
CE100 Algorithms and Programming II

Week-4 (Heap/Heap Sort)

Spring Semester, 2021-2022

Download DOC, SLIDE, PPTX

CE100 Algorithms and Programming II

 RTEU CE100 Week-4

file:///E:/UgurCoruh/RTEU/Lectures/2021-2022%20Bahar%20CE100%20-%20Algorithms%20and%20Programming%20II/ce100-algorithms-and-programming-II/docs/week-4/ce100-week-4-heap.tr.md_doc.pdf
file:///E:/UgurCoruh/RTEU/Lectures/2021-2022%20Bahar%20CE100%20-%20Algorithms%20and%20Programming%20II/ce100-algorithms-and-programming-II/docs/week-4/ce100-week-4-heap.tr.md_slide.pdf
file:///E:/UgurCoruh/RTEU/Lectures/2021-2022%20Bahar%20CE100%20-%20Algorithms%20and%20Programming%20II/ce100-algorithms-and-programming-II/docs/week-4/ce100-week-4-heap.tr.md_slide.pptx

Heap/Heap Sort

Outline (1)

Heaps

Max / Min Heap

Heap Data Structure

Heapify

Iterative

Recursive

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 2

Outline (2)

Extract-Max

Build Heap

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 3

Outline (3)

Heap Sort

Priority Queues

Linked Lists

Radix Sort

Counting Sort

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 4

Heapsort

Worst-case runtime:

Sorts in-place

Uses a special data structure (heap) to manage information during execution of the
algorithm

Another design paradigm

CE100 Algorithms and Programming II

O(nlgn)

 RTEU CE100 Week-4 5

Heap Data Structure (1)

Nearly complete binary tree
Completely filled on all levels except possibly the lowest level

16

14 10

9 38 7

2 4 1

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 6

Heap Data Structure (2)

Height of node i: Length of the longest simple downward path from i to a leaf

Height of the tree: height of the root

16

14 10

9 38 7

2 4 1

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 7

Heap Data Structures (3)

Depth of node i: Length of the simple downward path from the root to node i

16

14 10

9 38 7

2 4 1

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 8

1

2 4

9 83 7

10 14 16

M�n-Heap
Heap Property: Min-Heap

The smallest element in any subtree is the
root element in a min-heap

Min heap: For every node i other than
root,

Parent node is always smaller than the
child nodes

CE100 Algorithms and Programming II

A[parent(i)] ≤ A[i]

 RTEU CE100 Week-4 9

16

14 10

9 38 7

2 4 1

Max-Heap
Heap Property: Max-Heap

The largest element in any subtree is the
root element in a max-heap

We will focus on max-heaps

Max heap: For every node i other than
root,

Parent node is always larger than the
child nodes

CE100 Algorithms and Programming II

A[parent(i)] ≥ A[i]

 RTEU CE100 Week-4 10

Heap Data Structures (4)

16

14 10

9 38 7

2 4 1

1

32

4 5 6 7

8 9
10

16 14 10 8 7 9 3 2 4 1
1 2 3 4 5 6 7 8 9 10

Max-Heap

Array Storage

The l�nks �n the heap are �mpl�c�t

Heap can be stored �n a l�near array

e.g.Left ch�ld of node 4 has �ndex 8

e.g. R�ght ch�ld of node 2 has �ndex 5

e.g.Parent of node 7 has �ndex 3

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 11

Heap Data Structures (5)

Computing left child, right child, and parent indices very fast

left(i) = 2i binary left shift
right(i) = 2i+1 binary left shift, then set the lowest bit to 1

parent(i) = floor(i/2) right shift in binary

 is always the root element

Array has two attributes:

length(A): The number of elements in

n = heap-size(A): The number elements in

CE100 Algorithms and Programming II

⟹
⟹

⟹

A[1]

A

A

heap

n ≤ length(A)

 RTEU CE100 Week-4 12

Heap Operations : EXTRACT-MAX (1)

EXTRACT-MAX(A, n)
 max = A[1]
 A[1] = A[n]
 n = n - 1
 HEAPIFY(A, 1,n)
 return max

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 13

Heap Operations : EXTRACT-MAX (2)

Return the max element,and reorganize the heap to maintain heap property

16

14 10

9 38 7

2 4 1

1

32

4 5 6 7

8 9
10max=?

EXTRACT-MAX(A, n)
 max = A[1]
 A[1] = A[n]
 n = n - 1
 HEAPIFY(A, 1,n)
 return max

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 14

Heap Operations: HEAPIFY (1)

1

14 10

9 38 7

2 4

1

32

4 5 6 7

8 9
max=

EXTRACT-MAX(A, n)
 max = A[1]
 A[1] = A[n]
 n = n - 1
 HEAPIFY(A, 1,n)
 return max

Heap property v�olated at the root

Heap property sat�sf�ed for left and r�ght subtrees

16

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 15

Heap Operations: HEAPIFY (2)

Maintaining heap property:
Subtrees rooted at and are already heaps.

But, may violate the heap property (i.e., may be smaller than its children)

Idea: Float down the value at in the heap so that subtree rooted at becomes
a heap.

CE100 Algorithms and Programming II

left[i] right[i]

A[i]

A[i] i

 RTEU CE100 Week-4 16

Heap Operations: HEAPIFY (2)

HEAPIFY(A, i, n)
 largest = i

 if 2i <= n and A[2i] > A[i] then
 largest = 2i;
 endif

 if 2i+1 <= n and A[2i+1] > A[largest] then
 largest = 2i+1;
 endif

 if largest != i then
 exchange A[i] with A[largest];
 HEAPIFY(A, largest, n);
 endif

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 17

Heap Operations: HEAPIFY (3)

HEAPIFY(A,i,n)

 largest=i

 if 2i<=n and A[2i]>A[i]

 then largest=2i;

 if 2i+1<=n and A[2i+1]>A[largest]

 then largest=2i+1;

 if largest!=i then
 exchange A[i] with A[largest];
 HEAPIFY(A,largest,n);
 endif

�n�t�al�ze largest
to be the node �

check the left
ch�ld of node �

check the r�ght
ch�ld of node �

exchange the largest
of the 3 w�th node �

recurs�ve call on the
subtree

compute the
largest of:
1) node �
2) left ch�ld of node �
3) r�ght ch�ld of node �

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 18

Heap Operations: HEAPIFY (4)

HEAPIFY(A,i,n)

 largest=i

 if 2i<=n and A[2i]>A[i]

 then largest=2i;

 if 2i+1<=n and A[2i+1]>A[largest]

 then largest=2i+1;

 if largest!=i then
 exchange A[i] with A[largest];
 HEAPIFY(A,largest,n);
 endif

1

14 10

9 38 7

2 4

1

32

4 5 6 7

8 9

Recurs�ve
Call

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 19

Heap Operations: HEAPIFY (5)

HEAPIFY(A,i,n)

 largest=i

 if 2i<=n and A[2i]>A[i]

 then largest=2i;

 if 2i+1<=n and A[2i+1]>A[largest]

 then largest=2i+1;

 if largest!=i then
 exchange A[i] with A[largest];
 HEAPIFY(A,largest,n);
 endif

14

1 10

9 38 7

2 4

1

32

4 5 6 7

8 9

Recurs�ve
Call

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 20

Heap Operations: HEAPIFY (6)

HEAPIFY(A,i,n)

 largest=i

 if 2i<=n and A[2i]>A[i]

 then largest=2i;

 if 2i+1<=n and A[2i+1]>A[largest]

 then largest=2i+1;

 if largest!=i then
 exchange A[i] with A[largest];
 HEAPIFY(A,largest,n);
 endif

14

8 10

9 31 7

2 4

1

32

4 5 6 7

8 9

Recurs�ve Call
(Base Case)

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 21

Heap Operations: HEAPIFY (7)

HEAPIFY(A,i,n)

 largest=i

 if 2i<=n and A[2i]>A[i]

 then largest=2i;

 if 2i+1<=n and A[2i+1]>A[largest]

 then largest=2i+1;

 if largest!=i then
 exchange A[i] with A[largest];
 HEAPIFY(A,largest,n);
 endif

14

8 10

9 34 7

2 1

1

32

4 5 6 7

8 9

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 22

Heap Operations: HEAPIFY (8)

14

8 10

9 34 7

2 1

1

32

4 5 6 7

8 9

1

14 10

9 38 7

2 4

1

32

4 5 6 7

8 9

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 23

Intuitive Analysis of HEAPIFY

Consider
let be the height of node

at most recursion levels
Constant work at each level:

Therefore

Heap is almost-complete binary tree

Thus

CE100 Algorithms and Programming II

HEAPIFY (A, i,n)
h(i) i

h(i)
Θ(1)

T (i) = O(h(i))

h(n) = O(lgn)

T (n) = O(lgn)

 RTEU CE100 Week-4 24

Formal Analysis of HEAPIFY

What is the recurrence?
Depends on the size of the subtree on which recursive call is made

In the next, we try to compute an upper bound for this subtree.

