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Solving Recurrences

Outline (1)

Solving Recurrences

Recursion Tree

Master Method

Back-Substitution
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Outline (2)

Divide-and-Conquer Analysis

Merge Sort

Binary Search

Merge Sort Analysis

Complexity
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Outline (3)

Recurrence Solution
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Solving Recurrences (1)

Reminder: Runtime  of MergeSort was expressed as a recurrence

T (n) =   {Θ(1)
2T (n/2) + Θ(n)

if n=1
otherwise

Solving recurrences is like solving differential equations, integrals, etc.

Need to learn a few tricks

CE100 Algorithms and Programming II

(T (n))
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Solving Recurrences (2)

Recurrence: An equation or inequality that describes a function in terms of its value on
smaller inputs.

Example :

T (n) =   {1
T (⌈n/2⌉) + 1

if n=1
if n>1

CE100 Algorithms and Programming II
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Recurrence Example

T (n) =   {1
T (⌈n/2⌉) + 1

if n=1
if n>1

Simplification: Assume 

Claimed answer : 

Substitute claimed answer in the recurrence:

lgn + 1 =   {1
lg(⌈n/2⌉) + 2

if n=1
if n>1

True when 

CE100 Algorithms and Programming II

n = 2k

T (n) = lgn + 1

n = 2k

 RTEU CE100 Week-2 7



Technicalities: Floor / Ceiling

Technically, should be careful about the floor and ceiling functions (as in the book).

e.g. For merge sort, the recurrence should in fact be:,

T (n) =   {Θ(1)
T (⌈n/2⌉) + T (⌊n/2⌋) + Θ(n)

if n=1
if n>1

But, it's usually ok to:

ignore floor/ceiling

solve for the exact power of 2 (or another number)

CE100 Algorithms and Programming II
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Technicalities: Boundary Conditions

Usually assume:  for sufficiently small 
Changes the exact solution, but usually the asymptotic solution is not affected
(e.g. if polynomially bounded)

For convenience, the boundary conditions generally implicitly stated in a
recurrence

 assuming that

 for sufficiently small 

CE100 Algorithms and Programming II

T (n) = Θ(1) n

T (n) = 2T (n/2) + Θ(n)

T (n) = Θ(1) n
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Example: When Boundary Conditions Matter

Exponential function:  
Assume 

 
 
 

 
e.g.

 However Θ(2 ) =n  Θ(3 )    

n {T (1) = 2
T (1) = 3

⇒
⇒

T (n) = Θ(2 )n

T (n) = Θ(3 )n

The difference in solution more dramatic when:

T (1) = 1 ⇒ T (n) = Θ(1 ) =n Θ(1)

CE100 Algorithms and Programming II

T (n) = (T (n/2))2

T (1) = c (where c is a positive constant)
T (2) = (T (1)) =2 c2

T (4) = (T (2)) =2 c4

T (n) = Θ(c )n
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Solving Recurrences Methods

We will focus on 3 techniques

Substitution method

Recursion tree approach

Master method

CE100 Algorithms and Programming II
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Substitution Method

The most general method:

Guess

Prove by induction

Solve for constants

CE100 Algorithms and Programming II
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Substitution Method: Example (1)

Solve  (assume )

1. Guess  (need to prove  and  separately)

2. Prove by induction that  for large  (i.e. )
Inductive hypothesis:  for any 

Assuming ind. hyp. holds, prove 

CE100 Algorithms and Programming II

T (n) = 4T (n/2) + n T (1) = Θ(1)

T (n) = O(n )3 O Ω

T (n) ≤ cn3 n n ≥ n  0

T (k) ≤ ck3 k < n

T (n) ≤ cn3
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Substitution Method: Example (2)

Original recurrence: 

From inductive hypothesis: 

Substitute this into the original recurrence:

  desired - residual

 
when 

CE100 Algorithms and Programming II

T (n) = 4T (n/2) + n

T (n/2) ≤ c(n/2)3

T (n) ≤ 4c(n/2) +3 n

= (c/2)n +3 n

= cn –((c/2)n –n)3 3 ⟸

≤ cn3

((c/2)n –n) ≥3 0
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Substitution Method: Example (3)

So far, we have shown:

T (n) ≤ cn  when ((c/2)n –n) ≥3 3 0

We can choose  and 

But, the proof is not complete yet.

