
CE100 Algorithms and Programming II

Week-2 (Solving Recurrences / The Divide-and-Conquer)

Spring Semester, 2021-2022

Download DOC-PDF, DOC-DOCX, SLIDE, PPTX

CE100 Algorithms and Programming II

 RTEU CE100 Week-2

file:///E:/UgurCoruh/RTEU/Lectures/2021-2022%20Bahar%20CE100%20-%20Algorithms%20and%20Programming%20II/ce100-algorithms-and-programming-II/docs/week-2/ce100-week-2-recurrence.tr.md_doc.pdf
file:///E:/UgurCoruh/RTEU/Lectures/2021-2022%20Bahar%20CE100%20-%20Algorithms%20and%20Programming%20II/ce100-algorithms-and-programming-II/docs/week-2/ce100-week-2-recurrence.tr.md_word.docx
file:///E:/UgurCoruh/RTEU/Lectures/2021-2022%20Bahar%20CE100%20-%20Algorithms%20and%20Programming%20II/ce100-algorithms-and-programming-II/docs/week-2/ce100-week-2-recurrence.tr.md_slide.pdf
file:///E:/UgurCoruh/RTEU/Lectures/2021-2022%20Bahar%20CE100%20-%20Algorithms%20and%20Programming%20II/ce100-algorithms-and-programming-II/docs/week-2/ce100-week-2-recurrence.tr.md_slide.pptx

Solving Recurrences

Outline (1)

Solving Recurrences

Recursion Tree

Master Method

Back-Substitution

CE100 Algorithms and Programming II

 RTEU CE100 Week-2 2

Outline (2)

Divide-and-Conquer Analysis

Merge Sort

Binary Search

Merge Sort Analysis

Complexity

CE100 Algorithms and Programming II

 RTEU CE100 Week-2 3

Outline (3)

Recurrence Solution

CE100 Algorithms and Programming II

 RTEU CE100 Week-2 4

Solving Recurrences (1)

Reminder: Runtime of MergeSort was expressed as a recurrence

T (n) = {Θ(1)
2T (n/2) + Θ(n)

if n=1
otherwise

Solving recurrences is like solving differential equations, integrals, etc.

Need to learn a few tricks

CE100 Algorithms and Programming II

(T (n))

 RTEU CE100 Week-2 5

Solving Recurrences (2)

Recurrence: An equation or inequality that describes a function in terms of its value on
smaller inputs.

Example :

T (n) = {1
T (⌈n/2⌉) + 1

if n=1
if n>1

CE100 Algorithms and Programming II

 RTEU CE100 Week-2 6

Recurrence Example

T (n) = {1
T (⌈n/2⌉) + 1

if n=1
if n>1

Simplification: Assume

Claimed answer :

Substitute claimed answer in the recurrence:

lgn + 1 = {1
lg(⌈n/2⌉) + 2

if n=1
if n>1

True when

CE100 Algorithms and Programming II

n = 2k

T (n) = lgn + 1

n = 2k

 RTEU CE100 Week-2 7

Technicalities: Floor / Ceiling

Technically, should be careful about the floor and ceiling functions (as in the book).

e.g. For merge sort, the recurrence should in fact be:,

T (n) = {Θ(1)
T (⌈n/2⌉) + T (⌊n/2⌋) + Θ(n)

if n=1
if n>1

But, it's usually ok to:

ignore floor/ceiling

solve for the exact power of 2 (or another number)

CE100 Algorithms and Programming II

 RTEU CE100 Week-2 8

Technicalities: Boundary Conditions

Usually assume: for sufficiently small
Changes the exact solution, but usually the asymptotic solution is not affected
(e.g. if polynomially bounded)

For convenience, the boundary conditions generally implicitly stated in a
recurrence

 assuming that

 for sufficiently small

CE100 Algorithms and Programming II

T (n) = Θ(1) n

T (n) = 2T (n/2) + Θ(n)

T (n) = Θ(1) n

 RTEU CE100 Week-2 9

Example: When Boundary Conditions Matter

Exponential function:
Assume

e.g.

