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Brief Description of Course and Rules

We will first talk about,

1. Course Plan and Communication

2. Grading System, Homeworks, and Exams

please read the syllabus carefully.
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Outline (1)

Introduction to Analysis of Algorithms
Algorithm Basics

Flowgorithm

Pseudocode
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Outline (2)

RAM (Random Access Machine Model)
Sorting Problem

Insertion Sort Analysis

Algorithm Cost Calculation for Time Complexity

Worst, Average, and Best Case Summary
Merge Sort Analysis
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Outline (3)

Asymptotic Notation
Big O Notation
Big Teta Notation

Big Omega Notation

Small o Notation

Small omega Notation
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We Need Mathematical Proofs (1)

Direct proof
Proof by mathematical induction

Proof by contraposition

Proof by contradiction

Proof by construction
Proof by exhaustion

CE100 Algorithms and Programming II
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We Need Mathematical Proofs (2)

Probabilistic proof

Combinatorial proof
Nonconstructive proof

Statistical proofs in pure mathematics

Computer-assisted proofs

Mathematical proof - Wikipedia

CE100 Algorithms and Programming II
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Introduction to Analysis of Algorithms

Study two sorting algorithms as examples

Insertion sort: Incremental algorithm

Merge sort: Divide-and-conquer

Introduction to runtime analysis

Best vs. worst vs. average case
Asymptotic analysis

CE100 Algorithms and Programming II
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What is Algorithm

Algorithm: A sequence of computational steps that transform the input to the desired
output

Procedure vs. algorithm 
An algorithm must halt within finite time with the right output

We Need to Measure Performance Metrics

Processing Time

Allocated Memory

Network Congestion
Power Usage etc.

CE100 Algorithms and Programming II
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Example Sorting Algorithms

Input: a sequence of n numbers

⟨a  , a  , ..., a  ⟩1 2 n

Algorithm: Sorting / Permutation

=∏ ⟨  ,  , ...,  ⟩
(1)

∏
(2)

∏
(n)

∏

Output: sorted permutation of the input sequence

⟨a  ⩽
 ∏(1)

a  ⩽
 ∏(2)

, ..., a  ⟩
 ∏(n)
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Pseudo-code notation (1)

Objective: Express algorithms to humans in a clear and concise way

Liberal use of English

Indentation for block structures

Omission of error handling and other details (needed in real programs)

You can use Flowgorithm application to understand concept easily.
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Pseudo-code notation (2)

Links and Examples

Wikipedia

CS50

University of North Florida

GeeksforGeeks
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Correctness (1)

We often use a loop invariant to help us to understand why an algorithm gives the
correct answer.

Example: (Insertion Sort) at the start of each iteration of the "outer" for loop - the loop
indexed by  - the subarray  consist of the elements originally in 

 but in sorted order.

CE100 Algorithms and Programming II
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A[1 … j − 1]

 RTEU CE100 Week-1 13



Correctness (2)

To use a loop invariant to prove correctness, we must show 3 things about it.

Initialization: It is true to the first iteration of the loop.

Maintaince: If it is true before an iteration of the loop, it remains true before the
next iteration.

Termination: When the loop terminates, the invariant - usually along with the
reason that the loop terminated - gives us a usefull property that helps show that
the algorithm is correct.
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RAM (Random Access Machine Model)  (1)

Operations
Single Step

Sequential
No Concurrent

Arithmetic
add, subtract, multiply, divide, remainder, floor, ceiling,
shift left/shift right (good by multiply/dividing )

CE100 Algorithms and Programming II
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RAM (Random Access Machine Model)  (2)

Data Movement
load, store, copy

Control
conditional / unconditional branch

subroutine calls

returns

CE100 Algorithms and Programming II

⟹ Θ(1)
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RAM (Random Access Machine Model)  (3)

Each instruction take a constant amount of time

Integer will be represented by  

 the running time of the algorithm:

 (cost of statement) ∗
all statement

∑ (number of times statement is executed) = T (n)

CE100 Algorithms and Programming II
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What is the processing time ?
1 

Second
1 

M�nute
1  

Hour
1 

Day
1  

Month
1 

Year
1 

Century
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Insertion Sort Algorithm (1)

Insertion sort is a simple sorting algorithm that works similar to the way you sort playing cards in
your hands

The array is virtually split into a sorted and an unsorted part

Values from the unsorted part are picked and placed at the correct position in the sorted part.
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Assume input array : 

Iterate  from  to 

already sorted
j

�ter j
�nsert �nto sorted array

j

after �ter of j

sorted subarray

CE100 Algorithms and Programming II

A[1..n]

j 2 n
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Insertion Sort Algorithm (2)

Insert�on-Sort(A) 
1. for j = 2 to n do  
2.  key = A[j];
3.  � = j-1; 
4.  wh�le �>0 and A[�]>key do 
5.  A[�+1]=A[�]; 
6.  � = �-1; 
 endwh�le 
7. A[�+1]=key; 
   endfor

CE100 Algorithms and Programming II
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Insertion Sort Algorithm (Pseudo-Code) (3)

Insertion-Sort(A) 
1. for j=2 to A.length 
2.     key = A[j] 
3.     //insert A[j] into the sorted sequence A[1...j-1] 
4.     i = j - 1 
5.     while i>0 and A[i]>key 
6.         A[i+1] = A[i] 
7.         i = i - 1 
8.     A[i+1] = key 

CE100 Algorithms and Programming II
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Insertion Sort Step-By-Step Description (1)

Insert�on-Sort(A) 
1. for j = 2 to n do  
2.  key = A[j]; 
3.  � = j-1; 
4.  wh�le �>0 and A[�]>key do
5.  A[�+1]=A[�]; 
6.  � = �-1; 
 endwh�le
7. A[�+1]=key; 
   endfor

Iterate over array 

Loop �nvar�ant:
The subarray
�s always sorted

already sorted j
key

already sorted

jkey

CE100 Algorithms and Programming II
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Insertion Sort Step-By-Step Description (2)