Reminder: Proof by induction: 
1.Prove the base cases  haven’t proved the base cases yet 
2.Inductive hypothesis for smaller sizes 
3.Prove the general case

CE100 Algorithms and Programming II

c ≥ 2 n  ≥0 1

⟸
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Substitution Method: Example (4)

We need to prove the base cases
Base:  for small  (e.g. for )

We should show that:
 for  , This holds if we pick  big enough

So, the proof of  is complete

But, is this a tight bound?

CE100 Algorithms and Programming II

T (n) = Θ(1) n n = n  0

Θ(1) ≤ cn3 n = n  0 c

T (n) = O(n )3
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Example: A tighter upper bound? (1)

Original recurrence: 

Try to prove that ,

i.e.  for all 

Ind. hyp: Assume that  for 

Prove the general case: 

CE100 Algorithms and Programming II

T (n) = 4T (n/2) + n

T (n) = O(n )2

T (n) ≤ cn2 n ≥ n  0

T (k) ≤ ck2 k < n

T (n) ≤ cn2
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Example: A tighter upper bound? (2)

Original recurrence:  
Ind. hyp: Assume that  for 
Prove the general case: 

T (n) = 4T (n/2) + n

≤ 4c(n/2) + n2

= cn + n2

= O(n2) ⟸  Wrong! We must prove exactly

CE100 Algorithms and Programming II

T (n) = 4T (n/2) + n

T (k) ≤ ck2 k < n

T (n) ≤ cn2
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Example: A tighter upper bound? (3)

Original recurrence:  
Ind. hyp: Assume that  for  
Prove the general case: 

So far, we have:

No matter which positive c value we choose, this does not show that 

Proof failed?

CE100 Algorithms and Programming II

T (n) = 4T (n/2) + n

T (k) ≤ ck2 k < n

T (n) ≤ cn2

T (n) ≤ cn +2 n

T (n) ≤ cn2
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Example: A tighter upper bound? (4)

What was the problem?

The inductive hypothesis was not strong enough

Idea: Start with a stronger inductive hypothesis

Subtract a low-order term

Inductive hypothesis:  for 

Prove the general case: 

CE100 Algorithms and Programming II

T (k) ≤ c  k –c  k1
2

2 k < n

T (n) ≤ c  n −1
2 c  n2
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Example: A tighter upper bound? (5)

Original recurrence: 

Ind. hyp: Assume that  for 

Prove the general case: 

  

T (n) = 4T (n/2) + n

≤ 4(c  (n/2) –c  (n/2)) + n1
2

2

= c  n –2c  n + n1
2

2

= c  n –c  n–(c  n–n)1
2

2 2

≤ c  n –c  n for n(c  –1) ≥ 01
2

2 2

choose c2 ≥ 1

CE100 Algorithms and Programming II

T (n) = 4T (n/2) + n

T (k) ≤ c  k –c  k1
2

2 k < n

T (n) ≤ c  n –c  n1
2

2
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Example: A tighter upper bound? (6)

We now need to prove

T (n) ≤ c  n –c  n1
2

2

for the base cases.

 (implicit assumption)

 for  small enough (e.g. )

We can choose c1 large enough to make this hold

We have proved that 

CE100 Algorithms and Programming II

T (n) = Θ(1) for 1 ≤ n ≤ n  0

Θ(1) ≤ c  n –c  n1
2

2 n n = n  0

T (n) = O(n )2
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Substitution Method: Example 2 (1)

For the recurrence ,

prove that 

i.e.  for any 

Ind. hyp:  for any 

Prove general case: 

 
 

 
 since 

Proof succeeded – no need to strengthen the ind. hyp as in the last example

CE100 Algorithms and Programming II

T (n) = 4T (n/2) + n

T (n) = Ω(n )2

T (n) ≥ cn2 n ≥ n  0

T (k) ≥ ck2 k < n

T (n) ≥ cn2

T (n) = 4T (n/2) + n

≥ 4c(n/2) +2 n

= cn +2 n

≥ cn2 n > 0
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Substitution Method: Example 2 (2)

