do $C[i] \leftarrow 0$ for $j \leftarrow 1$ to n do $C[A[j]] \leftarrow C[A[j]] + 1$ $// C[i] = |\{key = i\}|$ for $i \leftarrow 2$ to k do $C[i] \leftarrow C[i] + C[i-1]$ $// C[i] = |\{key \le i\}|$ for $j \leftarrow n$ downto 1 do $B[C[A[j]]] \leftarrow A[j]$ $C[A[j]] \leftarrow C[A[j]] - 1$

 $A = \begin{bmatrix} 4 & 1 & 3 & 4 & 3 \end{bmatrix}$

 $B = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 2 & 5 \end{bmatrix}$

- Step 4: Populate the output array
 - \circ There are C[4] = 5 elements that
 - $\mathsf{are} \leq 4$

for $i \leftarrow 1$ to k do $C[i] \leftarrow 0$ for $j \leftarrow 1$ to n do $C[A[j]] \leftarrow C[A[j]] + 1$ $// C[i] = |\{key = i\}|$ for $i \leftarrow 2$ to k do $C[i] \leftarrow C[i] + C[i-1]$ $// C[i] = |\{key \le i\}|$ for $j \leftarrow n$ downto 1 do $B[C[A[j]]] \leftarrow A[j]$ $C[A[j]] \leftarrow C[A[j]] - 1$

Step-5: Populate the output array

				j	
A =	4	1	3	4	3
	1	2	3	4	5
B =			3		
	1	2	3	4	
C =	1	1	2	4	

There are C[4] = 5 *elts that are* ≤ 4

- Step 4: Populate the output array \circ There are C[3] =
 - 2 elements that
 - $\mathsf{are} \leq 3$

for $i \leftarrow 1$ to k do $C[i] \leftarrow 0$ for $j \leftarrow 1$ to n do $C[A[j]] \leftarrow C[A[j]] + 1$ $// C[i] = |\{key = i\}|$ for $i \leftarrow 2$ to k do $C[i] \leftarrow C[i] + C[i-1]$ $// C[i] = |\{key \le i\}|$ for $j \leftarrow n$ downto 1 do $B[C[A[j]]] \leftarrow A[j]$ $C[A[j]] \leftarrow C[A[j]] - 1$

	1	2	3	4
$\mathcal{T} =$	1	1	1	4

Step 4: Populate the output array

 There are C[1] = 1 elements that

 ${\rm are} \leq 1$

for $i \leftarrow 1$ to k do $C[i] \leftarrow 0$ for $j \leftarrow 1$ to n do $C[A[j]] \leftarrow C[A[j]] + 1$ $// C[i] = |\{key = i\}|$ for $i \leftarrow 2$ to k do $C[i] \leftarrow C[i] + C[i-1]$ $//C[i] = |\{key \le i\}|$ for $j \leftarrow n$ downto 1 do $B[C[A[j]]] \leftarrow A[j]$ $C[A[j]] \leftarrow C[A[j]] - 1$

 $A = \begin{bmatrix} 4 & 1 & 3 & 4 & 3 \\ 1 & 2 & 3 & 4 & 5 \\ B = \begin{bmatrix} 3 & 3 & 3 & 4 \end{bmatrix}$

- Step 4: Populate the output array \circ There are C[4] =
 - 4 elements that

 ${\rm are} \leq 4$

for $i \leftarrow 1$ to k do $C[i] \leftarrow 0$ for $j \leftarrow 1$ to n do $C[A[j]] \leftarrow C[A[j]] + 1$ $// C[i] = |\{key = i\}|$ for $i \leftarrow 2$ to k do $C[i] \leftarrow C[i] + C[i-1]$ $// C[i] = |\{key \le i\}|$ for $j \leftarrow n$ downto 1 do $B[C[A[j]]] \leftarrow A[j]$ $C[A[j]] \leftarrow C[A[j]] - 1$

Counting Sort: Runtime Analysis

- Total Runtime: $\Theta(n+k)$
 - *n* : size of the input array
 - k : the range of input values

for $i \leftarrow 1$ to k do $\Theta(k)$ $C[i] \leftarrow 0$ for $j \leftarrow 1$ to n do $\Theta(n)$ $C[A[j]] \leftarrow C[A[j]] + 1$ $//C[i] = |\{key = i\}|$ for $i \leftarrow 2$ to k do $\Theta(k)$ $C[i] \leftarrow C[i] + C[i-1]$ $// C[i] = |\{key \le i\}|$ for $j \leftarrow n$ downto 1 do $B[C[A[j]]] \leftarrow A[j]$ $\Theta(n)$ $C[A[j]] \leftarrow C[A[j]] - 1$

Counting Sort: Runtime

- Runtime is $\Theta(n+k)$
 - $\circ\,$ If k=O(n), then counting sort takes $\Theta(n)$
- Question: We proved a lower bound of $\Theta(nlgn)$ before! Where is the fallacy?
- Answer:
 - $\circ \ \Theta(nlgn)$ lower bound is for comparison-based sorting
 - Counting sort is not a comparison sort
 - In fact, not a single comparison between elements occurs!