 However Θ(2) =n Θ(3)

n {T (1) = 2
T (1) = 3

⇒
⇒

T (n) = Θ(2)n

T (n) = Θ(3)n

The difference in solution more dramatic when:

T (1) = 1 ⇒ T (n) = Θ(1) =n Θ(1)

CE100 Algorithms and Programming II

T (n) = (T (n/2))2

T (1) = c (where c is a positive constant)
T (2) = (T (1)) =2 c2

T (4) = (T (2)) =2 c4

T (n) = Θ(c)n

 RTEU CE100 Week-2 10

Solving Recurrences Methods

We will focus on 3 techniques

Substitution method

Recursion tree approach

Master method

CE100 Algorithms and Programming II

 RTEU CE100 Week-2 11

Substitution Method

The most general method:

Guess

Prove by induction

Solve for constants

CE100 Algorithms and Programming II

 RTEU CE100 Week-2 12

Substitution Method: Example (1)

Solve (assume)

1. Guess (need to prove and separately)

2. Prove by induction that for large (i.e.)
Inductive hypothesis: for any

Assuming ind. hyp. holds, prove

CE100 Algorithms and Programming II

T (n) = 4T (n/2) + n T (1) = Θ(1)

T (n) = O(n)3 O Ω

T (n) ≤ cn3 n n ≥ n 0

T (k) ≤ ck3 k < n

T (n) ≤ cn3

 RTEU CE100 Week-2 13

Substitution Method: Example (2)

Original recurrence:

From inductive hypothesis:

Substitute this into the original recurrence:

 desired - residual

when

CE100 Algorithms and Programming II

T (n) = 4T (n/2) + n

T (n/2) ≤ c(n/2)3

T (n) ≤ 4c(n/2) +3 n

= (c/2)n +3 n

= cn –((c/2)n –n)3 3 ⟸

≤ cn3

((c/2)n –n) ≥3 0

 RTEU CE100 Week-2 14

Substitution Method: Example (3)

So far, we have shown:

T (n) ≤ cn when ((c/2)n –n) ≥3 3 0

We can choose and

But, the proof is not complete yet.

Reminder: Proof by induction:
1.Prove the base cases haven’t proved the base cases yet
2.Inductive hypothesis for smaller sizes
3.Prove the general case

CE100 Algorithms and Programming II

c ≥ 2 n ≥0 1

⟸

 RTEU CE100 Week-2 15

Substitution Method: Example (4)

We need to prove the base cases
Base: for small (e.g. for)

We should show that:
 for , This holds if we pick big enough

So, the proof of is complete

But, is this a tight bound?

CE100 Algorithms and Programming II

T (n) = Θ(1) n n = n 0

Θ(1) ≤ cn3 n = n 0 c

T (n) = O(n)3

 RTEU CE100 Week-2 16

Example: A tighter upper bound? (1)

Original recurrence:

Try to prove that ,

i.e. for all

Ind. hyp: Assume that for

Prove the general case:

CE100 Algorithms and Programming II

T (n) = 4T (n/2) + n

T (n) = O(n)2

T (n) ≤ cn2 n ≥ n 0

T (k) ≤ ck2 k < n

T (n) ≤ cn2

 RTEU CE100 Week-2 17

Example: A tighter upper bound? (2)

Original recurrence:
Ind. hyp: Assume that for
Prove the general case:

T (n) = 4T (n/2) + n

≤ 4c(n/2) + n2

= cn + n2

= O(n2) ⟸ Wrong! We must prove exactly

CE100 Algorithms and Programming II

T (n) = 4T (n/2) + n

T (k) ≤ ck2 k < n

T (n) ≤ cn2

 RTEU CE100 Week-2 18

Example: A tighter upper bound? (3)

Original recurrence:
Ind. hyp: Assume that for
Prove the general case:

So far, we have:

No matter which positive c value we choose, this does not show that

Proof failed?

CE100 Algorithms and Programming II

T (n) = 4T (n/2) + n

T (k) ≤ ck2 k < n

T (n) ≤ cn2

T (n) ≤ cn +2 n

T (n) ≤ cn2

 RTEU CE100 Week-2 19

Example: A tighter upper bound? (4)

What was the problem?

