CE100 Algorithms and Programming II

Week-2 (Solving Recurrences / The Divide-and-Conquer)

Spring Semester, 2021-2022
Download DOC-PDF, DOC-DOCX, SLIDE, PPTX

Solving Recurrences

Outline (1)

- Solving Recurrences
- Recursion Tree
- Master Method
- Back-Substitution

Outline (2)

- Divide-and-Conquer Analysis
- Merge Sort
- Binary Search
- Merge Sort Analysis
- Complexity

Outline (3)

- Recurrence Solution

Solving Recurrences (1)

- Reminder: Runtime $(T(n))$ of MergeSort was expressed as a recurrence

$$
T(n)= \begin{cases}\Theta(1) & \text { if } \mathrm{n}=1 \\ 2 T(n / 2)+\Theta(n) & \text { otherwise }\end{cases}
$$

- Solving recurrences is like solving differential equations, integrals, etc.
- Need to learn a few tricks

Solving Recurrences (2)

Recurrence: An equation or inequality that describes a function in terms of its value on smaller inputs.

Example :

$$
T(n)= \begin{cases}1 & \text { if } \mathrm{n}=1 \\ T(\lceil n / 2\rceil)+1 & \text { if } \mathrm{n}>1\end{cases}
$$

Recurrence Example

$$
T(n)= \begin{cases}1 & \text { if } \mathrm{n}=1 \\ T(\lceil n / 2\rceil)+1 & \text { if } \mathrm{n}>1\end{cases}
$$

- Simplification: Assume $n=2^{k}$
- Claimed answer: $T(n)=\lg n+1$
- Substitute claimed answer in the recurrence:

$$
\operatorname{lgn}+1= \begin{cases}1 & \text { if } \mathrm{n}=1 \\ \lg (\lceil n / 2\rceil)+2 & \text { if } \mathrm{n}>1\end{cases}
$$

- True when $n=2^{k}$

Technicalities: Floor / Ceiling

Technically, should be careful about the floor and ceiling functions (as in the book).
e.g. For merge sort, the recurrence should in fact be:,

$$
T(n)= \begin{cases}\Theta(1) & \text { if } \mathrm{n}=1 \\ T(\lceil n / 2\rceil)+T(\lfloor n / 2\rfloor)+\Theta(n) & \text { if } \mathrm{n}>1\end{cases}
$$

But, it's usually ok to:

- ignore floor/ceiling
- solve for the exact power of 2 (or another number)

Technicalities: Boundary Conditions

- Usually assume: $T(n)=\Theta(1)$ for sufficiently small n
- Changes the exact solution, but usually the asymptotic solution is not affected (e.g. if polynomially bounded)
- For convenience, the boundary conditions generally implicitly stated in a recurrence
- $T(n)=2 T(n / 2)+\Theta(n)$ assuming that
- $T(n)=\Theta(1)$ for sufficiently small n

Example: When Boundary Conditions Matter

Exponential function: $T(n)=(T(n / 2)) 2$
Assume
$T(1)=c($ where c is a positive constant)
$T(2)=(T(1))^{2}=c^{2}$
$T(4)=(T(2))^{2}=c^{4}$
$T(n)=\Theta\left(c^{n}\right)$
e.g.

$$
\text { However } \Theta\left(2^{n}\right) \neq \Theta\left(3^{n}\right) \begin{cases}T(1)=2 & \Rightarrow T(n)=\Theta\left(2^{n}\right) \\ T(1)=3 & \Rightarrow T(n)=\Theta\left(3^{n}\right)\end{cases}
$$

The difference in solution more dramatic when:

$$
T(1)=1 \Rightarrow T(n)=\Theta\left(1^{n}\right)=\Theta(1)
$$

Solving Recurrences Methods

We will focus on 3 techniques

- Substitution method
- Recursion tree approach
- Master method

Substitution Method

The most general method:

- Guess
- Prove by induction
- Solve for constants

Substitution Method: Example (1)

Solve $T(n)=4 T(n / 2)+n($ assume $T(1)=\Theta(1))$

1. Guess $T(n)=O\left(n^{3}\right)$ (need to prove O and Ω separately)
2. Prove by induction that $T(n) \leq c n^{3}$ for large n (i.e. $n \geq n_{0}$)

- Inductive hypothesis: $T(k) \leq c k^{3}$ for any $k<n$
- Assuming ind. hyp. holds, prove $T(n) \leq c n^{3}$