Stable Sorting

- Counting sort is a stable sort: It preserves the input order among equal elements.
 i.e. The numbers with the same value appear in the output array in the same order as they do in the input array.
- Note: Which other sorting algorithms have this property?

Radix Sort

- Origin: Herman Hollerith's card-sorting machine for the 1890 US Census.
- Basic idea: Digit-by-digit sorting
- Two variations:
 - Sort from MSD to LSD (bad idea)
 - Sort from LSD to MSD (good idea)

(LSD/MSD: Least/most significant digit)

CE100 Algorithms and Programming II

Herman Hollerith (1860-1929)

- The 1880 U.S. Census took almost 10 years to process.
- While a lecturer at MIT, Hollerith prototyped punched-card technology.
- His machines, including a **card sorter**, allowed the 1890 census total to be reported in **6 weeks**.
- He founded the **Tabulating Machine Company** in 1911, which merged with other companies in 1924 to form **International Business Machines(IBM)**.

Hollerith Punched Card

- **Punched card:** A piece of stiff paper that contains digital information represented by the presence or absence of holes.
 - $\circ~$ 12 rows and 24 columns
 - coded for age, state of residency, gender, etc.

CE100 Algorithms and Programming II Modern IBM card

- One character per column
 - So, that's why text windows have 80 columns!

0123456789ABCDEFCHIJKLMNOPQRSTUVWXYZ INTRODUCTON TO ALGORITHMS 09/24/2001
22 22222222 2222222 2222222 22222222222
333 3333333 333333333 333333 33333 33333
4444_4444444444444444444444444444444444
55555 555555555555555555555555555555555
666666 _ 66666666 _ 6666666 _ 6666666 _ 66666 _ 6666 _ 6666 _ 6666 _ 66666666
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
89898989 <b>8</b> 9898888 <b>8</b> 8989888 <b>8</b> 989888 <b>8</b> 88888888
999999999 <b>8</b> 9999999 <b>8</b> 9999999 <b>8</b> 9999999 <b>8</b> 99 <b>8</b> 99999999



## Hollerith Tabulating Machine and Sorter

- Mechanically sorts the cards based on the hole locations.
- Sorting performed for one column at a time
- Human operator needed to load/retrieve/move cards at each stage




- Sort starting from the most significant digit (MSD)
- Then, sort each of the resulting bins recursively
- At the end, combine the decks in order



CE100 Algorithms and Programming II

- To sort a subset of cards recursively:
  - All the other cards need to be removed from the machine, because the machine can handle only one sorting problem at a time.
  - The human operator needs to keep track of the intermediate card piles





- MSD-first sorting may require:
  - $\circ~$  very large number of sorting passes
  - very large number of intermediate card piles to maintain
- S(d):
  - $\circ$  # of passes needed to sort d-digit numbers (worst-case)
- Recurrence:
  - $\circ~S(d)=10S(d-1)+1$  with S(1)=1
    - Reminder: Recursive call made to each subset with the same most significant digit(MSD)



CE100 Algorithms and Programming II

#### Hollerith's MSD-First Radix Sort

• Recurrence: 
$$S(d) = 10S(d-1) + 1$$
  
 $S(d) = 10S(d-1) + 1$   
 $= 10\left(10S(d-2) + 1\right) + 1$   
 $= 10\left(10\left(10S(d-3) + 1\right) + 1\right) + 1$   
 $= 10iS(d-i) + 10i - 1 + 10i - 2 + \dots + 101 + 100$   
 $= \sum_{i=0}^{d-1} 10^{i}$ 

• Iteration terminates when i=d-1 with S(d-(d-1))=S(1)=1

• Recurrence: 
$$S(d) = 10S(d-1) + 1$$

$$egin{aligned} S(d) &= \sum_{i=0}^{d-1} 10^i \ &= rac{10^d-1}{10-1} \ &= rac{1}{9}(10^d-1) \ &\Downarrow \ &S(d) &= rac{1}{9}(10^d-1) \end{aligned}$$



- P(d): # of intermediate card piles maintained (worst-case)
- Reminder: Each routing pass generates 9 intermediate piles except the sorting passes on least significant digits (LSDs)
  - $\circ\,$  There are  $10^{d-1}$  sorting calls to LSDs

$$egin{aligned} P(d) &= 9(S(d) ext{--}10^{d-1}) \ &= 9rac{(10^{d-1})}{9 ext{--}10^{d-1}} \ &= (10^{d-1} ext{--}9*10^{d-1}) \ &= 10^{d-1} ext{--}1 \end{aligned}$$



$$P(d) = 10^{d-1} - 1$$

Alternative solution: Solve the recurrence

$$egin{aligned} P(d) &= 10 P(d-1) + 9 \ P(1) &= 0 \end{aligned}$$



- Example: To sort 3 digit numbers, in the worst case:
  - $\circ~S(d)=(1/9)(103-1)=111$  sorting passes needed
  - $\circ P(d) = 10d 1 1 = 99$  intermediate card piles generated
- MSD-first approach has more recursive calls and intermediate storage requirement
  - Expensive for a **tabulating machine** to sort punched cards
  - Overhead of recursive calls in a modern computer