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 25

Reminder: Binary trees

For a complete binary tree:
 of nodes at depth :

 of nodes with depths less than :

16

14 10

9 38 7

2 4 1

for example

CE100 Algorithms and Programming II

d 2d

d 2 −d 1

 RTEU CE100 Week-4 26

Formal Analysis of HEAPIFY
(1)

Worst case occurs when last row
of the subtree rooted at node
 is half full

 and are complete
binary trees of heights
and , respectively

CE100 Algorithms and Programming II

S i

i

T (n) ≤ T (∣S ∣) +L(i) Θ(1)

S L(i) S R(i)

h(i) − 1
h(i) − 2

 RTEU CE100 Week-4 27

Formal Analysis of HEAPIFY (2)

Let be the number of leaf nodes in

CE100 Algorithms and Programming II

m S L(i)

∣S ∣ =L(i) +m

ext.

 = (m–1)

int.

2m–1

∣S ∣ =R(i) +

2
m

ext.

 = (–1)
2
m

int.

m–1

∣S ∣ +L(i) ∣S ∣ +R(i) 1 = n

 RTEU CE100 Week-4 28

Formal Analysis of HEAPIFY (2)
(2m–1) + (m–1) + 1

m

∣S ∣L(i)

T (n)

T (n)

= n

= (n + 1)/3

= 2m–1

= 2(n + 1)/3–1

= (2n/3 + 2/3)–1

= − ≤

3
2n

3
1

3
2n

≤ T (2n/3) + Θ(1)

= O(lgn)

By CASE-2 of Master Theorem

CE100 Algorithms and Programming II

⟹ T (n) = Θ(n lgn)log b
a

 RTEU CE100 Week-4 29

Formal Analysis of HEAPIFY (2)

Recurrence:

Case 2:

i.e., and grow at similar rates

Solution:

 (drop constants.)

CE100 Algorithms and Programming II

T (n) = aT (n/b) + f(n)

 =
n
log

b
a

f(n) Θ(1)

f(n) nlog b
a

T (n) = Θ(n lgn)log b
a

T (n) ≤ T (2n/3) + Θ(1)

T (n) ≤ Θ(n lgn)log 3
1

T (n) ≤ Θ(n lgn)0

T (n) = O(lgn)

 RTEU CE100 Week-4 30

HEAPIFY: Efficiency Issues

Recursion vs Iteration:
In the absence of tail recursion, iterative version is in general more efficient
because of the pop/push operations to/from stack at each level of recursion.

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 31

Heap Operations: HEAPIFY (1)

Recursive

 HEAPIFY(A, i, n)
 largest = i

 if 2i <= n and A[2i] > A[i] then
 largest = 2i

 if 2i+1 <= n and A[2i+1] > A[largest] then
 largest = 2i+1

 if largest != i then
 exchange A[i] with A[largest]
 HEAPIFY(A, largest, n)

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 32

Heap Operations: HEAPIFY (2)

Iterative

HEAPIFY(A, i, n)
 j = i
 while(true) do
 largest = j

 if 2j <= n and A[2j] > A[j] then
 largest = 2j

 if 2j+1 <= n and A[2j+1] > A[largest] then
 largest = 2j+1

 if largest != j then
 exchange A[j] with A[largest]
 j = largest
 else return

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 33

Heap Operations: HEAPIFY (3)

HEAPIFY(A,�, n)
 largest ¬ �
 �f 2� £ n and A[2�] > A[�] then largest ¬ 2�
 �f 2� +1 £ n and A[2�+1] > A[largest] then largest ¬ 2� +1
 �f largest ¹ � then
 exchange A[�]« A[largest]
 HEAPIFY(A, largest, n)

HEAPIFY(A,�, n)
 j ¬ �
 wh�le (true) do
 largest ¬ j

�f 2j £ n and A[2j] > A[j] then largest ¬ 2j
�f 2j +1 £ n and A[2j+1] > A[largest] then largest ¬ 2j +1
�f largest ¹ j then
 exchange A[j]« A[largest]
 j ¬ largest
else return

Recurs�ve Iterat�ve

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 34

ch�ld subtrees already
 sat�sfy heap property

Heap Operations: Building Heap

Given an arbitrary array, how to build a heap from
scratch?

Basic idea: Call on each node bottom up

Start from the leaves (which trivially satisfy the heap
property)

Process nodes in bottom up order.
When is called on node , the subtrees
connected to the and subtrees already
satisfy the heap property.

CE100 Algorithms and Programming II

HEAPIFY

HEAPIFY i

left right

 RTEU CE100 Week-4 35

16

14 10

9 38 7

2 4 1

1

32

4 5 6 7

8 9
10

16 14 10 8 7 9 3 2 4 1
1 2 3 4 5 6 7 8 9 10

Max-Heap

Array Storage

The l�nks �n the heap are �mpl�c�t

e.g.Left ch�ld of node 4 has �ndex 8

e.g. R�ght ch�ld of node 2 has �ndex 5

e.g.Parent of node 7 has �ndex 3

Storage of
the leaves
(Lemma)

Lemma: The
last
nodes of a
heap are all
leaves.

CE100 Algorithms and Programming II

⌈ ⌉2
n

 RTEU CE100 Week-4 36

Storage of the leaves (Proof of
Lemma) (1)

Lemma: last nodes of a heap are all
leaves

Proof :
: nodes at level

: nodes at level (last level)

 of nodes with depth :

 of nodes with depth :

 of nodes with depth :

Total of nodes :

CE100 Algorithms and Programming II

⌈n/2⌉

m = 2d−1 # d − 1

f # d

d − 1 m

< d − 1 m − 1

d f

n = f + 2m − 1

 RTEU CE100 Week-4 37

Storage of the leaves (Proof of
Lemma) (2)

Total of nodes :

of leaves: = f + m − ⌈f/2⌉

= m + ⌊f/2⌋

= m + ⌊(n − 2m + 1)/2⌋

= ⌊(n + 1)/2⌋

= ⌈n/2⌉

Proof is Completed

CE100 Algorithms and Programming II

f = n − 2m + 1

 RTEU CE100 Week-4 38

Heap Operations: Building Heap

BUILD-HEAP (A, n)
 for i = ceil(n/2) downto 1 do
 HEAPIFY(A, i, n)

Reminder: The last nodes of a heap are all leaves, which trivially satisfy the
heap property

CE100 Algorithms and Programming II

⌈n/2⌉

 RTEU CE100 Week-4 39

4

1 3

9 102 7

14 8 16

1

32

4 5 6 7

8 9
10

4 1 3 2 7 9 10 14 8 16
1 2 3 4 5 6 7 8 9 10

BUILD-HEAP(A, n)
for � = ën/2û downto 1 do
HEAPIFY(A, �, n)

Build-Heap
Example
(Step-1)

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 40

4

1 3

9 102 16

14 8 7

1

32

4 5 6 7

8 9
10

4 1 3 2 16 9 10 14 8 7
1 2 3 4 5 6 7 8 9 10

BUILD-HEAP(A, n)
for � = ën/2û downto 1 do
HEAPIFY(A, �, n)

Build-Heap
Example
(Step-2)

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 41

4

1 3

9 1014 16

2 8 7

1

32

4 5 6 7

8 9
10

4 1 3 14 16 9 10 2 8 7
1 2 3 4 5 6 7 8 9 10

BUILD-HEAP(A, n)
for � = ën/2û downto 1 do
HEAPIFY(A, �, n)

Build-Heap
Example
(Step-3)

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 42

4

1 10

9 314 16

2 8 7

1

32

4 5 6 7

8 9
10

4 1 10 14 16 9 3 2 8 7
1 2 3 4 5 6 7 8 9 10

BUILD-HEAP(A, n)
for � = ën/2û downto 1 do
HEAPIFY(A, �, n)

Build-Heap
Example
(Step-4)

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 43

4

16 10

9 314 1

2 8 7

1

32

4 5 6 7

8 9
10

4 16 10 14 1 9 3 2 8 7
1 2 3 4 5 6 7 8 9 10

BUILD-HEAP(A, n)
for � = ën/2û downto 1 do
HEAPIFY(A, �, n)

Build-Heap
Example
(Step-5)

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 44

4

16 10

9 314 7

2 8 1

1

32

4 5 6 7

8 9
10

4 16 10 14 7 9 3 2 8 1
1 2 3 4 5 6 7 8 9 10

BUILD-HEAP(A, n)
for � = ën/2û downto 1 do
HEAPIFY(A, �, n)