Insert�on-Sort(A) 
1. for j = 2 to n do  
2.  key = A[j]; 
3.  � = j-1; 
4.  wh�le �>0 and A[�]>key do
5.  A[�+1]=A[�]; 
6.  � = �-1; 
 endwh�le
7. A[�+1]=key; 
   endfor

Sh�ft r�ght the
entr�es �n

<key >key

that are
b�gger than

key = j

j

<key >key

j

Already Sorted

CE100 Algorithms and Programming II
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Insertion Sort Step-By-Step Description (3)

Insert�on-Sort(A) 
1. for j = 2 to n do  
2.  key = A[j]; 
3.  � = j-1; 
4.  wh�le �>0 and A[�]>key do
5.  A[�+1]=A[�]; 
6.  � = �-1; 
 endwh�le
7. A[�+1]=key; 
   endfor

Insert key to the correct
locat�on

<key >key
key=j

j

<key >keyj

Sorted

End of �terat�on �s sorted

CE100 Algorithms and Programming II
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Insertion Sort Example

Insertion Sort Step-1 (initial)

Insert�on-Sort(A) 
1. for j = 2 to n do  
2.  key = A[j]; 
3.  � = j-1; 
4.  wh�le �>0 and A[�]>key do
5.  A[�+1]=A[�]; 
6.  � = �-1; 
 endwh�le
7. A[�+1]=key; 
   endfor

5 2 4 6 1 3

CE100 Algorithms and Programming II

 RTEU CE100 Week-1 26



Insertion Sort Step-2 ( j=2)

Insert�on-Sort(A) 
1. for j = 2 to n do  
2.  key = A[j]; 
3.  � = j-1; 
4.  wh�le �>0 and A[�]>key do
5.  A[�+1]=A[�]; 
6.  � = �-1; 
 endwh�le
7. A[�+1]=key; 
   endfor

5 2 4 6 1 3

5 2 4 6 1 3

52 4 6 1 3

j

>2 j

sorted

�n�t�al

sh�ft

�nsert key

sorted

j

CE100 Algorithms and Programming II
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Insertion Sort Step-3 ( j=3)

Insert�on-Sort(A) 
1. for j = 2 to n do  
2.  key = A[j]; 
3.  � = j-1; 
4.  wh�le �>0 and A[�]>key do
5.  A[�+1]=A[�]; 
6.  � = �-1; 
 endwh�le
7. A[�+1]=key; 
   endfor

5 2 4 6 1 3

?

j

sorted

�n�t�al

key=4

What are the entr�es at the end of
�terat�on j=3?

? ? ? ? ?

CE100 Algorithms and Programming II
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Insertion Sort Step-4 ( j=3)

Insert�on-Sort(A) 
1. for j = 2 to n do  
2.  key = A[j]; 
3.  � = j-1; 
4.  wh�le �>0 and A[�]>key do
5.  A[�+1]=A[�]; 
6.  � = �-1; 
 endwh�le
7. A[�+1]=key; 
   endfor

2 5 4 6 1 3

2 5 4 6 1 3

42 5 6 1 3

j

<4 j

sorted

�n�t�al

sh�ft

�nsert key

sorted

j

>4

key=4

CE100 Algorithms and Programming II
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Insertion Sort Step-5 ( j=4)

Insert�on-Sort(A) 
1. for j = 2 to n do  
2.  key = A[j]; 
3.  � = j-1; 
4.  wh�le �>0 and A[�]>key do
5.  A[�+1]=A[�]; 
6.  � = �-1; 
 endwh�le
7. A[�+1]=key; 
   endfor

2 4 5 6 1 3

2 4 5 6 1 3

42 5 6 1 3

j

j

sorted

�n�t�al

sh�ft

�nsert key

sorted

j

<6

key=6

CE100 Algorithms and Programming II

 RTEU CE100 Week-1 30



Insertion Sort Step-6 ( j=5)

Insert�on-Sort(A) 
1. for j = 2 to n do  
2.  key = A[j]; 
3.  � = j-1; 
4.  wh�le �>0 and A[�]>key do
5.  A[�+1]=A[�]; 
6.  � = �-1; 
 endwh�le
7. A[�+1]=key; 
   endfor

5 2 4 6 1 3

?

j

sorted

�n�t�al

key=1

What are the entr�es at the end of
�terat�on j=5?

? ? ? ? ?

CE100 Algorithms and Programming II
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Insertion Sort Step-7 ( j=5)

Insert�on-Sort(A) 
1. for j = 2 to n do  
2.  key = A[j]; 
3.  � = j-1; 
4.  wh�le �>0 and A[�]>key do
5.  A[�+1]=A[�]; 
6.  � = �-1; 
 endwh�le
7. A[�+1]=key; 
   endfor

2 4 5 6 1 3

2 4 5 6 1 3

21 4 5 6 3

j

j

sorted

�n�t�al

sh�ft

�nsert key

sorted

j

>1

key=1

>1>1>1

CE100 Algorithms and Programming II
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Insertion Sort Step-8 ( j=6)

Insert�on-Sort(A) 
1. for j = 2 to n do  
2.  key = A[j]; 
3.  � = j-1; 
4.  wh�le �>0 and A[�]>key do
5.  A[�+1]=A[�]; 
6.  � = �-1; 
 endwh�le
7. A[�+1]=key; 
   endfor

1 2 4 5 6 3

1 2 4 5 6 3

21 3 4 5 6

j

j

sorted

�n�t�al

sh�ft

�nsert key

sorted

>3

key=3

>3<3 >3

CE100 Algorithms and Programming II
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Insertion Sort Review (1)

Items sorted in-place

Elements are rearranged within the array.

