
CE100 Algorithms and Programming II

Week-1 (Introduction to Analysis of Algorithms)

Spring Semester, 2021-2022

Download DOC-PDF, DOC-DOCX, SLIDE, PPTX

CE100 Algorithms and Programming II

 RTEU CE100 Week-1

file:///E:/UgurCoruh/RTEU/Lectures/2021-2022%20Bahar%20CE100%20-%20Algorithms%20and%20Programming%20II/ce100-algorithms-and-programming-II/docs/week-1/ce100-week-1-intro.tr.md_doc.pdf
file:///E:/UgurCoruh/RTEU/Lectures/2021-2022%20Bahar%20CE100%20-%20Algorithms%20and%20Programming%20II/ce100-algorithms-and-programming-II/docs/week-1/ce100-week-1-intro.tr.md_word.docx
file:///E:/UgurCoruh/RTEU/Lectures/2021-2022%20Bahar%20CE100%20-%20Algorithms%20and%20Programming%20II/ce100-algorithms-and-programming-II/docs/week-1/ce100-week-1-intro.tr.md_slide.pdf
file:///E:/UgurCoruh/RTEU/Lectures/2021-2022%20Bahar%20CE100%20-%20Algorithms%20and%20Programming%20II/ce100-algorithms-and-programming-II/docs/week-1/ce100-week-1-intro.tr.md_slide.pptx

Brief Description of Course and Rules

We will first talk about,

1. Course Plan and Communication

2. Grading System, Homeworks, and Exams

please read the syllabus carefully.

CE100 Algorithms and Programming II

 RTEU CE100 Week-1 2

Outline (1)

Introduction to Analysis of Algorithms
Algorithm Basics

Flowgorithm

Pseudocode

CE100 Algorithms and Programming II

 RTEU CE100 Week-1 3

Outline (2)

RAM (Random Access Machine Model)
Sorting Problem

Insertion Sort Analysis

Algorithm Cost Calculation for Time Complexity

Worst, Average, and Best Case Summary
Merge Sort Analysis

CE100 Algorithms and Programming II

 RTEU CE100 Week-1 4

Outline (3)

Asymptotic Notation
Big O Notation
Big Teta Notation

Big Omega Notation

Small o Notation

Small omega Notation

CE100 Algorithms and Programming II

 RTEU CE100 Week-1 5

We Need Mathematical Proofs (1)

Direct proof
Proof by mathematical induction

Proof by contraposition

Proof by contradiction

Proof by construction
Proof by exhaustion

CE100 Algorithms and Programming II

 RTEU CE100 Week-1 6

We Need Mathematical Proofs (2)

Probabilistic proof

Combinatorial proof
Nonconstructive proof

Statistical proofs in pure mathematics

Computer-assisted proofs

Mathematical proof - Wikipedia

CE100 Algorithms and Programming II

 RTEU CE100 Week-1 7

https://tr.wikipedia.org/wiki/Mathematical_proof

Introduction to Analysis of Algorithms

Study two sorting algorithms as examples

Insertion sort: Incremental algorithm

Merge sort: Divide-and-conquer

Introduction to runtime analysis

Best vs. worst vs. average case
Asymptotic analysis

CE100 Algorithms and Programming II

 RTEU CE100 Week-1 8

What is Algorithm

Algorithm: A sequence of computational steps that transform the input to the desired
output

Procedure vs. algorithm
An algorithm must halt within finite time with the right output

We Need to Measure Performance Metrics

Processing Time

Allocated Memory

Network Congestion
Power Usage etc.

CE100 Algorithms and Programming II

 RTEU CE100 Week-1 9

Example Sorting Algorithms

Input: a sequence of n numbers

⟨a , a , ..., a ⟩1 2 n

Algorithm: Sorting / Permutation

=∏ ⟨ , , ..., ⟩
(1)

∏
(2)

∏
(n)

∏

Output: sorted permutation of the input sequence

⟨a ⩽
 ∏(1)

a ⩽
 ∏(2)

, ..., a ⟩
 ∏(n)

CE100 Algorithms and Programming II

 RTEU CE100 Week-1 10

Pseudo-code notation (1)

Objective: Express algorithms to humans in a clear and concise way

Liberal use of English

Indentation for block structures

Omission of error handling and other details (needed in real programs)

You can use Flowgorithm application to understand concept easily.

CE100 Algorithms and Programming II

 RTEU CE100 Week-1 11

http://www.flowgorithm.org/

Pseudo-code notation (2)

Links and Examples

Wikipedia

CS50

University of North Florida

GeeksforGeeks

CE100 Algorithms and Programming II

 RTEU CE100 Week-1 12

https://tr.wikipedia.org/wiki/Pseudocode
https://cs50.harvard.edu/ap/2021/problems/algorithms/
https://www.unf.edu/~broggio/cop2221/2221pseu.htm
https://www.geeksforgeeks.org/how-to-write-a-pseudo-code/

Correctness (1)

We often use a loop invariant to help us to understand why an algorithm gives the
correct answer.

Example: (Insertion Sort) at the start of each iteration of the "outer" for loop - the loop
indexed by - the subarray consist of the elements originally in

 but in sorted order.

CE100 Algorithms and Programming II

j A[1 … j − 1]
A[1 … j − 1]

 RTEU CE100 Week-1 13

Correctness (2)

To use a loop invariant to prove correctness, we must show 3 things about it.

Initialization: It is true to the first iteration of the loop.

Maintaince: If it is true before an iteration of the loop, it remains true before the
next iteration.

Termination: When the loop terminates, the invariant - usually along with the
reason that the loop terminated - gives us a usefull property that helps show that
the algorithm is correct.

CE100 Algorithms and Programming II

 RTEU CE100 Week-1 14

RAM (Random Access Machine Model) (1)

Operations
Single Step

Sequential
No Concurrent

Arithmetic
add, subtract, multiply, divide, remainder, floor, ceiling,
shift left/shift right (good by multiply/dividing)

CE100 Algorithms and Programming II

⟹ Θ(1)

2k

 RTEU CE100 Week-1 15

RAM (Random Access Machine Model) (2)

Data Movement
load, store, copy

Control
conditional / unconditional branch

subroutine calls

returns

CE100 Algorithms and Programming II

⟹ Θ(1)

 RTEU CE100 Week-1 16

RAM (Random Access Machine Model) (3)

Each instruction take a constant amount of time

Integer will be represented by

 the running time of the algorithm:

 (cost of statement) ∗
all statement

∑ (number of times statement is executed) = T (n)

CE100 Algorithms and Programming II

⟹ Θ(1)

clogn c ≥ 1

T (n)

 RTEU CE100 Week-1 17

What is the processing time ?
1

Second
1

M�nute
1

Hour
1

Day
1

Month
1

Year
1

Century

CE100 Algorithms and Programming II

 RTEU CE100 Week-1 18

Insertion Sort Algorithm (1)

Insertion sort is a simple sorting algorithm that works similar to the way you sort playing cards in
your hands

The array is virtually split into a sorted and an unsorted part

Values from the unsorted part are picked and placed at the correct position in the sorted part.