Build-Heap
Example
(Step-6)

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 45

16

4 10

9 314 7

2 8 1

1

32

4 5 6 7

8 9
10

16 4 10 14 7 9 3 2 8 1
1 2 3 4 5 6 7 8 9 10

BUILD-HEAP(A, n)
for � = ën/2û downto 1 do
HEAPIFY(A, �, n)

Build-Heap
Example
(Step-7)

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 46

16

14 10

9 34 7

2 8 1

1

32

4 5 6 7

8 9
10

16 14 10 4 7 9 3 2 8 1
1 2 3 4 5 6 7 8 9 10

BUILD-HEAP(A, n)
for � = ën/2û downto 1 do
HEAPIFY(A, �, n)

Build-Heap
Example
(Step-8)

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 47

16

14 10

9 38 7

2 4 1

1

32

4 5 6 7

8 9
10

16 14 10 8 7 9 3 2 4 1
1 2 3 4 5 6 7 8 9 10

BUILD-HEAP(A, n)
for � = ën/2û downto 1 do
HEAPIFY(A, �, n)

Build-Heap
Example
(Step-9)

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 48

Build-Heap: Runtime Analysis

Simple analysis:

 calls to , each of which takes time

 loose bound

In general, a good approach:

Start by proving an easy bound
Then, try to tighten it

Is there a tighter bound?

CE100 Algorithms and Programming II

O(n) HEAPIFY O(lgn)

O(nlgn) ⟹

 RTEU CE100 Week-4 49

Build-Heap: Tighter Running Time Analysis

If the heap is complete binary tree then

Otherwise, nodes at a given level do not all have the same height, But we have

CE100 Algorithms and Programming II

h =ℓ d–ℓ

d–ℓ–1 ≤ h ≤ℓ

d–ℓ

 RTEU CE100 Week-4 50

Build-Heap: Tighter Running Time Analysis

Assume that all nodes at level are processed

T (n)

∴ T (n)

Let

T (n)

 but

= n O(h) = O(n h)

ℓ=0

∑
d−1

ℓ ℓ

ℓ=0

∑
d−1

ℓ ℓ {n = 2 = # of nodes at level ℓℓ
ℓ

h = height of nodes at level ℓℓ

= O(2 (d − ℓ))
ℓ=0

∑
d−1

ℓ

h = d − ℓ ⟹ ℓ = d − h change of variables

= O(h2) = O(h) = O(2 h(1/2))
h=1

∑
d

d−h

h=1

∑
d

2h
2d d

h=1

∑
d

h

2 = Θ(n) ⟹ O(n h(1/2))d

h=1

∑
d

h

CE100 Algorithms and Programming II

ℓ = d–1

 RTEU CE100 Week-4 51

Build-Heap: Tighter Running Time Analysis

 h(1/2) ≤
h=1

∑
d

h
 h(1/2) ≤

h=0

∑
d

h
 h(1/2)

h=0

∑
∞

h

recall infinite decreasing geometric series

 x =
k=0

∑
∞

k
 where ∣x∣ <

1 − x

1
1

differentiate both sides

 kx =
k=0

∑
∞

k−1

(1 − x)2

1

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 52

Build-Heap: Tighter Running Time Analysis

 kx =
k=0

∑
∞

k−1

(1 − x)2

1

then, multiply both sides by

 kx =
k=0

∑
∞

k

(1 − x)2

x

in our case: and

∴ h(1/2) =
h=0

∑
∞

h
 =

(1 − (1/2))2

1/2
2 = O(1)

∴ T (n) = O(n h(1/2)) =
h=1

∑
d

h O(n)

CE100 Algorithms and Programming II

x

x = 1/2 k = h

 RTEU CE100 Week-4 53

Heapsort Algorithm Steps

(1) Build a heap on array by calling

(2) The largest element is stored at the root
Put it into its correct final position by

(3) Discard node from the heap

(4) Subtrees rooted at children of root remain as heaps, but the new
root element may violate the heap property.

Make a heap by calling

(5)

(6) Repeat steps (2-4) until

CE100 Algorithms and Programming II

A[1 …n] BUILD − HEAP (A,n)

A[1]
A[n] A[1] ⟷ A[n]

n

(S2&S3)

A[1 …n − 1] HEAPIFY (A, 1,n − 1)

n ← n − 1

n = 2

 RTEU CE100 Week-4 54

16

14 10

9 38 7

2 4 1

1

32

4 5 6 7

8 9
10

16 14 10 8 7 9 3 2 4 1
1 2 3 4 5 6 7 8 9 10

HEAPSORT(A, n)
BUILD-HEAP(A, n)
for �¬ n downto 2 do

exchange A[1] «A[�]
HEAPIFY(A,1, � -1)Heapsort

Algorithm
Example
(Step-1)

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 55

1

14 10

9 38 7

2 4 16

1

32

4 5 6 7

8 9
10

1 14 10 8 7 9 3 2 4 16
1 2 3 4 5 6 7 8 9 10

HEAPSORT(A, n)
BUILD-HEAP(A, n)
for �¬ n downto 2 do

exchange A[1] «A[�]
HEAPIFY(A,1, � -1)Heapsort

Algorithm
Example
(Step-2)

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 56

14

8 10

9 34 7

2 1 16

1

32

4 5 6 7

8 9
10

14 8 10 4 7 9 3 2 1 16
1 2 3 4 5 6 7 8 9 10

HEAPSORT(A, n)
BUILD-HEAP(A, n)
for �¬ n downto 2 do

exchange A[1] «A[�]
HEAPIFY(A,1, � -1)Heapsort

Algorithm
Example
(Step-3)

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 57

1

8 10

9 34 7

2 14 16

1

32

4 5 6 7

8 9
10

1 8 10 4 7 9 3 2 14 16
1 2 3 4 5 6 7 8 9 10

HEAPSORT(A, n)
BUILD-HEAP(A, n)
for �¬ n downto 2 do

exchange A[1] «A[�]
HEAPIFY(A,1, � -1)Heapsort

Algorithm
Example
(Step-4)

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 58

HEAPSORT(A, n)
BUILD-HEAP(A, n)
for �¬ n downto 2 do

exchange A[1] «A[�]
HEAPIFY(A,1, � -1)

10

8 9

1 34 7

2 14 16

1

32

4 5 6 7

8 9
10

10 8 9 4 7 1 3 2 14 16
1 2 3 4 5 6 7 8 9 10

Heapsort
Algorithm
Example
(Step-5)

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 59

HEAPSORT(A, n)
BUILD-HEAP(A, n)
for �¬ n downto 2 do

exchange A[1] «A[�]
HEAPIFY(A,1, � -1)

2

8 9

1 34 7

10 14 16

1

32

4 5 6 7

8 9
10

2 8 9 4 7 1 3 10 14 16
1 2 3 4 5 6 7 8 9 10

Heapsort
Algorithm
Example
(Step-6)

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 60

HEAPSORT(A, n)
BUILD-HEAP(A, n)
for �¬ n downto 2 do

exchange A[1] «A[�]
HEAPIFY(A,1, � -1)

9

8 3

1 24 7

10 14 16

1

32

4 5 6 7

8 9
10

9 8 3 4 7 1 2 10 14 16
1 2 3 4 5 6 7 8 9 10

Heapsort
Algorithm
Example
(Step-7)

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 61

HEAPSORT(A, n)
BUILD-HEAP(A, n)
for �¬ n downto 2 do

exchange A[1] «A[�]
HEAPIFY(A,1, � -1)

2

8 3

1 94 7

10 14 16

1

32

4 5 6 7

8 9
10

2 8 3 4 7 1 9 10 14 16
1 2 3 4 5 6 7 8 9 10

Heapsort
Algorithm
Example
(Step-8)

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 62

HEAPSORT(A, n)
BUILD-HEAP(A, n)
for �¬ n downto 2 do

exchange A[1] «A[�]
HEAPIFY(A,1, � -1)

8

7 3

1 94 2

10 14 16

1

32

4 5 6 7

8 9
10

8 7 3 4 2 1 9 10 14 16
1 2 3 4 5 6 7 8 9 10

Heapsort
Algorithm
Example
(Step-9)

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 63

HEAPSORT(A, n)
BUILD-HEAP(A, n)
for �¬ n downto 2 do

exchange A[1] «A[�]
HEAPIFY(A,1, � -1)

8

7 3

8 94 2

10 14 16

1

32

4 5 6 7

8 9
10

1 7 3 4 2 8 9 10 14 16
1 2 3 4 5 6 7 8 9 10

Heapsort
Algorithm
Example
(Step-10)

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 64

HEAPSORT(A, n)
BUILD-HEAP(A, n)
for �¬ n downto 2 do

exchange A[1] «A[�]
HEAPIFY(A,1, � -1)