At a most constant number of items stored outside the array at any time (e.,g.
the variable key)

Input array  contains a sorted output sequence when the algorithm ends

CE100 Algorithms and Programming II
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Insertion Sort Review (2)

Incremental approach

Having sorted  , place  correctly so that  is sorted

Running Time

It depends on Input Size (5 elements or 5 billion elements) and Input Itself
(partially sorted)

Algorithm approach to upper bound of overall performance analysis

CE100 Algorithms and Programming II
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Visualization of Insertion Sort

Sorting (Bubble, Selection, Insertion, Merge, Quick, Counting, Radix) - VisuAlgo

https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html

https://algorithm-visualizer.org/

HMvHTs - Online C++ Compiler & Debugging Tool - Ideone.com

CE100 Algorithms and Programming II
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Kinds of Running Time Analysis (Time Complexity)

Worst Case (Big-O Notation)
 = maximum processing time of any input 

Presentation of Big-O : 

Average Case (Teta Notation)
 = average time over all inputs of size , inputs can have a uniform

distribution
Presentation of Big-Theta : 

Best Case (Omega Notation)
 = min time on any input of size , for example sorted array

Presentation of Big-Omega : 

CE100 Algorithms and Programming II

T (n) n

O(n)

T (n) n

Θ(n)

T (n) n

Ω(n)
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Array Sorting Algorithms Time and Space Complexity

Algor�thm
T�me Complex�ty

Best Average Worst

Space
Complex�ty

Worst

Qu�ck Sort

Merge Sort

T�m Sort

Heap Sort

Bubble Sort

Insert�on Sort

Select�on Sort

Tree Sort

Shell Sort

Bucket Sort

Rad�x Sort

Count�ng Sort

Cube Sort

very-fast

med�um

fast

slow

very-slow

CE100 Algorithms and Programming II
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Comparison of Time Analysis Cases

For insertion sort, worst-case time depends on the speed of primitive operations such
as

Relative Speed (on the same machine)

Absolute Speed (on different machines)

Asymptotic Analysis

Ignore machine-dependent constants

Look at the growth of 

CE100 Algorithms and Programming II
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Asymptotic Analysis (1)

Problem S�ze

Number of
Steps

1 2 3 4 N

Best
Case

Average
Case

Worst
Case

CE100 Algorithms and Programming II
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Asymptotic Analysis (2)

Theta-Notation (Average-Case)

Drop low order terms

Ignore leading constants

e.g

  

2n + 5n + 32

3n + 90n − 2n + 53 2

= Θ(n )2

= Θ(n )3

As  gets large, a  algorithm runs faster than a  algorithm

CE100 Algorithms and Programming II

n Θ(n )2 Θ(n )3
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Asymptotic Analysis (3)

For both algorithms, we can see a minimum item size in the following chart. After this point, we can
see performance differences. Some algorithms for small item size can be run faster than others but if
you increase item size you will see a reference point that notation proof performance metrics.

CE100 Algorithms and Programming II
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Insertion Sort - Runtime Analysis (1)

Cost   Times   Insertion-Sort(A) 
----   -----   --------------------- 
c1     n       1. for j=2 to A.length 
c2     n-1     2.     key = A[j] 
c3     n-1     3.     //insert A[j] into the sorted sequence A[1...j-1] 
c4     n-1     4.     i = j - 1 
c5     k5      5.     while i>0 and A[i]>key do  
c6     k6      6.         A[i+1] = A[i] 
c7     k6      7.         i = i - 1 
c8     n-1     8.     A[i+1] = key 

we have two loops here, if we sum up costs as follow we can see big-O worst case notation.

 and 

for operation counts

CE100 Algorithms and Programming II
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j=2
∑
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∑
n
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Insertion Sort - Runtime Analysis (2)

cost function can be evaluated as follow;

  

T (n) = c  n + c  (n − 1) + 0(n − 1) + c  (n − 1)1 2 4

+ c   t  + c  t  − 15

j=2

∑
n

j 6

j=2

∑
n

i

+ c   t  − 1 + c  (n − 1)7
j=2

∑
n

i 8

CE100 Algorithms and Programming II
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Insertion Sort - Runtime Analysis (3)

  

 j
j=2

∑
n

 j − 1
j=2

∑
n

= (n(n + 1)/2) − 1

 and 

= n(n − 1)/2

CE100 Algorithms and Programming II
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Insertion Sort - Runtime Analysis (4)

  

T (n) = (c  /2 + c  /2 + c  /2)n5 6 7
2

+ (c  + c  + c  + c  /2 − c  /2 − c  /2 + c  )n1 2 4 5 6 7 8

− (c  + c  + c  + c  )2 4 5 6

CE100 Algorithms and Programming II
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Insertion Sort - Runtime Analysis (5)

T (n) = an + bn + c2

= O(n )2

CE100 Algorithms and Programming II
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Best-Case Scenario (Sorted Array) (1)

Problem-1, If  is already sorted, what will be 

Insert�on-Sort(A) 
1. for j = 2 to n do  
2.  key = A[j]; 
3.  � = j-1; 
4.  wh�le �>0 and A[�]>key do
5.  A[�+1]=A[�]; 
6.  � = �-1; 
 endwh�le
7. A[�+1]=key; 
   endfor

2 4 5 6 1 3

2 4 5 6 1 3

42 5 6 1 3

j

j

sorted

�n�t�al

sh�ft

�nsert key

sorted

j

<6

key=6

CE100 Algorithms and Programming II
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Best-Case Scenario (Sorted Array) (2)

Parameters are taken from image

T (n) = c  n + c  (n − 1) + c  (n − 1)1 2 3

+ c   t  + c   (t  − 1)4
j=2

∑
n

j 5
j=2

∑
n

j

+ c   (t  − 1) + c  (n − 1)6

j=2

∑
n

j 7

 for all 

T (n)

T (n)

= (c  + c  + c  + c  + c  )n1 2 3 4 7

− (c  + c  + c  + c  )2 3 4 7

= an − b

= Ω(n)

CE100 Algorithms and Programming II
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Worst-Case Scenario (Reversed Array) (1)

Problem-2 If  is smaller than every entry in , what will be 

Insert�on-Sort(A) 
1. for j = 2 to n do  
2.  key = A[j]; 
3.  � = j-1; 
4.  wh�le �>0 and A[�]>key do
5.  A[�+1]=A[�]; 
6.  � = �-1; 
 endwh�le
7. A[�+1]=key; 
   endfor

5 2 4 6 1 3

?

j

sorted

�n�t�al

key=1

What are the entr�es at the end of
�terat�on j=5?

? ? ? ? ?