Substitution Method: Example (2)

Original recurrence: $T(n)=4 T(n / 2)+n$
From inductive hypothesis: $T(n / 2) \leq c(n / 2)^{3}$
Substitute this into the original recurrence:

- $T(n) \leq 4 c(n / 2)^{3}+n$
- $=(c / 2) n^{3}+n$
- $=c n^{3}-\left((c / 2) n^{3}-n\right) \Longleftarrow$ desired - residual
- $\leq c n^{3}$
when $\left((c / 2) n^{3}-n\right) \geq 0$

Substitution Method: Example (3)

So far, we have shown:

$$
T(n) \leq c n^{3} \text { when }\left((c / 2) n^{3}-n\right) \geq 0
$$

We can choose $c \geq 2$ and $n_{0} \geq 1$
But, the proof is not complete yet.
Reminder: Proof by induction:
1.Prove the base cases \Longleftarrow haven't proved the base cases yet
2.Inductive hypothesis for smaller sizes
3.Prove the general case

Substitution Method: Example (4)

- We need to prove the base cases
- Base: $T(n)=\Theta(1)$ for small n (e.g. for $n=n_{0}$)
- We should show that:
- $\Theta(1) \leq c n^{3}$ for $n=n_{0}$, This holds if we pick c big enough
- So, the proof of $T(n)=O\left(n^{3}\right)$ is complete
- But, is this a tight bound?

Example: A tighter upper bound? (1)

- Original recurrence: $T(n)=4 T(n / 2)+n$
- Try to prove that $T(n)=O\left(n^{2}\right)$,
- i.e. $T(n) \leq c n^{2}$ for all $n \geq n_{0}$
- Ind. hyp: Assume that $T(k) \leq c k^{2}$ for $k<n$
- Prove the general case: $T(n) \leq c n^{2}$

Example: A tighter upper bound? (2)

Original recurrence: $T(n)=4 T(n / 2)+n$ Ind. hyp: Assume that $T(k) \leq c k^{2}$ for $k<n$
Prove the general case: $T(n) \leq c n^{2}$

$$
\begin{aligned}
T(n) & =4 T(n / 2)+n \\
& \leq 4 c(n / 2)^{2}+n \\
& =c n^{2}+n \\
& =O(n 2) \Longleftarrow \text { Wrong! We must prove exactly }
\end{aligned}
$$

Example: A tighter upper bound? (3)

Original recurrence: $T(n)=4 T(n / 2)+n$
Ind. hyp: Assume that $T(k) \leq c k^{2}$ for $k<n$
Prove the general case: $T(n) \leq c n^{2}$

- So far, we have:
$T(n) \leq c n^{2}+n$
- No matter which positive c value we choose, this does not show that $T(n) \leq c n^{2}$
- Proof failed?

Example: A tighter upper bound? (4)

-What was the problem?

- The inductive hypothesis was not strong enough
- Idea: Start with a stronger inductive hypothesis
- Subtract a low-order term
- Inductive hypothesis: $T(k) \leq c_{1} k^{2}-c_{2} k$ for $k<n$
- Prove the general case: $T(n) \leq c_{1} n^{2}-c_{2} n$

Example: A tighter upper bound? (5)

Original recurrence: $T(n)=4 T(n / 2)+n$
Ind. hyp: Assume that $T(k) \leq c_{1} k^{2}-c_{2} k$ for $k<n$
Prove the general case: $T(n) \leq c_{1} n^{2}-c_{2} n$

$$
\begin{aligned}
T(n) & =4 T(n / 2)+n \\
& \leq 4\left(c_{1}(n / 2)^{2}-c_{2}(n / 2)\right)+n \\
& =c_{1} n^{2}-2 c_{2} n+n \\
& =c_{1} n^{2}-c_{2} n-\left(c_{2} n-n\right) \\
& \leq c_{1} n^{2}-c_{2} n \text { for } n\left(c_{2}-1\right) \geq 0 \\
& \text { choose } c 2 \geq 1
\end{aligned}
$$

Example: A tighter upper bound? (6)

We now need to prove

$$
T(n) \leq c_{1} n^{2}-c_{2} n
$$

for the base cases.
$T(n)=\Theta(1)$ for $1 \leq n \leq n_{0}$ (implicit assumption)
$\Theta(1) \leq c_{1} n^{2}-c_{2} n$ for n small enough (e.g. $n=n_{0}$)