CE100 Algorithms and Programming II

 RTEU CE100 Week-1 19

Assume input array :

Iterate from to

already sorted
j

�ter j
�nsert �nto sorted array

j

after �ter of j

sorted subarray

CE100 Algorithms and Programming II

A[1..n]

j 2 n

 RTEU CE100 Week-1 20

Insertion Sort Algorithm (2)

Insert�on-Sort(A)
1. for j = 2 to n do
2. key = A[j];
3. � = j-1;
4. wh�le �>0 and A[�]>key do
5. A[�+1]=A[�];
6. � = �-1;
 endwh�le
7. A[�+1]=key;
 endfor

CE100 Algorithms and Programming II

 RTEU CE100 Week-1 21

Insertion Sort Algorithm (Pseudo-Code) (3)

Insertion-Sort(A)
1. for j=2 to A.length
2. key = A[j]
3. //insert A[j] into the sorted sequence A[1...j-1]
4. i = j - 1
5. while i>0 and A[i]>key
6. A[i+1] = A[i]
7. i = i - 1
8. A[i+1] = key

CE100 Algorithms and Programming II

 RTEU CE100 Week-1 22

Insertion Sort Step-By-Step Description (1)

Insert�on-Sort(A)
1. for j = 2 to n do
2. key = A[j];
3. � = j-1;
4. wh�le �>0 and A[�]>key do
5. A[�+1]=A[�];
6. � = �-1;
 endwh�le
7. A[�+1]=key;
 endfor

Iterate over array

Loop �nvar�ant:
The subarray
�s always sorted

already sorted j
key

already sorted

jkey

CE100 Algorithms and Programming II

 RTEU CE100 Week-1 23

Insertion Sort Step-By-Step Description (2)

Insert�on-Sort(A)
1. for j = 2 to n do
2. key = A[j];
3. � = j-1;
4. wh�le �>0 and A[�]>key do
5. A[�+1]=A[�];
6. � = �-1;
 endwh�le
7. A[�+1]=key;
 endfor

Sh�ft r�ght the
entr�es �n

<key >key

that are
b�gger than

key = j

j

<key >key

j

Already Sorted

CE100 Algorithms and Programming II

 RTEU CE100 Week-1 24

Insertion Sort Step-By-Step Description (3)

Insert�on-Sort(A)
1. for j = 2 to n do
2. key = A[j];
3. � = j-1;
4. wh�le �>0 and A[�]>key do
5. A[�+1]=A[�];
6. � = �-1;
 endwh�le
7. A[�+1]=key;
 endfor

Insert key to the correct
locat�on

<key >key
key=j

j

<key >keyj

Sorted

End of �terat�on �s sorted

CE100 Algorithms and Programming II

 RTEU CE100 Week-1 25

Insertion Sort Example

Insertion Sort Step-1 (initial)

Insert�on-Sort(A)
1. for j = 2 to n do
2. key = A[j];
3. � = j-1;
4. wh�le �>0 and A[�]>key do
5. A[�+1]=A[�];
6. � = �-1;
 endwh�le
7. A[�+1]=key;
 endfor

5 2 4 6 1 3

CE100 Algorithms and Programming II

 RTEU CE100 Week-1 26

Insertion Sort Step-2 (j=2)

Insert�on-Sort(A)
1. for j = 2 to n do
2. key = A[j];
3. � = j-1;
4. wh�le �>0 and A[�]>key do
5. A[�+1]=A[�];
6. � = �-1;
 endwh�le
7. A[�+1]=key;
 endfor

5 2 4 6 1 3

5 2 4 6 1 3

52 4 6 1 3

j

>2 j

sorted

�n�t�al

sh�ft

�nsert key

sorted

j

CE100 Algorithms and Programming II

 RTEU CE100 Week-1 27

Insertion Sort Step-3 (j=3)

Insert�on-Sort(A)
1. for j = 2 to n do
2. key = A[j];
3. � = j-1;
4. wh�le �>0 and A[�]>key do
5. A[�+1]=A[�];
6. � = �-1;
 endwh�le
7. A[�+1]=key;
 endfor

5 2 4 6 1 3

?

j

sorted

�n�t�al

key=4

What are the entr�es at the end of
�terat�on j=3?

? ? ? ? ?

CE100 Algorithms and Programming II

 RTEU CE100 Week-1 28

Insertion Sort Step-4 (j=3)

Insert�on-Sort(A)
1. for j = 2 to n do
2. key = A[j];
3. � = j-1;
4. wh�le �>0 and A[�]>key do
5. A[�+1]=A[�];
6. � = �-1;
 endwh�le
7. A[�+1]=key;
 endfor

2 5 4 6 1 3

2 5 4 6 1 3

42 5 6 1 3

j

<4 j

sorted

�n�t�al

sh�ft

�nsert key

sorted

j

>4

key=4

CE100 Algorithms and Programming II

 RTEU CE100 Week-1 29

Insertion Sort Step-5 (j=4)

Insert�on-Sort(A)
1. for j = 2 to n do
2. key = A[j];
3. � = j-1;
4. wh�le �>0 and A[�]>key do
5. A[�+1]=A[�];
6. � = �-1;
 endwh�le
7. A[�+1]=key;
 endfor

2 4 5 6 1 3

2 4 5 6 1 3

42 5 6 1 3

j

j

sorted

�n�t�al

sh�ft

�nsert key

sorted

j

<6

key=6

CE100 Algorithms and Programming II

 RTEU CE100 Week-1 30

Insertion Sort Step-6 (j=5)

Insert�on-Sort(A)
1. for j = 2 to n do
2. key = A[j];
3. � = j-1;
4. wh�le �>0 and A[�]>key do
5. A[�+1]=A[�];
6. � = �-1;
 endwh�le
7. A[�+1]=key;
 endfor

5 2 4 6 1 3

?

j

sorted

�n�t�al

key=1

What are the entr�es at the end of
�terat�on j=5?

? ? ? ? ?

CE100 Algorithms and Programming II

 RTEU CE100 Week-1 31

Insertion Sort Step-7 (j=5)

Insert�on-Sort(A)
1. for j = 2 to n do
2. key = A[j];
3. � = j-1;
4. wh�le �>0 and A[�]>key do
5. A[�+1]=A[�];
6. � = �-1;
 endwh�le
7. A[�+1]=key;
 endfor

2 4 5 6 1 3

2 4 5 6 1 3

21 4 5 6 3

j

j

sorted

�n�t�al

sh�ft

�nsert key

sorted

j

>1

key=1

>1>1>1

CE100 Algorithms and Programming II

 RTEU CE100 Week-1 32

Insertion Sort Step-8 (j=6)

Insert�on-Sort(A)
1. for j = 2 to n do
2. key = A[j];
3. � = j-1;
4. wh�le �>0 and A[�]>key do
5. A[�+1]=A[�];
6. � = �-1;
 endwh�le
7. A[�+1]=key;
 endfor

1 2 4 5 6 3

1 2 4 5 6 3

21 3 4 5 6

j

j

sorted

�n�t�al

sh�ft

�nsert key

sorted

>3

key=3

>3<3 >3

CE100 Algorithms and Programming II

 RTEU CE100 Week-1 33

Insertion Sort Review (1)

Items sorted in-place

Elements are rearranged within the array.