7

4 3

8 91 2

10 14 16

1

32

4 5 6 7

8 9
10

7 4 3 1 2 8 9 10 14 16
1 2 3 4 5 6 7 8 9 10

Heapsort
Algorithm
Example
(Step-11)

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 65

HEAPSORT(A, n)
BUILD-HEAP(A, n)
for �¬ n downto 2 do

exchange A[1] «A[�]
HEAPIFY(A,1, � -1)

7

4 3

8 91 7

10 14 16

1

32

4 5 6 7

8 9
10

2 4 3 1 7 8 9 10 14 16
1 2 3 4 5 6 7 8 9 10

Heapsort
Algorithm
Example
(Step-12)

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 66

HEAPSORT(A, n)
BUILD-HEAP(A, n)
for �¬ n downto 2 do

exchange A[1] «A[�]
HEAPIFY(A,1, � -1)

4

2 3

8 91 7

10 14 16

1

32

4 5 6 7

8 9
10

4 2 3 1 7 8 9 10 14 16
1 2 3 4 5 6 7 8 9 10

Heapsort
Algorithm
Example
(Step-13)

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 67

HEAPSORT(A, n)
BUILD-HEAP(A, n)
for �¬ n downto 2 do

exchange A[1] «A[�]
HEAPIFY(A,1, � -1)

1

2 3

8 94 7

10 14 16

1

32

4 5 6 7

8 9
10

1 2 3 4 7 8 9 10 14 16
1 2 3 4 5 6 7 8 9 10

Heapsort
Algorithm
Example
(Step-14)

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 68

HEAPSORT(A, n)
BUILD-HEAP(A, n)
for �¬ n downto 2 do

exchange A[1] «A[�]
HEAPIFY(A,1, � -1)

3

2 1

8 94 7

10 14 16

1

32

4 5 6 7

8 9
10

3 2 1 4 7 8 9 10 14 16
1 2 3 4 5 6 7 8 9 10

Heapsort
Algorithm
Example
(Step-15)

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 69

HEAPSORT(A, n)
BUILD-HEAP(A, n)
for �¬ n downto 2 do

exchange A[1] «A[�]
HEAPIFY(A,1, � -1)

1

2 3

8 94 7

10 14 16

1

32

4 5 6 7

8 9
10

1 2 3 4 7 8 9 10 14 16
1 2 3 4 5 6 7 8 9 10

Heapsort
Algorithm
Example
(Step-16)

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 70

HEAPSORT(A, n)
BUILD-HEAP(A, n)
for �¬ n downto 2 do

exchange A[1] «A[�]
HEAPIFY(A,1, � -1)

2

1 3

8 94 7

10 14 16

1

32

4 5 6 7

8 9
10

2 1 3 4 7 8 9 10 14 16
1 2 3 4 5 6 7 8 9 10

Heapsort
Algorithm
Example
(Step-17)

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 71

HEAPSORT(A, n)
BUILD-HEAP(A, n)
for �¬ n downto 2 do

exchange A[1] «A[�]
HEAPIFY(A,1, � -1)

1

2 3

8 94 7

10 14 16

1

32

4 5 6 7

8 9
10

1 2 3 4 7 8 9 10 14 16
1 2 3 4 5 6 7 8 9 10

Heapsort
Algorithm
Example
(Step-18)

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 72

HEAPSORT(A, n)
BUILD-HEAP(A, n)
for �¬ n downto 2 do

exchange A[1] «A[�]
HEAPIFY(A,1, � -1)

1

2 3

8 94 7

10 14 16

1

32

4 5 6 7

8 9
10

1 2 3 4 7 8 9 10 14 16
1 2 3 4 5 6 7 8 9 10

Heapsort
Algorithm
Example
(Step-19)

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 73

Heapsort Algorithm: Runtime Analysis

HEAPSORT(A, n)
BUILD-HEAP(A, n)
for �¬ n downto 2 do

exchange A[1] «A[�]
HEAPIFY(A,1, � -1)

T (n) = Θ(n) + O(lgi)
i=2

∑
n

= Θ(n) + O(O(lgn))
i=2

∑
n

= O(nlgn)

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 74

Heapsort - Notes

Heapsort is a very good algorithm but, a good implementation of quicksort always
beats heapsort in practice

However, heap data structure has many popular applications, and it can be
efficiently used for implementing priority queues

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 75

Data structures for Dynamic Sets

Consider sets of records having key and satellite data

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 76

Operations on Dynamic Sets

Queries: Simply return info;
 (Query) return with the largest/smallest

 (Query) return with

 (Query) return
which is the next larger/smaller element after

Modifying operations: Change the set
 (Modifying)

 (Modifying)

 (Modifying) return and
delete with the largest/smallest

Different data structures support/optimize different operations

CE100 Algorithms and Programming II

MAX(S)/MIN(S) : x ∈ S key

SEARCH(S, k) : x ∈ S key[x] = k

SUCCESSOR(S,x)/PREDECESSOR(S,x) : y ∈ S

x

INSERT (S,x) : S ← S ∪ {x}

DELETE(S,x) : S ← S − {x}

EXTRACT-MAX(S)/EXTRACT-MIN(S) :
x ∈ S key

 RTEU CE100 Week-4 77

Priority Queues (PQ)

Supports

CE100 Algorithms and Programming II

INSERT

MAX/MIN

EXTRACT-MAX/EXTRACT-MIN

 RTEU CE100 Week-4 78

Priority Queues (PQ)

One application: Schedule jobs on a shared resource
PQ keeps track of jobs and their relative priorities

When a job is finished or interrupted, highest priority job is selected from
those pending using
A new job can be added at any time using

CE100 Algorithms and Programming II

EXTRACT-MAX
INSERT

 RTEU CE100 Week-4 79

Priority Queues (PQ)

Another application: Event-driven simulation
Events to be simulated are the items in the PQ

Each event is associated with a time of occurrence which serves as a

Simulation of an event can cause other events to be simulated in the future

Use at each step to choose the next event to simulate

As new events are produced insert them into the PQ using

CE100 Algorithms and Programming II

key

EXTRACT-MIN
INSERT

 RTEU CE100 Week-4 80

Implementation of Priority Queue

Sorted linked list: Simplest implementation

 time

Scan the list to find place and splice in the new item

 time

Take the first element

Fast extraction but slow insertion.

CE100 Algorithms and Programming II

INSERT

O(n)

EXTRACT-MAX
O(1)

 RTEU CE100 Week-4 81

Implementation of Priority Queue

Unsorted linked list: Simplest implementation

 time

Put the new item at front

 time

Scan the whole list

Fast insertion but slow extraction.

Sorted linked list is better on the average

Sorted list: on the average, scans element per insertion

Unsorted list: always scans element at each extraction

CE100 Algorithms and Programming II

INSERT

O(1)

EXTRACT-MAX
O(n)

n/2

n RTEU CE100 Week-4 82

Heap Implementation of PQ

 and are both
good compromise between fast insertion but slow extraction and vice versa

: already discussed

: Insertion is like that of Insertion-Sort.

HEAP-INSERT(A, key, n)
 n = n+1
 i=n
 while i>1 and A[floor(i/2)] < key do
 A[i]=A[floor(i/2)]
 i= floor(i/2)
 A[i]=key

CE100 Algorithms and Programming II

INSERT EXTRACT-MAX O(lgn)

EXTRACT-MAX HEAP-EXTRACT-MAX
INSERT

 RTEU CE100 Week-4 83

Heap Implementation of PQ

Traverses nodes, as does but makes fewer comparisons
and assignments

: compares parent with both children

: with only one

CE100 Algorithms and Programming II

O(lgn) HEAPIFY

HEAPIFY

HEAP − INSERT

 RTEU CE100 Week-4 84

HEAP-INSERT(A, key, n)

n ¬ n+1
i ¬ n

while i >1 and A[ëi/2û] < key do
 A[i] ¬ Aëi/2û
 i ¬ ëi/2û
 A[i] ¬ key

16

14 10

9 38 7

2 4 1

1

32

4 5 6 7

8 9
10

16 14 10 8 7 9 3 2 4 1
1 2 3 4 5 6 7 8 9 10

11

11

HEAP-INSERT(A, 15)

key=15

HEAP-
INSERT
Example
(Step-1)

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 85

HEAP-INSERT(A, key, n)

n ¬ n+1
i ¬ n

while i >1 and A[ëi/2û] < key do
 A[i] ¬ Aëi/2û
 i ¬ ëi/2û
A[i] ¬ key

16

14 10

9 38 7

2 4 1

1

32

4 5 6 7

8 9
10

16 14 10 8 7 9 3 2 4 1
1 2 3 4 5 6 7 8 9 10

11

11

HEAP-INSERT(A, 15)

key=15

HEAP-
INSERT
Example
(Step-2)