#### **LSD-First Radix Sort**

- Least significant digit (LSD)-first radix sort seems to be a folk invention originated by machine operators.
- It is the counter-intuitive, but the better algorithm.
- Basic Algorithm:

Sort numbers on their LSD first (Stable Sorting Needed) Combine the cards into a single deck in order Continue this sorting process for the other digits from the LSD to MSD

- Requires only *d* sorting passes
- No intermediate card pile generated

## LSD-first Radix Sort Example





# **Correctness of Radix Sort (LSD-first)**

- Proof by induction:
  - $\circ\,$  Base case: d=1 is correct (trivial)
  - $\circ$  Inductive hyp: Assume the first d-1 digits are sorted correctly
- Prove that all d digits are sorted correctly after sorting digit d
- Two numbers that differ in digit *d* are correctly sorted (**e.g. 355 and 657**)
- Two numbers equal in digit d are put in the same order as the input
  - (correct order)

CF100 Week-4



# **Radix Sort Runtime**

- Use counting-sort to sort each digit
- Reminder: Counting sort complexity:  $\Theta(n+k)$ 
  - $\circ$  *n*: size of input array
  - $\circ$  *k*: the range of the values
- Radix sort runtime:  $\Theta(d(n+k))$ 
  - $\circ d: \# ext{ of digits}$

How to choose the d and k?



# Radix Sort: Runtime – Example 1

- We have flexibility in choosing d and k
- Assume we are trying to sort **32-bit words** 
  - $\circ~$  We can define each digit to be 4 bits
  - $\circ\,$  Then, the range for each digit  $k=2^4=16$ 
    - So, counting sort will take  $\Theta(n+16)$
  - $\circ\,$  The number of digits d=32/4=8
  - $\circ\;$  Radix sort runtime:  $\Theta(8(n+16))=\Theta(n)$

#### 32-bits

 $\bullet ~~ [4bits | 4bits | 4bits$ 

# Radix Sort: Runtime – Example 2

- We have flexibility in choosing d and k
- Assume we are trying to sort **32-bit words** 
  - $\circ~$  Or, we can define each digit to be 8 bits
  - $\circ\,$  Then, the range for each digit  $k=2^8=256$ 
    - So, counting sort will take  $\Theta(n+256)$
  - $\circ\,$  The number of digits d=32/8=4
  - $\circ\;$  Radix sort runtime:  $\Theta(4(n+256))=\Theta(n)$



• [8bits|8bits|8bits]

#### Radix Sort: Runtime

- Assume we are trying to sort *b*-**bit** words
  - $^{\circ}\,$  Define each digit to be r bits
  - $\,\circ\,$  Then, the range for each digit  $k=2^r$ 
    - So, counting sort will take  $\Theta(n+2^r)$
  - $\circ\;$  The number of digits d=b/r
    - Radix sort runtime:

b/r bits

$$T(n,b) = \Thetaigg(rac{b}{r}(n+2^r)igg)$$



## **Radix Sort: Runtime Analysis**

$$T(n,b) = \Thetaigg(rac{b}{r}(n+2^r)igg)$$

- Minimize T(n,b) by differentiating and setting to 0
- Or, intuitively:
  - $\circ\,$  We want to balance the terms (b/r) and  $(n+2^r)$
  - $\circ~$  Choose rpprox lgn
    - If we choose  $r << lgn \Longrightarrow (n+2^r)$  term doesn't improve
    - If we choose  $r>>lgn \Longrightarrow (n+2^r)$  increases exponentially



#### **Radix Sort: Runtime Analysis**

$$T(n,b) = \Thetaigg(rac{b}{r}(n+2^r)igg)$$

$$\text{Choose } r = lgn \Longrightarrow T(n,b) = \Theta(bn/lgn)$$

- For numbers in the range from 0 to  $n^d-1$ , we have:
  - $\circ\;$  The number of bits b=lg(nd)=dlgn
    - Radix sort runs in  $\Theta(dn)$



## **Radix Sort: Conclusions**

$$\text{Choose } r = lgn \Longrightarrow T(n,b) = \Theta(bn/lgn)$$

- Example: Compare radix sort with merge sort/heapsort
  - $\circ \,\, 1$  million ( $2^{20}$ ), 32-bit numbers  $(n=2^{20},b=32)$ 
    - Radix sort:  $\lfloor 32/20 
      floor = 2$  passes
    - Merge sort/heap sort: lgn = 20 passes
- Downsides:
  - Radix sort has little locality of reference (more cache misses)
  - The version that uses counting sort is not in-place
- On modern processors, a well-tuned quicksort implementation typically runs faster.

# References

- Introduction to Algorithms, Third Edition | The MIT Press
- Bilkent CS473 Course Notes (new)
- Bilkent CS473 Course Notes (old)
- Insertion Sort GeeksforGeeks
- Priority Queue Using Linked List GeeksforGeeks
- Priority Queue Using Linked List JavatPoint
- NIST Dictionary of Algorithms and Data Structures
- NIST Dictionary of Algorithms and Data Structures

#### -End - Of - Week - 4 - Course - Module -