The inductive hypothesis was not strong enough

Idea: Start with a stronger inductive hypothesis

Subtract a low-order term

Inductive hypothesis: for

Prove the general case:

CE100 Algorithms and Programming II

T (k) ≤ c k –c k1
2

2 k < n

T (n) ≤ c n −1
2 c n2

 RTEU CE100 Week-2 20

Example: A tighter upper bound? (5)

Original recurrence:

Ind. hyp: Assume that for

Prove the general case:

T (n) = 4T (n/2) + n

≤ 4(c (n/2) –c (n/2)) + n1
2

2

= c n –2c n + n1
2

2

= c n –c n–(c n–n)1
2

2 2

≤ c n –c n for n(c –1) ≥ 01
2

2 2

choose c2 ≥ 1

CE100 Algorithms and Programming II

T (n) = 4T (n/2) + n

T (k) ≤ c k –c k1
2

2 k < n

T (n) ≤ c n –c n1
2

2

 RTEU CE100 Week-2 21

Example: A tighter upper bound? (6)

We now need to prove

T (n) ≤ c n –c n1
2

2

for the base cases.

 (implicit assumption)

 for small enough (e.g.)

We can choose c1 large enough to make this hold

We have proved that

CE100 Algorithms and Programming II

T (n) = Θ(1) for 1 ≤ n ≤ n 0

Θ(1) ≤ c n –c n1
2

2 n n = n 0

T (n) = O(n)2

 RTEU CE100 Week-2 22

Substitution Method: Example 2 (1)

For the recurrence ,

prove that

i.e. for any

Ind. hyp: for any

Prove general case:

 since

Proof succeeded – no need to strengthen the ind. hyp as in the last example

CE100 Algorithms and Programming II

T (n) = 4T (n/2) + n

T (n) = Ω(n)2

T (n) ≥ cn2 n ≥ n 0

T (k) ≥ ck2 k < n

T (n) ≥ cn2

T (n) = 4T (n/2) + n

≥ 4c(n/2) +2 n

= cn +2 n

≥ cn2 n > 0

 RTEU CE100 Week-2 23

Substitution Method: Example 2 (2)

We now need to prove that

for the base cases
 for (implicit assumption)

 for

 is sufficiently small (i.e. constant)

We can choose small enough for this to hold

We have proved that

CE100 Algorithms and Programming II

T (n) ≥ cn2

T (n) = Θ(1) 1 ≤ n ≤ n 0

Θ(1) ≥ cn2 n = n 0

n 0

c

T (n) = Ω(n)2

 RTEU CE100 Week-2 24

Substitution Method - Summary

Guess the asymptotic complexity

Prove your guess using induction

Assume inductive hypothesis holds for

Try to prove the general case for

Note: prove the inequality ignore lower
order terms, If the proof fails, strengthen the ind. hyp. and try again

Prove the base cases (usually straightforward)

CE100 Algorithms and Programming II

k < n

n

MUST EXACT CANNOT

 RTEU CE100 Week-2 25

Recursion Tree Method

A recursion tree models the runtime costs of a recursive execution of an algorithm.

The recursion tree method is good for generating guesses for the substitution
method.

The recursion-tree method can be unreliable.
Not suitable for formal proofs

The recursion-tree method promotes intuition, however.

CE100 Algorithms and Programming II

 RTEU CE100 Week-2 26

Solve Recurrence (1) :

CE100 Algorithms and Programming II

T (n) = 2T (n/2) + Θ(n)

 RTEU CE100 Week-2 27

Solve Recurrence (2) :

Each S�ze Halved2x Subprobs

CE100 Algorithms and Programming II

T (n) = 2T (n/2) + Θ(n)

 RTEU CE100 Week-2 28

Solve Recurrence (3) :

he�ght:

leaf count:
Total:

CE100 Algorithms and Programming II

T (n) = 2T (n/2) + Θ(n)

 RTEU CE100 Week-2 29

Example of Recursion Tree (1)

Solve

CE100 Algorithms and Programming II

T (n) = T (n/4) + T (n/2) + n2

 RTEU CE100 Week-2 30

Example of Recursion Tree (2)

Solve

CE100 Algorithms and Programming II

T (n) = T (n/4) + T (n/2) + n2

 RTEU CE100 Week-2 31

Example of Recursion Tree (3)

Solve

Geometr�c
Ser�es

CE100 Algorithms and Programming II

T (n) = T (n/4) + T (n/2) + n2

 RTEU CE100 Week-2 32

The Master Method

A powerful black-box method to solve recurrences.