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 86

HEAP-INSERT(A, key, n)

n ¬ n+1
i ¬ n

while i >1 and A[ëi/2û] < key do
 A[i] ¬ Aëi/2û
 i ¬ ëi/2û
A[i] ¬ key

16

14 10

9 38 7

2 4 1

1

32

4 5 6 7

8 9
10

16 14 10 8 7 9 3 2 4 1
1 2 3 4 5 6 7 8 9 10

7
11

7
11

HEAP-INSERT(A, 15)

key=15

HEAP-
INSERT
Example
(Step-3)

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 87

HEAP-INSERT(A, key, n)

n ¬ n+1
i ¬ n

while i >1 and A[ëi/2û] < key do
 A[i] ¬ Aëi/2û
 i ¬ ëi/2û
A[i] ¬ key

16

14 10

9 38 14

2 4 1

1

32

4 5 6 7

8 9
10

16 14 10 8 14 9 3 2 4 1
1 2 3 4 5 6 7 8 9 10

7
11

7
11

HEAP-INSERT(A, 15)

key=15

HEAP-
INSERT
Example
(Step-4)

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 88

HEAP-INSERT(A, key, n)

n ¬ n+1
i ¬ n

while i >1 and A[ëi/2û] < key do
 A[i] ¬ Aëi/2û
 i ¬ ëi/2û
A[i] ¬ key

16

15 10

9 38 14

2 4 1

1

32

4 5 6 7

8 9
10

16 15 10 8 14 9 3 2 4 1
1 2 3 4 5 6 7 8 9 10

7
11

7
11

HEAP-INSERT(A, 15)

key=15

HEAP-
INSERT
Example
(Step-5)

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 89

Heap Increase Key

Key value of element of heap is increased from to

HEAP-INCREASE-KEY(A, i, key)

 if key < A[i] then
 return error

 while i > 1 and A[floor(i/2)] < key do
 A[i] = A[floor(i/2)]
 i = floor(i/2)

 A[i] = key

CE100 Algorithms and Programming II

ith A[i] key

 RTEU CE100 Week-4 90

HEAP-INCREASE-KEY(A, i, key)

 if key < A[i] then
 return error

 while i >1 and A[ëi/2û]<key do

 A[i] ¬ A[ëi/2û]
 i ¬ ëi/2û

 A[i] ¬ key

16

14 10

9 38 7

2 4 1

1

32

4 5 6 7

8 9
10

16 14 10 8 7 9 3 2 4 1
1 2 3 4 5 6 7 8 9 10

key=15

HEAP-INCREASE-KEY(A, 9, 15)

HEAP-
INCREASE-
KEY Example
(Step-1)

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 91

HEAP-INCREASE-KEY(A, i, key)

 if key < A[i] then
 return error

 while i >1 and A[ëi/2û]<key do

 A[i] ¬ A[ëi/2û]
 i ¬ ëi/2û

 A[i] ¬ key

16

14 10

9 38 7

2 4 1

1

32

4 5 6 7

8 9
10

16 14 10 8 7 9 3 2 4 1
1 2 3 4 5 6 7 8 9 10

key=15

HEAP-INCREASE-KEY(A, 9, 15)

HEAP-
INCREASE-
KEY Example
(Step-2)

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 92

HEAP-INCREASE-KEY(A, i, key)

 if key < A[i] then
 return error

 while i >1 and A[ëi/2û]<key do

 A[i] ¬ A[ëi/2û]
 i ¬ ëi/2û

 A[i] ¬ key

16

14 10

9 38 7

2 8 1

1

32

4 5 6 7

8 9
10

16 14 10 8 7 9 3 2 8 1
1 2 3 4 5 6 7 8 9 10

key=15

HEAP-INCREASE-KEY(A, 9, 15)

HEAP-
INCREASE-
KEY Example
(Step-3)

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 93

HEAP-INCREASE-KEY(A, i, key)

 if key < A[i] then
 return error

 while i >1 and A[ëi/2û]<key do

 A[i] ¬ A[ëi/2û]
 i ¬ ëi/2û

 A[i] ¬ key

16

14 10

9 314 7

2 8 1

1

32

4 5 6 7

8 9
10

16 14 10 14 7 9 3 2 8 1
1 2 3 4 5 6 7 8 9 10

key=15

HEAP-INCREASE-KEY(A, 9, 15)

HEAP-
INCREASE-
KEY Example
(Step-4)

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 94

HEAP-INCREASE-KEY(A, i, key)

 if key < A[i] then
 return error

 while i >1 and A[ëi/2û]<key do

 A[i] ¬ A[ëi/2û]
 i ¬ ëi/2û

 A[i] ¬ key

16

15 10

9 314 7

2 8 1

1

32

4 5 6 7

8 9
10

16 15 10 14 7 9 3 2 8 1
1 2 3 4 5 6 7 8 9 10

key=15

HEAP-INCREASE-KEY(A, 9, 15)

HEAP-
INCREASE-
KEY Example
(Step-5)

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 95

16

14 10

9 38 7

2 4

1

32

4 5 6 7

8 9

j1
2
3
4
5
6
7
8
9

a
d
g
c
�
b
k
f

14a
b
c
d
e
f
g
h
�

3
7

10
*
4
8
*
9

2
7
5
3
-
9
4
-
6

key data heap-
�ndex

j 16 1
2 8k

handle

Heap
Implementat
ion of
Priority
Queue (PQ)

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 96

Summary: Max Heap

Heapify(A, i)
Works when both child subtrees of node i are heaps

"Floats down" node i to satisfy the heap property
Runtime:

Max(A, n)
Returns the max element of the heap (no modification)
Runtime:

Extract-Max(A, n)
Returns and removes the max element of the heap

Fills the gap in with , then calls Heapify(A,1)

Runtime:

CE100 Algorithms and Programming II

O(lgn)

O(1)

A[1] A[n]

O(lgn)

 RTEU CE100 Week-4 97

Summary: Max Heap

Build-Heap(A, n)
Given an arbitrary array, builds a heap from scratch

Runtime:

Min(A, n)
How to return the min element in a max-heap?

Worst case runtime:
because ~half of the heap elements are leaf nodes

Instead, use a min-heap for efficient min operations

Search(A, x)
For an arbitrary value, the worst-case runtime:

Use a sorted array instead for efficient search operations

CE100 Algorithms and Programming II

O(n)

O(n)

x O(n)

 RTEU CE100 Week-4 98

Summary: Max Heap

Increase-Key(A, i, x)
Increase the key of node (from to)

“Float up” until heap property is satisfied

Runtime:

Decrease-Key(A, i, x)
Decrease the key of node (from to)

Call Heapify(A, i)

Runtime:

CE100 Algorithms and Programming II

i A[i] x

x

O(lgn)

i A[i] x

O(lgn)

 RTEU CE100 Week-4 99

CALLER1

CALLER2

CALLERn

PQ

OPERATOR

Phone Operator Problem

A phone operator answering phones

Each phone has people waiting in line
for their calls to be answered.

Phone operator needs to answer the
phone with the largest number of people
waiting in line.

New calls come continuously, and
some people hang up after waiting.

CE100 Algorithms and Programming II

n

i x i

 RTEU CE100 Week-4 100

1

n

key �dPhone Operator Solution

Step 1: Define the following array:

: the ith element in heap

: the index of the corresponding phone

: of people waiting in line for phone with
index

CE100 Algorithms and Programming II

A[i]

A[i].id

A[i].key #
A[i].id

 RTEU CE100 Week-4 101

Phone Operator Solution

Step 2:
Execution:

When the operator wants to answer a phone:

answer phone with index

When a new call comes in to phone i:

When a call drops from phone i:

CE100 Algorithms and Programming II

Build-Max-Heap(A,n)

id = A[1].id
Decrease-Key(A, 1,A[1].key − 1)

id

Increase-Key(A, i,A[i].key + 1)

Decrease-Key(A, i,A[i].key − 1)

 RTEU CE100 Week-4 102

NEXT

POINTERDATA

POINTER
HEAD

NEXT

POINTERDATA POINTERDATA

NEXT

POINTERDATA

POINTER
HEAD

POINTER

NEXT

POINTERDATA

PREVIOUS

POINTER POINTERDATA

PREVIOUS

POINTER

NULL PTR

NULL PTR

NULL PTR

SINGLE LINKED LIST

DOUBLE LINKED LIST

Linked Lists

Like arrays, Linked List
is a linear data
structure.

Unlike arrays, linked
list elements are not
stored at a contiguous
location; the elements
are linked using
pointers.