We now need to prove that
 

for the base cases 
 for  (implicit assumption) 

 for 

 is sufficiently small (i.e. constant)

We can choose  small enough for this to hold

We have proved that 

CE100 Algorithms and Programming II

T (n) ≥ cn2

T (n) = Θ(1) 1 ≤ n ≤ n  0

Θ(1) ≥ cn2 n = n  0

n  0

c

T (n) = Ω(n )2
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Substitution Method - Summary

Guess the asymptotic complexity

Prove your guess using induction

Assume inductive hypothesis holds for 

Try to prove the general case for 

Note:  prove the  inequality  ignore lower
order terms, If the proof fails, strengthen the ind. hyp. and try again

Prove the base cases (usually straightforward)

CE100 Algorithms and Programming II

k < n

n

MUST EXACT CANNOT
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Recursion Tree Method

A recursion tree models the runtime costs of a recursive execution of an algorithm.

The recursion tree method is good for generating guesses for the substitution
method.

The recursion-tree method can be unreliable.
Not suitable for formal proofs

The recursion-tree method promotes intuition, however.

CE100 Algorithms and Programming II
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Solve Recurrence (1) : 

CE100 Algorithms and Programming II

T (n) = 2T (n/2) + Θ(n)
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Solve Recurrence (2) : 

Each S�ze Halved2x Subprobs

CE100 Algorithms and Programming II

T (n) = 2T (n/2) + Θ(n)
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Solve Recurrence (3) : 

he�ght:

leaf count:
Total:

CE100 Algorithms and Programming II

T (n) = 2T (n/2) + Θ(n)
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Example of Recursion Tree (1)

Solve 

CE100 Algorithms and Programming II

T (n) = T (n/4) + T (n/2) + n2
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Example of Recursion Tree (2)

Solve  

CE100 Algorithms and Programming II

T (n) = T (n/4) + T (n/2) + n2
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Example of Recursion Tree (3)

Solve  

Geometr�c
Ser�es

CE100 Algorithms and Programming II

T (n) = T (n/4) + T (n/2) + n2
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The Master Method

A powerful black-box method to solve recurrences.

The master method applies to recurrences of the form

where , and  is asymptotically positive.

CE100 Algorithms and Programming II

T (n) = aT (n/b) + f(n)

a ≥ 1, b > 1 f
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The Master Method: 3 Cases

(TODO : Add Notes )

Recurrence: 

Compare  with 

Intuitively:
Case 1:  grows polynomially slower than 

Case 2:  grows at the same rate as 

Case 3:  grows polynomially faster than 

CE100 Algorithms and Programming II

T (n) = aT (n/b) + f(n)

f(n) nlog  b
a

f(n) nlog  b
a

f(n) nlog  b
a

f(n) nlog  b
a
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The Master Method: Case 1 (Bigger)

Recurrence: 

Case 1:  for some constant 

i.e.,  grows polynomialy slower than  (by an  factor)

Solution: 

CE100 Algorithms and Programming II

T (n) = aT (n/b) + f(n)

 =
f(n)
nlogb

a

Ω(n )ε ε > 0

f(n) nlog  b
a

nε

T (n) = Θ(n )log  b
a
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The Master Method: Case 2 (Simple Version) (Equal)

Recurrence: 

Case 2: 

i.e.,  and  grow at similar rates

Solution: 

CE100 Algorithms and Programming II

T (n) = aT (n/b) + f(n)

 =
n
log

b
a

f(n) Θ(1)

f(n) nlog  b
a

T (n) = Θ(n lgn)log  b
a
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The Master Method: Case 3 (Smaller)

Case 3:  for some constant 

i.e.,  grows polynomialy faster than  (by an  factor)

and the following regularity condition holds:

 for some constant 

Solution: 

CE100 Algorithms and Programming II

 =
n
log

b
a

f(n) Ω(n )ε ε > 0

f(n) nlog  b
a

nε

af(n/b) ≤ cf(n) c < 1

T (n) = Θ(f(n))
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The Master Method Example (case-1) : 

 grows polynomially slower than 

CASE-1:

CE100 Algorithms and Programming II

T (n) = 4T (n/2) + n

a = 4

b = 2

f(n) = n

n =log  b
a

n =log  2
4

n =log  2
22

n =2log  2
2

n2

f(n) = n n =log  b
a

n2

 =
f(n)
nlog  b

a

 =
n
n2

n = Ω(n )ε

T (n) = Θ(n ) =log  b
a

Θ(n ) =log  2
4

Θ(n )2
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The Master Method Example (case-2) : 

 grows at similar rate as 

CASE-2:

CE100 Algorithms and Programming II

T (n) = 4T (n/2) + n2

a = 4

b = 2

f(n) = n2

n =log  b
a

n =log  2
4

n =log  2
22

n =2log  2
2

n2

f(n) = n2 n =log  b
a

n2

f(n) = Θ(n ) =log  b
a

n2

T (n) = Θ(n lgn) =log  b
a

Θ(n lgn) =log  2
4

Θ(n lgn)2
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The Master Method Example (case-3) (1) : 

 grows polynomially faster than 

CE100 Algorithms and Programming II

T (n) = 4T (n/2) +
n3

a = 4

b = 2

f(n) = n3

n =log  b
a

n =log  2
4

n =log  2
22

n =2log  2
2

n2

f(n) = n3 n =log  b
a

n2

 =
n
log  

b
a

f(n)
 =

n2
n3

n = Ω(n )ε
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The Master Method Example (case-3) (2) : 
 (con't)

Seems like CASE 3, but need to check the regularity condition

Regularity condition  for some constant 

 for 

CASE-3:
  

CE100 Algorithms and Programming II

T (n) = 4T (n/2) +
n3

af(n/b) ≤ cf(n) c < 1

4(n/2) ≤3 cn3 c = 1/2

T (n) = Θ(f(n)) ⟹ T (n) = Θ(n )3
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The Master Method Example (N/A case) : 

 grows slower than 
but is it polynomially slower?

 for any 

is not CASE-1

Master Method does not apply!

CE100 Algorithms and Programming II

T (n) = 4T (n/2) +
n lgn2

a = 4

b = 2

f(n) = n lgn2

n =log  b
a

n =log  2
4

n =log  2
22

n =2log  2
2

n2

f(n) = n lgn2 n =log  b
a

n2

  ==
n f(n)log  

b
a

 lgn
n2
n2

lgn = Ω(n )ε ε > 0
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The Master Method : Case 2 (General Version)

Recurrence : 

Case 2:  for some constant 

Solution : 

CE100 Algorithms and Programming II

T (n) = aT (n/b) + f(n)

 =
n
log  

b
a

f(n) Θ(lg n)k k ≥ 0

T (n) = Θ(n lg n)log  b
a k+1
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General Method (Akra-Bazzi)

Let  be the unique solution to

Then, the answers are the same as for the master method, but with  instead of  
(Akra and Bazzi also prove an even more general result.)

CE100 Algorithms and Programming II

T (n) =  a  T (n/b  ) +
i=1
∑
k

i i f(n)

p

 (a  /b  ) =
i=1
∑
k

i i
p 1

np nlog  b
a
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Idea of Master Theorem (1)

Recursion Tree: 

CE100 Algorithms and Programming II
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Idea of Master Theorem (2)

CASE 1 : The weight increases geometrically from the root to the leaves. The leaves hold
a constant fraction of the total weight.

CE100 Algorithms and Programming II

n T (1) =log  b
a

Θ(n )log  b
a
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Idea of Master Theorem (3)

CASE 2 :  The weight is approximately the same on each of the  levels.

CE100 Algorithms and Programming II

(k = 0) log  nb

n T (1) =log  b
a

Θ(n lgn)log  b
a
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Idea of Master Theorem (4)

CASE 3 : The weight decreases geometrically from the root to the leaves. The root holds
a constant fraction of the total weight.