The master method applies to recurrences of the form

where , and is asymptotically positive.

CE100 Algorithms and Programming II

T (n) = aT (n/b) + f(n)

a ≥ 1, b > 1 f

 RTEU CE100 Week-2 33

The Master Method: 3 Cases

(TODO : Add Notes)

Recurrence:

Compare with

Intuitively:
Case 1: grows polynomially slower than

Case 2: grows at the same rate as

Case 3: grows polynomially faster than

CE100 Algorithms and Programming II

T (n) = aT (n/b) + f(n)

f(n) nlog b
a

f(n) nlog b
a

f(n) nlog b
a

f(n) nlog b
a

 RTEU CE100 Week-2 34

The Master Method: Case 1 (Bigger)

Recurrence:

Case 1: for some constant

i.e., grows polynomialy slower than (by an factor)

Solution:

CE100 Algorithms and Programming II

T (n) = aT (n/b) + f(n)

 =
f(n)
nlogb

a

Ω(n)ε ε > 0

f(n) nlog b
a

nε

T (n) = Θ(n)log b
a

 RTEU CE100 Week-2 35

The Master Method: Case 2 (Simple Version) (Equal)

Recurrence:

Case 2:

i.e., and grow at similar rates

Solution:

CE100 Algorithms and Programming II

T (n) = aT (n/b) + f(n)

 =
n
log

b
a

f(n) Θ(1)

f(n) nlog b
a

T (n) = Θ(n lgn)log b
a

 RTEU CE100 Week-2 36

The Master Method: Case 3 (Smaller)

Case 3: for some constant

i.e., grows polynomialy faster than (by an factor)

and the following regularity condition holds:

 for some constant

Solution:

CE100 Algorithms and Programming II

 =
n
log

b
a

f(n) Ω(n)ε ε > 0

f(n) nlog b
a

nε

af(n/b) ≤ cf(n) c < 1

T (n) = Θ(f(n))

 RTEU CE100 Week-2 37

The Master Method Example (case-1) :

 grows polynomially slower than

CASE-1:

CE100 Algorithms and Programming II

T (n) = 4T (n/2) + n

a = 4

b = 2

f(n) = n

n =log b
a

n =log 2
4

n =log 2
22

n =2log 2
2

n2

f(n) = n n =log b
a

n2

 =
f(n)
nlog b

a

 =
n
n2

n = Ω(n)ε

T (n) = Θ(n) =log b
a

Θ(n) =log 2
4

Θ(n)2

 RTEU CE100 Week-2 38

The Master Method Example (case-2) :

 grows at similar rate as

CASE-2:

CE100 Algorithms and Programming II

T (n) = 4T (n/2) + n2

a = 4

b = 2

f(n) = n2

n =log b
a

n =log 2
4

n =log 2
22

n =2log 2
2

n2

f(n) = n2 n =log b
a

n2

f(n) = Θ(n) =log b
a

n2

T (n) = Θ(n lgn) =log b
a

Θ(n lgn) =log 2
4

Θ(n lgn)2

 RTEU CE100 Week-2 39

The Master Method Example (case-3) (1) :

 grows polynomially faster than

CE100 Algorithms and Programming II

T (n) = 4T (n/2) +
n3

a = 4

b = 2

f(n) = n3

n =log b
a

n =log 2
4

n =log 2
22

n =2log 2
2

n2

f(n) = n3 n =log b
a

n2

 =
n
log

b
a

f(n)
 =

n2
n3

n = Ω(n)ε

 RTEU CE100 Week-2 40

The Master Method Example (case-3) (2) :
 (con't)

Seems like CASE 3, but need to check the regularity condition

Regularity condition for some constant

 for

CASE-3:

CE100 Algorithms and Programming II

T (n) = 4T (n/2) +
n3

af(n/b) ≤ cf(n) c < 1

4(n/2) ≤3 cn3 c = 1/2

T (n) = Θ(f(n)) ⟹ T (n) = Θ(n)3

 RTEU CE100 Week-2 41

The Master Method Example (N/A case) :

 grows slower than
but is it polynomially slower?

 for any

is not CASE-1

Master Method does not apply!