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 103

Linked Lists - C Definition

C

// A linked list node
struct Node {
 int data;
 struct Node* next;
};

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 104

Linked Lists - Cpp Definition

Cpp

class Node {
public:
 int data;
 Node* next;
};

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 105

Linked Lists - Java Definition

Java

class LinkedList {
 Node head; // head of the list

 /* Linked list Node*/
 class Node {
 int data;
 Node next;

 // Constructor to create a new node
 // Next is by default initialized
 // as null
 Node(int d) { data = d; }
 }
}

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 106

Linked Lists - Csharp Definition

Csharp

class LinkedList {
 // The first node(head) of the linked list
 // Will be an object of type Node (null by default)
 Node head;

 class Node {
 int data;
 Node next;

 // Constructor to create a new node
 Node(int d) { data = d; }
 }
}

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 107

Priority Queue using Linked List Methods

Implement Priority Queue using Linked Lists.
push(): This function is used to insert a new data into the queue.

pop(): This function removes the element with the highest priority from the
queue.

peek()/top(): This function is used to get the highest priority element in the
queue without removing it from the queue.

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 108

Priority Queue using Linked List Algorithm

PUSH(HEAD, DATA, PRIORITY)
 Create NEW.Data = DATA & NEW.Priority = PRIORITY
 If HEAD.priority < NEW.Priority
 NEW -> NEXT = HEAD
 HEAD = NEW
 Else
 Set TEMP to head of the list
 Endif

 WHILE TEMP -> NEXT != NULL and TEMP -> NEXT ->PRIORITY > PRIORITY THEN
 TEMP = TEMP -> NEXT
 ENDWHILE

 NEW -> NEXT = TEMP -> NEXT
 TEMP -> NEXT = NEW

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 109

Priority Queue using Linked List Algorithm

POP(HEAD)
//Set the head of the list to the next node in the list.
HEAD = HEAD -> NEXT.
Free the node at the head of the list

PEEK(HEAD):
Return HEAD -> DATA

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 110

Priority Queue using Linked List Notes

LinkedList is already sorted.

Time Complexities and Comparison with Binary Heap

peek() push() pop()

Linked List

Binary Heap

CE100 Algorithms and Programming II

O(1) O(n) O(1)

O(1) O(lgn) O(lgn)

 RTEU CE100 Week-4 111

Sorting in Linear Time

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 112

How Fast Can We Sort?

The algorithms we have seen so far:

Based on comparison of elements

We only care about the relative ordering between the elements (not the actual
values)

The smallest worst-case runtime we have seen so far:

Is the best we can do?

Comparison sorts: Only use comparisons to determine the relative order of
elements.

CE100 Algorithms and Programming II

O(nlgn)

O(nlgn)

 RTEU CE100 Week-4 113

Decision Trees for Comparison Sorts

Represent a sorting algorithm abstractly in terms of a decision tree

A binary tree that represents the comparisons between elements in the
sorting algorithm

Control, data movement, and other aspects are ignored

One decision tree corresponds to one sorting algorithm and one value of (input
size)

CE100 Algorithms and Programming II

n

 RTEU CE100 Week-4 114

Insert�on-Sort(A)
1. for j = 2 to n do
2. key = A[j];
3. � = j-1;
4. wh�le �>0 and A[�]>key do
5. A[�+1]=A[�];
6. � = �-1;
 endwh�le
7. A[�+1]=key;
 endfor

Iterate over array

Loop �nvar�ant:
The subarray
�s always sorted

already sorted j
key

already sorted

jkey

Reminder: Insertion
Sort Step-By-Step
Description (1)

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 115

Insert�on-Sort(A)
1. for j = 2 to n do
2. key = A[j];
3. � = j-1;
4. wh�le �>0 and A[�]>key do
5. A[�+1]=A[�];
6. � = �-1;
 endwh�le
7. A[�+1]=key;
 endfor

Sh�ft r�ght the
entr�es �n

<key >key

that are
b�gger than

key = j

j

<key >key

j

Already Sorted

Reminder: Insertion
Sort Step-By-Step
Description (2)

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 116

Insert�on-Sort(A)
1. for j = 2 to n do
2. key = A[j];
3. � = j-1;
4. wh�le �>0 and A[�]>key do
5. A[�+1]=A[�];
6. � = �-1;
 endwh�le
7. A[�+1]=key;
 endfor

Insert key to the correct
locat�on

<key >key
key=j

j

<key >keyj

Sorted

End of �terat�on �s sorted

Reminder: Insertion
Sort Step-By-Step
Description (3)

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 117

Different
Outcomes for
Insertion Sort
and n=3

Input :

CE100 Algorithms and Programming II

< a , a , a >1 2 3

 RTEU CE100 Week-4 118

Decision Tree
for Insertion
Sort and n=3

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 119

Decision Tree Model for Comparison Sorts

Internal node : Comparison between elements and

Leaf node: An output of the sorting algorithm

Path from root to a leaf: The execution of the sorting algorithm for a given input

All possible executions are captured by the decision tree

All possible outcomes (permutations) are in the leaf nodes

CE100 Algorithms and Programming II

(i : j) a i aj

 RTEU CE100 Week-4 120

Compare

Compare

Compare

Outcome

Decision Tree
for Insertion
Sort and n=3

Input:

CE100 Algorithms and Programming II

< 9, 4, 6 >

 RTEU CE100 Week-4 121

Decision Tree Model

A decision tree can model the execution of any comparison sort:

One tree for each input size

View the algorithm as splitting whenever it compares two elements

The tree contains the comparisons along all possible instruction traces

The running time of the algorithm the length of the path taken

Worst case running time height of the tree

CE100 Algorithms and Programming II

n

=

=

 RTEU CE100 Week-4 122

Counting Sort

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 123

Lower Bound for Comparison Sorts

Let be the number of elements in the input array.

What is the number of leaves in the decision tree?

 (because there are n! permutations of the input array, and all possible
outputs must be captured in the leaves)

What is the max number of leaves in a binary tree of height ?

So, we must have:

2 ≥h n!

CE100 Algorithms and Programming II

n

min

n!

h ⟹ 2h

 RTEU CE100 Week-4 124

Lower Bound for Decision Tree Sorting

Theorem: Any comparison sort algorithm requires
 comparisons in the worst case.

Proof: We’ll prove that any decision tree corresponding to a comparison sort
algorithm must have height

2h

h

≥ n!

≥ lg(n!)

≥ lg((n/e))(StirlingApproximation)n

= nlgn − nlge

= Ω(nlgn)

CE100 Algorithms and Programming II

Ω(nlgn)

Ω(nlgn)

 RTEU CE100 Week-4 125

Lower Bound for Decision Tree Sorting

Corollary: Heapsort and merge sort are asymptotically optimal comparison sorts.

Proof: The upper bounds on the runtimes for heapsort and merge sort
match the worst-case lower bound from the previous theorem.

CE100 Algorithms and Programming II

O(nlgn)
Ω(nlgn)

 RTEU CE100 Week-4 126

Sorting in Linear Time

Counting sort: No comparisons between elements

Input: , where

Output: , sorted

Auxiliary storage:

CE100 Algorithms and Programming II

A[1 …n] A[j] ∈ {1, 2, … , k}

B[1 …n]

C[1 … k]

 RTEU CE100 Week-4 127

for � ¬ 1 to k do

 C[�] ¬ 0
for j ¬ 1 to n do
 C[A[j]] ¬ C[A[j]] + 1
 // C[�] = |{key = �}|
for � ¬ 2 to k do
 C[�] ¬ C[�] + C[�-1]
// C[�] = |{key ≤ �}|
for j ¬ n downto 1 do
 B[C[A[j]]] ¬ A[j]
 C[A[j]] ¬ C[A[j]] – 1

4 1 3 4 3

1 2 3 4
Counting Sort-1

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 128

for � ¬ 1 to k do

 C[�] ¬ 0
for j ¬ 1 to n do
 C[A[j]] ¬ C[A[j]] + 1
 // C[�] = |{key = �}|
for � ¬ 2 to k do
 C[�] ¬ C[�] + C[�-1]
// C[�] = |{key ≤ �}|
for j ¬ n downto 1 do
 B[C[A[j]]] ¬ A[j]
 C[A[j]] ¬ C[A[j]] – 1

4 1 3 4 3

0 0 0 0
1 2 3 4

Counting Sort-2

Step 1: Initialize all
counts to 0

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 129

for � ¬ 1 to k do

 C[�] ¬ 0
for j ¬ 1 to n do
 C[A[j]] ¬ C[A[j]] + 1
 // C[�] = |{key = �}|
for � ¬ 2 to k do
 C[�] ¬ C[�] + C[�-1]
// C[�] = |{key ≤ �}|
for j ¬ n downto 1 do
 B[C[A[j]]] ¬ A[j]
 C[A[j]] ¬ C[A[j]] – 1