At a most constant number of items stored outside the array at any time (e.,g.
the variable key)

Input array contains a sorted output sequence when the algorithm ends

CE100 Algorithms and Programming II

A

 RTEU CE100 Week-1 34

Insertion Sort Review (2)

Incremental approach

Having sorted , place correctly so that is sorted

Running Time

It depends on Input Size (5 elements or 5 billion elements) and Input Itself
(partially sorted)

Algorithm approach to upper bound of overall performance analysis

CE100 Algorithms and Programming II

A[1..j − 1] A[j] A[1..j]

 RTEU CE100 Week-1 35

Visualization of Insertion Sort

Sorting (Bubble, Selection, Insertion, Merge, Quick, Counting, Radix) - VisuAlgo

https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html

https://algorithm-visualizer.org/

HMvHTs - Online C++ Compiler & Debugging Tool - Ideone.com

CE100 Algorithms and Programming II

 RTEU CE100 Week-1 36

https://visualgo.net/en/sorting
https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html
https://algorithm-visualizer.org/
https://ideone.com/HMvHTs

Kinds of Running Time Analysis (Time Complexity)

Worst Case (Big-O Notation)
 = maximum processing time of any input

Presentation of Big-O :

Average Case (Teta Notation)
 = average time over all inputs of size , inputs can have a uniform

distribution
Presentation of Big-Theta :

Best Case (Omega Notation)
 = min time on any input of size , for example sorted array

Presentation of Big-Omega :

CE100 Algorithms and Programming II

T (n) n

O(n)

T (n) n

Θ(n)

T (n) n

Ω(n)

 RTEU CE100 Week-1 37

Array Sorting Algorithms Time and Space Complexity

Algor�thm
T�me Complex�ty

Best Average Worst

Space
Complex�ty

Worst

Qu�ck Sort

Merge Sort

T�m Sort

Heap Sort

Bubble Sort

Insert�on Sort

Select�on Sort

Tree Sort

Shell Sort

Bucket Sort

Rad�x Sort

Count�ng Sort

Cube Sort

very-fast

med�um

fast

slow

very-slow

CE100 Algorithms and Programming II

 RTEU CE100 Week-1 38

Comparison of Time Analysis Cases

For insertion sort, worst-case time depends on the speed of primitive operations such
as

Relative Speed (on the same machine)

Absolute Speed (on different machines)

Asymptotic Analysis

Ignore machine-dependent constants

Look at the growth of

CE100 Algorithms and Programming II

T (n)∣n → ∞

 RTEU CE100 Week-1 39

Asymptotic Analysis (1)

Problem S�ze

Number of
Steps

1 2 3 4 N

Best
Case

Average
Case

Worst
Case

CE100 Algorithms and Programming II

 RTEU CE100 Week-1 40

Asymptotic Analysis (2)

Theta-Notation (Average-Case)

Drop low order terms

Ignore leading constants

e.g

2n + 5n + 32

3n + 90n − 2n + 53 2

= Θ(n)2

= Θ(n)3

As gets large, a algorithm runs faster than a algorithm

CE100 Algorithms and Programming II

n Θ(n)2 Θ(n)3

 RTEU CE100 Week-1 41

Asymptotic Analysis (3)

For both algorithms, we can see a minimum item size in the following chart. After this point, we can
see performance differences. Some algorithms for small item size can be run faster than others but if
you increase item size you will see a reference point that notation proof performance metrics.

CE100 Algorithms and Programming II

 RTEU CE100 Week-1 42

Insertion Sort - Runtime Analysis (1)

Cost Times Insertion-Sort(A)
---- ----- ---------------------
c1 n 1. for j=2 to A.length
c2 n-1 2. key = A[j]
c3 n-1 3. //insert A[j] into the sorted sequence A[1...j-1]
c4 n-1 4. i = j - 1
c5 k5 5. while i>0 and A[i]>key do
c6 k6 6. A[i+1] = A[i]
c7 k6 7. i = i - 1
c8 n-1 8. A[i+1] = key

we have two loops here, if we sum up costs as follow we can see big-O worst case notation.

 and

for operation counts

CE100 Algorithms and Programming II

k =5 t

j=2
∑
n

j k =6 t − 1
j=2
∑
n

i

 RTEU CE100 Week-1 43

Insertion Sort - Runtime Analysis (2)

cost function can be evaluated as follow;

T (n) = c n + c (n − 1) + 0(n − 1) + c (n − 1)1 2 4

+ c t + c t − 15

j=2

∑
n

j 6

j=2

∑
n

i

+ c t − 1 + c (n − 1)7
j=2

∑
n

i 8

CE100 Algorithms and Programming II

 RTEU CE100 Week-1 44

Insertion Sort - Runtime Analysis (3)

 j
j=2

∑
n

 j − 1
j=2

∑
n

= (n(n + 1)/2) − 1

 and

= n(n − 1)/2

CE100 Algorithms and Programming II

 RTEU CE100 Week-1 45

Insertion Sort - Runtime Analysis (4)

T (n) = (c /2 + c /2 + c /2)n5 6 7
2

+ (c + c + c + c /2 − c /2 − c /2 + c)n1 2 4 5 6 7 8

− (c + c + c + c)2 4 5 6

CE100 Algorithms and Programming II

 RTEU CE100 Week-1 46

Insertion Sort - Runtime Analysis (5)

T (n) = an + bn + c2

= O(n)2

CE100 Algorithms and Programming II

 RTEU CE100 Week-1 47

Best-Case Scenario (Sorted Array) (1)

Problem-1, If is already sorted, what will be

Insert�on-Sort(A)
1. for j = 2 to n do
2. key = A[j];
3. � = j-1;
4. wh�le �>0 and A[�]>key do
5. A[�+1]=A[�];
6. � = �-1;
 endwh�le
7. A[�+1]=key;
 endfor

2 4 5 6 1 3

2 4 5 6 1 3

42 5 6 1 3

j

j

sorted

�n�t�al

sh�ft

�nsert key

sorted

j

<6

key=6

CE100 Algorithms and Programming II

A[1...j] t =j ?

t =j 1

 RTEU CE100 Week-1 48

Best-Case Scenario (Sorted Array) (2)

Parameters are taken from image

T (n) = c n + c (n − 1) + c (n − 1)1 2 3

+ c t + c (t − 1)4
j=2

∑
n

j 5
j=2

∑
n

j

+ c (t − 1) + c (n − 1)6

j=2

∑
n

j 7

 for all

T (n)

T (n)

= (c + c + c + c + c)n1 2 3 4 7

− (c + c + c + c)2 3 4 7

= an − b

= Ω(n)

CE100 Algorithms and Programming II

t =j 1 j

 RTEU CE100 Week-1 49

Worst-Case Scenario (Reversed Array) (1)

Problem-2 If is smaller than every entry in , what will be

Insert�on-Sort(A)
1. for j = 2 to n do
2. key = A[j];
3. � = j-1;
4. wh�le �>0 and A[�]>key do
5. A[�+1]=A[�];
6. � = �-1;
 endwh�le
7. A[�+1]=key;
 endfor

5 2 4 6 1 3

?

j

sorted

�n�t�al

key=1

What are the entr�es at the end of
�terat�on j=5?