- We can choose c1 large enough to make this hold

We have proved that $T(n)=O\left(n^{2}\right)$

Substitution Method: Example 2 (1)

For the recurrence $T(n)=4 T(n / 2)+n$,
prove that $T(n)=\Omega\left(n^{2}\right)$
i.e. $T(n) \geq c n^{2}$ for any $n \geq n_{0}$

Ind. hyp: $T(k) \geq c k^{2}$ for any $k<n$
Prove general case: $T(n) \geq c n^{2}$
$T(n)=4 T(n / 2)+n$
$\geq 4 c(n / 2)^{2}+n$
$=c n^{2}+n$
$\geq c n^{2}$ since $n>0$
Proof succeeded - no need to strengthen the ind. hyp as in the last example

Substitution Method: Example 2 (2)

We now need to prove that
$T(n) \geq c n^{2}$
for the base cases
$T(n)=\Theta(1)$ for $1 \leq n \leq n_{0}$ (implicit assumption)
$\Theta(1) \geq c n^{2}$ for $n=n_{0}$
n_{0} is sufficiently small (i.e. constant)
We can choose c small enough for this to hold
We have proved that $T(n)=\Omega\left(n^{2}\right)$

Substitution Method - Summary

- Guess the asymptotic complexity
- Prove your guess using induction
- Assume inductive hypothesis holds for $k<n$
- Try to prove the general case for n
- Note: $M U S T$ prove the $E X A C T$ inequality $C A N N O T$ ignore lower order terms, If the proof fails, strengthen the ind. hyp. and try again
- Prove the base cases (usually straightforward)

Recursion Tree Method

- A recursion tree models the runtime costs of a recursive execution of an algorithm.
- The recursion tree method is good for generating guesses for the substitution method.
- The recursion-tree method can be unreliable.
- Not suitable for formal proofs
- The recursion-tree method promotes intuition, however.

Solve Recurrence (1) : T(n) $=2 T(n / 2)+\Theta(n)$

Solve Recurrence (2) : $T(n)=2 T(n / 2)+\Theta(n)$

2x Subprobs

Each Size Halved

Solve Recurrence (3) : $T(n)=2 T(n / 2)+\Theta(n)$

च

Example of Recursion Tree (1)
Solve $T(n)=T(n / 4)+T(n / 2)+n^{2}$

Example of Recursion Tree (2)

Solve $T(n)=T(n / 4)+T(n / 2)+n^{2}$

Example of Recursion Tree (3)

Solve $T(n)=T(n / 4)+T(n / 2)+n^{2}$

$$
\begin{aligned}
& \left(\frac{n}{4}\right)^{2} \\
& \underset{\left(\frac{n}{16}\right)^{2}}{\substack{n \\
8}}{ }^{2} \\
& \Theta(1) \Theta(1) \Theta(1) \Theta(1) \Theta(1) \Theta(1) \Theta(1) \Theta(1) \\
& \text { Total }=n^{2}\left(1+\frac{5}{16}+\left(\frac{5}{16}\right)^{2}+\left(\frac{5}{16}\right)^{3}+\ldots\right) \quad \begin{array}{l}
\text { Geometric } \\
\text { Series }
\end{array} \\
& \text { Total }=n^{2}\left(\left(\frac{5}{16}\right)^{0}+\left(\frac{5}{16}\right)^{1}+\left(\frac{5}{16}\right)^{2}+\left(\frac{5}{16}\right)^{3}+\ldots\right) \\
& \text { Total }=\Theta\left(n^{2}\right)
\end{aligned}
$$

The Master Method

- A powerful black-box method to solve recurrences.
- The master method applies to recurrences of the form

$$
\circ T(n)=a T(n / b)+f(n)
$$

- where $a \geq 1, b>1$, and f is asymptotically positive.

The Master Method: 3 Cases

(TODO : Add Notes)

- Recurrence: $T(n)=a T(n / b)+f(n)$
- Compare $f(n)$ with $n^{l o g_{b}^{a}}$
- Intuitively:
- Case 1: $f(n)$ grows polynomially slower than $n^{\log _{b}^{a}}$
- Case 2: $f(n)$ grows at the same rate as $n^{\log _{b}^{a}}$
- Case 3: $f(n)$ grows polynomially faster than $n^{\log _{b}^{a}}$

The Master Method: Case 1 (Bigger)