4 1 3 4 3

0 0 0 0
1 2 3 4

Counting Sort-3

Step 2: Count the
number of occurrences
of each value in the
input array

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 130

for � ¬ 1 to k do

 C[�] ¬ 0
for j ¬ 1 to n do
 C[A[j]] ¬ C[A[j]] + 1
 // C[�] = |{key = �}|
for � ¬ 2 to k do
 C[�] ¬ C[�] + C[�-1]
// C[�] = |{key ≤ �}|
for j ¬ n downto 1 do
 B[C[A[j]]] ¬ A[j]
 C[A[j]] ¬ C[A[j]] – 1

4 1 3 4 3

1 1 3 5
1 2 3 4

Counting Sort-4

Step 3: Compute the
number of elements
less than or equal to
each value

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 131

for � ¬ 1 to k do

 C[�] ¬ 0
for j ¬ 1 to n do
 C[A[j]] ¬ C[A[j]] + 1
 // C[�] = |{key = �}|
for � ¬ 2 to k do
 C[�] ¬ C[�] + C[�-1]
// C[�] = |{key ≤ �}|
for j ¬ n downto 1 do
 B[C[A[j]]] ¬ A[j]
 C[A[j]] ¬ C[A[j]] – 1

4 1 3 4 3

1 1 2 5
1 2 3 4

Counting Sort-5

Step 4: Populate the
output array

There are
 elements that

are

CE100 Algorithms and Programming II

C[3] =
3

≤ 3

 RTEU CE100 Week-4 132

for � ¬ 1 to k do

 C[�] ¬ 0
for j ¬ 1 to n do
 C[A[j]] ¬ C[A[j]] + 1
 // C[�] = |{key = �}|
for � ¬ 2 to k do
 C[�] ¬ C[�] + C[�-1]
// C[�] = |{key ≤ �}|
for j ¬ n downto 1 do
 B[C[A[j]]] ¬ A[j]
 C[A[j]] ¬ C[A[j]] – 1

4 1 3 4 3

3

1 1 2 4
1 2 3 4

Step-5: Populate the output array

1 2 3 4 5

There are C[4] = 5 elts that are ≤ 4

Counting Sort-6

Step 4: Populate the
output array

There are
 elements that

are

CE100 Algorithms and Programming II

C[4] =
5

≤ 4

 RTEU CE100 Week-4 133

for � ¬ 1 to k do

 C[�] ¬ 0
for j ¬ 1 to n do
 C[A[j]] ¬ C[A[j]] + 1
 // C[�] = |{key = �}|
for � ¬ 2 to k do
 C[�] ¬ C[�] + C[�-1]
// C[�] = |{key ≤ �}|
for j ¬ n downto 1 do
 B[C[A[j]]] ¬ A[j]
 C[A[j]] ¬ C[A[j]] – 1

4 1 3 4 3

3 4

1 1 1 4
1 2 3 4

1 2 3 4 5
Counting Sort-7

Step 4: Populate the
output array

There are
 elements that

are

CE100 Algorithms and Programming II

C[3] =
2

≤ 3

 RTEU CE100 Week-4 134

for � ¬ 1 to k do

 C[�] ¬ 0
for j ¬ 1 to n do
 C[A[j]] ¬ C[A[j]] + 1
 // C[�] = |{key = �}|
for � ¬ 2 to k do
 C[�] ¬ C[�] + C[�-1]
// C[�] = |{key ≤ �}|
for j ¬ n downto 1 do
 B[C[A[j]]] ¬ A[j]
 C[A[j]] ¬ C[A[j]] – 1

4 1 3 4 3

3 3 4

0 1 1 4
1 2 3 4

1 2 3 4 5
Counting Sort-8

Step 4: Populate the
output array

There are
 elements that

are

CE100 Algorithms and Programming II

C[1] =
1

≤ 1

 RTEU CE100 Week-4 135

for � ¬ 1 to k do

 C[�] ¬ 0
for j ¬ 1 to n do
 C[A[j]] ¬ C[A[j]] + 1
 // C[�] = |{key = �}|
for � ¬ 2 to k do
 C[�] ¬ C[�] + C[�-1]
// C[�] = |{key ≤ �}|
for j ¬ n downto 1 do
 B[C[A[j]]] ¬ A[j]
 C[A[j]] ¬ C[A[j]] – 1

4 1 3 4 3

1 3 3 4

0 1 1 3
1 2 3 4

1 2 3 4 5
Counting Sort-9

Step 4: Populate the
output array

There are
 elements that

are

CE100 Algorithms and Programming II

C[4] =
4

≤ 4

 RTEU CE100 Week-4 136

for � ¬ 1 to k do

 C[�] ¬ 0
for j ¬ 1 to n do
 C[A[j]] ¬ C[A[j]] + 1
 // C[�] = |{key = �}|
for � ¬ 2 to k do
 C[�] ¬ C[�] + C[�-1]
// C[�] = |{key ≤ �}|
for j ¬ n downto 1 do
 B[C[A[j]]] ¬ A[j]
 C[A[j]] ¬ C[A[j]] – 1

Counting Sort:
Runtime Analysis

Total Runtime:

 : size of the
input array

 : the range of
input values

CE100 Algorithms and Programming II

Θ(n + k)
n

k

 RTEU CE100 Week-4 137

Counting Sort: Runtime

Runtime is
If , then counting sort takes

Question: We proved a lower bound of before! Where is the fallacy?

Answer:
 lower bound is for comparison-based sorting

Counting sort is not a comparison sort

In fact, not a single comparison between elements occurs!

CE100 Algorithms and Programming II

Θ(n + k)
k = O(n) Θ(n)

Θ(nlgn)

Θ(nlgn)

 RTEU CE100 Week-4 138

Stable Sorting

Counting sort is a stable sort: It preserves the input order among equal elements.
i.e. The numbers with the same value appear in the output array in the same
order as they do in the input array.

Note: Which other sorting algorithms have this property?

4 1 3 4 3

1 3 3 4 4

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 139

Radix Sort

Origin: Herman Hollerith’s card-sorting machine for the 1890 US Census.

Basic idea: Digit-by-digit sorting

Two variations:

Sort from MSD to LSD (bad idea)
Sort from LSD to MSD (good idea)

(LSD/MSD: Least/most significant digit)

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 140

Herman Hollerith (1860-1929)

The 1880 U.S. Census took almost 10 years to process.

While a lecturer at MIT, Hollerith prototyped punched-card technology.
His machines, including a card sorter, allowed the 1890 census total to be reported
in 6 weeks.

He founded the Tabulating Machine Company in 1911, which merged with other
companies in 1924 to form International Business Machines(IBM).

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 141

Hollerith Punched Card

Punched card: A piece of stiff paper that contains digital information represented
by the presence or absence of holes.

12 rows and 24 columns
coded for age, state of residency, gender, etc.

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 142

Modern IBM card

One character per column

So, that’s why text windows have 80 columns!

for more samples visit https://en.wikipedia.org/wiki/Punched_card

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 143

https://en.wikipedia.org/wiki/Punched_card

Hollerith Tabulating Machine and Sorter

Mechanically sorts the cards based on the hole locations.
Sorting performed for one column at a time

Human operator needed to load/retrieve/move cards at each stage

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 144

Hollerith’s MSD-First Radix Sort

Sort starting from the most significant digit (MSD)
Then, sort each of the resulting bins recursively

At the end, combine the decks in order

3 2 9
4 5 7
6 5 7
8 3

sort based
on MSD

9
4 3 6
7 2 0
3 5 5

3 2

recurs�ve
sort

9
3 5 5
4 5

recurs�ve
sort

7
4 3 6
6 5 7
7 2

comb�ne all decks
0

8 3 9

3 2 9
3 5 5

4 3 6
4 5 7

3 2 9
3 5 5
4 3 6
4 5 7
6 5 7
7 2 0
8 3 9

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 145

Hollerith’s MSD-First Radix Sort

To sort a subset of cards recursively:

All the other cards need to be removed from the machine, because the
machine can handle only one sorting problem at a time.
The human operator needs to keep track of the intermediate card piles

3 2 9
3 5 5
4 5 7
4 3 6
6 5 7
7 2 0
8 3 9

3 2 9
3 5 5

�ntermed�ate p�le

to sort these two
cards recurs�vely,

remove all the other
cards from the mach�ne

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 146

Hollerith’s MSD-First Radix Sort

MSD-first sorting may require:
very large number of sorting passes

very large number of intermediate card piles to maintain
S(d):

 of passes needed to sort d-digit numbers (worst-case)

Recurrence:
 with

Reminder: Recursive call made to each subset with the same most
significant digit(MSD)