? ? ? ? ?

CE100 Algorithms and Programming II

A[j] A[1...j − 1] t =j ?

t =j ?

 RTEU CE100 Week-1 50

Worst-Case Scenario (Reversed Array) (2)

The input array is reverse sorted for all after calculation worst case runtime
will be

T (n)

T (n)

= 1/2(c + c + c)n4 5 6
2

+ (c + c + c + 1/2(c − c − c) + c)n − (c + c + c + c)1 2 3 4 5 6 7 2 3 4 7

= 1/2an + bn − c2

= O(n)2

CE100 Algorithms and Programming II

t =j j j

 RTEU CE100 Week-1 51

Asymptotic Runtime Analysis of Insertion-Sort

Insert�on-Sort(A)
1. for j = 2 to n do
2. key = A[j];
3. � = j-1;
4. wh�le �>0 and A[�]>key do
5. A[�+1]=A[�];
6. � = �-1;
 endwh�le
7. A[�+1]=key;
 endfor

CE100 Algorithms and Programming II

 RTEU CE100 Week-1 52

Insertion-Sort Worst-case (input reverse sorted)

Inner Loop is

T (n) = Θ(j)
j=2

∑
n

= Θ(j)
j=2

∑
n

= Θ(n)2

CE100 Algorithms and Programming II

Θ(j)

 RTEU CE100 Week-1 53

Insertion-Sort Average-case (all permutations uniformly distributed)

Inner Loop is

T (n) = Θ(j/2)
j=2

∑
n

= Θ(j)
j=2

∑
n

= Θ(n)2

CE100 Algorithms and Programming II

Θ(j/2)

 RTEU CE100 Week-1 54

Array Sorting Algorithms Time/Space Complexities

To compare this sorting algorithm please check the following map again.

Algor�thm
T�me Complex�ty

Best Average Worst

Space
Complex�ty

Worst

Qu�ck Sort

Merge Sort

T�m Sort

Heap Sort

Bubble Sort

Insert�on Sort

Select�on Sort

Tree Sort

Shell Sort

Bucket Sort

Rad�x Sort

Count�ng Sort

Cube Sort

very-fast

med�um

fast

slow

very-slow

CE100 Algorithms and Programming II

 RTEU CE100 Week-1 55

Merge Sort : Divide / Conquer / Combine (1)

D�v�de

Conquer

Comb�ne

merge two sorted halves

sort th�s half sort th�s half

CE100 Algorithms and Programming II

 RTEU CE100 Week-1 56

Merge Sort : Divide / Conquer / Combine (2)

Divide: we divide the problem into a number of subproblems

Conquer: We solve the subproblems recursively

Base-Case: Solve by Brute-Force

Combine: Subproblem solutions to the original problem

CE100 Algorithms and Programming II

 RTEU CE100 Week-1 57

Merge Sort Example

12 24 45 56 10 9 49 30 5 15

12 24 45 56 10 9 49 30 5 15

9 49 30 5 1512 24 45 56

10 9 49 3012 24 45 56 5 15

10

12 24 9 49
Re

cu
rs

�ve
 D

�v�
s�o

n
12 24 45 56 109 30 49 5 15

12 24 45 56 109 30 49

9 10 12 24 4530 49 56

5 9 10 12 2415 30 45 49 56Co
m

b�
ne

 A
cc

or
d�

ng
 to

 C
al

lS
ta

ck
 R

et
ur

ns

CE100 Algorithms and Programming II

 RTEU CE100 Week-1 58

Merge Sort Algorithm (initial setup)

Merge Sort is a recursive sorting algorithm, for initial case we need to call Merge-
Sort(A,1,n) for sorting

initial case

A : Array
p : 1 (offset)
r : n (length)
Merge-Sort(A,1,n)

CE100 Algorithms and Programming II

A[1..n]

 RTEU CE100 Week-1 59

Merge Sort Algorithm (internal iterations)

internal iterations

A : Array
p : offset
r : length
Merge-Sort(A,p,r)
 if p=r then (CHECK FOR BASE-CASE)
 return
 else
 q = floor((p+r)/2) (DIVIDE)
 Merge-Sort(A,p,q) (CONQUER)
 Merge-Sort(A,q+1,r) (CONQUER)
 Merge(A,p,q,r) (COMBINE)
 endif

CE100 Algorithms and Programming II

 RTEU CE100 Week-1 60

Merge Sort Algorithm (Combine-1)

Merge-Sort(A,p,r)
1. �f p==r then
2. return;
3. else
4. q = floor((p+r)/2)
5. Merge-Sort(A,p,q);
6. Merge-Sort(A,q+1,r);
7. Merge(A,p,q,r)
 end�f

5 2 4 6 1 3

1

p

2 3 4 5 6

q r

5 2 4 6 1 3
p r r

5 2 4 6 1 3

1 35 2

p

p=r p=r

p=r
p=rp=rp=r

p r p r

CE100 Algorithms and Programming II

p = start − point

q = mid − point

r = end − point

 RTEU CE100 Week-1 61

Merge Sort Algorithm (Combine-2)

brute-force task, merging two sorted subarrays

The pseudo-code in the textbook (Sec. 2.3.1)

5 2 4 6 1 3

1

p

2 3 4 5 6

q r

5 2 4 6 1 3
p r r

5 2 4 6 1 3

1 35 2

p

p=r p=r

p=r
p=rp=rp=r

p r p r

2
5

2 5 4

2 4 5

1
3

1 3 6

1 3 6

1 2 3 4 5 6

�ter=1

�ter=2

�ter=3

�ter=4

�ter=5

Merge Operat�on

RL

CE100 Algorithms and Programming II

 RTEU CE100 Week-1 62

Merge Sort Combine Algorithm (1)

Merge(A,p,q,r)
 n1 = q-p+1
 n2 = r-q

 //allocate left and right arrays
 //increment will be from left to right
 //left part will be bigger than right part

 L[1...n1+1] //left array
 R[1...n2+1] //right array

 //copy left part of array
 for i=1 to n1
 L[i]=A[p+i-1]

 //copy right part of array
 for j=1 to n2
 R[j]=A[q+j]

 //put end items maximum values for termination
 L[n1+1]=inf
 R[n2+1]=inf

 i=1,j=1
 for k=p to r
 if L[i]<=R[j]
 A[k]=L[i]
 i=i+1
 else
 A[k]=R[j]
 j=j+1

CE100 Algorithms and Programming II

 RTEU CE100 Week-1 63

What is the complexity of merge operation?

You can find by counting loops will provide you base constant nested level will provide
you exponent of this constant, if you drop constants you will have complexity

we have 3 for loops

it will look like and will be merge complexity

CE100 Algorithms and Programming II

3n Θ(n)

 RTEU CE100 Week-1 64

Merge Sort Correctness

Base case

 (Trivially correct)

Inductive hypothesis

MERGE-SORT is correct for any subarray that is a strict (smaller) subset of
.