CE100 Algorithms and Programming II

n T (1) =log  b
a

Θ(f(n))
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Proof of Master Theorem: Case 1 and Case 2

Recall from the recursion tree (note )

 

CE100 Algorithms and Programming II

h = lg  n =b tree height

Leaf Cost = Θ(n )log  b
a

Non-leaf Cost = g(n) =  a f(n/b )
i=0
∑
h−1

i i

T (n) = Leaf Cost + Non-leaf Cost

T (n) = Θ(n ) +log  b
a

 a f(n/b )
i=0
∑
h−1

i i
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Proof of Master Theorem Case 1 (1)

 for some 

CE100 Algorithms and Programming II

 =
f(n)
nlog  

b
a

Ω(n )ε ε > 0

 =
f(n)
nlog  b

a

Ω(n ) ⟹ε O(n ) ⟹−ε f(n) = O(n )log  b
a−ε

g(n) =  a O((n/b ) ) =
i=0
∑
h−1

i i log  b
a−ε

O(  a (n/b ) )
i=0
∑
h−1

i i log  b
a−ε

O(n  a b /b )log  b
a−ε

i=0
∑
h−1

i iε ilog  b
a−ε

 RTEU CE100 Week-2 50



Proof of Master Theorem Case 1 (2)

= An increasing geometric series since 

CE100 Algorithms and Programming II

  =
i=0
∑
h−1

b
ilog  

b
a

a bi iε

 a  =
i=0
∑
h−1

i

(b )log  

b
a

i

(b )ε i

a  =∑ i
ai
biε

 (b )
i=0
∑
h−1

ε i

b > 1

 =
b −1ε
b −1hε

 =
b −1ε

(b ) −1h ε

 =
b −1ε

(b ) −1log  

b
n ε

 =
b −1ε
n −1ε

O(n )ε
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Proof of Master Theorem Case 1 (3)

Q.E.D. 
(Quod Erat Demonstrandum)

CE100 Algorithms and Programming II

g(n) = O(n O(n )) =log  a−εb ε O(  O(n )) =
nε
n
log  

b
a

ε O(n )log  b
a

T (n) = Θ(n ) +log  b
a

g(n) = Θ(n ) +log  b
a

O(n ) =log  b
a

Θ(n )log  b
a
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Proof of Master Theorem Case 2 (limited to k=0)

Q.E.D.

CE100 Algorithms and Programming II

 =
n og  

l
b
a

f(n) Θ(lg n) =0 Θ(1) ⟹ f(n) = Θ(n ) ⟹log  b
a

f(n/b ) =i Θ((n/b ) )i log  b
a

g(n) =  a Θ((n/b ) )
i=0
∑
h−1

i i log  b
a

= Θ(  a  )
i=0
∑
h−1

i

b
ilog  

b
a

nlog  b
a

= Θ(n  a  )log  b
a

i=0
∑
h−1

i

(b )log  

b
a

i

1

= Θ(n  a  )log  b
a

i=0
∑
h−1

i
ai
1

= Θ(n  1) =log  b
a

i=0
∑

log  b
n−1

Θ(n log  n) =log  b
a

b Θ(n lgn)log  b
a

T (n) = n +log  b
a

Θ(n lgn)logb
a

= Θ(n lgn)log  b
a
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The Divide-and-Conquer Design Paradigm (1)

D�v�de

Conquer

Comb�ne

merge two sorted halves

sort th�s half sort th�s half

CE100 Algorithms and Programming II
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The Divide-and-Conquer Design Paradigm (2)

1. Divide we divide the problem into a number of subproblems.

2. Conquer we solve the subproblems recursively.

3. BaseCase solve by Brute-Force

4. Combine subproblem solutions to the original problem.

CE100 Algorithms and Programming II
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The Divide-and-Conquer Design Paradigm (3)

T (n) =   {Θ(1)
aT (n/b) + D(n) + C(n)

if
otherwise

n ≤ c (basecase)

Merge-Sort

T (n) =    {Θ(1)
2T (n/2) + Θ(n) if

n = 1
n > 1

CE100 Algorithms and Programming II

a = subproblem

1/b = each size of the problem

T (n) = Θ(nlgn)
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Selection Sort Algorithm