CE100 Algorithms and Programming II

T (n) = 4T (n/2) +
n lgn2

a = 4

b = 2

f(n) = n lgn2

n =log b
a

n =log 2
4

n =log 2
22

n =2log 2
2

n2

f(n) = n lgn2 n =log b
a

n2

 ==
n f(n)log

b
a

 lgn
n2
n2

lgn = Ω(n)ε ε > 0

 RTEU CE100 Week-2 42

The Master Method : Case 2 (General Version)

Recurrence :

Case 2: for some constant

Solution :

CE100 Algorithms and Programming II

T (n) = aT (n/b) + f(n)

 =
n
log

b
a

f(n) Θ(lg n)k k ≥ 0

T (n) = Θ(n lg n)log b
a k+1

 RTEU CE100 Week-2 43

General Method (Akra-Bazzi)

Let be the unique solution to

Then, the answers are the same as for the master method, but with instead of
(Akra and Bazzi also prove an even more general result.)

CE100 Algorithms and Programming II

T (n) = a T (n/b) +
i=1
∑
k

i i f(n)

p

 (a /b) =
i=1
∑
k

i i
p 1

np nlog b
a

 RTEU CE100 Week-2 44

Idea of Master Theorem (1)

Recursion Tree:

CE100 Algorithms and Programming II

 RTEU CE100 Week-2 45

Idea of Master Theorem (2)

CASE 1 : The weight increases geometrically from the root to the leaves. The leaves hold
a constant fraction of the total weight.

CE100 Algorithms and Programming II

n T (1) =log b
a

Θ(n)log b
a

 RTEU CE100 Week-2 46

Idea of Master Theorem (3)

CASE 2 : The weight is approximately the same on each of the levels.

CE100 Algorithms and Programming II

(k = 0) log nb

n T (1) =log b
a

Θ(n lgn)log b
a

 RTEU CE100 Week-2 47

Idea of Master Theorem (4)

CASE 3 : The weight decreases geometrically from the root to the leaves. The root holds
a constant fraction of the total weight.

CE100 Algorithms and Programming II

n T (1) =log b
a

Θ(f(n))

 RTEU CE100 Week-2 48

Proof of Master Theorem: Case 1 and Case 2

Recall from the recursion tree (note)

CE100 Algorithms and Programming II

h = lg n =b tree height

Leaf Cost = Θ(n)log b
a

Non-leaf Cost = g(n) = a f(n/b)
i=0
∑
h−1

i i

T (n) = Leaf Cost + Non-leaf Cost

T (n) = Θ(n) +log b
a

 a f(n/b)
i=0
∑
h−1

i i

 RTEU CE100 Week-2 49

Proof of Master Theorem Case 1 (1)

 for some

CE100 Algorithms and Programming II

 =
f(n)
nlog

b
a

Ω(n)ε ε > 0

 =
f(n)
nlog b

a

Ω(n) ⟹ε O(n) ⟹−ε f(n) = O(n)log b
a−ε

g(n) = a O((n/b)) =
i=0
∑
h−1

i i log b
a−ε

O(a (n/b))
i=0
∑
h−1

i i log b
a−ε

O(n a b /b)log b
a−ε

i=0
∑
h−1

i iε ilog b
a−ε

 RTEU CE100 Week-2 50

Proof of Master Theorem Case 1 (2)

= An increasing geometric series since

CE100 Algorithms and Programming II

 =
i=0
∑
h−1

b
ilog

b
a

a bi iε

 a =
i=0
∑
h−1

i

(b)log

b
a

i

(b)ε i

a =∑ i
ai
biε

 (b)
i=0
∑
h−1

ε i

b > 1

 =
b −1ε
b −1hε

 =
b −1ε

(b) −1h ε

 =
b −1ε

(b) −1log

b
n ε

 =
b −1ε
n −1ε

O(n)ε

 RTEU CE100 Week-2 51

Proof of Master Theorem Case 1 (3)

Q.E.D.
(Quod Erat Demonstrandum)

CE100 Algorithms and Programming II

g(n) = O(n O(n)) =log a−εb ε O(O(n)) =
nε
n
log

b
a

ε O(n)log b
a

T (n) = Θ(n) +log b
a

g(n) = Θ(n) +log b
a

O(n) =log b
a

Θ(n)log b
a

 RTEU CE100 Week-2 52

Proof of Master Theorem Case 2 (limited to k=0)

Q.E.D.