General Case

MERGE-SORT is correct for . From inductive hypothesis and correctness
of Merge.

CE100 Algorithms and Programming II

p = r

A[p, q]

A[p, q]

 RTEU CE100 Week-1 65

Merge Sort Algorithm (Pseudo-Code)

A : Array
p : offset
r : length
Merge-Sort(A,p,r)
 if p=r then (CHECK FOR BASE-CASE)
 return
 else
 q = floor((p+r)/2) (DIVIDE)
 Merge-Sort(A,p,q) (CONQUER)
 Merge-Sort(A,q+1,r) (CONQUER)
 Merge(A,p,q,r) (COMBINE)
 endif

CE100 Algorithms and Programming II

 RTEU CE100 Week-1 66

Merge Sort Algorithm Complexity

A : Array
p : offset
r : length
Merge-Sort(A,p,r)-------------> T(n)
 if p=r then--------------->Theta(1)
 return
 else
 q = floor((p+r)/2)---->Theta(1)
 Merge-Sort(A,p,q)-----> T(n/2)
 Merge-Sort(A,q+1,r)---> T(n/2)
 Merge(A,p,q,r)-------->Theta(n)
 endif

CE100 Algorithms and Programming II

 RTEU CE100 Week-1 67

Merge Sort Algorithm Recurrence

We can describe a function recursively in terms of itself, to analyze the performance of
recursive algorithms

T (n) = {Θ(1)
2T (n/2) + Θ(n)

if n=1
otherwise

CE100 Algorithms and Programming II

 RTEU CE100 Week-1 68

How To Solve Recurrence (1)

T (n) = {Θ(1)
2T (n/2) + Θ(n)

if n=1
otherwise

CE100 Algorithms and Programming II

 RTEU CE100 Week-1 69

How To Solve Recurrence (2)

We will assume for sufficiently small to rewrite equation as

T (n) = 2T (n/2) + Θ(n)

Solution for this equation will be with following recursion tree.

CE100 Algorithms and Programming II

T (n) = Θ(1) n

Θ(nlgn)

 RTEU CE100 Week-1 70

How To Solve Recurrence (3)

Multiply by height with each level cost we can found

CE100 Algorithms and Programming II

Θ(lgn) Θ(n) Θ(nlgn)

 RTEU CE100 Week-1 71

How To Solve Recurrence (4)

This tree is binary-tree and binary-tree height is related with item size.

he�ght:

leaf count:
Total:

CE100 Algorithms and Programming II

 RTEU CE100 Week-1 72

How Height of a Binary Tree is Equal to ? (1)

Merge-Sort recursion tree is a perfect binary tree, a binary tree is a tree which every
node has at most two children, A perfect binary tree is binary tree in which all internal
nodes have exactly two children and all leaves are at the same level.

CE100 Algorithms and Programming II

logn

 RTEU CE100 Week-1 73

How Height of a Binary Tree is Equal to ? (2)

Let be the number of nodes in the tree and let denote the number of nodes on
level k. According to this;

 i.e. each level has exactly twice as many nodes as the previous level

 , i.e. on the first level we have only one node (the root node)

The leaves are at the last level, where is the height of the tree.

CE100 Algorithms and Programming II

logn

n l k

l =k 2l k−1

l =0 1

l h h

 RTEU CE100 Week-1 74

How Height of a Binary Tree is Equal to ? (3)

The total number of nodes in the tree is equal to the sum of the nodes on all the levels:
nodes

1 + 2 + 2 + 2 + ... + 21 2 3 h

1 + 2 + 2 + 2 + ... + 21 2 3 h

2 − 1h+1

2h+1

log 22
h+1

h + 1

h

= n

= 2 − 1h+1

= n

= n + 1

= log (n + 1)2

= log (n + 1)2

= log (n + 1) − 12

CE100 Algorithms and Programming II

logn

n

 RTEU CE100 Week-1 75

How Height of a Binary Tree is Equal to ? (3)

If we write it as asymptotic approach, we will have the following result

height of tree is h = log (n + 1) −2 1 = O(logn)

also

number of leaves is l =h (n + 1)/2

nearly half of the nodes are at the leaves

CE100 Algorithms and Programming II

logn

 RTEU CE100 Week-1 76

Review

 grows more slowly than

Therefore Merge-Sort beats Insertion-Sort in the worst case

In practice Merge-Sort beats Insertion-Sort for or so

CE100 Algorithms and Programming II

Θ(nlgn) Θ(n)2

n > 30

 RTEU CE100 Week-1 77

Asymptotic Notations

CE100 Algorithms and Programming II

 RTEU CE100 Week-1 78

Big-O / - Notation : Asymptotic Upper Bound (Worst-Case) (1)

 if positive constants , such that

0 ≤ f(n) ≤ cg(n), ∀n ≥ n 0

CE100 Algorithms and Programming II

O

f(n) = O(g(n)) ∃ c n 0

 RTEU CE100 Week-1 79

Big-O / - Notation : Asymptotic Upper Bound (Worst-Case) (2)

CE100 Algorithms and Programming II

O

 RTEU CE100 Week-1 80

Big-O / - Notation : Asymptotic Upper Bound (Worst-Case) (3)

Asymptotic running times of algorithms are usually defined by functions whose domain
are (natural numbers)

CE100 Algorithms and Programming II

O

N = 0, 1, 2, …

 RTEU CE100 Week-1 81

Big-O / - Notation : Asymptotic Upper Bound (Worst-Case) (4)

Example-1

Show that

we need to find two positive constant and such that:

0 ≤ 2n ≤2 cn for all n ≥3 n 0

Choose and

2n ≤2 2n for all n ≥3 1

Or, choose and

2n ≤2 n for all n ≥3 2

CE100 Algorithms and Programming II

O

2n =2 O(n)3

c n 0

c = 2 n =0 1

c = 1 n =0 2

 RTEU CE100 Week-1 82

Big-O / - Notation : Asymptotic Upper Bound (Worst-Case) (5)

Example-2

Show that

We need to find two positive constant and such that:

0 ≤ 2n + n ≤2 cn for all n ≥2 n 0

2 + (1/n) ≤ c for all n ≥ n 0

Choose and

2n +2 n ≤ 3n for all n ≥2 1

CE100 Algorithms and Programming II

O

2n +2 n = O(n)2

c n 0

c = 3 n =0 1

 RTEU CE100 Week-1 83

Big-O / - Notation : Asymptotic Upper Bound (Worst-Case) (6)

We can say the followings about equation

The notation is a little sloppy

One-way equation, e.q. but we cannot say

CE100 Algorithms and Programming II

O

f(n) = O(g(n))

n =2 O(n)3 O(n) =3 n2

 RTEU CE100 Week-1 84

Big-O / - Notation : Asymptotic Upper Bound (Worst-Case) (7)

 is in fact a set of functions as follow

CE100 Algorithms and Programming II

O

O(g(n))

O(g(n)) = {f(n) : ∃ positive constant c,n such that 0 ≤0 f(n) ≤
cg(n), ∀n ≥ n }0

 RTEU CE100 Week-1 85

Big-O / - Notation : Asymptotic Upper Bound (Worst-Case) (8)