SELECTION-SORT(A) 
    n = A.length; 
    for j=1 to n-1 
        smallest=j; 
        for i= j+1 to n 
            if A[i]<A[smallest] 
                smallest=i; 
        endfor 
        exchange A[j] with A[smallest]
    endfor 

CE100 Algorithms and Programming II
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Selection Sort Algorithm

T (n) =    {Θ(1)
T (n − 1) + Θ(n) if

n = 1
n > 1

Sequential Series

cost = n(n + 1)/2 = 1/2n +2 1/2n

Drop low-order terms

Ignore the constant coefficient in the leading term

T (n) = Θ(n )2

CE100 Algorithms and Programming II

 RTEU CE100 Week-2 58



Merge Sort Algorithm (initial setup)

Merge Sort is a recursive sorting algorithm, for initial case we need to call Merge-
Sort(A,1,n)  for sorting 

initial case

A : Array 
p : 1 (offset) 
r : n (length) 
Merge-Sort(A,1,n) 

CE100 Algorithms and Programming II

A[1..n]
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Merge Sort Algorithm (internal iterations)

internal iterations

A : Array 
p : offset 
r : length 
Merge-Sort(A,p,r) 
    if p=r then                (CHECK FOR BASE-CASE) 
        return 
    else 
        q = floor((p+r)/2)    (DIVIDE) 
        Merge-Sort(A,p,q)     (CONQUER) 
        Merge-Sort(A,q+1,r)   (CONQUER) 
        Merge(A,p,q,r)        (COMBINE) 
    endif 
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p = start − point

q = mid − point

r = end − point
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Merge Sort Combine Algorithm (1)

Merge(A,p,q,r) 
    n1 = q-p+1 
    n2 = r-q 

    //allocate left and right arrays  
    //increment will be from left to right  
    //left part will be bigger than right part 

    L[1...n1+1] //left array 
    R[1...n2+1] //right array 

    //copy left part of array 
    for i=1 to n1 
        L[i]=A[p+i-1] 

    //copy right part of array 
    for j=1 to n2 
        R[j]=A[q+j] 

    //put end items maximum values for termination 
    L[n1+1]=inf 
    R[n2+1]=inf 

    i=1,j=1 
    for k=p to r 
        if L[i]<=R[j] 
            A[k]=L[i] 
            i=i+1 
        else 
            A[k]=R[j] 
            j=j+1 

CE100 Algorithms and Programming II
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Example : Merge Sort

1. Divide: Trivial.

2. Conquer: Recursively sort 2 subarrays.

3. Combine: Linear- time merge.

Subproblems 

Subproblemsize 

Work dividing and combining 
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T (n) = 2T (n/2) + Θ(n)
⟹ 2

⟹ n/2

⟹ Θ(n)
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Master Theorem: Reminder

Case 1: 

Case 2: 

Case 3:  and  for 
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T (n) = aT (n/b) + f(n)

 =
f(n)
nlog  

b
a

Ω(n ) ⟹ε T (n) = Θ(n )log  b
a

 =
n
log  

b
a

f(n) Θ(lg n) ⟹k T (n) = Θ(n lg n)log  b
a k+1

 =
f(n)
nlog  b

a

Ω(n ) ⟹ε T (n) = Θ(f(n)) af(n/b) ≤ cf(n)
c < 1
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Merge Sort: Solving the Recurrence

 

Case-2:  holds for 
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T (n) = 2T (n/2) + Θ(n)
a = 2, b = 2, f(n) = Θ(n),n =log  b

a

n

 =
n
log  

b
a

f(n) Θ(lg n) ⟹k T (n) = Θ(n lg n)log  b
a k+1 k = 0

T (n) = Θ(nlgn)
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Binary Search (1)

Find an element in a sorted array:

1. Divide: Check middle element. 
2. Conquer: Recursively search 1 subarray. 
3. Combine: Trivial.

CE100 Algorithms and Programming II
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Binary Search (2)

PARENT = ⌊i/2⌋

LEFT-CHILD = 2i,  2i>n

RIGHT-CHILD = 2i + 1,  2i>n

CE100 Algorithms and Programming II
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Binary Search (3) : Iterative