CE100 Algorithms and Programming II

 =
n og

l
b
a

f(n) Θ(lg n) =0 Θ(1) ⟹ f(n) = Θ(n) ⟹log b
a

f(n/b) =i Θ((n/b))i log b
a

g(n) = a Θ((n/b))
i=0
∑
h−1

i i log b
a

= Θ(a)
i=0
∑
h−1

i

b
ilog

b
a

nlog b
a

= Θ(n a)log b
a

i=0
∑
h−1

i

(b)log

b
a

i

1

= Θ(n a)log b
a

i=0
∑
h−1

i
ai
1

= Θ(n 1) =log b
a

i=0
∑

log b
n−1

Θ(n log n) =log b
a

b Θ(n lgn)log b
a

T (n) = n +log b
a

Θ(n lgn)logb
a

= Θ(n lgn)log b
a

 RTEU CE100 Week-2 53

The Divide-and-Conquer Design Paradigm (1)

D�v�de

Conquer

Comb�ne

merge two sorted halves

sort th�s half sort th�s half

CE100 Algorithms and Programming II

 RTEU CE100 Week-2 54

The Divide-and-Conquer Design Paradigm (2)

1. Divide we divide the problem into a number of subproblems.

2. Conquer we solve the subproblems recursively.

3. BaseCase solve by Brute-Force

4. Combine subproblem solutions to the original problem.

CE100 Algorithms and Programming II

 RTEU CE100 Week-2 55

The Divide-and-Conquer Design Paradigm (3)

T (n) = {Θ(1)
aT (n/b) + D(n) + C(n)

if
otherwise

n ≤ c (basecase)

Merge-Sort

T (n) = {Θ(1)
2T (n/2) + Θ(n) if

n = 1
n > 1

CE100 Algorithms and Programming II

a = subproblem

1/b = each size of the problem

T (n) = Θ(nlgn)

 RTEU CE100 Week-2 56

Selection Sort Algorithm

SELECTION-SORT(A)
 n = A.length;
 for j=1 to n-1
 smallest=j;
 for i= j+1 to n
 if A[i]<A[smallest]
 smallest=i;
 endfor
 exchange A[j] with A[smallest]
 endfor

CE100 Algorithms and Programming II

 RTEU CE100 Week-2 57

Selection Sort Algorithm

T (n) = {Θ(1)
T (n − 1) + Θ(n) if

n = 1
n > 1

Sequential Series

cost = n(n + 1)/2 = 1/2n +2 1/2n

Drop low-order terms

Ignore the constant coefficient in the leading term

T (n) = Θ(n)2

CE100 Algorithms and Programming II

 RTEU CE100 Week-2 58

Merge Sort Algorithm (initial setup)

Merge Sort is a recursive sorting algorithm, for initial case we need to call Merge-
Sort(A,1,n) for sorting

initial case

A : Array
p : 1 (offset)
r : n (length)
Merge-Sort(A,1,n)

CE100 Algorithms and Programming II

A[1..n]

 RTEU CE100 Week-2 59

Merge Sort Algorithm (internal iterations)

internal iterations

A : Array
p : offset
r : length
Merge-Sort(A,p,r)
 if p=r then (CHECK FOR BASE-CASE)
 return
 else
 q = floor((p+r)/2) (DIVIDE)
 Merge-Sort(A,p,q) (CONQUER)
 Merge-Sort(A,q+1,r) (CONQUER)
 Merge(A,p,q,r) (COMBINE)
 endif

CE100 Algorithms and Programming II

p = start − point

q = mid − point

r = end − point

 RTEU CE100 Week-2 60

Merge Sort Combine Algorithm (1)