CE100 Algorithms and Programming II
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Worst-Case Scenario (Reversed Array) (2)

The input array is reverse sorted  for all  after calculation worst case runtime
will be

T (n)

T (n)

= 1/2(c  + c  + c  )n4 5 6
2

+ (c  + c  + c  + 1/2(c  − c  − c  ) + c  )n − (c  + c  + c  + c  )1 2 3 4 5 6 7 2 3 4 7

= 1/2an + bn − c2

= O(n )2

CE100 Algorithms and Programming II
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Asymptotic Runtime Analysis of Insertion-Sort

Insert�on-Sort(A) 
1. for j = 2 to n do  
2.  key = A[j]; 
3.  � = j-1; 
4.  wh�le �>0 and A[�]>key do
5.  A[�+1]=A[�]; 
6.  � = �-1; 
 endwh�le
7. A[�+1]=key; 
   endfor

CE100 Algorithms and Programming II
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Insertion-Sort Worst-case (input reverse sorted)

Inner Loop is 

T (n) =  Θ(j)
j=2

∑
n

= Θ(  j)
j=2

∑
n

= Θ(n )2

CE100 Algorithms and Programming II
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Insertion-Sort Average-case (all permutations uniformly distributed)

Inner Loop is 

  

T (n) =  Θ(j/2)
j=2

∑
n

=  Θ(j)
j=2

∑
n

= Θ(n )2

CE100 Algorithms and Programming II
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Array Sorting Algorithms Time/Space Complexities

To compare this sorting algorithm please check the following map again.

Algor�thm
T�me Complex�ty

Best Average Worst

Space
Complex�ty

Worst

Qu�ck Sort

Merge Sort

T�m Sort

Heap Sort

Bubble Sort

Insert�on Sort

Select�on Sort

Tree Sort

Shell Sort

Bucket Sort

Rad�x Sort

Count�ng Sort

Cube Sort

very-fast

med�um

fast

slow

very-slow

CE100 Algorithms and Programming II
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Merge Sort : Divide / Conquer / Combine (1)

D�v�de

Conquer

Comb�ne

merge two sorted halves

sort th�s half sort th�s half

CE100 Algorithms and Programming II
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Merge Sort : Divide / Conquer / Combine (2)

Divide: we divide the problem into a number of subproblems

Conquer: We solve the subproblems recursively

Base-Case: Solve by Brute-Force

Combine: Subproblem solutions to the original problem

CE100 Algorithms and Programming II
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Merge Sort Example

12 24 45 56 10 9 49 30 5 15

12 24 45 56 10 9 49 30 5 15

9 49 30 5 1512 24 45 56

10 9 49 3012 24 45 56 5 15

10

12 24 9 49
Re

cu
rs

�ve
 D

�v�
s�o

n
12 24 45 56 109 30 49 5 15

12 24 45 56 109 30 49

9 10 12 24 4530 49 56

5 9 10 12 2415 30 45 49 56Co
m

b�
ne

 A
cc

or
d�

ng
 to

 C
al

lS
ta

ck
 R

et
ur

ns
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Merge Sort Algorithm (initial setup)

Merge Sort is a recursive sorting algorithm, for initial case we need to call Merge-
Sort(A,1,n)  for sorting 

initial case

A : Array 
p : 1 (offset) 
r : n (length) 
Merge-Sort(A,1,n) 

CE100 Algorithms and Programming II

A[1..n]

 RTEU CE100 Week-1 59



Merge Sort Algorithm (internal iterations)

internal iterations

A : Array 
p : offset 
r : length 
Merge-Sort(A,p,r) 
    if p=r then                (CHECK FOR BASE-CASE) 
        return 
    else 
        q = floor((p+r)/2)    (DIVIDE) 
        Merge-Sort(A,p,q)     (CONQUER) 
        Merge-Sort(A,q+1,r)   (CONQUER) 
        Merge(A,p,q,r)        (COMBINE) 
    endif 

CE100 Algorithms and Programming II
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Merge Sort Algorithm (Combine-1)

 
 

Merge-Sort(A,p,r) 
1. �f p==r then 
2. return;  
3. else 
4.  q = floor((p+r)/2) 
5. Merge-Sort(A,p,q); 
6. Merge-Sort(A,q+1,r);
7. Merge(A,p,q,r) 
   end�f

5 2 4 6 1 3

1

p

2 3 4 5 6

q r

5 2 4 6 1 3
p r r

5 2 4 6 1 3

1 35 2

p

p=r p=r

p=r
p=rp=rp=r

p r p r
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p = start − point

q = mid − point

r = end − point
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Merge Sort Algorithm (Combine-2)

brute-force task, merging two sorted subarrays

The pseudo-code in the textbook (Sec. 2.3.1)

5 2 4 6 1 3

1

p

2 3 4 5 6

q r

5 2 4 6 1 3
p r r

5 2 4 6 1 3

1 35 2

p

p=r p=r

p=r
p=rp=rp=r

p r p r

2
5

2 5 4

2 4 5

1
3

1 3 6

1 3 6

1 2 3 4 5 6

�ter=1

�ter=2

�ter=3

�ter=4

�ter=5

Merge Operat�on

RL
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Merge Sort Combine Algorithm (1)

Merge(A,p,q,r) 
    n1 = q-p+1 
    n2 = r-q 

    //allocate left and right arrays  
    //increment will be from left to right  
    //left part will be bigger than right part 

    L[1...n1+1] //left array 
    R[1...n2+1] //right array 

    //copy left part of array 
    for i=1 to n1 
        L[i]=A[p+i-1] 

    //copy right part of array 
    for j=1 to n2 
        R[j]=A[q+j] 

    //put end items maximum values for termination 
    L[n1+1]=inf 
    R[n2+1]=inf 

    i=1,j=1 
    for k=p to r 
        if L[i]<=R[j] 
            A[k]=L[i] 
            i=i+1 
        else 
            A[k]=R[j] 
            j=j+1 

CE100 Algorithms and Programming II
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What is the complexity of merge operation?

You can find by counting loops will provide you base constant nested level will provide
you exponent of this constant, if you drop constants you will have complexity

we have 3 for loops

it will look like  and  will be merge complexity

CE100 Algorithms and Programming II

3n Θ(n)
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Merge Sort Correctness

Base case

 (Trivially correct)

Inductive hypothesis

MERGE-SORT is correct for any subarray that is a strict (smaller) subset of 
.