In other words is in fact, the set of functions that have asymptotic upper
bound

e.q means

CE100 Algorithms and Programming II

O

O(g(n))
g(n)

2n =2 O(n)3 2n ∈2 O(n)3

 RTEU CE100 Week-1 86

Big-O / - Notation : Asymptotic Upper Bound (Worst-Case) (9)

Example-1

choose and

CORRECT

CE100 Algorithms and Programming II

O

10 n =9 2 O(n)2

0 ≤ 10 n ≤9 2 cn for n ≥2 n 0

c = 109 n =0 1

0 ≤ 10 n ≤9 2 10 n for n ≥9 2 1

 RTEU CE100 Week-1 87

Big-O / - Notation : Asymptotic Upper Bound (Worst-Case) (10)

Example-2

choose and

CORRECT

CE100 Algorithms and Programming II

O

100n =1.9999 O(n)2

0 ≤ 100n ≤1.9999 cn for n ≥2 n 0

c = 100 n =0 1

0 ≤ 100n ≤1.9999 100n for n ≥2 1

 RTEU CE100 Week-1 88

Big-O / - Notation : Asymptotic Upper Bound (Worst-Case) (11)

Example-3

INCORRECT (Contradiction)

CE100 Algorithms and Programming II

O

10 n =−9 2.0001 O(n)2

0 ≤ 10 n ≤−9 2.0001 cn for n ≥2 n 0

10 n ≤−9 0.0001 c for n ≥ n 0

 RTEU CE100 Week-1 89

Big-O / - Notation : Asymptotic Upper Bound (Worst-Case) (12)

If we analysis case, -notation is an upper bound notation and the runtime
 of algorithm A is at least .

: The set of functions with asymptotic upper bound

 means for some

 function is also in . Hence : , runtime must be
nonnegative.

CE100 Algorithms and Programming II

O

O(n)2 O

T (n) O(n)2

O(n)2 n2

T (n) ≥ O(n)2 T (n) ≥ h(n) h(n) ∈ O(n)2

h(n) = 0 O(n)2 T (n) ≥ 0

 RTEU CE100 Week-1 90

Big-Omega / -Notation : Asymptotic Lower Bound (Best-Case) (1)

 if positive constants such that

CE100 Algorithms and Programming II

Ω

f(n) = Ω(g(n)) ∃ c,n 0 0 ≤ cg(n) ≤ f(n), ∀n ≥
n 0

 RTEU CE100 Week-1 91

Big-Omega / -Notation : Asymptotic Lower Bound (Best-Case) (2)

CE100 Algorithms and Programming II

Ω

 RTEU CE100 Week-1 92

Big-Omega / -Notation : Asymptotic Lower Bound (Best-Case) (3)

Example-1

Show that

We need to find two positive constants and such that:

0 ≤ cn ≤2 2n for all n ≥3 n 0

Choose and

n ≤2 2n for all n ≥3 1

CE100 Algorithms and Programming II

Ω

2n =3 Ω(n)2

c n 0

c = 1 n =0 1

 RTEU CE100 Week-1 93

Big-Omega / -Notation : Asymptotic Lower Bound (Best-Case) (4)

Example-4

Show that

We need to find two positive constants and such that:

clgn ≤ for all n ≥n n 0

Choose and

lgn ≤ for all n ≥n 16

CE100 Algorithms and Programming II

Ω

 =n Ω(lgn)

c n 0

c = 1 n =0 16

 RTEU CE100 Week-1 94

Big-Omega / -Notation : Asymptotic Lower Bound (Best-Case) (5)

 is the set of functions that have asymptotic lower bound

Ω(g(n)) = {f(n) : ∃ positive constants c,n such that 0

0 ≤ cg(n) ≤ f(n), ∀n ≥ n }0

CE100 Algorithms and Programming II

Ω

Ω(g(n)) g(n)

 RTEU CE100 Week-1 95

Big-Omega / -Notation : Asymptotic Lower Bound (Best-Case) (6)

Example-1

Choose and

CORRECT

CE100 Algorithms and Programming II

Ω

10 n =9 2 Ω(n)2

0 ≤ cn ≤2 10 n for n ≥9 2 n 0

c = 109 n =0 1

0 ≤ 10 n ≤9 2 10 n for n ≥9 2 1

 RTEU CE100 Week-1 96

Big-Omega / -Notation : Asymptotic Lower Bound (Best-Case) (7)

Example-2

INCORRECT(Contradiction)

CE100 Algorithms and Programming II

Ω

100n =1.9999 Ω(n)2

0 ≤ cn ≤2 100n for n ≥1.9999 n 0

n ≤0.0001 (100/c) for n ≥ n 0

 RTEU CE100 Week-1 97

Big-Omega / -Notation : Asymptotic Lower Bound (Best-Case) (8)

Example-3

Choose and

CORRECT

CE100 Algorithms and Programming II

Ω

10 n =−9 2.0001 Ω(n)2

0 ≤ cn ≤2 10 n for n ≥−9 2.0001 n 0

c = 10−9 n =0 1

0 ≤ 10 n ≤−9 2 10 n for n ≥−9 2.0001 1

 RTEU CE100 Week-1 98

Comparison of Notations (1)

CE100 Algorithms and Programming II

 RTEU CE100 Week-1 99

Comparison of Notations (2)
CE100 Algorithms and Programming II

 RTEU CE100 Week-1 100

Big-Theta / -Notation : Asymptotically tight bound (Average Case) (1)

f(n) = Θ(g(n)) if ∃ positive constants c , c ,n such that1 2 0

0 ≤ c g(n) ≤ f(n) ≤ c g(n), ∀n ≥ n 1 2 0

CE100 Algorithms and Programming II

Θ

 RTEU CE100 Week-1 101

Big-Theta / -Notation : Asymptotically tight bound (Average Case) (2)

CE100 Algorithms and Programming II

Θ

 RTEU CE100 Week-1 102

Big-Theta / -Notation : Asymptotically tight bound (Average Case) (3)

Example-1

Show that

We need to find 3 positive constants and such that:

 for all

 for all

Choose and

 for all

CE100 Algorithms and Programming II

Θ

2n +2 n = Θ(n)2

c , c 1 2 n 0

0 ≤ c n ≤1
2 2n +2 n ≤ c n2

2 n ≥ n 0

c ≤1 2 + (1/n) ≤ c 2 n ≥ n 0

c =1 2, c =2 3 n =0 1

2n ≤2 2n +2 n ≤ 3n2 n ≥ 1

 RTEU CE100 Week-1 103

Big-Theta / -Notation : Asymptotically tight bound (Average Case) (4)

Example-2.1

Show that

We need to find 3 positive constants and such that:

Choose 3 positive constants that satisfy for all

CE100 Algorithms and Programming II

Θ

1/2n −2 2n = Θ(n)2

c , c 1 2 n 0

0 ≤ c n ≤1
2 1/2n −2 2n ≤ c n for all n ≥2

2 n 0

c ≤1 1/2 − 2/n ≤ c for all n ≥2 n 0

c , c ,n 1 2 0 c ≤1 1/2 − 2/n ≤ c 2 n ≥
n 0

 RTEU CE100 Week-1 104

Big-Theta / -Notation : Asymptotically tight bound (Average Case) (5)