- Recurrence: $T(n)=a T(n / b)+f(n)$
- Case 1: $\frac{n^{\log _{b}}}{f(n)}=\Omega\left(n^{\varepsilon}\right)$ for some constant $\varepsilon>0$
- i.e., $f(n)$ grows polynomialy slower than $n^{\log _{b}^{a}}$ (by an n^{ε} factor)
- Solution: $T(n)=\Theta\left(n^{\log _{b}^{a}}\right)$

The Master Method: Case 2 (Simple Version) (Equal)

- Recurrence: $T(n)=a T(n / b)+f(n)$
- Case 2: $\frac{f(n)}{n^{\log _{6}^{\pi}}}=\Theta(1)$
- i.e., $f(n)$ and $n^{l o g_{b}^{a}}$ grow at similar rates
- Solution: $T(n)=\Theta\left(n^{\log _{b}^{a}} \lg n\right)$

The Master Method: Case 3 (Smaller)

- Case 3: $\frac{f(n)}{n^{\log _{b}^{\alpha}}}=\Omega\left(n^{\varepsilon}\right)$ for some constant $\varepsilon>0$
- i.e., $f(n)$ grows polynomialy faster than $n^{l o g_{b}^{a}}$ (by an n^{ε} factor)
- and the following regularity condition holds:
- $a f(n / b) \leq c f(n)$ for some constant $c<1$
- Solution: $T(n)=\Theta(f(n))$

The Master Method Example (case-1) $: T(n)=4 T(n / 2)+n$

- $a=4$
- $b=2$
- $f(n)=n$
- $n^{\log _{b}^{a}}=n^{\log _{2}^{4}}=n^{\log _{2}^{2^{2}}}=n^{2 l o g_{2}^{2}}=n^{2}$
- $f(n)=n$ grows polynomially slower than $n^{\log _{b}^{a}}=n^{2}$
- $\frac{n^{\log _{b}^{a}}}{f(n)}=\frac{n^{2}}{n}=n=\Omega\left(n^{\varepsilon}\right)$
- CASE-1:

$$
\circ T(n)=\Theta\left(n^{\log _{b}^{a}}\right)=\Theta\left(n^{\log _{2}^{4}}\right)=\Theta\left(n^{2}\right)
$$

The Master Method Example (case-2) : $T(n)=4 T(n / 2)+n^{2}$

- $a=4$
- $b=2$
- $f(n)=n^{2}$
- $n^{\log _{b}^{a}}=n^{\log _{2}^{4}}=n^{\log _{2}^{2_{2}^{2}}}=n^{2 l o g_{2}^{2}}=n^{2}$
- $f(n)=n^{2}$ grows at similar rate as $n^{\text {log }_{b}^{a}}=n^{2}$
- $f(n)=\Theta\left(n^{l o g_{b}^{a}}\right)=n^{2}$
- CASE-2:
- $T(n)=\Theta\left(n^{\log _{b}^{a}} \lg n\right)=\Theta\left(n^{\log _{2}^{4}} \lg n\right)=\Theta\left(n^{2} \lg n\right)$

The Master Method Example (case-3) (1) : $T(n)=4 T(n / 2)+$ n^{3}

- $a=4$
- $b=2$
- $f(n)=n^{3}$
- $n^{\log _{b}^{a}}=n^{\log _{2}^{4}}=n^{\log _{2}^{2^{2}}}=n^{2 l o g_{2}^{2}}=n^{2}$
- $f(n)=n^{3}$ grows polynomially faster than $n^{\log _{b}^{a}}=n^{2}$
- $\frac{f(n)}{n^{\log _{b}^{a}}}=\frac{n^{3}}{n^{2}}=n=\Omega\left(n^{\varepsilon}\right)$

The Master Method Example (case-3) (2) : $T(n)=4 T(n / 2)+$ n^{3} (con't)

- Seems like CASE 3, but need to check the regularity condition
- Regularity condition $a f(n / b) \leq c f(n)$ for some constant $c<1$
- $4(n / 2)^{3} \leq c n^{3}$ for $c=1 / 2$
- CASE-3:

$$
\circ T(n)=\Theta(f(n)) \Longrightarrow T(n)=\Theta\left(n^{3}\right)
$$

The Master Method Example (N/A case) : $T(n)=4 T(n / 2)+$ $n^{2} \lg n$

- $a=4$
- $b=2$
- $f(n)=n^{2} l g n$
- $n^{\log _{b}^{a}}=n^{\log _{2}^{4}}=n^{\log _{2}^{2^{2}}}=n^{2 l o g_{2}^{2}}=n^{2}$
- $f(n)=n^{2} l g n$ grows slower than $n^{\log _{b}^{a}}=n^{2}$
- but is it polynomially slower?
- $\frac{l^{\log _{b}^{a}} f(n)}{=} \frac{n^{2}}{\frac{n^{2}}{\operatorname{lgn}}}=\lg n \neq \Omega\left(n^{\varepsilon}\right)$ for any $\varepsilon>0$
- is not CASE-1
- Master Method does not apply!