ITERATIVE-BINARY-SEARCH(A,V,low,high) 
    while low<=high 
        mid=floor((low+high)/2); 
        if v == A[mid] 
            return mid; 
        elseif v > A[mid] 
            low = mid + 1; 
        else 
            high = mid - 1; 
    endwhile 
    return NIL 

CE100 Algorithms and Programming II
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Binary Search (4): Recursive

RECURSIVE-BINARY-SEARCH(A,V,low,high) 
    if low>high 
        return NIL; 
    endif 

    mid = floor((low+high)/2); 

    if v == A[mid] 
        return mid; 
    elseif v > A[mid] 
        return RECURSIVE-BINARY-SEARCH(A,V,mid+1,high); 
    else 
        return RECURSIVE-BINARY-SEARCH(A,V,low,mid-1); 
    endif 

CE100 Algorithms and Programming II
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Binary Search (5): Recursive

T (n) = T (n/2) + Θ(1) ⟹ T (n) = Θ(lgn)

CE100 Algorithms and Programming II
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Binary Search (6): Example (Find 9)

53 7 8 9 12 15

53 7 8 9 12 15

9 12 15

9 12 15

53 7 8

<9 

>9

>9

=9

CE100 Algorithms and Programming II
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Recurrence for Binary Search (7)

Subproblems 

Subproblemsize 

Work dividing and combining 
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T (n) = 1T (n/2) + Θ(1)

⟹ 1
⟹ n/2

⟹ Θ(1)
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Binary Search: Solving the Recurrence (8)

Case 2:  holds for 
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T (n) = T (n/2) + Θ(1)

a = 1, b = 2, f(n) = Θ(1) ⟹ n =log  b
a

n =0 1

 =
n
log  

b
a

f(n) Θ(lg n) ⟹k T (n) = Θ(n lg n)log  b
a k+1 k = 0

T (n) = Θ(lgn)
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Powering a Number: Divide & Conquer (1)

Problem: Compute an, where n is a natural number

NAIVE-POWER(a, n) 
    powerVal = 1; 
    for i = 1 to n 
        powerVal = powerVal * a; 
    endfor 
return powerVal; 

What is the complexity? 
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⟹ T (n) = Θ(n)

 RTEU CE100 Week-2 73



Powering a Number: Divide & Conquer (2)

Basic Idea:

a =n
  {a ∗ an/2 n/2

a ∗ a ∗ a(n−1)/2 (n−1)/2

if n is even
if n is odd

CE100 Algorithms and Programming II
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Powering a Number: Divide & Conquer (3)

POWER(a, n) 
    if n = 0 then  
        return 1; 
    else if n is even then 
        val = POWER(a, n/2); 
        return val * val; 
    else if n is odd then 
        val = POWER(a,(n-1)/2) 
        return val * val * a;
    endif 

CE100 Algorithms and Programming II
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Powering a Number: Solving the Recurrence (4)

Case 2:  holds for 
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T (n) = T (n/2) + Θ(1)

a = 1, b = 2, f(n) = Θ(1) ⟹ n =log  b
a

n =0 1

 =
n
log  

b
a

f(n) Θ(lg n) ⟹k T (n) = Θ(n lg n)log  b
a k+1 k = 0

T (n) = Θ(lgn)
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Correctness Proofs for Divide and Conquer Algorithms

Proof by induction commonly used for Divide and Conquer Algorithms

Base case: Show that the algorithm is correct when the recursion bottoms out (i.e.,
for sufficiently small n)

Inductive hypothesis: Assume the alg. is correct for any recursive call on any
smaller subproblem of size , 

General case: Based on the inductive hypothesis, prove that the alg. is correct for
any input of size n

CE100 Algorithms and Programming II

k (k < n)
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Example Correctness Proof: Powering a Number

Base Case:  is correct, because it returns 

Ind. Hyp: Assume  is correct for any 

General Case:
In  function:

If  is :
 (due to ind. hyp.)

it returns 

If  is :
 (due to ind. hyp.)

it returns 

The correctness proof is complete
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POWER(a, 0) 1

POWER(a, k) k < n

POWER(a,n)
n even

val = an/2

val ∗ val = an

n odd

val = a(n−1)/2

val ∗ val ∗ a = an
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