General Case

MERGE-SORT is correct for . From inductive hypothesis and correctness
of Merge.

CE100 Algorithms and Programming II

p = r

A[p, q]

A[p, q]
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Merge Sort Algorithm (Pseudo-Code)

A : Array 
p : offset 
r : length 
Merge-Sort(A,p,r) 
    if p=r then                (CHECK FOR BASE-CASE) 
        return 
    else 
        q = floor((p+r)/2)    (DIVIDE) 
        Merge-Sort(A,p,q)     (CONQUER) 
        Merge-Sort(A,q+1,r)   (CONQUER) 
        Merge(A,p,q,r)        (COMBINE) 
    endif 
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Merge Sort Algorithm Complexity

A : Array 
p : offset 
r : length 
Merge-Sort(A,p,r)-------------> T(n) 
    if p=r then--------------->Theta(1)                 
        return 
    else 
        q = floor((p+r)/2)---->Theta(1) 
        Merge-Sort(A,p,q)-----> T(n/2) 
        Merge-Sort(A,q+1,r)---> T(n/2) 
        Merge(A,p,q,r)-------->Theta(n) 
    endif 
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Merge Sort Algorithm Recurrence

We can describe a function recursively in terms of itself, to analyze the performance of
recursive algorithms

T (n) =   {Θ(1)
2T (n/2) + Θ(n)

if n=1
otherwise

CE100 Algorithms and Programming II
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How To Solve Recurrence (1)

T (n) =   {Θ(1)
2T (n/2) + Θ(n)

if n=1
otherwise

CE100 Algorithms and Programming II
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How To Solve Recurrence (2)

We will assume  for sufficiently small  to rewrite equation as

T (n) = 2T (n/2) + Θ(n)

Solution for this equation will be  with following recursion tree.

CE100 Algorithms and Programming II

T (n) = Θ(1) n

Θ(nlgn)
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How To Solve Recurrence (3)

Multiply by height  with each level cost  we can found 
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Θ(lgn) Θ(n) Θ(nlgn)
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How To Solve Recurrence (4)

This tree is binary-tree and binary-tree height is related with item size.

he�ght:

leaf count:
Total:

CE100 Algorithms and Programming II
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How Height of a Binary Tree is Equal to  ? (1)

Merge-Sort recursion tree is a perfect binary tree, a binary tree is a tree which every
node has at most two children, A perfect binary tree is binary tree in which all internal
nodes have exactly two children and all leaves are at the same level.

CE100 Algorithms and Programming II

logn
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How Height of a Binary Tree is Equal to  ? (2)

Let  be the number of nodes in the tree and let  denote the number of nodes on
level k. According to this;

 i.e. each level has exactly twice as many nodes as the previous level

 , i.e. on the first level we have only one node (the root node)

The leaves are at the last level,  where  is the height of the tree.
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logn

n l  k

l  =k 2l  k−1

l  =0 1

l  h h
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How Height of a Binary Tree is Equal to  ? (3)

The total number of nodes in the tree is equal to the sum of the nodes on all the levels:
nodes 

1 + 2 + 2 + 2 + ... + 21 2 3 h

1 + 2 + 2 + 2 + ... + 21 2 3 h

2 − 1h+1

2h+1

log  22
h+1

h + 1

h

= n

= 2 − 1h+1

= n

= n + 1

= log  (n + 1)2

= log  (n + 1)2

= log  (n + 1) − 12
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logn

n
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How Height of a Binary Tree is Equal to  ? (3)

If we write it as asymptotic approach, we will have the following result

height of tree is h = log  (n + 1) −2 1 = O(logn)

also

number of leaves is l  =h (n + 1)/2

nearly half of the nodes are at the leaves

CE100 Algorithms and Programming II

logn
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Review

 grows more slowly than 

Therefore Merge-Sort beats Insertion-Sort in the worst case

In practice Merge-Sort beats Insertion-Sort for  or so
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Θ(nlgn) Θ(n )2

n > 30
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Asymptotic Notations

CE100 Algorithms and Programming II
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Big-O / - Notation : Asymptotic Upper Bound (Worst-Case) (1)

 if  positive constants ,  such that

0 ≤ f(n) ≤ cg(n), ∀n ≥ n  0

CE100 Algorithms and Programming II

O

f(n) = O(g(n)) ∃ c n  0
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Big-O / - Notation : Asymptotic Upper Bound (Worst-Case) (2)

CE100 Algorithms and Programming II

O
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Big-O / - Notation : Asymptotic Upper Bound (Worst-Case) (3)

Asymptotic running times of algorithms are usually defined by functions whose domain
are  (natural numbers)

CE100 Algorithms and Programming II

O

N = 0, 1, 2, …
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Big-O / - Notation : Asymptotic Upper Bound (Worst-Case) (4)

Example-1

Show that 

we need to find two positive constant  and  such that:

0 ≤ 2n ≤2 cn  for all n ≥3 n  0

Choose  and 

2n ≤2 2n  for all n ≥3 1

Or, choose  and 

2n ≤2 n  for all n ≥3 2

CE100 Algorithms and Programming II

O

2n =2 O(n )3

c n  0

c = 2 n =0 1

c = 1 n  =0 2
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Big-O / - Notation : Asymptotic Upper Bound (Worst-Case) (5)

Example-2

Show that 

We need to find two positive constant  and  such that:

0 ≤ 2n + n ≤2 cn  for all n ≥2 n  0

2 + (1/n) ≤ c for all n ≥ n  0

Choose  and 

2n +2 n ≤ 3n  for all n ≥2 1

CE100 Algorithms and Programming II

O

2n +2 n = O(n )2

c n  0

c = 3 n =0 1
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Big-O / - Notation : Asymptotic Upper Bound (Worst-Case) (6)

We can say the followings about  equation

The notation is a little sloppy

One-way equation, e.q.  but we cannot say 
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O

f(n) = O(g(n))

n =2 O(n )3 O(n ) =3 n2
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Big-O / - Notation : Asymptotic Upper Bound (Worst-Case) (7)

 is in fact a set of functions as follow

CE100 Algorithms and Programming II

O

O(g(n))