Example-2.2

CE100 Algorithms and Programming II

Θ

 RTEU CE100 Week-1 105

Big-Theta / -Notation : Asymptotically tight bound (Average Case) (6)

Example-2.3

1/10 ≤ 1/2 − 2/n for n ≥ 5

1/2 − 2/n ≤ 1/2 for n ≥ 0

Therefore we can choose

CE100 Algorithms and Programming II

Θ

c =1 1/10, c =2 1/2,n =0 5

 RTEU CE100 Week-1 106

Big-Theta / -Notation : Asymptotically tight bound (Average Case) (7)

Theorem: leading constants & low-order terms don’t matter

Justification: can choose the leading constant large enough to make high-order term
dominate other terms

CE100 Algorithms and Programming II

Θ

 RTEU CE100 Week-1 107

Big-Theta / -Notation : Asymptotically tight bound (Average Case) (8)

Example-1

 CORRECT

 INCORRECT

 INCORRECT

CE100 Algorithms and Programming II

Θ

10 n =9 2 Θ(n)2

100n =1.9999 Θ(n)2

10 n =9 2.0001 Θ(n)2

 RTEU CE100 Week-1 108

Big-Theta / -Notation : Asymptotically tight bound (Average Case) (9)

 is the set of functions that have asymptotically tight bound

positive constants such that

CE100 Algorithms and Programming II

Θ

Θ(g(n)) g(n)

Θ(g(n)) = {f(n) : ∃
c , c ,n 1 2 0

0 ≤ c g(n) ≤1 f(n) ≤ c g(n), ∀n ≥2 n }0

 RTEU CE100 Week-1 109

Big-Theta / -Notation : Asymptotically tight bound (Average Case) (10)

Theorem:

 if and only if and

 is stronger than both and

CE100 Algorithms and Programming II

Θ

f(n) = Θ(g(n)) f(n) = O(g(n)) f(n) = Ω(g(n))

Θ O Ω

Θ(g(n)) ⊆ O(g(n)) and Θ(g(n)) ⊆ Ω(g(n))

 RTEU CE100 Week-1 110

Big-Theta / -Notation : Asymptotically tight bound (Average Case) (11)

Example-1.1

Prove that

We can check that and

Proof by contradiction for notation

O(g(n)) = {f(n) : ∃ positive constant c,n such that 0

0 ≤ f(n) ≤ cg(n), ∀n ≥ n }0

CE100 Algorithms and Programming II

Θ

10 n =−8 2 Θ(n)

10 n =−8 2 Ω(n) 10 n =−8 2 O(n)

O(n)

 RTEU CE100 Week-1 111

Big-Theta / -Notation : Asymptotically tight bound (Average Case) (12)

Example-1.2

Suppose positive constants and exist such that:

Contradiction: is a constant

CE100 Algorithms and Programming II

Θ

c 2 n 0

10 n ≤−8 2 c n, ∀n ≥2 n 0

10 n ≤−8 c , ∀n ≥2 n 0

c 2

 RTEU CE100 Week-1 112

Summary of and notations (1)

 : The set of functions with asymptotic upper bound

 : The set of functions with asymptotic lower bound

: The set of functions with asymptotically tight bound

CE100 Algorithms and Programming II

O, Ω Θ

O(g(n)) g(n)

Ω(g(n)) g(n)

Θ(n) g(n)

f(n) = Θ(g(n)) ⇔ f(n) = O(g(n)) and f(n) = Ω(g(n))

 RTEU CE100 Week-1 113

Summary of and notations (2)

CE100 Algorithms and Programming II

O, Ω Θ

 RTEU CE100 Week-1 114

Small-o / -Notation : Asymptotic upper bound that is not tight (1)

Remember, upper bound provided by big- notation can be tight or not tight

Tight mean values are close the original function

e.g. followings are true

 is asymptotically tight

 is not asymptotically tight

According to this small- notation is an upper bound that is not asymptotically tight

CE100 Algorithms and Programming II

o

O

2n =2 O(n)2

2n = O(n)2

o

 RTEU CE100 Week-1 115

Small-o / -Notation : Asymptotic upper bound that is not tight (2)

Note that in equations equality is removed in small notations

o(g(n)) = {f(n) : for any constantc > 0, ∃ a constant n > 0,0

 such that 0 ≤ f(n) < cg(n),

∀n ≥ n }0

 =
n→∞
lim

g(n)
f(n)

0

e.g any positive satisfies but does not satisfy

CE100 Algorithms and Programming II

o

2n = o(n)2 c 2n =2 o(n)2 c = 2

 RTEU CE100 Week-1 116

Small-omega / -Notation: Asymptotic lower bound that is not tight (1)

ω(g(n)) = {f(n) : for any constant c > 0, ∃ a constant n > 0,0

 such that 0 ≤ cg(n) < f(n),

∀n ≥ n 0

 =
n→∞
lim

g(n)
f(n)

∞

e.g. , any positive satisfies but , does not
satisfy

CE100 Algorithms and Programming II

ω

n /2 =2 ω(n) c n /2 =2 ω(n)2 c = 1/2

 RTEU CE100 Week-1 117

(Important) Analogy to compare of two real numbers (1)

f(n)

f(n)

f(n)

f(n)

f(n)

= O(g(n)) ↔ a ≤ b

= Ω(g(n)) ↔ a ≥ b

= Θ(g(n)) ↔ a = b

= o(g(n)) ↔ a < b

= ω(g(n)) ↔ a > b

CE100 Algorithms and Programming II

 RTEU CE100 Week-1 118

(Important) Analogy to compare of two real numbers (2)
O ≈≤

Θ ≈=

Ω ≈≥

ω ≈>

o ≈<

CE100 Algorithms and Programming II

 RTEU CE100 Week-1 119

(Important) Trichotomy property for real numbers

For any two real numbers and , we have either

, or , or

Trichotomy property does not hold for asymptotic notation, for two functions and
, it may be the case that neither nor holds.

e.g. and cannot be compared asymptotically

CE100 Algorithms and Programming II

a b

a < b a = b a > b

f(n)
g(n) f(n) = O(g(n)) f(n) = Ω(g(n))

n n1+sin(n)

 RTEU CE100 Week-1 120

Examples

TRUE FALSE

TRUE TRUE

TRUE FALSE

FALSE FALSE

FALSE TRUE

TRUE

FALSE TRUE

FALSE FALSE

CE100 Algorithms and Programming II

5n =2 O(n)2 n lgn =2 O(n)2

5n =2 Ω(n)2 n lgn =2 Ω(n)2

5n =2 Θ(n)2 n lgn =2 Θ(n)2

5n =2 o(n)2 n lgn =2 o(n)2

5n =2 ω(n)2 n lgn =2 ω(n)2

2 =n O(3)n

2 =n Ω(3)n 2 =n o(3)n

2 =n Θ(3)n 2 =n ω(3)n

 RTEU CE100 Week-1 121

Asymptotic Function Properties

Transitivity: holds for all

e.g.