CE100 Algorithms and Programming II

#

S(d) = 10S(d − 1) + 1 S(1) = 1

 RTEU CE100 Week-4 147

Hollerith’s MSD-First Radix Sort

Recurrence:

S(d) = 10S(d − 1) + 1

= 10(10S(d − 2) + 1) + 1

= 10(10(10S(d − 3) + 1) + 1) + 1

= 10iS(d − i) + 10i − 1 + 10i − 2 + ⋯ + 101 + 100

= 10
i=0

∑
d−1

i

Iteration terminates when with

CE100 Algorithms and Programming II

S(d) = 10S(d − 1) + 1

i = d − 1 S(d − (d − 1)) = S(1) = 1
 RTEU CE100 Week-4 148

Hollerith’s MSD-First Radix Sort

Recurrence:

S(d)

S(d)

= 10
i=0

∑
d−1

i

=

10 − 1
10 − 1d

= (10 − 1)
9
1 d

⇓

= (10 − 1)
9
1 d

CE100 Algorithms and Programming II

S(d) = 10S(d − 1) + 1

 RTEU CE100 Week-4 149

Hollerith’s MSD-First Radix Sort

: of intermediate card piles maintained (worst-case)

Reminder: Each routing pass generates 9 intermediate piles except the sorting
passes on least significant digits (LSDs)

There are sorting calls to LSDs

P (d) = 9(S(d)–10)d−1

= 9
9–10d−1

(10)d–1

= (10 –9 ∗ 10)d–1 d−1

= 10 − 1d−1

CE100 Algorithms and Programming II

P (d) #

10d−1

 RTEU CE100 Week-4 150

Hollerith’s MSD-First Radix Sort

P (d) = 10 − 1d−1

Alternative solution: Solve the recurrence

P (d)

P (1)

= 10P (d − 1) + 9

= 0

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 151

Hollerith’s MSD-First Radix Sort

Example: To sort digit numbers, in the worst case:

 sorting passes needed

 intermediate card piles generated

MSD-first approach has more recursive calls and intermediate storage requirement

Expensive for a tabulating machine to sort punched cards

Overhead of recursive calls in a modern computer

CE100 Algorithms and Programming II

3

S(d) = (1/9)(103 − 1) = 111

P (d) = 10d − 1 − 1 = 99

 RTEU CE100 Week-4 152

LSD-First Radix Sort

Least significant digit (LSD)-first radix sort seems to be a folk invention originated by machine
operators.

It is the counter-intuitive, but the better algorithm.

Basic Algorithm:

Sort numbers on their LSD first (Stable Sorting Needed)
Combine the cards into a single deck in order
Continue this sorting process for the other digits
 from the LSD to MSD

Requires only sorting passes

No intermediate card pile generated

CE100 Algorithms and Programming II

d

 RTEU CE100 Week-4 153

LSD-first Radix Sort Example

3 2 9
4 5 7
6 5 7
8 3 9
4 3 6
7 2 0
3 5 5

7 2 0
3 5 5
4 3 6
4 5 7
6 5 7
3 2 9
8 3 9

Step-1: Sort 1st d�g�t

7 2 0
3 2 9
4 3 6
8 3 9
3 5 5
4 5 7
6 5 7

Step-2: Sort 2st d�g�t

7 2 0
3 5 5
4 3 6
4 5 7
6 5 7
3 2 9
8 3 9

3 2 9
3 5 5
4 3 6
4 5 7
6 5 7
7 2 0
8 3 9

Step-3: Sort 3st d�g�t

7 2 0
3 2 9
4 3 6
8 3 9
3 5 5
4 5 7
6 5 7

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 154

3 2 9
3 5 5
4 3 6
4 5 7
6 5 7
7 2 0
8 3 9

sort based
on d�g�t d

7 2 0
3 2 9
4 3 6
8 3 9
3 5 5
4 5 7
6 5 7

last 2 d�g�ts
sorted due to

�nd. hyp.

Correctness of Radix Sort (LSD-first)

Proof by induction:
Base case: is correct (trivial)

Inductive hyp: Assume the first
digits are sorted correctly

Prove that all digits are sorted correctly
after sorting digit

Two numbers that differ in digit are
correctly sorted (e.g. 355 and 657)

Two numbers equal in digit d are put in the
same order as the input

(correct order)

CE100 Algorithms and Programming II

d = 1

d − 1

d

d

d

 RTEU CE100 Week-4 155

Radix Sort Runtime

Use counting-sort to sort each digit

Reminder: Counting sort complexity:
: size of input array

: the range of the values

Radix sort runtime:
: of digits

How to choose the and ?

CE100 Algorithms and Programming II

Θ(n + k)
n

k

Θ(d(n + k))
d #

d k

 RTEU CE100 Week-4 156

Radix Sort: Runtime – Example 1

We have flexibility in choosing and

Assume we are trying to sort 32-bit words

We can define each digit to be 4 bits

Then, the range for each digit
So, counting sort will take

The number of digits

Radix sort runtime:

CE100 Algorithms and Programming II

d k

k = 2 =4 16
Θ(n + 16)

d = 32/4 = 8

Θ(8(n + 16)) = Θ(n)

 [4bits∣4bits∣4bits∣4bits∣4bits∣4bits∣4bits∣4bits]

32-bits

 RTEU CE100 Week-4 157

Radix Sort: Runtime – Example 2

We have flexibility in choosing and

Assume we are trying to sort 32-bit words

Or, we can define each digit to be 8 bits

Then, the range for each digit
So, counting sort will take

The number of digits

Radix sort runtime:

CE100 Algorithms and Programming II

d k

k = 2 =8 256
Θ(n + 256)

d = 32/8 = 4

Θ(4(n + 256)) = Θ(n)

 [8bits∣8bits∣8bits∣8bits]

32-bits

 RTEU CE100 Week-4 158

Radix Sort: Runtime

Assume we are trying to sort -bit words

Define each digit to be bits

Then, the range for each digit

So, counting sort will take

The number of digits

Radix sort runtime:

T (n, b) = Θ((n + 2))
r

b r

CE100 Algorithms and Programming II

b

r

k = 2r

Θ(n + 2)r

d = b/r

 [rbits∣rbits∣rbits∣rbits]

b/r bits

 RTEU CE100 Week-4 159

Radix Sort: Runtime Analysis

T (n, b) = Θ((n + 2))
r

b r

Minimize by differentiating and setting to

Or, intuitively:
We want to balance the terms and

Choose
If we choose term doesn’t improve

If we choose increases exponentially

CE100 Algorithms and Programming II

T (n, b) 0

(b/r) (n + 2)r

r ≈ lgn

r << lgn ⟹ (n + 2)r

r >> lgn ⟹ (n + 2)r

 RTEU CE100 Week-4 160

Radix Sort: Runtime Analysis

T (n, b) = Θ((n + 2))
r

b r

Choose r = lgn ⟹ T (n, b) = Θ(bn/lgn)

For numbers in the range from to , we have:
The number of bits

Radix sort runs in

CE100 Algorithms and Programming II

0 n –1d

b = lg(nd) = dlgn

Θ(dn)

 RTEU CE100 Week-4 161

Radix Sort: Conclusions
Choose r = lgn ⟹ T (n, b) = Θ(bn/lgn)

Example: Compare radix sort with merge sort/heapsort
 million (), -bit numbers

Radix sort: passes

Merge sort/heap sort: passes

Downsides:
Radix sort has little locality of reference (more cache misses)

The version that uses counting sort is not in-place
On modern processors, a well-tuned quicksort implementation typically runs faster.

CE100 Algorithms and Programming II

1 220 32 (n = 2 , b =20 32)
⌊32/20⌋ = 2

lgn = 20

 RTEU CE100 Week-4 162

References

Introduction to Algorithms, Third Edition | The MIT Press

Bilkent CS473 Course Notes (new)

Bilkent CS473 Course Notes (old)

Insertion Sort - GeeksforGeeks

Priority Queue Using Linked List - GeeksforGeeks

Priority Queue Using Linked List - JavatPoint

NIST Dictionary of Algorithms and Data Structures

NIST - Dictionary of Algorithms and Data Structures

CE100 Algorithms and Programming II

 RTEU CE100 Week-4 163

https://mitpress.mit.edu/books/introduction-algorithms-third-edition
http://nabil.abubaker.bilkent.edu.tr/473/
http://cs.bilkent.edu.tr/~ugur/teaching/cs473/
https://www.geeksforgeeks.org/insertion-sort/
https://www.geeksforgeeks.org/priority-queue-using-linked-list/
https://www.javatpoint.com/priority-queue-using-linked-list
https://xlinux.nist.gov/dads/
https://xlinux.nist.gov/dads/

CE100 Algorithms and Programming II

−End − Of − Week − 4 − Course − Module−

 RTEU CE100 Week-4 164