O(g(n)) = {f(n) : ∃ positive constant c,n   such that 0 ≤0 f(n) ≤
cg(n), ∀n ≥ n  }0
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Big-O / - Notation : Asymptotic Upper Bound (Worst-Case) (8)

In other words  is in fact, the set of functions that have asymptotic upper
bound 

e.q  means 
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O

O(g(n))
g(n)

2n =2 O(n )3 2n ∈2 O(n )3
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Big-O / - Notation : Asymptotic Upper Bound (Worst-Case) (9)

Example-1

choose  and 

CORRECT
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O

10 n =9 2 O(n )2

0 ≤ 10 n ≤9 2 cn  for n ≥2 n  0

c = 109 n  =0 1

0 ≤ 10 n ≤9 2 10 n  for n ≥9 2 1
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Big-O / - Notation : Asymptotic Upper Bound (Worst-Case) (10)

Example-2

choose  and 

CORRECT

CE100 Algorithms and Programming II

O

100n =1.9999 O(n )2

0 ≤ 100n ≤1.9999 cn  for n ≥2 n  0

c = 100 n  =0 1

0 ≤ 100n ≤1.9999 100n  for n ≥2 1
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Big-O / - Notation : Asymptotic Upper Bound (Worst-Case) (11)

Example-3

INCORRECT (Contradiction)

CE100 Algorithms and Programming II

O

10 n =−9 2.0001 O(n )2

0 ≤ 10 n ≤−9 2.0001 cn  for n ≥2 n  0

10 n ≤−9 0.0001 c for n ≥ n  0

 RTEU CE100 Week-1 89



Big-O / - Notation : Asymptotic Upper Bound (Worst-Case) (12)

If we analysis  case, -notation is an upper bound notation and the runtime 
 of algorithm A is at least .

: The set of functions with asymptotic upper bound 

 means  for some 

 function is also in . Hence :  , runtime must be
nonnegative.
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O

O(n )2 O

T (n) O(n )2

O(n )2 n2

T (n) ≥ O(n )2 T (n) ≥ h(n) h(n) ∈ O(n )2

h(n) = 0 O(n )2 T (n) ≥ 0
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Big-Omega / -Notation : Asymptotic Lower Bound (Best-Case) (1)

 if  positive constants  such that 

CE100 Algorithms and Programming II

Ω

f(n) = Ω(g(n)) ∃ c,n  0 0 ≤ cg(n) ≤ f(n), ∀n ≥
n  0
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Big-Omega / -Notation : Asymptotic Lower Bound (Best-Case) (2)

CE100 Algorithms and Programming II

Ω
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Big-Omega / -Notation : Asymptotic Lower Bound (Best-Case) (3)

Example-1

Show that 

We need to find two positive constants  and  such that:

0 ≤ cn ≤2 2n  for all n ≥3 n  0

Choose  and 

n ≤2 2n  for all n ≥3 1

CE100 Algorithms and Programming II

Ω

2n =3 Ω(n )2

c n  0

c = 1 n =0 1
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Big-Omega / -Notation : Asymptotic Lower Bound (Best-Case) (4)

Example-4

Show that 

We need to find two positive constants  and  such that:

clgn ≤   for all n ≥n n  0

Choose  and 

lgn ≤   for all n ≥n 16
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Ω

 =n Ω(lgn)

c n  0

c = 1 n =0 16
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Big-Omega / -Notation : Asymptotic Lower Bound (Best-Case) (5)

 is the set of functions that have asymptotic lower bound 

  

Ω(g(n)) = {f(n) : ∃ positive constants c,n   such that 0

0 ≤ cg(n) ≤ f(n), ∀n ≥ n  }0

CE100 Algorithms and Programming II

Ω

Ω(g(n)) g(n)
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Big-Omega / -Notation : Asymptotic Lower Bound (Best-Case) (6)

Example-1

Choose  and 

CORRECT
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Ω

10 n =9 2 Ω(n )2

0 ≤ cn ≤2 10 n  for n ≥9 2 n  0

c = 109 n  =0 1

0 ≤ 10 n ≤9 2 10 n  for n ≥9 2 1
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Big-Omega / -Notation : Asymptotic Lower Bound (Best-Case) (7)

Example-2

INCORRECT(Contradiction)

CE100 Algorithms and Programming II

Ω

100n =1.9999 Ω(n )2

0 ≤ cn ≤2 100n  for n ≥1.9999 n  0

n ≤0.0001 (100/c) for n ≥ n  0

 RTEU CE100 Week-1 97



Big-Omega / -Notation : Asymptotic Lower Bound (Best-Case) (8)

Example-3

Choose  and 

CORRECT
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Ω

10 n =−9 2.0001 Ω(n )2

0 ≤ cn ≤2 10 n  for n ≥−9 2.0001 n  0

c = 10−9 n  =0 1

0 ≤ 10 n ≤−9 2 10 n  for n ≥−9 2.0001 1
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Comparison of Notations (1)

CE100 Algorithms and Programming II
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Comparison of Notations (2)
CE100 Algorithms and Programming II
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Big-Theta / -Notation : Asymptotically tight bound (Average Case) (1)

f(n) = Θ(g(n)) if  ∃ positive constants c  , c  ,n  such that1 2 0

0 ≤ c  g(n) ≤ f(n) ≤ c  g(n), ∀n ≥ n  1 2 0

CE100 Algorithms and Programming II

Θ
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Big-Theta / -Notation : Asymptotically tight bound (Average Case) (2)

CE100 Algorithms and Programming II

Θ
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Big-Theta / -Notation : Asymptotically tight bound (Average Case) (3)

Example-1

Show that 

We need to find 3 positive constants  and  such that:

 for all 

 for all 

Choose  and 

 for all 
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Θ

2n +2 n = Θ(n )2

c  , c  1 2 n  0

0 ≤ c  n ≤1
2 2n +2 n ≤ c  n2

2 n ≥ n  0

c  ≤1 2 + (1/n) ≤ c  2 n ≥ n  0

c  =1 2, c  =2 3 n  =0 1

2n ≤2 2n +2 n ≤ 3n2 n ≥ 1
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Big-Theta / -Notation : Asymptotically tight bound (Average Case) (4)