Merge(A,p,q,r)
 n1 = q-p+1
 n2 = r-q

 //allocate left and right arrays
 //increment will be from left to right
 //left part will be bigger than right part

 L[1...n1+1] //left array
 R[1...n2+1] //right array

 //copy left part of array
 for i=1 to n1
 L[i]=A[p+i-1]

 //copy right part of array
 for j=1 to n2
 R[j]=A[q+j]

 //put end items maximum values for termination
 L[n1+1]=inf
 R[n2+1]=inf

 i=1,j=1
 for k=p to r
 if L[i]<=R[j]
 A[k]=L[i]
 i=i+1
 else
 A[k]=R[j]
 j=j+1

CE100 Algorithms and Programming II

 RTEU CE100 Week-2 61

Example : Merge Sort

1. Divide: Trivial.

2. Conquer: Recursively sort 2 subarrays.

3. Combine: Linear- time merge.

Subproblems

Subproblemsize

Work dividing and combining

CE100 Algorithms and Programming II

T (n) = 2T (n/2) + Θ(n)
⟹ 2

⟹ n/2

⟹ Θ(n)

 RTEU CE100 Week-2 62

Master Theorem: Reminder

Case 1:

Case 2:

Case 3: and for

CE100 Algorithms and Programming II

T (n) = aT (n/b) + f(n)

 =
f(n)
nlog

b
a

Ω(n) ⟹ε T (n) = Θ(n)log b
a

 =
n
log

b
a

f(n) Θ(lg n) ⟹k T (n) = Θ(n lg n)log b
a k+1

 =
f(n)
nlog b

a

Ω(n) ⟹ε T (n) = Θ(f(n)) af(n/b) ≤ cf(n)
c < 1

 RTEU CE100 Week-2 63

Merge Sort: Solving the Recurrence

Case-2: holds for

CE100 Algorithms and Programming II

T (n) = 2T (n/2) + Θ(n)
a = 2, b = 2, f(n) = Θ(n),n =log b

a

n

 =
n
log

b
a

f(n) Θ(lg n) ⟹k T (n) = Θ(n lg n)log b
a k+1 k = 0

T (n) = Θ(nlgn)

 RTEU CE100 Week-2 64

Binary Search (1)

Find an element in a sorted array:

1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

CE100 Algorithms and Programming II

 RTEU CE100 Week-2 65

Binary Search (2)

PARENT = ⌊i/2⌋

LEFT-CHILD = 2i, 2i>n

RIGHT-CHILD = 2i + 1, 2i>n

CE100 Algorithms and Programming II

 RTEU CE100 Week-2 66

Binary Search (3) : Iterative

ITERATIVE-BINARY-SEARCH(A,V,low,high)
 while low<=high
 mid=floor((low+high)/2);
 if v == A[mid]
 return mid;
 elseif v > A[mid]
 low = mid + 1;
 else
 high = mid - 1;
 endwhile
 return NIL

CE100 Algorithms and Programming II

 RTEU CE100 Week-2 67

Binary Search (4): Recursive

RECURSIVE-BINARY-SEARCH(A,V,low,high)
 if low>high
 return NIL;
 endif

 mid = floor((low+high)/2);

 if v == A[mid]
 return mid;
 elseif v > A[mid]
 return RECURSIVE-BINARY-SEARCH(A,V,mid+1,high);
 else
 return RECURSIVE-BINARY-SEARCH(A,V,low,mid-1);
 endif

CE100 Algorithms and Programming II

 RTEU CE100 Week-2 68

Binary Search (5): Recursive

T (n) = T (n/2) + Θ(1) ⟹ T (n) = Θ(lgn)

CE100 Algorithms and Programming II

 RTEU CE100 Week-2 69

Binary Search (6): Example (Find 9)

53 7 8 9 12 15

53 7 8 9 12 15

9 12 15

9 12 15

53 7 8

<9

>9

>9

=9

CE100 Algorithms and Programming II

 RTEU CE100 Week-2 70

Recurrence for Binary Search (7)

Subproblems

Subproblemsize

Work dividing and combining

CE100 Algorithms and Programming II

T (n) = 1T (n/2) + Θ(1)

⟹ 1
⟹ n/2

⟹ Θ(1)