The Master Method : Case 2 (General Version)

- Recurrence : $T(n)=a T(n / b)+f(n)$
- Case 2: $\frac{f(n)}{n^{\log a}}=\Theta\left(l g^{k} n\right)$ for some constant $k \geq 0$
- Solution : $T(n)=\Theta\left(n^{l o g_{b}^{a}} l g^{k+1} n\right)$

General Method (Akra-Bazzi)

$T(n)=\sum_{i=1}^{k} a_{i} T\left(n / b_{i}\right)+f(n)$
Let p be the unique solution to
$\sum_{i=1}^{k}\left(a_{i} / b_{i}^{p}\right)=1$
Then, the answers are the same as for the master method, but with n^{p} instead of $n^{l o g_{b}^{a}}$ (Akra and Bazzi also prove an even more general result.)

Idea of Master Theorem (1)

Recursion Tree:

$$
\text { leaves count }=a^{h}=a^{\log _{b}^{n}}=n^{\log _{b}^{a}}
$$

Idea of Master Theorem (2)

CASE 1 : The weight increases geometrically from the root to the leaves. The leaves hold a constant fraction of the total weight.
$n^{\log _{b}^{a}} T(1)=\Theta\left(n^{\log _{b}^{a}}\right)$

Idea of Master Theorem (3)

CASE 2 : $(k=0)$ The weight is approximately the same on each of the $\log _{b} n$ levels. $n^{\log _{b}^{a}} T(1)=\Theta\left(n^{\log _{b}^{a}} l g n\right)$

Idea of Master Theorem (4)

CASE 3 : The weight decreases geometrically from the root to the leaves. The root holds a constant fraction of the total weight.
$n^{\log _{b}^{a}} T(1)=\Theta(f(n))$

Proof of Master Theorem: Case 1 and Case 2

- Recall from the recursion tree (note $h=l g_{b} n=$ tree height)

Leaf Cost $=\Theta\left(n^{\log _{b}^{a}}\right)$
Non-leaf Cost $=g(n)=\sum_{i=0}^{h-1} a^{i} f\left(n / b^{i}\right)$
$T(n)=$ Leaf Cost + Non-leaf Cost
$T(n)=\Theta\left(n^{\log _{b}^{a}}\right)+\sum_{i=0}^{h-1} a^{i} f\left(n / b^{i}\right)$

Proof of Master Theorem Case 1 (1)

- $\frac{n^{\log _{b}^{a}}}{f(n)}=\Omega\left(n^{\varepsilon}\right)$ for some $\varepsilon>0$
- $\frac{n^{\log _{b}^{a}}}{f(n)}=\Omega\left(n^{\varepsilon}\right) \Longrightarrow O\left(n^{-\varepsilon}\right) \Longrightarrow f(n)=O\left(n^{\log _{b}^{a-\varepsilon}}\right)$
- $g(n)=\sum_{i=0}^{h-1} a^{i} O\left(\left(n / b^{i}\right)^{\log _{b}^{a-\varepsilon}}\right)=O\left(\sum_{i=0}^{h-1} a^{i}\left(n / b^{i}\right)^{\log _{b}^{a-\varepsilon}}\right)$
- $O\left(n^{\log _{b}^{a-\varepsilon}} \sum_{i=0}^{h-1} a^{i} b^{i \varepsilon} / b^{i l o g_{b}^{a-\varepsilon}}\right)$

Proof of Master Theorem Case 1 (2)

- $\sum_{i=0}^{h-1} \frac{a^{i} b^{i \varepsilon}}{b^{i l o g} b}=\sum_{i=0}^{h-1} a^{i} \frac{\left(b^{\varepsilon}\right)^{i}}{\left(b^{\log _{b}^{a}}\right)^{i}}=\sum a^{i} \frac{b^{i \varepsilon}}{a^{i}}=\sum_{i=0}^{h-1}\left(b^{\varepsilon}\right)^{i}$
$=$ An increasing geometric series since $b>1$

$$
\frac{b^{h \varepsilon}-1}{b^{\varepsilon}-1}=\frac{\left(b^{h}\right)^{\varepsilon}-1}{b^{\varepsilon}-1}=\frac{\left(b^{\log _{b}^{n}}\right)^{\varepsilon}-1}{b^{\varepsilon}-1}=\frac{n^{\varepsilon}-1}{b^{\varepsilon}-1}=O\left(n^{\varepsilon}\right)
$$