Example-2.1

Show that 

We need to find 3 positive constants  and  such that:

Choose 3 positive constants  that satisfy  for all 

CE100 Algorithms and Programming II

Θ

1/2n −2 2n = Θ(n )2

c  , c  1 2 n  0

0 ≤ c  n ≤1
2 1/2n −2 2n ≤ c  n  for all n ≥2

2 n  0

c  ≤1 1/2 − 2/n ≤ c   for all n ≥2 n  0

c  , c  ,n  1 2 0 c  ≤1 1/2 − 2/n ≤ c  2 n ≥
n  0
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Big-Theta / -Notation : Asymptotically tight bound (Average Case) (5)

Example-2.2

CE100 Algorithms and Programming II

Θ
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Big-Theta / -Notation : Asymptotically tight bound (Average Case) (6)

Example-2.3

1/10 ≤ 1/2 − 2/n for n ≥ 5

1/2 − 2/n ≤ 1/2 for n ≥ 0

Therefore we can choose 
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Θ

c  =1 1/10, c  =2 1/2,n  =0 5
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Big-Theta / -Notation : Asymptotically tight bound (Average Case) (7)

Theorem: leading constants & low-order terms don’t matter

Justification: can choose the leading constant large enough to make high-order term
dominate other terms

CE100 Algorithms and Programming II

Θ
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Big-Theta / -Notation : Asymptotically tight bound (Average Case) (8)

Example-1

 CORRECT

 INCORRECT

 INCORRECT
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Θ

10 n =9 2 Θ(n )2

100n =1.9999 Θ(n )2

10 n =9 2.0001 Θ(n )2
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Big-Theta / -Notation : Asymptotically tight bound (Average Case) (9)

 is the set of functions that have asymptotically tight bound 

  
positive constants  such that 

CE100 Algorithms and Programming II

Θ

Θ(g(n)) g(n)

Θ(g(n)) = {f(n) : ∃
c  , c  ,n  1 2 0

0 ≤ c  g(n) ≤1 f(n) ≤ c  g(n), ∀n ≥2 n  }0
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Big-Theta / -Notation : Asymptotically tight bound (Average Case) (10)

Theorem:

 if and only if  and 

 is stronger than both  and 

CE100 Algorithms and Programming II

Θ

f(n) = Θ(g(n)) f(n) = O(g(n)) f(n) = Ω(g(n))

Θ O Ω

Θ(g(n)) ⊆ O(g(n)) and Θ(g(n)) ⊆ Ω(g(n))
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Big-Theta / -Notation : Asymptotically tight bound (Average Case) (11)

Example-1.1

Prove that 

We can check that  and 

Proof by contradiction for  notation

  

O(g(n)) = {f(n) : ∃ positive constant c,n   such that 0

0 ≤ f(n) ≤ cg(n), ∀n ≥ n  }0

CE100 Algorithms and Programming II

Θ

10 n =−8 2  Θ(n)

10 n =−8 2 Ω(n) 10 n =−8 2  O(n)

O(n)
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Big-Theta / -Notation : Asymptotically tight bound (Average Case) (12)

Example-1.2

Suppose positive constants  and  exist such that:

Contradiction:  is a constant
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Θ

c  2 n  0

10 n ≤−8 2 c  n, ∀n ≥2 n  0

10 n ≤−8 c  , ∀n ≥2 n  0

c  2
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Summary of  and  notations (1)

 : The set of functions with asymptotic upper bound 

 : The set of functions with asymptotic lower bound 

: The set of functions with asymptotically tight bound 

CE100 Algorithms and Programming II

O, Ω Θ

O(g(n)) g(n)

Ω(g(n)) g(n)

Θ(n) g(n)

f(n) = Θ(g(n)) ⇔ f(n) = O(g(n)) and f(n) = Ω(g(n))
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Summary of  and  notations (2)
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O, Ω Θ
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Small-o / -Notation : Asymptotic upper bound that is not tight (1)

Remember, upper bound provided by big-  notation can be tight or not tight

Tight mean values are close the original function

e.g. followings are true

 is asymptotically tight

 is not asymptotically tight

According to this small-  notation is an upper bound that is not asymptotically tight

CE100 Algorithms and Programming II

o

O

2n =2 O(n )2

2n = O(n )2

o
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Small-o / -Notation : Asymptotic upper bound that is not tight (2)

Note that in equations equality is removed in small notations

o(g(n)) = {f(n) :  for any constantc > 0, ∃ a constant n  > 0,0

 such that 0 ≤ f(n) < cg(n),

∀n ≥ n  }0

  =
n→∞
lim

g(n)
f(n)

0

e.g  any positive  satisfies but   does not satisfy
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o

2n = o(n )2 c 2n =2  o(n )2 c = 2
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Small-omega / -Notation: Asymptotic lower bound that is not tight (1)

  

ω(g(n)) = {f(n) :  for any constant c > 0, ∃ a constant n  > 0,0

 such that 0 ≤ cg(n) < f(n),

∀n ≥ n  0

  =
n→∞
lim

g(n)
f(n)

∞

e.g. , any positive  satisfies but ,  does not
satisfy
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ω

n /2 =2 ω(n) c n /2 =2  ω(n )2 c = 1/2
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(Important) Analogy to compare of two real numbers (1)

  

f(n)

f(n)

f(n)

f(n)

f(n)

= O(g(n)) ↔ a ≤ b

= Ω(g(n)) ↔ a ≥ b

= Θ(g(n)) ↔ a = b

= o(g(n)) ↔ a < b

= ω(g(n)) ↔ a > b

CE100 Algorithms and Programming II
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(Important) Analogy to compare of two real numbers (2)
O ≈≤

Θ ≈=

Ω ≈≥

ω ≈>

o ≈<

CE100 Algorithms and Programming II
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(Important) Trichotomy property for real numbers

For any two real numbers  and , we have either

, or , or 

Trichotomy property does not hold for asymptotic notation, for two functions  and
, it may be the case that neither  nor  holds.