Reflexivity: holds for

e.g.

Symmetry: hold only for

e.g.

Transpose Symmetry: holds for and

e.g.

CE100 Algorithms and Programming II

f(n) = Θ(g(n))&g(n) = Θ(h(n)) ⇒ f(n) = Θ(h(n))

Θ,O, Ω

f(n) = O(f(n))

Θ

f(n) = Θ(g(n)) ⇔ g(n) = Θ(f(n))

(O ↔ Ω) (o ↔ ω)

f(n) = O(g(n)) ⇔ g(n) = Ω(f(n))

 RTEU CE100 Week-1 122

Using -Notation to Describe Running Times (1)

Used to bound worst-case running times, Implies an upper bound runtime for arbitrary inputs as well

Example:

Insertion sort has worst-case runtime of

Note:

This upper bound also applies to its running time on every input

Abuse to say “running time of insertion sort is "

For a given , the actual running time depends on the particular input of size

i.e., running time is not only a function of

However, worst-case running time is only a function of

CE100 Algorithms and Programming II

O

O(n)2

O(n)2

O(n)2

n n

n

n

 RTEU CE100 Week-1 123

Using -Notation to Describe Running Times (2)

When we say:

Running time of insertion sort is

What we really mean is

Worst-case running time of insertion sort is

or equivalently

No matter what particular input of size n is chosen, the running time on that
set of inputs is

CE100 Algorithms and Programming II

O

O(n)2

O(n)2

O(n)2

 RTEU CE100 Week-1 124

Using -Notation to Describe Running Times (1)

Used to bound best-case running times, Implies a lower bound runtime for arbitrary
inputs as well

Example:

Insertion sort has best-case runtime of

Note:

This lower bound also applies to its running time on every input

CE100 Algorithms and Programming II

Ω

Ω(n)

Ω(n)

 RTEU CE100 Week-1 125

Using -Notation to Describe Running Times (2)

When we say

Running time of algorithm A is

What we mean is

For any input of size , the runtime of A is at least a constant times for
sufficiently large

It’s not contradictory to say

worst-case running time of insertion sort is

Because there exists an input that causes the algorithm to take

CE100 Algorithms and Programming II

Ω

Ω(g(n))

n g(n)
n

Ω(n)2

Ω(n)2

 RTEU CE100 Week-1 126

Using -Notation to Describe Running Times (1)

Consider 2 cases about the runtime of an algorithm

Case 1: Worst-case and best-case not asymptotically equal

Use -notation to bound worst-case and best-case runtimes separately

Case 2: Worst-case and best-case asymptotically equal

Use -notation to bound the runtime for any input

CE100 Algorithms and Programming II

Θ

Θ

Θ

 RTEU CE100 Week-1 127

Using -Notation to Describe Running Times (2)

Case 1: Worst-case and best-case not asymptotically equal
Use -notation to bound the worst-case and best-case runtimes separately
We can say:

"The worst-case runtime of insertion sort is "

"The best-case runtime of insertion sort is "

But, we can’t say:
"The runtime of insertion sort is for every input"

A -bound on worst/best-case running time does not apply to its running
time on arbitrary inputs

CE100 Algorithms and Programming II

Θ

Θ

Θ(n)2

Θ(n)

Θ(n)2

Θ

 RTEU CE100 Week-1 128

Worst-Case and Best-Case Equation for Merge-Sort

e.g. for merge-sort, we have:

T (n) = Θ(nlgn) {T (n) = O(nlgn)
T (n) = Ω(nlgn)

CE100 Algorithms and Programming II

 RTEU CE100 Week-1 129

Using Asymptotic Notation to Describe Runtimes Summary (1)

"The worst case runtime of Insertion Sort is "

Also implies: "The runtime of Insertion Sort is "

"The best-case runtime of Insertion Sort is "

Also implies: "The runtime of Insertion Sort is "

CE100 Algorithms and Programming II

O(n)2

O(n)2

Ω(n)

Ω(n)

 RTEU CE100 Week-1 130

Using Asymptotic Notation to Describe Runtimes Summary (2)

"The worst case runtime of Insertion Sort is "

But: "The runtime of Insertion Sort is not "

"The best case runtime of Insertion Sort is "

But: "The runtime of Insertion Sort is not "

CE100 Algorithms and Programming II

Θ(n)2

Θ(n)2

Θ(n)

Θ(n)

 RTEU CE100 Week-1 131

Using Asymptotic Notation to Describe Runtimes Summary (3)

Which one is true?

FALSE "The worst case runtime of Merge Sort is "

FALSE "The best case runtime of Merge Sort is "

TRUE "The runtime of Merge Sort is "

This is true, because the best and worst case runtimes have asymptotically the
same tight bound

CE100 Algorithms and Programming II

Θ(nlgn)

Θ(nlgn)

Θ(nlgn)

Θ(nlgn)

 RTEU CE100 Week-1 132

Asymptotic Notation in Equations (RHS)

Asymptotic notation appears alone on the RHS of an equation:

implies set membership

e.g., means

Asymptotic notation appears on the RHS of an equation
stands for some anonymous function in the set

e.g., means:

, for some

i.e.,

CE100 Algorithms and Programming II

n = O(n)2 n ∈ O(n)2

2n +2 3n + 1 = 2n +2 Θ(n)

2n +2 3n + 1 = 2n +2 h(n) h(n) ∈ Θ(n)

h(n) = 3n + 1

 RTEU CE100 Week-1 133

Asymptotic Notation in Equations (LHS)

Asymptotic notation appears on the LHS of an equation:

stands for any anonymous function in the set

e.g., means:

for any function

 some function

such that

RHS provides coarser level of detail than LHS

CE100 Algorithms and Programming II

2n +2 Θ(n) = Θ(n)2

g(n) ∈ Θ(n)

∃ h(n) ∈ Θ(n)2

2n +2 g(n) = h(n)

 RTEU CE100 Week-1 134

References

Introduction to Algorithms, Third Edition | The MIT Press

Bilkent CS473 Course Notes (new)

Bilkent CS473 Course Notes (old)

Insertion Sort - GeeksforGeeks

NIST Dictionary of Algorithms and Data Structures

NIST - Dictionary of Algorithms and Data Structures

NIST - big-O notation

NIST - big-Omega notation

CE100 Algorithms and Programming II

 RTEU CE100 Week-1 135

https://mitpress.mit.edu/books/introduction-algorithms-third-edition
http://nabil.abubaker.bilkent.edu.tr/473/
http://cs.bilkent.edu.tr/~ugur/teaching/cs473/
https://www.geeksforgeeks.org/insertion-sort/
https://xlinux.nist.gov/dads/
https://xlinux.nist.gov/dads/
https://xlinux.nist.gov/dads/HTML/bigOnotation.html
https://xlinux.nist.gov/dads/HTML/omegaCapital.html

CE100 Algorithms and Programming II

−End − Of − Week − 1 − Course − Module−

 RTEU CE100 Week-1 136