Proof of Master Theorem Case 1 (3)

- $g(n)=O\left(n^{\log _{b} a-\varepsilon} O\left(n^{\varepsilon}\right)\right)=O\left(\frac{n^{\log _{b}^{a}}}{n^{\varepsilon}} O\left(n^{\varepsilon}\right)\right)=O\left(n^{\log _{b}^{a}}\right)$
- $T(n)=\Theta\left(n^{\log _{b}^{a}}\right)+g(n)=\Theta\left(n^{\log _{b}^{a}}\right)+O\left(n^{\log _{b}^{a}}\right)=\Theta\left(n^{\log _{b}^{a}}\right)$
Q.E.D.
(Quod Erat Demonstrandum)

Proof of Master Theorem Case 2 (limited to $\mathrm{k}=0$)

- $\frac{f(n)}{n^{2} g_{b}^{a}}=\Theta\left(g^{0} n\right)=\Theta(1) \Longrightarrow f(n)=\Theta\left(n^{\log _{b}^{a}}\right) \Longrightarrow f\left(n / b^{i}\right)=\Theta\left(\left(n / b^{i}\right)^{\log _{b}^{a}}\right)$
- $g(n)=\sum_{i=0}^{h-1} a^{i} \Theta\left(\left(n / b^{i}\right)^{\log _{b}^{a}}\right)$
- $=\Theta\left(\sum_{i=0}^{h-1} a^{i} \frac{n^{\log _{b}^{a}}}{b^{i \log _{b}^{t}}}\right)$
$\bullet=\Theta\left(n^{\log _{b}^{a}} \sum_{i=0}^{h-1} a^{i} \frac{1}{\left(b^{\log _{b}^{a}}\right)^{i}}\right)$
- $=\Theta\left(n^{\log _{b}{ }^{h}} \sum_{i=0}^{h-1} a^{i} \frac{1}{a^{i}}\right)$
$\cdot=\Theta\left(n^{\log _{b}^{a}} \sum_{i=0}^{\log _{b}^{n-1}} 1\right)=\Theta\left(n^{\log _{b}^{a}} \log _{b} n\right)=\Theta\left(n^{\log _{b}^{a}} \lg n\right)$
- $T(n)=n^{\log _{b}^{a}}+\Theta\left(n^{\log _{b}^{a}} \lg n\right)$
- $=\Theta\left(n^{\log _{b}^{a}} l \lg n\right)$

The Divide-and-Conquer Design Paradigm (1)

The Divide-and-Conquer Design Paradigm (2)

1. Divide we divide the problem into a number of subproblems.
2. Conquer we solve the subproblems recursively.
3. BaseCase solve by Brute-Force
4. Combine subproblem solutions to the original problem.

The Divide-and-Conquer Design Paradigm (3)

- $a=$ subproblem
- $1 / b=$ each size of the problem

$$
T(n)=\left\{\begin{array}{lll}
\Theta(1) & \text { if } \quad n \leq c \quad(\text { basecase }) \\
a T(n / b)+D(n)+C(n) & \text { otherwise }
\end{array}\right.
$$

Merge-Sort

$$
T(n)=\left\{\begin{array}{lr}
\Theta(1) & n=1 \\
2 T(n / 2)+\Theta(n) & \text { if } n>1
\end{array}\right.
$$

$T(n)=\Theta(n l g n)$

Selection Sort Algorithm

```
SELECTION-SORT(A)
    n = A.length;
    for j=1 to n-1
        smallest=j;
        for i= j+1 to n
            if A[i]<A[smallest]
                smallest=i;
        endfor
        exchange A[j] with A[smallest]
    endfor
```


Selection Sort Algorithm

$$
T(n)=\left\{\begin{array}{lr}
\Theta(1) & n=1 \\
T(n-1)+\Theta(n) & \text { if } n>1
\end{array}\right.
$$