 RTEU CE100 Week-2 71

Binary Search: Solving the Recurrence (8)

Case 2: holds for

CE100 Algorithms and Programming II

T (n) = T (n/2) + Θ(1)

a = 1, b = 2, f(n) = Θ(1) ⟹ n =log b
a

n =0 1

 =
n
log

b
a

f(n) Θ(lg n) ⟹k T (n) = Θ(n lg n)log b
a k+1 k = 0

T (n) = Θ(lgn)

 RTEU CE100 Week-2 72

Powering a Number: Divide & Conquer (1)

Problem: Compute an, where n is a natural number

NAIVE-POWER(a, n)
 powerVal = 1;
 for i = 1 to n
 powerVal = powerVal * a;
 endfor
return powerVal;

What is the complexity?

CE100 Algorithms and Programming II

⟹ T (n) = Θ(n)

 RTEU CE100 Week-2 73

Powering a Number: Divide & Conquer (2)

Basic Idea:

a =n
 {a ∗ an/2 n/2

a ∗ a ∗ a(n−1)/2 (n−1)/2

if n is even
if n is odd

CE100 Algorithms and Programming II

 RTEU CE100 Week-2 74

Powering a Number: Divide & Conquer (3)

POWER(a, n)
 if n = 0 then
 return 1;
 else if n is even then
 val = POWER(a, n/2);
 return val * val;
 else if n is odd then
 val = POWER(a,(n-1)/2)
 return val * val * a;
 endif

CE100 Algorithms and Programming II

 RTEU CE100 Week-2 75

Powering a Number: Solving the Recurrence (4)

Case 2: holds for

CE100 Algorithms and Programming II

T (n) = T (n/2) + Θ(1)

a = 1, b = 2, f(n) = Θ(1) ⟹ n =log b
a

n =0 1

 =
n
log

b
a

f(n) Θ(lg n) ⟹k T (n) = Θ(n lg n)log b
a k+1 k = 0

T (n) = Θ(lgn)

 RTEU CE100 Week-2 76

Correctness Proofs for Divide and Conquer Algorithms

Proof by induction commonly used for Divide and Conquer Algorithms

Base case: Show that the algorithm is correct when the recursion bottoms out (i.e.,
for sufficiently small n)

Inductive hypothesis: Assume the alg. is correct for any recursive call on any
smaller subproblem of size ,

General case: Based on the inductive hypothesis, prove that the alg. is correct for
any input of size n

CE100 Algorithms and Programming II

k (k < n)

 RTEU CE100 Week-2 77

Example Correctness Proof: Powering a Number

Base Case: is correct, because it returns

Ind. Hyp: Assume is correct for any

General Case:
In function:

If is :
 (due to ind. hyp.)

it returns

If is :
 (due to ind. hyp.)

it returns

The correctness proof is complete

CE100 Algorithms and Programming II

POWER(a, 0) 1

POWER(a, k) k < n

POWER(a,n)
n even

val = an/2

val ∗ val = an

n odd

val = a(n−1)/2

val ∗ val ∗ a = an

 RTEU CE100 Week-2 78

References

Introduction to Algorithms, Third Edition | The MIT Press

Bilkent CS473 Course Notes (new)

Bilkent CS473 Course Notes (old)

Insertion Sort - GeeksforGeeks

NIST Dictionary of Algorithms and Data Structures

NIST - Dictionary of Algorithms and Data Structures

NIST - big-O notation

NIST - big-Omega notation

CE100 Algorithms and Programming II

 RTEU CE100 Week-2 79

https://mitpress.mit.edu/books/introduction-algorithms-third-edition
http://nabil.abubaker.bilkent.edu.tr/473/
http://cs.bilkent.edu.tr/~ugur/teaching/cs473/
https://www.geeksforgeeks.org/insertion-sort/
https://xlinux.nist.gov/dads/
https://xlinux.nist.gov/dads/
https://xlinux.nist.gov/dads/HTML/bigOnotation.html
https://xlinux.nist.gov/dads/HTML/omegaCapital.html

CE100 Algorithms and Programming II

−End − Of − Week − 2 − Course − Module−

 RTEU CE100 Week-2 80