e.g.  and  cannot be compared asymptotically

CE100 Algorithms and Programming II

a b

a < b a = b a > b

f(n)
g(n) f(n) = O(g(n)) f(n) = Ω(g(n))

n n1+sin(n)
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Examples

TRUE FALSE

TRUE TRUE

TRUE FALSE

FALSE FALSE

FALSE TRUE

TRUE

FALSE TRUE

FALSE FALSE

CE100 Algorithms and Programming II

5n =2 O(n )2 n lgn =2 O(n )2

5n =2 Ω(n )2 n lgn =2 Ω(n )2

5n =2 Θ(n )2 n lgn =2 Θ(n )2

5n =2 o(n )2 n lgn =2 o(n )2

5n =2 ω(n )2 n lgn =2 ω(n )2

2 =n O(3 )n

2 =n Ω(3 )n 2 =n o(3 )n

2 =n Θ(3 )n 2 =n ω(3 )n
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Asymptotic Function Properties

Transitivity: holds for all

e.g. 

Reflexivity: holds for 

e.g. 

Symmetry: hold only for 

e.g. 

Transpose Symmetry: holds for  and 

e.g. 

CE100 Algorithms and Programming II

f(n) = Θ(g(n))&g(n) = Θ(h(n)) ⇒ f(n) = Θ(h(n))

Θ,O, Ω

f(n) = O(f(n))

Θ

f(n) = Θ(g(n)) ⇔ g(n) = Θ(f(n))

(O ↔ Ω) (o ↔ ω)

f(n) = O(g(n)) ⇔ g(n) = Ω(f(n))
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Using -Notation to Describe Running Times (1)

Used to bound worst-case running times, Implies an upper bound runtime for arbitrary inputs as well

Example:

Insertion sort has worst-case runtime of 

Note:

This  upper bound also applies to its running time on every input

Abuse to say “running time of insertion sort is "

For a given , the actual running time depends on the particular input of size 

i.e., running time is not only a function of 

However, worst-case running time is only a function of 
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O

O(n )2

O(n )2

O(n )2

n n

n

n
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Using -Notation to Describe Running Times (2)

When we say:

Running time of insertion sort is 

What we really mean is

Worst-case running time of insertion sort is 

or equivalently

No matter what particular input of size n is chosen, the running time on that
set of inputs is 
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O

O(n )2

O(n )2

O(n )2
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Using -Notation to Describe Running Times (1)

Used to bound best-case running times, Implies a lower bound runtime for arbitrary
inputs as well

Example:

Insertion sort has best-case runtime of 

Note:

This  lower bound also applies to its running time on every input
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Ω

Ω(n)

Ω(n)
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Using -Notation to Describe Running Times (2)

When we say

Running time of algorithm A is 

What we mean is

For any input of size , the runtime of A is at least a constant times  for
sufficiently large 

It’s not contradictory to say

worst-case running time of insertion sort is 

Because there exists an input that causes the algorithm to take 
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Ω

Ω(g(n))

n g(n)
n

Ω(n )2

Ω(n )2
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Using -Notation to Describe Running Times (1)

Consider 2 cases about the runtime of an algorithm

Case 1: Worst-case and best-case not asymptotically equal

Use -notation to bound worst-case and best-case runtimes separately

Case 2: Worst-case and best-case asymptotically equal

Use -notation to bound the runtime for any input
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Θ

Θ

Θ
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Using -Notation to Describe Running Times (2)

Case 1: Worst-case and best-case not asymptotically equal
Use -notation to bound the worst-case and best-case runtimes separately
We can say:

"The worst-case runtime of insertion sort is "

"The best-case runtime of insertion sort is "

But, we can’t say:
"The runtime of insertion sort is  for every input"

A -bound on worst/best-case running time does not apply to its running
time on arbitrary inputs
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Θ

Θ

Θ(n )2

Θ(n)

Θ(n )2

Θ
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Worst-Case and Best-Case Equation for Merge-Sort

e.g. for merge-sort, we have:

T (n) = Θ(nlgn)  {T (n) = O(nlgn)
T (n) = Ω(nlgn)
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Using Asymptotic Notation to Describe Runtimes Summary (1)

"The worst case runtime of Insertion Sort is "

Also implies: "The runtime of Insertion Sort is "

"The best-case runtime of Insertion Sort is "

Also implies: "The runtime of Insertion Sort is "

CE100 Algorithms and Programming II

O(n )2

O(n )2

Ω(n)

Ω(n)
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Using Asymptotic Notation to Describe Runtimes Summary (2)

"The worst case runtime of Insertion Sort is "

But: "The runtime of Insertion Sort is not "

"The best case runtime of Insertion Sort is "

But: "The runtime of Insertion Sort is not "
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Θ(n )2

Θ(n )2

Θ(n)

Θ(n)
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Using Asymptotic Notation to Describe Runtimes Summary (3)

Which one is true?

FALSE "The worst case runtime of Merge Sort is "

FALSE "The best case runtime of Merge Sort is "

TRUE "The runtime of Merge Sort is "

This is true, because the best and worst case runtimes have asymptotically the
same tight bound 
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Θ(nlgn)

Θ(nlgn)

Θ(nlgn)

Θ(nlgn)
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Asymptotic Notation in Equations (RHS)

Asymptotic notation appears alone on the RHS of an equation:

implies set membership

e.g.,  means 

Asymptotic notation appears on the RHS of an equation 
stands for some anonymous function in the set

e.g.,  means:

, for some 

i.e., 
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n = O(n )2 n ∈ O(n )2

2n +2 3n + 1 = 2n +2 Θ(n)

2n +2 3n + 1 = 2n +2 h(n) h(n) ∈ Θ(n)

h(n) = 3n + 1
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Asymptotic Notation in Equations (LHS)

Asymptotic notation appears on the LHS of an equation:

stands for any anonymous function in the set

e.g.,  means:

for any function 

 some function 

such that 

RHS provides coarser level of detail than LHS
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2n +2 Θ(n) = Θ(n )2

g(n) ∈ Θ(n)

∃ h(n) ∈ Θ(n )2

2n +2 g(n) = h(n)
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