- Sequential Series

$$
\text { cost }=n(n+1) / 2=1 / 2 n^{2}+1 / 2 n
$$

- Drop low-order terms
- Ignore the constant coefficient in the leading term

$$
T(n)=\Theta\left(n^{2}\right)
$$

Merge Sort Algorithm (initial setup)

Merge Sort is a recursive sorting algorithm, for initial case we need to call MergeSort($\mathrm{A}, 1, \mathrm{n}$) for sorting $A[1 . . n]$
initial case

```
A : Array
p : 1 (offset)
r : n (length)
Merge-Sort(A, 1,n)
```


Merge Sort Algorithm (internal iterations)

internal iterations
p $=$ start - point
$q=$ mid - point
$r=$ end - point

```
A : Array
p : offset
r : length
Merge-Sort(A, p,r)
    if p=r then
        return
    else
        q = floor((p+r)/2) (DIVIDE)
        Merge-Sort(A,p,q) (CONQUER)
        Merge-Sort(A,q+1,r) (CONQUER)
        Merge(A,p,q,r) (COMBINE)
    endif
```


CE100 Algorithms and Programming II

Merge Sort Combine Algorithm (1)

```
Merge(A,p,q,r)
    n1 = q-p+1
    n2 = r-q
    //allocate left and right arrays
    /increment will be from left to right
    //left part will be bigger than right part
    L[1...n1+1] //left array
    R[1...n2+1] //right array
    //copy left part of array
    for i=1 to n1
        L[i]=A[p+i-1]
    //copy right part of array
    for j=1 to n2
        R[j]=A[q+j]
    //put end items maximum values for termination
    L[n1+1]=inf
    R[n2+1]=inf
    i=1,j=1
    for k=p to r
        if L[i]<=R[j]
            A[k]=L[i]
            i=i+1
        else
            A[k]=R[j]
            j=j+1
```

RTEU CE100 Week-2

Example : Merge Sort

1. Divide: Trivial.
2. Conquer: Recursively sort 2 subarrays.
3. Combine: Linear- time merge.

- $T(n)=2 T(n / 2)+\Theta(n)$
- Subproblems $\Longrightarrow 2$
- Subproblemsize $\Longrightarrow n / 2$
- Work dividing and combining $\Longrightarrow \Theta(n)$

Master Theorem: Reminder

- $T(n)=a T(n / b)+f(n)$
- Case 1: $\frac{n^{\log _{0}^{a}}}{f(n)}=\Omega\left(n^{\varepsilon}\right) \Longrightarrow T(n)=\Theta\left(n^{\log _{b}^{a}}\right)$
- Case 2: $\frac{f(n)}{n^{\log _{b}^{a}}}=\Theta\left(l g^{k} n\right) \Longrightarrow T(n)=\Theta\left(n^{\log _{b}^{a}} l g^{k+1} n\right)$
- Case 3: $\frac{n^{\log _{b}}}{f(n)}=\Omega\left(n^{\varepsilon}\right) \Longrightarrow T(n)=\Theta(f(n))$ and $a f(n / b) \leq c f(n)$ for $c<1$

Merge Sort: Solving the Recurrence

$$
\begin{aligned}
& T(n)=2 T(n / 2)+\Theta(n) \\
& a=2, b=2, f(n)=\Theta(n), n^{\log _{b}^{a}}=n
\end{aligned}
$$

Case-2: $\frac{f(n)}{n^{\log _{b}^{a}}}=\Theta\left(l g^{k} n\right) \Longrightarrow T(n)=\Theta\left(n^{\log _{b}^{a}} l g^{k+1} n\right)$ holds for $k=0$
$T(n)=\Theta(n l g n)$

Binary Search (1)

Find an element in a sorted array:

1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

Binary Search (2)

$$
\begin{gathered}
\text { PARENT }=\lfloor i / 2\rfloor \\
\text { LEFT-CHILD }=2 i, 2 \mathrm{i}>\mathrm{n} \\
\text { RIGHT-CHILD }=2 i+1,2 \mathrm{i}>\mathrm{n}
\end{gathered}
$$

Binary Search (3) : Iterative

```
ITERATIVE-BINARY-SEARCH(A,V,low, high)
    while low<=high
    mid=floor((low+high)/2);
    if v == A[mid]
        return mid;
    elseif v > A[mid]
        low = mid + 1;
        else
            high = mid - 1;
    endwhile
    return NIL
```


Binary Search (4): Recursive

```
RECURSIVE-BINARY-SEARCH(A,V,low,high)
    if low>high
    return NIL;
    endif
    mid = floor((low+high)/2);
    if v == A[mid]
    return mid;
    elseif v > A[mid]
        return RECURSIVE-BINARY-SEARCH(A,V,mid+1,high);
    else
        return RECURSIVE-BINARY-SEARCH(A,V,low,mid-1);
    endif
```

Binary Search (5): Recursive

$$
T(n)=T(n / 2)+\Theta(1) \Longrightarrow T(n)=\Theta(\lg n)
$$

Binary Search (6): Example (Find 9)

Recurrence for Binary Search (7)

$T(n)=1 T(n / 2)+\Theta(1)$

- Subproblems $\Longrightarrow 1$
- Subproblemsize $\Longrightarrow n / 2$
- Work dividing and combining $\Longrightarrow \Theta(1)$

Binary Search: Solving the Recurrence (8)

- $T(n)=T(n / 2)+\Theta(1)$
- $a=1, b=2, f(n)=\Theta(1) \Longrightarrow n^{\log _{b}^{a}}=n^{0}=1$
- Case 2: $\frac{f(n)}{n^{\log _{b}^{g}}}=\Theta\left(l g^{k} n\right) \Longrightarrow T(n)=\Theta\left(n^{\log _{b}^{a}} l g^{k+1} n\right)$ holds for $k=0$
- $T(n)=\Theta(\lg n)$

Powering a Number: Divide \& Conquer (1)

Problem: Compute an, where n is a natural number

```
NAIVE-POWER(a, n)
    powerVal = 1;
    for i = 1 to n
        powerVal = powerVal * a;
    endfor
return powerVal;
```

- What is the complexity? $\Longrightarrow T(n)=\Theta(n)$

Powering a Number: Divide \& Conquer (2)

- Basic Idea:

$$
a^{n}= \begin{cases}a^{n / 2} * a^{n / 2} & \text { if } \mathrm{n} \text { is even } \\ a^{(n-1) / 2} * a^{(n-1) / 2} * a & \text { if } \mathrm{n} \text { is odd }\end{cases}
$$

Powering a Number: Divide \& Conquer (3)

```
POWER(a, n)
    if n = 0 then
    return 1;
    else if n is even then
        val = POWER(a, n/2);
        return val * val;
    else if n is odd then
        val = POWER(a,(n-1)/2)
        return val * val * a;
    endif
```

Powering a Number: Solving the Recurrence (4)

- $T(n)=T(n / 2)+\Theta(1)$
- $a=1, b=2, f(n)=\Theta(1) \Longrightarrow n^{\log _{b}^{a}}=n^{0}=1$
- Case 2: $\frac{f(n)}{n^{\log _{b}^{g}}}=\Theta\left(l g^{k} n\right) \Longrightarrow T(n)=\Theta\left(n^{\log _{b}^{a}} l g^{k+1} n\right)$ holds for $k=0$
- $T(n)=\Theta(l g n)$

Correctness Proofs for Divide and Conquer Algorithms

- Proof by induction commonly used for Divide and Conquer Algorithms
- Base case: Show that the algorithm is correct when the recursion bottoms out (i.e., for sufficiently small n)
- Inductive hypothesis: Assume the alg. is correct for any recursive call on any smaller subproblem of size $k,(k<n)$
- General case: Based on the inductive hypothesis, prove that the alg. is correct for any input of size n

Example Correctness Proof: Powering a Number

- Base Case: $\operatorname{POW} E R(a, 0)$ is correct, because it returns 1
- Ind. Hyp: Assume $\operatorname{POW} E R(a, k)$ is correct for any $k<n$
- General Case:
- In $P O W E R(a, n)$ function:
- If n is even:
- val $=a^{n / 2}$ (due to ind. hyp.)
- it returns val * val $=a^{n}$
- If n is odd:
- $v a l=a^{(n-1) / 2}$ (due to ind. hyp.)
- it returns $\mathrm{val} * \mathrm{val} * a=a^{n}$
- The correctness proof is complete

References

- Introduction to Algorithms, Third Edition | The MIT Press
- Bilkent CS473 Course Notes (new)
- Bilkent CS473 Course Notes (old)
- Insertion Sort - GeeksforGeeks
- NIST Dictionary of Algorithms and Data Structures
- NIST - Dictionary of Algorithms and Data Structures
- NIST - big-O notation
- NIST - big-Omega notation
-End - Of - Week - 2 - Course - Module-

